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Abstract. In this paper, we address the problem of classification of quasi-homogeneous
formal power series providing solutions of the oriented associativity equations. Such a clas-
sification is performed by introducing a system of monodromy local moduli on the space
of formal germs of homogeneous semisimple flat F -manifolds. This system of local moduli
is well-defined on the complement of the doubly resonant locus, namely the locus of for-
mal germs of flat F -manifolds manifesting both coalescences of canonical coordinates at
the origin, and resonances of their conformal dimensions. It is shown how the solutions of
the oriented associativity equations can be reconstructed from the knowledge of the mon-
odromy local moduli via a Riemann-Hilbert-Birkhoff boundary value problem. Furthermore,
standing on results of B.Malgrange and C. Sabbah, it is proved that any formal homoge-
neous semisimple flat F -manifold, which is not doubly resonant, is actually convergent. Our
semisimplicity criterion for convergence is also reformulated in terms of solutions of Losev-
Manin commutativity equations, growth estimates of correlators of F -cohomological field
theories, and solutions of open Witten-Dijkgraaf-Verlinde-Verlinde equations.
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1. Introduction

Oriented associativity equations. In this paper, we address both the problem of classifi-
cation and the convergence issues of formal solutions, in the ring of formal power series with
complex coefficients, of the oriented associativity equations [LM00, LM04, Man05]. These
consist of the overdetermined system of non-linear partial differential equations, in n func-
tions F 1(t), . . . , F n(t) depending on n variables t = (t1, . . . , tn), given by∑

µ

∂Fα

∂tβ∂tµ
∂F µ

∂tγ∂tε
=
∑
µ

∂Fα

∂tε∂tµ
∂F µ

∂tγ∂tβ
, α, β, γ, ε = 1, . . . , n,

∑
µ

Aµ
∂Fα

∂tµ∂tβ
= δαβ , Aµ ∈ C, α, β = 1, . . . , n.

The oriented associativity equations are a natural generalization of Witten-Dijkgraaf-Verlinde
-Verlinde (WDVV) associativity equations [Wit90, DVV91]. Their solutions (F 1, . . . , F n)
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reflect the rich geometry of F -manifolds with a compatible flat structure, for short flat F -
manifolds [Man05].

Flat F -manifolds. In the early 1990s, B.Dubrovin introduced Frobenius manifolds as
geometrical materialization of solutions of WDVV equations [Dub92, Dub96, Dub98, Dub99].
This notion turns up in many areas of Mathematics: for example Frobenius manifolds play
a key role in mirror symmetry, singularity theory, quantum cohomology, integrable systems,
and symplectic geometry.

It was soon realized, however, that weaker (i.e. with relaxed axioms) variants of the Frobe-
nius structure are of interest per se. The core notion is that of F -manifolds, introduced by
C.Hertling and Yu.I.Manin in [HM99]. Such a notion not only strictly includes the Frobe-
nius structures, but it also greatly broadens the scope of the examples and applications.
Examples of F -manifolds, indeed, arise not only in singularity theory [Her02], but also in
quantum K-theory [Lee04], differential-graded deformation theory [Mer04, Mer06], and even
information geometry [CM20].

Flat F -manifolds – introduced by Yu.I.Manin [Man05]– are an intermediate notion, weaker
than Frobenius, but stronger than F -manifolds:

Frobenius manifolds ⊂ flat F -manifolds ⊂ F -manifolds.

Flat F -manifolds are equipped with the minimum amount of structures to share some of
the deeper properties of Frobenius manifolds, including Dubrovin’s deformed connection,
Dubrovin’s almost duality, and also operadic descriptions. See [Man04, Man05, LPR11,
AL13, AL17]. These structures are also studied in [Get04], where they are called Dubrovin
manifolds.

A flat F -manifold (in the analytic category) is a complex manifoldM whose tangent spaces
are equipped with an associative, commutative and unital algebra structure –analytically
depending in the point– whose product ◦ is compatible with a given flat connection ∇. This
means that each element of the pencil (∇z)z∈C, defined by ∇z

XY = ∇XY +zX ◦Y , is required
to be flat and torsionless.

The compatibility of (◦,∇) implies a potentiality condition: in ∇-flat local coordinates
t = (t1, . . . , tn) on M , with n = dimCM , the product ◦ descends from a vector potential:
there exists F = (F 1, . . . , F n) such that

∂

∂tβ
◦ ∂

∂tγ
=
∑
α

∂2Fα

∂tβ∂tγ
∂

∂tα
, β, γ = 1, . . . , n. (1.1)

The associativity of ◦ is equivalent to the oriented associativity equations for F . Vice-versa,
starting from a solution F of the oriented associativity equations, we can define a flat F -
structure via equation (1.1). If the starting solution F is a tuple of formal power series in
k[[t]] (with k a Q-algebra), the resulting flat F -structure is said to be formal over k. It can
be seen as a flat F -structure on the formal spectrum Spf k[[t]].

Homogeneity, semisimplicity, and double resonance. In this paper we consider only
quasi-homogenous solutions F of the oriented associativity equations, i.e. satisfying a further
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condition of the form∑
α

[(1− qα)tα + rα]
∂F β

∂tα
= (2− qβ)F β(t) + linear terms in t,

for suitable complex numbers qα, rα ∈ C. The resulting flat F -manifold is said to be homo-
geneous, or conformal. The vector field E =

∑
α[(1− qα)tα + rα] ∂

∂tα
is then an Euler vector

field, i.e. it satisfies the conditions ∇∇E = 0 and LE(◦) = ◦. We say that p ∈ M is tame
if the spectrum of the operator (E◦)p ∈ End(TpM) is simple, otherwise we say that p is
coalescing.

An analytic flat F -manifold is said to be semisimple if there exists an open dense subset
of points p whose corresponding algebra (TpM, ◦p) is without nilpotent elements. This is
equivalent to the existence of idempotents vectors π1, . . . , πn ∈ TpM : πi ◦πj = πiδij for i, j =
1, . . . , n. If a manifold is both homogenous and semisimple, the eigenvalues of the tensor
(E◦) can be chosen as local holomorphic coordinates in a neighborhood of any semisimple
point p ∈M . Tame points are necessarily semisimple, whereas coalescing points may or may
not be semisimple.

With each homogeneous semisimple (analytic/formal) flat F -manifolds we can associate
a tuple (δ1, . . . , δn) of numerical invariants called conformal dimensions. Fix a semisimple
point p ∈M , and introduce the operator

µ0
p ∈ End(TpM), µ0

p

(
∂

∂tα

)
= qα

∂

∂tα
, α = 1, . . . , n.

The conformal dimensions can be defined as the numbers δ1, . . . , δn ∈ C satisfying

µ0
p(πi) ◦ πi = δiπi, i = 1, . . . , n.

They are defined up to ordering, and they actually do not depend on the chosen semisimple
point p ∈ M . The flat F -manifold is be said to be conformally resonant if δi − δj ∈ Z \ {0}
for some i, j. The conformal dimensions of a Frobenius manifold are all equal, with common
value d

2
(the number d ∈ C is the charge of the Frobenius structure). In particular, Frobenius

manifolds are never conformally resonant.
In the formal case, all the conditions on points introduced above (tameness, coalescence,

semisimplicity) are intended to be referred to the origin t = 0, the only geometric point of
the formal spectrum Spf k[[t]].

A (germ of) pointed flat F -manifold (M, p) is be said to be doubly resonant if M is
conformally resonant, and p is coalescing.

Results. One of the main aspects of Dubrovin’s analytic theory of Frobenius manifolds
is their isomonodromic approach. Under the quasi-homogeneity assumption of the WDVV
potential, the semisimple part of a Frobenius manifold can be locally identified with the
space of isomonodromic deformation parameters of ordinary differential equations on P1

with rational coefficients, see [Dub98, Dub99].
In this paper, we extend to the case of homogenous semisimple flat F -manifolds both

Dubrovin’s analytical theory as well as its refinement developed in [CG17, CDG20]. The
key ingredient is a family (∇̂λ)λ∈C of flat extended deformed connections on π∗TM , with
π : M ×C∗ → C∗, whose restrictions to M ×{z} equal ∇z = ∇+ z(−◦−). These families of
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flat connections ∇̂λ on homogeneous flat F -manifolds were first introduced by Yu.I.Manin
[Man05].

Remark 1.1. In [Sab07, Chapter VII, §1] the notion of Saito structure without metric is
introduced. These structures are defined in terms of several data on a complex manifold M .
Among them there is a flat meromorphic connection ∇̂ on the bundle π∗TM on M × P1.
It turns out that the notion of Saito structure without metric is equivalent to the notion
of homogeneous flat F -manifold, and that ∇̂ is one of the connections ∇̂λ above. See also
[KMS20], in which it is shown that the space of isomonodromic deformation parameters of
extended Okubo systems can be equipped with Saito structures without metrics.

For any germ (M, p), semisimple and not doubly resonant, we introduce a tuple of numer-
ical data, the monodromy data of the flat F -manifold. These data split into two pieces: a
pair (µλ, R) of matrices called “monodromy data at z = 0”, and a 4-tuple (S1, S2,Λ, C) of
matrices called “monodromy data at z = ∞”. Precise definitions are given in Section 4. In
the case of Frobenius manifolds, all these data are subjected to several constraints: the final
amount of data coincides with the 4-tuple (µ,R, S, C) of monodromy data introduced by
Dubrovin in [Dub98, Dub99]. If M is analytic, the monodromy data define local invariants
of M : if p1, p2 ∈M are sufficiently close, the data of the germs (M, p1), (M, p2) are equal.

Theorem 1.2 (Cf. Theorems 6.10, 6.15). Any homogeneous semisimple (analytic/formal)
pointed germ of flat F -manifold, which is not doubly resonant, is uniquely determined by its
monodromy data. In particular, the vector potential F can be explicitly reconstructed from
the monodromy data via a Riemann-Hilbert-Birkhoff boundary value problem.

We show that the totality of local isomorphism classes of germs of n-dimensional flat F -
manifolds can be parametrized by points of a “stratified” space, whose generic stratum has
dimension n2. The monodromy data provide a system of local coordinates. The Frobenius
structures correspond a locus of generic dimension 1

2
(n2 − n). See Theorem 6.19.

The re-construction procedure of the flat F -structure is based on a crucial property of
a joint system of “generalized” Darboux-Egoroff equations [Lor14]: solutions Γ(u) of this
system of non-linear partial differential equations are uniquely determined by its initial value
Γo at one point uo ∈ Cn (with possibly uio = ujo for i 6= j), provided there is no conformal
resonance. See Lemma 6.16.

We underline that both the initial values (uo,Γo) and the monodromy data provide a
system of local coordinates on the space of germs of flat F -manifolds. The reconstruction
procedure of F in terms of the initial values, however, is generally impossible, the depen-
dance being typically transcendental (e.g. for n = 3, the general Darboux-Egoroff system
reduces to the full-parameters family of Painlevé equations PVI, see [Lor14]). This makes
the monodromy data “preferable” as a system of coordinates for the classification of flat
F -structures.

There is a further advantage in choosing the monodromy data as a system of local moduli.
Indeed, they make possible the study of convergence issues.

Theorem 1.3 (Cf. Theorem 6.17). Let F ∈ C[[t]]×n be a quasi-homogeneous solution of the
oriented associativity equations. If F defines a semisimple formal flat F -manifold, which is
not doubly resonant, then F is a tuple of convergent functions.
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For the proof, we invoke results of B.Malgrange [Mal83a, Mal83b, Mal86] and C. Sabbah
[Sab18] on the solvability of families of Riemann-Hilbert-Birkhoff problems. More precisely,
we use their equivalent formulations given in [Cot20c]. Notice that Theorem 1.3 generalizes
[Cot20c, Theorem 5.1].

Cohomological field theories. Frobenius structures are intrinsically correlated to the no-
tion of cohomological field theories. The geometry of Frobenius structures reflects properties
of the cohomology rings H•(M0,n,C), with n > 3, and they can indeed be defined in terms
of H•(M0,n,C)-valued poly-linear maps. See [KM94, Man99, Pan18].

At the level of flat F -manifolds, such a construction has been generalized in two different (a
posteriori equivalent) ways. The first one is due to A. Losev and Yu.I.Manin [LM00, LM04],
the second one to A.Buryak and P.Rossi [BR18]. See also [ABLR20a, ABLR20b, ABLR21].

In [LM00], a new compactification Ln ofM0,n is introduced. The boundary strata repre-
sent isomorphisms classes of stable n-pointed chains of projective lines, in which the marked
points do not play a symmetric role. In [LM04], a notion of genus 0 extended modular operad,
and L-algebras over it are studied. Moreover, it is shown that the differential equations sat-
isfied by generating functions of correlators of L-algebras lead to two differential geometric
pictures: the first one is the study of pencils of flat connections, based on the commutativity
equations, the second one is the study of flat F -manifolds, based on the oriented associativity
equations. These two pictures are actually locally equivalent, if a further amount of data –
a primitive element – is given. See also the constructions in [Los97, Los98].

Notice that the compactifications Ln andM0,n, and their higher genus analogs, both arise
in the more general construction of [Has03] as compactified moduli spaces of weighted pointed
stable curves, for two different choices of the weights. See also [Man04].

In [BR18] A.Buryak and P.Rossi introduced the notion of F -cohomological field theories
(F -CohFT) as a generalization of both cohomological field theories [KM94, Man99], and
partial cohomological field theories [LRZ15]. An F -CohFT is defined by the datum of a
family of H•(Mg,n,C)-valued poly-linear maps on a tensor product V ∗ ⊗ V ⊗n (V is an
arbitrary C-vector space), which satisfy some natural Sn-equivariance and gluing properties.
Given an F -CohFT, its genus zero sector (or tree level) defines a formal flat F -structure on
V .

In Section 7, we review all these cohomological field theoretical approaches to flat F -
manifolds, their equivalences, and we rephrase our semisimplicity criterion of convergence
in terms of solutions of Losev-Manin commutativity equations, and growth estimates of
correlators of F -CohFT’s. Furthermore, in Appendix B we prove1 that any formal flat F -
manifold over C descend from a unique F -CohFT in the sense of P.Rossi and A.Buryak.
This is in complete analogy with the Frobenius manifolds case, see [Man99].

Structure of the paper. In Section 2 we present some preliminary material and basic
properties of flat F -manifolds, in both formal and analytic categories. We recall definitions
of homogeneity, semisimplicity of flat F -manifolds. We also introduce the notion of local
isomorphisms, pointed germs, and irreducibility of flat F -manifolds.

1The author is not aware of a proof of this fact in literature.
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In Section 3, we firstly describe how to reconstruct oriented associativity potentials from
deformed coordinates on a flat F -manifolds. We then introduce a family of flat extended
deformed connections ∇̂λ, and we develop the analytical theory of its flat (co)sections. We
study the differential system of ∇̂λ-flatness in three different frames: the flat frame, the
idempotent frame, and a normalized idempotent frame (the normalizing factors are the so-
called Lamé coefficients). We also introduce Darboux-Tsarev and Darboux-Egoroff systems
of equations.

In Section 4, after introducing the notion of spectrum of a flat F -manifolds, we define
the monodromy data of a homogeneous semisimple flat F -manifold. We also describe their
mutual constraints. In Section 5, we then clarify the dependence of the monodromy data on
all the choices normalizations involved in their definition. Different choices of normalizations
affect the numerical values of the data via the action of suitable groups. We show that the
analytic continuation of the flat F -structure is described by a braid group action on the tuple
of monodromy data.

Section 6 contains the main results of the paper. After introducing the notion of admissible
data and the related Riemann-Hilbert-Birkhoff (RHB) boundary value problem, we recall
some results of B.Malgrange and C. Sabbah as formulated in [Cot20c]. We show that germs
of flat F -structures can be constructed starting from solutions of RHB problems. Moreover,
we show that any germ is of such a form: it can be reconstructed from its monodromy data.
It is also proved that any formal germ of homogenous semisimple flat F -manifold (over C),
which is not doubly resonant, is actually convergent.

In Section 7, we review equivalent approaches for defining flat F -manifolds. We recall the
notions of Losev-Manin commutativity equations, Losev-Manin cohomological field theories
(LM-CohFT), and F -cohomological field theories (F -CohFT) in the sense of A.Buryak and
P.Rossi. We discuss the equivalence of these notions. Furthermore, we also discuss relations
with the open WDVV (OWDVV) equations. Our semisimplicity criterion is reformulated in
terms of growth estimates of correlators of LM-CohFT and F -CohFT, and convergence of
solutions of OWDVV equations.

In Appendix A, we provide a proof for the following characterization of irreducibility of
flat F -structures in terms of Euler vector fields: a flat F -manifold is irreducible if and only
if any two arbitrary Euler vector fields differ by a scalar multiple of the unit vector field.

In Appendix B, we prove that any formal flat F -manifold descends from a unique tree-level
F -CohFT.

Acknowledgements. The author is thankful to D.Guzzetti, C.Hertling, A.R. Its, P. Loren-
zoni, Yu.I. Manin, D.Masoero, A.T.Ricolfi, P.Rossi, V.Roubtsov, A.Varchenko, C. Sabbah,
M. Smirnov, D.Yang for several valuable discussions. The author is thankful to the Hausdorff
Research Institute for Mathematics (HIM) in Bonn, Germany, where this project was started,
for providing excellent working conditions during the JTP “New Trends in Representation
Theory”. This research was supported by HIM (Bonn, Germany), and by the FCT Project
PTDC/MAT-PUR/ 30234/2017 “Irregular connections on algebraic curves and Quantum
Field Theory”.
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2. Flat F -manifolds

2.1. Analytic flat F -manifolds. Let M be a complex analytic manifold with dimension
dimCM = n. Denote by TM, T ∗M the holomorphic tangent and cotangent bundles, and by
TM , Ω1

M their sheaves of sections. If E →M is a holomorphic bundle with sheaf of sections
E , we denote by Γ(E) = Γ(M,E ) the space of global sections. By usual abuse of notations,
we will write X ∈ E for X ∈ Γ(U,E ) for some (or arbitrary) open set U ⊆M .

Let (M,∇, c, e) be the datum of
(1) a connection ∇ : TM → Ω1

M ⊗TM on TM ;
(2) a section c ∈ Γ

(
TM ⊗

⊙2 T ∗M
)
;

(3) a vector field e ∈ Γ(TM) such that
(a) c(−, e,−) = c(−,−, e) ∈ Γ(EndTM) is the identity morphism,
(b) ∇e = 0.

Denote by X ◦ Y := c(−, X, Y ) the commutative product defined by the tensor c, and
introduce the one-parameter family of connections (∇z)z∈C defined by∇z

XY := ∇XY +zX◦Y
for X, Y ∈ TM .

Definition 2.1. We say that (M,∇, c, e) is a flat F -manifold if the connection ∇z is flat
and torsionless for any z ∈ C.

Let t = (t1, . . . , tn) be a system of ∇-flat local coordinates on M . Set ∂α := ∂
∂tα

, for
α = 1, . . . , n and define cαβγ := c(dtα, ∂β, ∂γ). The flatness and torsionless of ∇z is equivalent
to the associativity of ◦, and the symmetry of ∂αcδβγ in (α, β, γ). Hence, there locally exist
analytic functions F = (F 1, . . . , F n) ∈ OnM such that

cαβγ =
∂2Fα

∂tβ∂tγ
, α, β, γ = 1, . . . , n.

In what follows the Einstein summation rule is used over repeated Greek indices. Let Aα ∈ C
be constants such that e = Aα∂α. From the associativity of ◦ and the properties of e, we
have

Aµ
∂2Fα

∂tµ∂tβ
= δαβ , α, β = 1, . . . , n, (2.1)

∂2Fα

∂tµ∂tβ
∂2F µ

∂tγ∂tδ
=

∂2Fα

∂tµ∂tγ
∂2F µ

∂tβ∂tδ
, α, β, γ, δ = 1, . . . , n. (2.2)

Equations (2.1), (2.2) are called oriented associativity equations, and F is the oriented as-
sociativity potential of the flat F -structure.

A flat F -manifold is said to be homogeneous if there it is equipped with an Euler vector
field, i.e. a vector field E ∈ Γ(TM) such that

∇∇E = 0, LEc = c.

Lemma 2.2. We have [e, E] = e.

Proof. The condition LEc = c is equivalent to [E, Y ◦ Z]− [E, Y ] ◦ Z − [E,Z] ◦ Y = Y ◦ Z,
for Y, Z ∈ TM . If Y = Z = e, the identity follows. �
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Homogeneous flat F -manifold are also called Saito structures without metric, [Sab07,
Ch.VII]. We assume that the (1, 1)-tensor ∇E is diagonalizable, and in diagonal form in
the t-coordinates:

E =
n∑

α=1

((1− qα)tα + rα)
∂

∂tα
, qα, r

α ∈ C. (2.3)

The condition LEc = c is thus equivalent to

Eµ∂F
α

∂tµ
= (2− qα)Fα + Aαβt

β +Bα, Aαβ , B
α ∈ C. (2.4)

Definition 2.3. A flat F -manifold (M,∇, c, e) is a Frobenius manifold if there exist a sym-
metric non-degenerate OM -bilinear form η ∈ Γ(

⊙2 T ∗M), called metric, such that

∇η = 0, and η(X ◦ Y, Z) = η(X, Y ◦ Z), X, Y, Z ∈ TM . (2.5)

In such a case, ∇ is the Levi-Civita connection of η. A vector field E ∈ Γ(TM) is Euler if
it satisfies the conditions

LEc = c, LEη = (2− d)η, (2.6)

where the number d ∈ C is the conformal dimension (or charge) of the Frobenius manifold.

Remark 2.4. An Euler vector field E for a Frobenius manifold is automatically an Euler
vector field for the underlying flat F -manifold. The condition ∇∇E = 0 is indeed implied
by the conformal Killing condition (2.6), and the flatness of ∇.

Remark 2.5. In the case a flat F -manifold is actually Frobenius, the oriented associativity
potentials F = (F 1, . . . , F n), solutions of (2.1) and (2.2), can be shown to locally descend
from a single WDVV potential F (t), i.e. a solution of the system of equations

Aµ
∂3F

∂tµ∂tα∂tβ
= ηαβ = const., η = (ηαβ)α,β, η−1 = (ηαβ)α,β α, β = 1, . . . , n,

∂3F

∂tα∂tβ∂tµ
ηµν

∂3F

∂tν∂tγ∂tδ
=

∂3F

∂tδ∂tβ∂tµ
ηµν

∂3F

∂tν∂tγ∂tα
, α, β, γ, δ = 1, . . . , n.

The potentials Fα’s are the components of the η-gradient of F , that is Fα(t) = ηαβ∂βF (t).

2.2. Formal flat F -manifolds. Let
• k be a commutative Q-algebra,
• H be a free k-module of finite rank,
• K := k[[H∗]] be the completed symmetric algebra of H∗ := Homk(H, k).

Fix a basis (∆1, . . . ,∆n) of H, and denote by t = (t1, . . . , tn) the dual coordinates. The
algebra K is then identified with the algebra of formal power series k[[t]]. Denote by Derk(K)
the K-module of k-linear derivations of K. Put ∂α = ∂

∂tα
: K → K. The module Derk(K) is

a free K-module with basis (∂1, . . . , ∂n). We will write Φα for ∂αΦ for Φ ∈ K.

Elements of HK := K ⊗k H will be identified with derivations on K, by ∆α 7→ ∂α.

Definition 2.6. A formal flat F -manifold structure on H is given by an n-tuple Φ =
(Φ1, . . . ,Φn) ∈ Kn, satisfying the oriented associativity equations (2.1), (2.2), where Aµ ∈ k.
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Define the K-linear multiplication ◦ on HK by

∆α ◦∆β := cγαβ∆γ, cγαβ :=
∂2Φγ

∂tα∂tβ
α, β = 1, . . . , n.

The oriented associativity equations imply that ◦ is associative, and that e := Aµ∆µ is the
unit of the algebra (HK , ◦). A vector E ∈ HK is an Euler vector if it is if the form (2.3),
and the pair (E,Φ) satisfies equations (2.4).

Let Diff1(HK , HK) denote the set of D ∈ Homk(HK , HK) such that

abD(p)− bD(ap)− aD(bp) + D(abp) = 0, a, b ∈ K, p ∈ HK .

Both Derk(K) and Diff1(HK , HK) are naturally equipped with aK-module structure. A (for-
mal) connection on HK is defined by a K-linear morphism ∇ : Derk(K) → Diff1 (HK , HK),
u 7→ ∇u satisfying the Leibniz rule

∇u(ap) = u(a)p+ a∇up, a ∈ K, p ∈ HK .

The torsion and curvature of ∇ are the K-bilinear morphisms T,R : Derk(K)×Derk(K)→
HomK(HK , HK) defined by

T (u, v) := ∇uv −∇vu− [u, v], u, v ∈ Derk(K) ∼= HK ,

R(u, v) := [∇u,∇v]−∇[u,v], u, v ∈ Derk(K).

We can thus introduce the one-parameter family (∇z)z∈k of (formal) connection given by
∇z
∂α
∂β := z∂α ◦ ∂β.

Remark 2.7. If F := (F 1, . . . , F n) is a (formal/analytic) solution of the oriented associa-
tivity equations (2.2), then also F̃ := (λ1F

1, . . . , λnF
n) is a solution for any (λ1, . . . , λn) ∈

(C∗)n. If the original flat F -manifold has a unit e = Aµ∂µ, then the rescaled flat F -manifold
structure has unit e′ = 1

λµ
Aµ∂µ.

Remark 2.8. If E is an Euler vector field for a given flat F -manifold structure, then also
E − λe is an Euler vector field, for λ ∈ C. Under two further assumptions of semisimplicity
and irreducibility, one can prove that any Euler vector field is of this form. See Theorem
2.17.

2.3. Local isomorphisms and pointed germs. Let (Mi,∇i, ci, ei), with i = 1, 2, be two
analytic flat F -manifolds. A biholomorphism ϕ : M1 → M2 is an isomorphism of flat F -
manifolds if

(1) dϕ(ker∇1) ⊆ ker(ϕ∗∇2), where dϕ : TM1 → ϕ∗TM2 is the differential of ϕ, and ϕ∗∇2

is the pulled-back connection on ϕ∗TM2,
(2) for each p ∈M1, the map dϕp : TpM1 → Tϕ(p)M2 is an isomorphism of unital algebras.

Lemma 2.9. Let M1 and M2 be two isomorphic flat F -manifolds. Given two systems of
local flat coordinates, t on M1 and t̃ on M2, the corresponding local potentials F1(t) and
F2(t̃) are related by

Fα
2 (t̃) = Gα

λF
λ
1 (t) + linear terms in t, α = 1, . . . , n,

t̃ = ϕ(t) = Gt+ c,
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where G ∈ GL(n,C) and c ∈ Cn is a constant vector.
Vice-versa, F1(t),F2(t) be two solutions of (2.1) and (2.2). If they define isomorphic flat

F -structures, then there exist λα ∈ C∗ such that

Fα
2 (t) = λαF

α
1 (t) + linear terms in t, α = 1, . . . , n. �

A pointed flat F -manifold is a pair (M, p), where M is a flat F -manifold, and p ∈ M is a
fixed base point. Isomorphisms between pointed flat F -manifold will always be assumed to
be base point preserving. Given (M, p) we will always consider flat coordinates t vanishing
at p.

Two pointed flat F -manifolds (M1, p1), (M2, p2) are locally isomorphic if there exist open
neighborhoods Ω1 ⊆M1 of p1, and Ω2 ⊆M2 of p2 respectively, with isomorphic induced flat
F -structures, i.e. (Ω1, p1) ∼= (Ω2, p2).

A pointed germ is a (local isomorphism) equivalence class of pointed flat F -manifolds.

Any analytic pointed flat F -manifold (M, p) induces a formal flat F -manifold (H,Φ) over
k = C. Choose flat coordinates t vanishing at p, and set H := TpM . Let OM,p be the local
ring of germs at p, and m be its maximal ideal. The formal potential Φα is given by the
image of Fα in the completion ÔM,p := lim←−

(
OM,p/m

`
)
of the local ring OM,p: this means

that Φα is defined by the Taylor series expansion of Fα at p in coordinates t. Moreover, the
formal flat F -structure (H,Φ) is also equipped with a flat unit e|p. If M has Euler vector
field E, then (H,Φ) has Euler vector field E|p. We will say that the formal flat F -structure
constructed in this way, starting from an analytic one, is convergent.

Vice-versa, let us assume that (H,Φ) is a formal flat F -structure over k = C (with Euler
vector field). If the common domain of convergence Ω ⊆ H of the power series Φα ∈ k[[t]] is
non-empty, it is easily seen that Ω is equipped with an analytic flat F -structure (with Euler
vector field).

2.4. Semisimple flat F -manifolds. Let (M,∇, c, e) be an analytic flat F -manifold. A
point p ∈ M is called semisimple if the algebra (TpM, ◦p) is without nilpotent elements.
This is equivalent to

• the existence of idempotent vectors π1, . . . , πn ∈ TpM , i.e. such that πi ◦p πj = πiδij,
• the existence of v ∈ TpM such that v◦p : TpM → TpM has simple spectrum.

Semisimplicity is an open property: if p ∈ M is semisimple, then there exists an open
neighborhood V of p, such that any point of V is semisimple. Moreover, if V is small enough,
we have well defined local idempotent holomorphic vector fields π1, . . . , πn ∈ Γ(V ,TM). See
e.g. [Her02, Ch. II] for a detailed discussion.

Let (H,Φ) be a formal flat F -manifold. Denote by ◦0 the product on H defined by
structure constants cαβγ(0) := ∂2

αβΦ|t=0. We will say that (H,Φ) is

• semisimple at the origin if we have an isomorphisms of k-algebras (H, ◦0) ∼= kn,
• formally semisimple if we have an isomorphism of K-algebras (H, ◦) ∼= Kn.

Formal semisimplicity is thus equivalent to the existence of vectors πi ∈ HK such that
πi ◦ πj = πiδij.
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Lemma 2.10. A formal flat F -manifold is formally semisimple iff it is semisimple at the
origin.

Proof. The proof of [Cot20c, Lemma 4.2] works verbatim. �

Remark 2.11. In both formal and analytic case, we have e =
∑n

i=1 πi.

Proposition 2.12. For both formal and analytic semisimple flat F-manifolds, the idempo-
tents vectors π1, . . . , πn are pairwise commuting, i.e. [πi, πj] = 0. Hence, there exist local
coordinates u = (u1, . . . , un) such that πi = ∂

∂ui
for i = 1, . . . , n. The local coordinates u will

be called canonical. �

In the formal case, the functions ui are formal functions, i.e. elements of K. Canonical
coordinates u are defined up to permutations and shifts by constants. We set ∂i := ∂

∂ui
for

i = 1, . . . , n. If an Euler vector field is given, then the shift freedom can be actually frozen.

Proposition 2.13. A vector field E ∈ Γ(TM) satisfies LEc = c iff in canonical coordinates
it has the form E =

∑
j(u

j + cj)∂j. Up to shifts of canonical coordinates u, we have
E =

∑
j u

j∂j. �

Hence the eigenvalues of the tensor (E◦) ∈ Γ(EndTM) may and will be chosen as local
canonical coordinates.

Definition 2.14. A point p ∈M will be called
• tame if the operator E◦p : TpM → TpM has simple spectrum
• coalescing, otherwise.

If a point is tame, then it is necessarily semisimple, and with pairwise distinct canonical
coordinates.

The same definition can adapted to the formal case, relatively at the origin t = 0, by
looking at the spectrum of E◦0 : H → H.

At coalescing points p, we have u(p) ∈ ∆ where ∆ ⊆ Cn denotes the big diagonal

∆ :=
⋃
i 6=j

{ui = uj}.

For a given flat F -manifold M , denote by Aut(M) the group of isomorphisms ϕ : M →
M . For semisimple flat F -manifolds, Proposition 2.12 allows to compute the connected
component Aut(M)0 of the identity.

Proposition 2.15. If M is a semisimple flat F -manifold, then the connected component
Aut(M)0 of the identity is a commutative n-dimensional Lie group. Moreover, it acts locally
transitively on M .

Proof. The Lie algebra of Aut(M) can be identified with the Lie algebra of vector fields
X ∈ Γ(TM) on M such that LXc = 0. This is equivalent to the condition

[X, Y ◦ Z]− [X, Y ] ◦ Z − [X,Z] ◦ Y = 0, Y, Z ∈ TM .

In local canonical coordinates u, set X =
∑

iX
i∂i and take Y = Z = ∂j. We have ∂jXk = 0

for all j, k. Hence, locally X is a constant linear combination of the idempotent vector fields
∂j. In local canonical coordinates, the flow of X reads as shifts ui 7→ ui + ci. �
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Remark 2.16. In [AL13] a notion of bi-flat F -manifold is introduced. This consists of the
datum of two flat F -manifolds structures (∇, ◦, e) and (∇∗, ∗, E), on the same manifold M ,
satisfying the following compatibility conditions:

(1) E is ◦-invertible on M ,
(2) LE(◦) = ◦,
(3) X ∗ Y = E−1 ◦X ◦ Y , for all X, Y ∈ TM ,
(4) (d∇ − d∇∗)(X◦) = 0, for all X ∈ TM (here d∇ is the exterior covariant derivative).

In [AL17], in the tame semisimple case (pairwise distinct canonical coordinates), it is proved
that a bi-flat F structure is actually equivalent to the datum of a homogeneous flat F -
manifold with invertible Euler vector field E.

2.5. Irreducible flat F -manifolds. IfM1,M2 are two flat F -manifolds, their productM1×
M2 is naturally equipped with a flat F -structure, called the sum M1 ⊕M2. If M1,M2 are
homogenous, then also M1 ⊕M2 is homogeneous.

We say that a flat F -manifold M is irreducible if no pointed germ (M, p) is locally isomor-
phic to a pointed sum (M1 ⊕M2, p

′).

In the semisimple homogeneous case, we have the following characterization of irreducibil-
ity.

Theorem 2.17. Let M be a formal/analytic semisimple and homogeneous flat F -manifold.
The following conditions are equivalent:

(1) M is irreducible;
(2) if E1, E2 ∈ Γ(TM) are two Euler vector fields, then E2 = E1−λe for some λ ∈ C. �

The proof of this result can be found in Appendix A.

Remark 2.18. Theorem 2.17 underlines how much selective is the condition ∇∇E = 0.
In the category of F -manifolds (not necessarily flat), Euler vector fields are defined2 by the
condition LEc = c only. For semisimple F -manifolds, given an Euler vector field E, all other
Euler fields are of the form E +

∑n
i=1 Cπi. See [Her02, Ex. 2.12(ii)].

3. Extended deformed connections

3.1. ∇z-flat coordinates and oriented associativity potentials. In both the analytic
and the formal context (over k), we can look for ∇z-flat coordinates of the flat F -structure,
i.e. functions t̃α(t, z) such that ∇zdt̃α = 0. Assume they are of the form

t̃α(t, z) :=
∞∑
p=0

hαp (t)zp ∈ k[[t, z]], hα0 (t) = tα, α = 1, . . . , n.

Theorem 3.1. The functions hαp satisfy the recursive equations

hα0 (t) = tα, ∂γ∂βh
α
p+1 = cλγβ∂λh

α
p , p ∈ N.

Proof. The ∇z-flatness equations for a one-form ξ = ξαdt
α are ∂γξβ = zcλγβξλ. �

2A more general notion of Euler vector field of weight d ∈ C is discussed in [Her02, Man99]: these are
vector fields E such that LEc = d · c. If d 6= 0, one can always rescale E in order to be of weight 1.
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Corollary 3.2. The functions hα1 (t) equal the oriented associativity potentials Fα(t) up to
linear terms.

Proof. We have ∂γ∂βhα1 = cαβγ. �

3.2. Family of extended deformed connections. Following [Man05, Section 3], we in-
troduce a one-parameter family (∇̂λ)λ of flat connections, which “rigidify” the family (∇z)z.
See also [BB19, Section 4.3], [ABLR20a, Section 1.4].

Analytic case. Let (M,∇, c, e, E) be a homogenous flat F -manifold. Introduce the (1, 1)-
tensors U , µ(λ) ∈ Γ(End(TM)), with λ ∈ C, by the formulae

U(X) = E ◦X, µλ(X) := (1− λ)X −∇XE, X ∈ TM .

By equation (2.3), in t-coordinates we have µλ = diag(q1 − λ, . . . , qn − λ).

Denote by π : M×C∗ →M the canonical projection on the first factor. If TM denotes the
tangent sheaf of M , then π∗TM is the sheaf of sections of π∗TM , and π−1TM is the sheaf of
sections of π∗TM constant along the fibers of π. All the tensors c, e, E,U , µ can be lifted to
the pullback bundle π∗TM , and we denote these lifts with the same symbols. Consequently,
also the connection ∇ can be uniquely lifted on π∗TM in such a way that ∇ ∂

∂z
Y = 0 for

Y ∈ π−1TM .
The extended deformed connection ∇̂λ, with λ ∈ C, is the connection on π∗TM defined

by the formulae

∇̂λ
∂
∂tα
Y = ∇ ∂

∂tα
Y + z

∂

∂tα
◦ Y, ∇̂λ

∂
∂z

Y = ∇ ∂
∂z
Y + U(Y )− 1

z
µλ(Y ), (3.1)

where Y ∈ π∗TM .

Formal case. Let k be a commutative Q-algebra and (H,Φ, E) a formal homogeneous flat
F -manifold manifold over k. Denote by k((z)) the k-algebra of formal Laurent series in an
auxiliary indeterminate z. Set K((z)) := k[[t]]((z)) and HK((z)) := H ⊗k K((z)).

In what follows we assume that the K-linear operator ∇0E : Derk(K) ∼= HK → HK

is (diagonalizable and) in diagonal form in the basis (∆1, . . . ,∆n). Define the K-linear
operators U , µλ, with λ ∈ k, by the formulae

U : HK → HK , X 7→ E ◦X,
µλ : Derk(K) ∼= HK → HK , X 7→ (1− λ)−∇XE.

All the tensors ◦,U , µλ can be K((z))-linearly extended to HK((z)). We will denote such an
extension by the same symbols.

Denote by Diff1(HK((z)), HK((z))) the set of morphisms D ∈ Homk(HK((z)), HK((z))) such that

abD(p)− bD(ap)− aD(bp) + D(abp) = 0, a, b ∈ K((z)), p ∈ HK((z)).

Both Derk(K((z))) and Diff1(HK((z)), HK((z))) are naturally equipped with an K((z))-module
structure.
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The extended deformed connection ∇̂λ : Derk(K((z)))→ Diff1(HK((z)), HK((z))) is theK((z))-
linear operator defined by the formulae

∇̂λ
∂
∂tα
X = ∇z

∂
∂tα
X, ∇̂λ

∂
∂z

X =
∂

∂z
X + U(Y )− 1

z
µλ(X),

where Y ∈ HK((z)).

In both the analytic and formal pictures, the following result holds.

Theorem 3.3. The connection ∇̂λ is flat for any λ ∈ C (resp λ ∈ k).

Proof. The flatness of ∇̂λ is equivalent to the following conditions: ∂αc
δ
βγ is completely

symmetric in (α, β, γ), the product ◦ is associative, ∇∇E = 0, and LEc = c. This can be
easily checked by a straightforward computation. �

Remark 3.4. For λ = 1
2
d, the connection ∇̂λ equals the extended deformed connection ∇̂ as

defined by Dubrovin [Dub96, Dub98, Dub99]. In that case, the tensor U (resp. µ = µ( d
2

)) is
η-self-adjoint (resp. η-anti-self-adjoint). It follows that if ζ1, ζ2 ∈ π∗TM are two ∇̂-flat vector
fields, then the pairings 〈ζ1, ζ2〉± := η

(
ζ1(t, e±π

√
−1z), ζ2(t, z)

)
do not depend on (t, z). See

also [CDG20, Section 2].

3.3. ∇̂λ-flat covectors. In both the analytic and formal pictures, the extended connections
∇̂λ induce connections on the whole tensor algebra of π∗TM (resp. HK((z))). So, for exam-
ple, let ξ denote a ∇̂λ-flat section of the bundle π∗(T ∗M). In the co-frame (dtα)nα=1, the
equation ∇̂λξ = 0 can be written, in more convenient matrix notations, as the joint system
of differential equations

∂ξ

∂tα
= zCTα ξ,

∂ξ

∂z
=

(
U − 1

z
µλ
)T

ξ, (3.2)

where ξ = (ξ1, . . . , ξn)T is a column vector of components w.r.t. (dtα)α, and

(Cα)γβ := cγαβ, (U)βα = Eεcβαε, (µλ)βα = (qα − λ)δαβ.

We will refer to the second of equations (3.2) as the ∂z-equation of the flat F -manifold.

3.4. Matrices Ψ̃, Ṽi, Ṽ
λ, Γ̃. Assume that (M,∇, c, e, E) is a semisimple homogeneous flat

F -manifold, and introduce the Jacobian matrix Ψ̃ by

Ψ̃i
α :=

∂ui

∂tα
, i, α = 1, . . . , n.

In canonical coordinates u, under the gauge transformation x̃ = (Ψ̃−1)T ξ, the system (3.2)
becomes

∂x̃

∂ui
=
(
zEi − Ṽi

)T
x̃,

∂x̃

∂z
=

(
U − 1

z
Ṽ λ

)T
x̃, (3.3)

where

(Ei)jk = δijδik, U := diag(u1, . . . , un), Ṽi := ∂iΨ̃ · Ψ̃−1, Ṽ λ := Ψ̃ · µλ · Ψ̃−1.
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Proposition 3.5. The following facts hold true for both formal and analytic semisimple
homogeneous flat F -manifolds.

(1) There exist an off-diagonal matrix Γ̃ such that

Ṽi = Ṽ ′i + [Γ̃, Ei], i = 1, . . . , n, (3.4)

Ṽ λ = (Ṽ λ)′ + [Γ̃, U ]. (3.5)

In particular, Γ̃ij = −(Ṽi)
i
j for i 6= j.

(2) We have
[Ei, Ṽ

λ] = [U, Ṽi], ∂iṼ
λ = [Ṽi, Ṽ

λ]. (3.6)

(3) The diagonal entries of the matrix Ṽ λ are constant w.r.t. u.
(4) We have ∂iṼ ′j = ∂jṼ

′
i .

Proof. The compatibility condition ∂i∂j = ∂j∂i implies the constraints

∂iṼj − ∂jṼi = [Ṽi, Ṽj], [Ei, Ej] = 0, (3.7)

[Ei, Ṽj] = [Ej, Ṽi], (3.8)

Identities (3.7) are trivially satisfied, by definition of the matrices Ei and Ṽi. From (3.8), we
deduce

(δjh − δjk)(Ṽi)hk = (δih − δik)(Ṽj)hk =⇒
h=j, j 6=k

(Ṽi)
j
k = (δij − δik)(Ṽj)jk = [Γ̃, Ei]

j
k,

where Γ̃ = (Γ̃jk)j,k is defined by Γ̃jk := −(Ṽj)
j
k. This proves (3.4). The compatibility condition

∂i∂z = ∂z∂i implies the constraints

[Ei, U ] = 0, (3.9)

[Ei, Ṽ
λ] = [U, Ṽi], ∂iṼ

λ = [Ṽi, Ṽ
λ]. (3.10)

Identity (3.9) is trivially satisfied. Identity (3.5) follows from (3.4) and the first of (3.10).
The constancy of (Ṽ λ)′ follows from the second identity of (3.10), and equations (3.4), (3.5).
Finally, from the first identity of (3.7) we have ∂iṼ ′j −∂jṼ ′i = [Ṽi, Ṽj]

′ = 0, by (3.4), (3.5). �

3.5. Darboux-Tsarev equations, and conformal dimensions. Let us introduce the
Christoffel symbols Kh

ij by ∇∂i∂j =
∑

hK
h
ij∂h.

Lemma 3.6. We have Kh
ij = −(Ṽi)

h
j .

Proof. The claim follows from the following computation:

∇∂i∂j = ∇∂i [(Ψ̃
−1)αj ∂α] = [∂i(Ψ̃

−1)αj ]∂α = −
∑
`

(Ψ̃−1)α` ∂iΨ̃
`
β (Ψ−1)βj ∂α = −

∑
`

(Ṽi)
`
j∂`. �

Proposition 3.7. The following identities hold true:

Kh
ij = 0, i, j, h distinct, (3.11)

Ki
ij = Ki

ji = −Ki
jj = Γ̃ij, i 6= j, (3.12)

Ki
ii = −

∑
h6=i Γ̃

i
h. (3.13)
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Moreover, the functions Γ̃ij satisfy the Darboux-Tsarev equations

∂kΓ̃
i
j = −Γ̃ijΓ̃

i
k + Γ̃ijΓ̃

j
k + Γ̃ikΓ̃

k
j i, j, k distinct, (3.14)∑

k ∂kΓ̃
i
j = 0, i 6= j. (3.15)

Proof. In canonical coordinates we have cijk = δijδ
i
k. Consequently, (∇`c)

i
jk =

∑
p δ

p
j δ
p
kK

i
p` −

δikK
i
`j − δijKi

`k. We have Kh
ij = Kh

ji because ∇ is torsion free. Hence, from the symmetry
(∇`c)

i
jk = (∇jc)

i
`k, one obtains (3.11), and the first two equalities of (3.12). The equality

Ki
ij = Γ̃ij follows from Lemma 3.6. Equation (3.13) follows from the condition ∇e = 0.

By flatness of ∇, the components Ri
jk` of the Riemann tensor equal zero. By definition we

have Ri
jk` = ∂kK

i
j` − ∂`Ki

jk +
∑

pK
i
kpK

p
j` −

∑
pK

i
`pK

p
kj. Darboux-Tsarev equation (3.14) is

equivalent to Ri
ji` = 0. From the identity ∇∂i∂α =

∑
j(∂iΨ̃

j
α)∂j +

∑
j Ψ̃j

α∇∂i∂j, summing
over i, we obtain

0 = ∇e∂α =
∑

i∇∂i∂α =
∑

j

(∑
i ∂iΨ̃

j
α

)
∂j +

∑
j Ψ̃j

α ∇e∂j︸ ︷︷ ︸
∇∂j e+[e,∂j ]=0

, (3.16)

=⇒
∑

i ∂iΨ̃ = 0. (3.17)

We have

∂kΓ̃
i
j = −∂2

kiΨ̃
i
α(Ψ̃−1)αj + ∂iΨ̃

i
α

∑
h

(Ψ̃−1)αh ∂kΨ̃
h
γ (Ψ̃−1)γj .

Summing over k, and using (3.17), we obtain (3.15). �

Corollary 3.8. For i = 1, . . . , n, the matrix Ṽi has the following structure

Ṽi =



−Γ̃1
i Γ̃1

i

−Γ̃2
i Γ̃2

i
. . . ...

−Γ̃i−1
i Γ̃i−1

i

−Γ̃i1 −Γ̃i2 . . . −Γ̃ii−1

∑
h6=i Γ̃

i
h −Γ̃ii+1 . . . −Γ̃in

Γ̃i+1
i −Γ̃i+1

i
... . . .

Γ̃ni −Γ̃ni


. �

Proposition 3.9. We have Ṽ λ = −λ · 1 +
∑

i u
iṼi.

Proof. For any i, we have

∇∂iE = ∇∂i

∑
j

uj∂j = ∂i +
∑
j

uj∇∂i∂j = ∂i +
∑
j,h

ujKh
ij∂h = ∂i +

∑
j,h

ujKh
ji∂h.

By Lemma 3.6 one concludes. �
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Corollary 3.10. The following identities hold true:∑
j

uj∂jṼi = −Ṽi, (3.18)∑
j

uj∂jΓ̃ = −Γ̃, (3.19)

(ui − uj)∂iΓ̃ij =
∑
6̀=i,j

(uj − u`){−Γ̃ijΓ̃
i
` + Γ̃ijΓ̃

j
` + Γ̃i`Γ̃

`
j} − Γ̃ij, (3.20)

(uj − ui)∂jΓ̃ij =
∑
` 6=i,j

(ui − u`){−Γ̃ijΓ̃
i
` + Γ̃ijΓ̃

j
` + Γ̃i`Γ̃

`
j} − Γ̃ij. (3.21)

Proof. Equation (3.18) follows from the second equation of (3.6) and the first equation of
(3.7). Equation (3.19) is easily deduced. Equations (3.20) and (3.21) follow from (3.14),
(3.15), and (3.19). �

Remark 3.11. In this section we started from a given semisimple flat F -manifold and we
obtained a solution Γ̃ij of the Darboux-Tsarev equations. The opposite construction works
as well: in [AL15] it is shown that the datum of

• a solution Γ̃ij of (3.14),(3.15),
• the connection ∇ with Christoffel symbols Ki

jk given by (3.11),(3.12),(3.13),
• the structure constants cijk = δijδ

i
k,

• the vector field e :=
∑

i ∂i,
locally defines a (tame) semisimple flat F -manifold structure on Cn \∆.

Conformal dimensions. By Propositions 3.5-(3), and 3.9, there exist complex numbers
δ1, . . . , δn ∈ C such that

(Ṽ λ)′ = −λ · 1 + diag(δ1, . . . , δn).

Definition 3.12. The numbers δ1, . . . , δn are called conformal dimensions of the (formal or
analytic) semisimple flat F -manifold. We will say that a (formal/analytic) semisimple flat
F -manifold is conformally resonant if δi − δj ∈ Z \ 0 for some i, j.

Remark 3.13. We have δi =
∑

k u
k(Ṽk)

i
i =

∑
k 6=i(u

i − uk)Γ̃ik.

Remark 3.14. In the case of Frobenius manifolds, all conformal dimensions equal 1
2
d, where

d is the conformal dimension of equation (2.6). In particular, a Frobenius manifold is never
conformally resonant.

3.6. Lamé coefficients, matrices Ψ, Vi, V
λ,Γ, and Darboux-Egoroff equations. For

any j = 1, . . . , n define the one form

ωj(u) := −
n∑
i=1

Ṽi(u)jjdu
i.

Proposition 3.15. The one-forms ωj are closed. There locally exist functions Hj(u) such
that

d logHj = ωj, j = 1, . . . , n.
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Proof. It follows from point (4) of Proposition 3.5. �

The functions Hj are called Lamé coefficients, and they are defined up to scalar rescaling
Hj 7→ λjHj, λj ∈ C∗.

Arrange the Lamé coefficients in the diagonal matrix H := diag(H1, . . . , Hn), and define
the matrices

Ψ := HΨ̃, Vi := HṼiH
−1 + ∂iH ·H−1, V λ := HṼ λH−1, Γ := HΓ̃H−1.

Proposition 3.16. The functions H1, . . . , Hn satisfy the following system

∂jHi = ΓijHj, i 6= j, ∂iHi = −
∑
k 6=i

ΓikHk,
∑
j

uj∂jHi = −δiHi.

Proof. It easily follows from the definitions and identities of the previous section. �

Under the gauge transformation x = (H−1)T x̃, the system (3.3) becomes

∂x

∂ui
= (zEi − Vi)T x,

∂x

∂z
=

(
U − 1

z
V λ

)T
x. (3.22)

Proposition 3.17. The following identities hold true:

Vi = [Γ, Ei], (3.23)

V λ = (V λ)′ + [Γ, U ], (V λ)′ = (Ṽ λ)′ = diag(δ1 − λ, . . . , δn − λ), (3.24)
∂iΨ ·Ψ−1 = Vi, [Ei, V

λ] = [U, Vi], ∂iV
λ = [Vi, V

λ]. (3.25)

Proof. It easily follows from the definitions and identities of the previous section. �

Proposition 3.18. The matrix Γ satisfy the Darboux-Egoroff equations

∂kΓ
i
j = ΓikΓ

k
j , i, j, k distinct, (3.26)∑

k ∂kΓ
i
j = 0, i 6= j, (3.27)∑

k u
k∂kΓ

i
j = (δj − δi − 1)Γij, i 6= j, (3.28)

(uj − ui)∂iΓij =
∑

k 6=i,j(u
k − uj)ΓikΓkj − (δj − δi − 1)Γij, (3.29)

(ui − uj)∂jΓij =
∑

k 6=i,j(u
k − ui)ΓikΓkj − (δj − δi − 1)Γij. (3.30)

Proof. It easily follows from the definitions, the Darboux-Tsarev system for Γ̃, and the ho-
mogeneity identities (3.19) of the previous section. �

Remark 3.19. For n = 3, the Darboux-Egoroff joint system of equations (3.26), (3.27),
(3.28) is equivalent to the full family of Painlevé equations PVI. See remarkable formulas of
[Lor14, Theorem 4.1].

Remark 3.20. In the case of Frobenius manifolds, there is a canonical choice for the Lamé
coefficients: Hi = η(∂i, ∂i)

1
2 for i = 1, . . . , n. The resulting coefficients Γij are the rotation

coefficients of the metric η. They satisfy the further symmetry condition Γij = Γji .
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Remark 3.21. In the light of Remark 3.20, given a semisimple flat F -manifold with a fixed
choice of the Lamé coefficients Hi, we can define a metric by η :=

∑n
i=1H

2
i du

i. Such a
metric clearly is compatible with the product, in the sense that the second of equations
(2.5) is satisfied. The flatness of η is the obstruction for the flat F -manifold to be actually
Frobenius. For a more invariant description of the metric η, see [ABLR20a, Prop. 1.8].

In [ABLR20a] a further notion of semisimple Riemannian F -manifold is introduced. In
loc. cit. it is also proved the local equivalence of semisimple flat F -manifolds and semisimple
Riemannian F -manifolds. Notice that the notion of semisimple Riemannian F -manifolds
given in [ABLR20a] relaxes the axioms of analog structures introduced in [DS11, LPR11].
See also the recent preprint [ABLR21].

From a given homogeneous semisimple flat F -manifold, we obtained a joint system of
equations (3.22). In the analytic case, such a joint system defines3 an isomonodromic system,
because of integrability equations (3.25).

Vice-versa, one can start from such an isomonodromic system to construct the homoge-
neous semisimple flat F -manifold structure. This is exactly the point of view of the definition
of Saito structures without metric given in [Sab07, Ch.VII, §1.a].

Notice that one can actually work with a companion Fuchsian system, obtained via a
Fourier-Laplace transform. This is the point of view of [KMS20], in which Saito structures
without metric are constructed on the space of isomonodromic deformation parameters for
extended Okubo systems.

In both [Sab07, KMS20], coalescences of the parameters of deformations (the entries of
U = diag(u1, . . . , un) of equation (3.22)) are not taken into account. In our equation (3.22),
on the contrary, we allow coalescences, provided that the matrix Ψ is not singular, i.e.
provided that the geometric point of the flat F -structure is semisimple. In the recent paper
[Guz20], D.Guzzetti extended the results of [BJL81, Guz16] to the case of Fuchsian systems
with confluent singularities. Furthermore, in [Guz20] a notion of isomonodromic Laplace
transform is introduced: with such an analytic tool, the study of the correspondence

Monodromy data of an irregular system←→ Monodromy data of a Fuchsian system,

originally developed in [BJL81], has been extended to the isomonodromic case (possibly with
coalescences/confluences). This also gives a new proof of the results of [CG18, CDG19].

The point of view of the current paper differs from the perspective of [Sab07, KMS20],
via a Riemann-Hilbert correspondence. In Section 6, we will show a one-to-one correspon-
dence between (local isomorphism classes of) homogeneous semisimple flat F -structures and
solvable Riemann-Hilbert-Birkhoff problems.

4. Monodromy moduli of admissible germs of semisimple flat F -manifolds

4.1. µ-nilpotent operators and µ-parabolic group. Let (V, µ) be the datum of a n-
dimensional complex vector space, and a diagonalizable operator µ : V → V . Denote by
spec(µ) = (µ1, . . . , µn) the spectrum of µ, and by Vµα the eigenspace corresponding to the
eigenvalue µα.

3This will be explained in details the next section.
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We say that A ∈ End(V ) is µ-nilpotent if

AVµα ⊆
⊕
m>1

Vµα+m for all µα ∈ spec(µ).

In particular such an operator is nilpotent in the usual sense. Denote by c(µ) the set of all µ-
nilpotent operators. It is easy to see that the set c(µ) is a Lie algebra w.r.t. the commutator
[−,−] in End(V ). We can decompose a µ-nilpotent operator A in components Ak, k > 1,
such that

AkVµα ⊆ Vµα+k for any µα ∈ spec(µ),

so that the following identities hold:

zµAz−µ = A1z + A2z
2 + A3z

3 + . . . , [µ,Ak] = kAk for k = 1, 2, 3, . . . .

Lemma 4.1. Let (V, µ) as above, and let us fix a basis (vi)
n
i=1 of eigenvectors of µ.

(1) The operator A ∈ End(V ) is µ-nilpotent if and only if its associate matrix w.r.t. the
basis (vi)

n
i=1 satisfies the condition (A)αβ = 0 unless µα − µβ ∈ N∗.

(2) If A ∈ End(V ) is a µ-nilpotent operator, then the matrices associated with its compo-
nents (Ak)k>1 w.r.t. the basis (vi)

n
i=1 satisfy the condition (Ak)

α
β = 0 unless µα−µβ =

k, with k ∈ N∗. �

Define the µ-parabolic group to be the Lie group C(µ) of operator G ∈ GL(V ) such that
G = 1+A, with A ∈ c(µ). We have the canonical identification of Lie algebras T1C(µ) = c(µ),
and the canonical adjoint action Ad: C(µ)→ Aut c(µ) defined by

AdG(A) := GAG−1, G ∈ C(µ), A ∈ c(µ).

Remark 4.2. Consider the space V ∗ := HomC(V,C). Each f ∈ EndC(V ) induces a dual map
f ∗ ∈ EndC(V ∗), defined by f ∗(w) := w ◦ f , where w ∈ V ∗. This defines an anti-isomorphism
of Lie algebras

(−)∗ : EndC(V )→ EndC(V ∗), [f1, f2]∗ = −[f ∗1 , f
∗
2 ].

The image of c(µ) coincides with c(−µ∗).

4.2. Spectrum of a flat F -manifold. Consider an analytic pointed flat F -manifold (M, p).
For any ∈ C, we have a pair (TpM,µλp) satisfying all the assumption of Section 4.1. We can
consequently introduce the Lie algebra c(µλp), and the Lie group C(µλp).

If (V1, µ1), (V2, µ2) are two pairs as in Section 4.1, a morphism of pairs f : (V1, µ1) →
(V2, µ2) is the datum of a linear morphism f : V1 → V2, compatible with the operators µ1, µ2,
i.e., µ2 ◦ f = f ◦ µ1.

Given λ1, λ2 ∈ C, it is easy to see that the pairs (TpM,µλ1p ) and (TpM,µλ2p ) are isomorphic.
Moreover, given p1, p2 ∈ M , the two pairs attached to the germs (M, p1) and (M, p2) are
(non-canonically) isomorphic: using the connection ∇, for any path γ : [0, 1] → M with
γ(0) = p1 and γ(1) = p2, the parallel transport along γ provides an isomorphism of the pairs
at p1 and p2.

As a result, with any homogeneous flat F -manifold manifold (M,∇, c, e, E) (not necessarily
semisimple), we can canonically associate an isomorphism class [(V, µ)] of pairs as above,
which will be called the spectrum of M .
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Fix a system of flat coordinates t = (t1, . . . , tn) diagonalizing µλ = diag(q1−λ, . . . , qn−λ).
We can thus introduce the λ-independent matrix Lie algebras

c(µ) :=
{
R ∈ gl(n,C) : Rα

β = 0 unless qα − qβ ∈ Z>0

}
,

c(−µ∗) :=
{
R ∈ gl(n,C) : Rα

β = 0 unless qα − qβ ∈ Z<0

}
,

which are canonically anti-isomorphic via transposition, see Remark 4.2. We also denote by
C(µ) and C(−µ∗) the corresponding parabolic Lie groups.

4.3. Solutions in Levelt normal forms and monodromy data at z = 0. We now
introduce some formal invariant of the given analytic flat F -manifold, by studying Levelt
normal forms of solutions of the joint system of differential equations (3.2).

Theorem 4.3.
(1) There exist n× n-matrix valued functions (Gp(t))p>1, analytic in t, and a t-independent
matrix R ∈ c(−µ∗), such that the matrix

Ξ(t, z) = G(t, z)z−µ
λ

zR, G(t, z) = 1 +
∞∑
p=1

Gp(t)z
p,

is a (formal) solution of the joint system (3.2).
(2) The series G(t, z) converges to an analytic function in (t, z). The matrix Ξ(to, z) is a
fundamental system of solutions of the ∂z-equation of (3.2) for any fixed to.

Proof. Consider n functions t̃α(t, z) =
∑∞

p=0 h
α
p (t)zp such that ∇zdt̃α = 0, and t̃α(t, 0) = tα.

This translates in the following recursive equations for the coefficients hαp :

hα0 (t) = tα, ∂γ∂βh
α
p+1 = cεγβ∂εh

α
p , p > 0.

Introduce the Jacobian matrix J(t, z) := (Jαβ )α,β, with Jαβ (t, z) := ∂t̃α

∂tβ
. Under the gauge

transformation ξ = JT ξ̃, the joint system (3.2) becomes

∂ξ̃

∂tα
=

(
zJCαJ−1 − ∂J

∂tα
J−1

)T
ξ̃ = 0,

∂ξ̃

∂z
=

[
J

(
U − 1

z
µλ
)
J−1 − ∂J

∂z
J−1

]T
ξ̃ (4.1)

=

(
−1

z
(µλ)T + UT

1 + zUT
2 + z2UT

3 + . . .

)
ξ̃,

for suitable matrices Uk. From the compatibility ∂α∂z = ∂z∂α, it follows that the matrices
Uk are t-independent. Up to a further gauge transformation ξ̃ 7→ G(z)ξ̃, of the form G(z) =
1 +

∑∞
k=1Gkz

k, the differential equation (4.1) can be put in a normal form

∂ξ̃

∂z
=

(
−1

z
µλ +R1 + zR2 + z2R3 + . . .

)
, (4.2)

(Rk)
α
β 6= 0 only if µλα − µλβ = −k, k > 1.
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Indeed, from the recursion relations

Rn = UT
n + nGn − [Gn, µ

λ] +
n−1∑
k=1

(Gn−kU
T
k −RkGn−k)

we determine the entries (Rn)αβ for (µλ)α−(µλ)β = −n, and (Gn)αβ for (µλ)α−(µλ)β 6= −n. We
set (Gn)αβ = 0 for (µλ)α− (µλ)β = −n. See also [Gan59]. A fundamental system of solutions
of (4.2) is given by ξ̃(z) = z−µ

λ
zR, where R :=

∑
k Rk. The proof of the convergence of the

series G(t, z) is standard, the reader can consult e.g. [Was95, Sib90]. �

Corollary 4.4. The monodromy matrix M0, defined by Ξ(t, e2π
√
−1z) = Ξ(t, z)M0, is inde-

pendent of t. We have M0 := exp(−2π
√
−1µλ) exp(2π

√
−1R). �

Solutions Ξ(t, z) of the form above will be said to be in Levelt normal form.

Theorem 4.5. Assume that

Ξ(t, z) = G(t, z)z−µ
λ

zR, G(t, z) = 1 +
∞∑
p=1

Gp(t)z
p, R ∈ c(−µ∗)

Ξ̃(t, z) = G̃(t, z)z−µ
λ

zR̃, G̃(t, z) = 1 +
∞∑
p=1

G̃p(t)z
p, R̃ ∈ c(−µ∗),

are two solutions of the joint system (3.2), in Levelt normal form. Then there exists a unique
C ∈ C(−µ∗) such that R̃ = C−1RC, the function pC(z) := z−µ

λ
zRCz−R̃zµ

λ is polynomial in
z, and G̃(t, z) = pC(z)G(t, z).

Proof. By assumption there exist a unique invertible matrix C ∈Mn(C) such that Ξ̃ = ΞC.
This implies that

G−1G̃ = z−µ
λ

zRCz−R̃zµ
λ

.

We deduce that the r.h.s. is a series in z of the form z−µ
λ
zRCzR̃zµ

λ
= 1 +H1z+H2z

2 + . . . .
Actually, this sum is finite (i.e. a polynomial in z) because both R and R̃ are nilpotent. We
can also re-write this identity as follows

zRCz−R̃ = zµ
λ

(1 +H1z +H2z
2 + . . . )z−µ

λ

. (4.3)
The l.h.s. is a polynomial in log z, the r.h.s. contains only powers of z. Hence, both sides
should actually be independent of z. The (α, β)-entry of the r.h.s. equals

δαβ + (H1)αβ z
(µλ)α−(µλ)β+1 + (H2)αβ z

(µλ)α−(µλ)β+2 + . . . ,

which is z-independent iff (Hk)
α
β = 0 for (µλ)α − (µλ)β 6= −k. Set z = 1 in (4.3): we have

C = 1 +
∑

kHk. This shows that C ∈ C(−µ∗).
We have just shown that both sides of (4.3) are z-independent and they equal C. The

l.h.s. of equation (4.3) can also be written as CzC−1RCz−R̃. Thus, CzC−1RCz−R̃ = C. It
follows that R̃ = C−1RC. �

Definition 4.6. We call monodromy data at z = 0 of the flat F -manifold the datum
(λ, µλ, [R]), where [R] is the adjoint orbit, in the Lie algebra c(−µ∗), of the exponents of
solutions of (3.2) in Levelt normal form.
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Remark 4.7. The notion of spectrum of a flat F -manifold generalizes the corresponding
notion for Frobenius manifolds given in [Dub99, CDG20]. In the Frobenius manifolds case,
the group C(µ) is replaced by its subgroup G(η, µ) called (η, µ)-parabolic orthogonal group:
this is due to the fact that solutions in Levelt normal form satisfy a further η-orthogonality
requirement described in Remark 3.4. Notice that in the Frobenius case we have −µ∗ =
ηµη−1. See [CDG20, Section 2.1].

4.4. Admissible germs and monodromy data at z = ∞. Let (M,∇, c, e, E) be an
analytic semisimple homogenous flat F -manifold. Under semisimplicity assumption, the
joint system of differential equations (3.2) is gauge equivalent to the joint system (3.22). By
studying this system, we are going to introduce another set of invariants of pointed germs
of the flat F -manifold.

Semisimple, doubly resonant, and admissible germs. An analytic pointed germ (M, p)
will be called

• (tame/coalescing) semisimple if the base point p is (tame/coalescing) semisimple,
• doubly resonant if p is coalescing and M is conformally resonant,
• admissible if it is semisimple but not doubly resonant.

In this section, we will consider admissible pointed germs (M, p).

Remark 4.8. According to Definition 2.14, the specification “tame/coalescing” depends on
the choice of the Euler vector field. In case M is irreducible, it does not depend on such a
choice. This follows from Theorem 2.17.

Formal solutions. Let (M, p) be an admissible germ. Fix an ordering uo = (u1
o, . . . , u

n
o ) ∈

Cn of the operator U(p) : TpM → TpM . Consider the ∂z-equation of the joint system (3.22)
specialized at u = uo.

Theorem 4.9. There exist unique n× n-matrices (Åk)k>1 such that the matrix

X̊for(z) =

(
1 +

∞∑
k=1

Åk
zk

)
zΛezUo , Λ := λ · 1− diag(δ1, . . . , δn), Uo = diag(u1

o, . . . , u
n
o ),

is a formal solution of the ∂z-equation of (3.22), specialized at u = uo. Moreover, we have
Å′′1 = Γ(uo)

T .

Proof. The matrix X̊for(z) is a solution of the ∂z-equation of (3.22) if and only if we have

(1− k)Åk−1 + Ak−1Λ = [Uo, Åk]− V (uo)
T Åk−1, k > 1, Å0 := 1. (4.4)

We can compute recursively the matrices Åk. Let us start with Å1.
• For (i, j), with i 6= j, and so that uio 6= ujo: from (4.4) specialized at k = 1, we deduce

(uio − ujo)(Å1)ij = V j
i = (uio − ujo)Γ(uo)

j
i =⇒ (Å1)ij = Γ(uo)

j
i .

• For (i, j), with i 6= j, and so that uio = ujo: from (4.4) specialized at k = 2, we deduce

(Å1)ij =
1

1− δi + δj

∑
6̀=i

V (uo)
`
i(Å1)`j =

1

1− δi + δj

∑
`6=i,j

(uio − u`o)Γ(uo)
j
`Γ(uo)

`
i = Γ(uo)

j
i .
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In the last equality, we used identity (3.29) specialized at u = uo.
• For the diagonal entries: from (4.4) specialized at k = 2, we deduce

(Å1)ii =
∑
6̀=i

V (uo)
`
i(Å1)`i =

∑
`6=i

(uio − u`o)Γ(uo)
i
`Γ(uo)

`
i .

This completes the computation of Å1, and also proves that Å′′1 = Γ(uo)
T .

Assume now to have computed Å1, Å2, . . . , Åh−1. The matrix Åh can be computed by
repeating the same procedure. Namely, from (4.4), with k = h, one can compute the entries
(Åh)

i
j for i 6= j such that uio 6= ujo. From (4.4), with k = h+1, one can compute the remaining

entries of Åh. �

Theorem 4.10. Let Ω ⊆ Cn be a simply connected open neighborhood of uo. If Ω is suffi-
ciently small, then:
(1) For any u ∈ Ω there exist unique n× n-matrices (Ak(u))k>1 such that the matrix

Xfor(u, z) =

(
1 +

∞∑
k=1

Ak(u)

zk

)
zΛezU (4.5)

is a formal solution of the ∂z-equation of (3.22). Moreover, we have A1(u)′′ = Γ̃(u)T .
(2) We have Ak(uo) = Åk for k > 1, and Xfor(uo, z) = X̊(z).

Proof. Point (1) can be proved following the same computations as for Theorem 4.9. Point
(2) follows by uniqueness. �

Remark 4.11. From the computations above, it is clear that the coefficients Ak are holo-
morphic at point u ∈ Ω such that ui 6= uj for i 6= j. Below we will prove that the coefficients
Ak are actually holomorphic on the whole Ω.

The identity Xfor(u, ze
2π
√
−1) = Xfor(u, z)e

2π
√
−1Λ justifies the following terminology.

Definition 4.12. The matrix Λ = diag(λ − δ1, . . . , λ − δn) is called formal monodromy
matrix.

Admissible directions τ . Let q ∈ M be an arbitrary point, and fix an ordering u(q) :=
(u1(q), . . . , un(q)) ∈ Cn of the eigenvalues of the operator U(q) : TqM → TqM . Denote by
Arg(z) ∈]− π, π] the principal branch of the argument of the complex number z. Set

S (q) :=
{

Arg
(
−
√
−1(ui(q)− uj(q)

)
+ 2πk : k ∈ Z, i, j are s.t. ui(q) 6= uj(q)

}
.

Any element τ ∈ R \S (q) will be called an admissible direction at q.

Remark 4.13. The notion of admissibility only depends on the set {u1(q), . . . , un(q)}.
Asymptotic solutions. Though the formal series defining Xfor are typically divergent,
Xfor contains asymptotical information about genuine analytic solutions of the ∂z-equation
of (3.22).

Let (M, p) be an admissible germ, Ω as in Theorem 4.10, and τ an admissible direction at
p. Consider a sufficiently small simply connected open neighborhood Ω̃ ⊆M of p such that:

(1) Ω̃ ⊆Mss, i.e. any point q ∈ Ω̃ is semisimple,
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(2) a coherent choice of ordering u of eigenvalues of U is fixed on Ω̃, so that u : Ω̃→ Cn

defines a local system of canonical coordinates, with u(p) = uo,
(3) u(Ω̃) ⊆ Ω,
(4) τ is admissible at any q ∈ Ω̃.

Theorem 4.14. If Ω̃ is as above, then the following facts hold.
(1) For any q ∈ Ω̃ there exist three fundamental systems of solutions X1, X2, X3, of the
∂z-equation of (3.22) specialized at u = u(q), uniquely determined by the asymptotics

Xi(u, z) ∼ Xfor(u, z), |z| → +∞, τ−(3−h)π < arg z < τ+(h−2)π, h = 1, 2, 3. (4.6)

(2) The functions Xi are holomorphic w.r.t. u ∈ u(Ω̃), and the asymptotics (4.6) holds true
uniformly in u.
(3) The functions Xi(u, z) are solutions of the joint system of differential equations (3.22).
(4) The solutions X1 and X3 satisfy the identity X3(u, ze2π

√
−1) = X1(u, z)e2π

√
−1Λ, for

z ∈ Ĉ∗.

Proof. Let us temporarily assume that q is tame, i.e. ui(q) 6= uj(q) for i 6= j. For the
proof of points (1) and (2), see e.g. [BJL79, Was95]. Fix h ∈ {1, 2, 3}, and set Wi(u, z) :=
∂iXh(u, z) − (zEi − Vi)

TXh(u, z) for i = 1, . . . , n and h = 1, 2, 3. A simple computation,
invoking the identities (3.25) shows that Wi(u, z) is a solution of the ∂z-equation of (3.22).
Hence, there exist a matrix C(u) such that Wi(u, z) = Xh(u, z)C(u). Denote by F (u, z) =
1 + z−1A1(u) +O(z−2) the formal power series in (4.5). For |z| → +∞ in the sector

Vτ,h :=
{
z ∈ Ĉ∗ : τ − (3− h)π < arg z < τ + (h− 2)π

}
,

the function Wi(u, z) has asymptotics

Wi(u, z) ∼ ∂iF (u, z)zΛezU + F (u, z)zzΛ

=Eie
zU︷ ︸︸ ︷

ezEiui −zEiF (u, z)zΛezU + V T
i F (u, z)zΛezU

=
(
∂iF (u, z) + zF (u, z)Ei − zEiF (u, z) + V T

i F (u, z)
)
zΛezU .

But we also have Wi(u, z) ∼ F (u, z)zΛezUC(u). As a consequence, we deduce

zΛezUC(u)e−zUz−Λ = formal power series in
1

z
. (4.7)

For j 6= k, the sector Vτ,h contains rays of points z along which Re(z(uj − uk)) > 0. Hence,
necessarily, we deduce that the (j, k)-entry of C(u) vanishes, otherwise we would have a
divergence on the l.h.s. of (4.7). So the matrix C(u) is diagonal, and

C(u) = zΛezUC(u)e−zUz−Λ

= F (u, z)−1
(
∂iF (u, z) + zF (u, z)Ei − zEiF (u, z) + V T

i F (u, z)
)

= z(Ei − Ei) + (A1Ei − EiA1 + V T
i ) +O

(
1

z

)
= O

(
1

z

)
,

where we used the identity V T
i = [Ei,Γ

T ] = [Ei, A1]. Hence C(u) = 0. This proves point (3)
in the case q is tame.
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The coefficients Ak of Theorem 4.10 are holomorphic at u such that ui 6= uj. Moreover,
from the computations above, we deduce that

[Ak+1, Ei] = [A1, Ei]Ak − ∂iAk, k > 1. (4.8)

This formula recursively determines the off-diagonal matrix A′′k+1 in terms of A1, . . . , Ak. On
the other hand, the diagonal entries of Ak+1 can be computed as in Theorem 4.10, so that

(k + 1)(Ak+1)ii =
∑
` 6=i

V `
i (Ak+1)`i =

∑
`6=i

(ui − u`)Γi`(Ak+1)`i . (4.9)

Since A′′1 = ΓT is holomorphic also at coalescing points u, an inductive argument shows that
all the matrices Ak are holomorphic at coalescing point, by using formulae (4.8) and (4.9).
See also [CDG19, Prop. 19.3]. The system (3.22) is a completely integrable Pfaffian system
with holomorphic coefficients on u(Ω̃): the solutionsXi(z,u) can be u-analytically continued
as single-valued holomorphic functions on u(Ω̃), see [CDG19, Cor. 19.1]. The assumptions
of [CDG19, Th. 14.1] are thus satisfied, and (1),(2),(3) hold true also at coalescing points.
Finally, notice that the two functions X1(u, z)e2π

√
−1Λ and X3(u, ze2π

√
−1) have the same

asymptotics on the sector τ − 2π < arg z < τ − π. By uniqueness, it follows point (4). �

Remark 4.15. For any h = 1, 2, 3, the precise meaning of the uniform asymptotic relation
(4.6) is the following: for any compact K ⊆ u(Ω̃), for any ` ∈ N, and for any unbounded
closed subsector V of Vτ,h :=

{
z ∈ Ĉ∗ : τ − (3− h)π < arg z < τ + (h− 2)π

}
, there exists a

constant Ch,K,`,V ∈ R>0 such that

z ∈ V \ {0} =⇒ sup
u∈K

∥∥∥∥∥Xh(u, z)e
−zUz−Λ −

(
1 +

`−1∑
m=1

Am(u)

zm

)∥∥∥∥∥ < Ch,K,`,V
|z|`

.

Stokes and central connection matrices. Let (M, p) be an admissible germ, and τ an
admissible direction at p. Let Ξ(t, z) be a solution in Levelt form of the joint system (3.2),
and Xh(u, z), with h = 1, 2, 3, be the solutions of the joint system (3.22) as in Theorem
4.14. Let to = t(p) and uo = u(p) the values of the flat and canonical coordinates at p,
respectively.

We define the Stokes matrices S̊1, S̊2 at p to be the matrices defined by

X2(uo, z) = X1(uo, z)S̊1, X3(uo, z) = X2(uo, z)S̊2. (4.10)

We define the central connection matrix C̊ at p to be the matrix defined by

X2(uo, z) = (Ψ(uo)
−1)T · Ξ(to, z) · C̊. (4.11)

Proposition 4.16. We have
(1) the matrices S̊1, S̊2, C̊ are invertible, with det S̊1 = det S̊2 = 1,
(2) (S̊1)ii = (S̊2)ii = 1,
(3) if i 6= j, then (S̊−1

1 )ij = 0 if Re
(
e
√
−1(τ−π)(uio − ujo)

)
> 0,

(4) if i 6= j, then (S̊2)ij = 0 if Re
(
e
√
−1τ (uio − ujo)

)
> 0,
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(5) we have
S̊−1

1 e2π
√
−1ΛS̊−1

2 = C̊−1e−2π
√
−1µλe2π

√
−1RC̊. (4.12)

Proof. The proof of points (1)-(4) is standard, see [Was95]. For point (5) follows from point
(4) of Theorem 4.14. �

Proposition 4.17 ([CDG19, CG18]). If p is a coalescing point, define the partition {1, . . . , n}
=
∐

r∈J Ir such that for any r ∈ J we have {i, j} ⊆ Ir if and only if uio = ujo. We then
have the further vanishing condition

(S1)ij = (S1)ji = (S2)ij = (S2)ji = 0 if i, j ∈ Ir for some r ∈ J . �

For a D-modules theoretical proof of Proposition 4.17 see the recent preprint [Sab21].

Definition 4.18. We call monodromy data at z = ∞ of the admissible germ (M, p) the
4-tuple of matrices (S̊1, S̊2,Λ, C̊).

Remark 4.19. In the case of Frobenius manifolds, with the standard choice λ = d
2
, we have

Λ = 0 and S̊−1
1 = S̊T2 . This follow from the (anti-)self-adjointness properties of U and µ.

For detailed proofs see [CDG20, Th. 2.42]. In the notations of loc. cit. we have S̊1 = S and
S̊2 = S−1

− . Moreover, the Stokes matrices are uniquely determined by the metric, the central
connection matrix, and the monodromy data at z = 0:

S = C−1e−π
√
−1Re−π

√
−1µη−1(C−1)T , S− = ST = C−1eπ

√
−1Reπ

√
−1µη−1(C−1)T . (4.13)

This is a direct consequence of the symmetries of the joint system (3.2), see Remark 3.4.

In the next paragraphs we show that the monodromy data at z =∞ define local invariants
of the germ, i.e. that they are locally constant w.r.t. small perturbations of both the point p
and the admissible direction τ .

Isomonodromicity Property. Let Ω̃ be an open neighborhood of p as above. By
Theorems 4.3 and 4.14, if we let vary the point q in Ω̃, we have well defined solutions
Ξ(t(q), z), Xi(u(q), z), i = 1, 2, 3, of the joint systems (3.2) and (3.22) respectively. We can
thus introduce the Stokes and central connections matrices (S1, S2, C) as functions of q ∈ Ω̃
by the formulae

X2(u(q), z) = X1(u(q), z)S1(u(q)), (4.14)
X3(u(q), z) = X2(u(q), z)S2(u(q)), (4.15)
X2(u(q), z) = (Ψ(u(q))−1)T · Ξ(t(q), z) · C(u(q)). (4.16)

Theorem 4.20. The functions S1, S2, C are constant on Ω̃. In particular, we have S1(q) =

S̊1, S2(q) = S̊2, C(q) = C̊, for all q ∈ Ω̃.

Proof. Let us prove the statement for S1. We have
∂iS1(u) = ∂i

[
X1(u(q), z)−1X2(u(q), z)

]
= −X1(u(q), z)−1 · ∂iX1(u(q), z) ·X1(u(q), z)−1 ·X2(u(q), z)

+X1(u(q), z)−1∂iX2(u(q), z)

= −X1(u(q), z)−1 · (zEi − Vi)T ·X2(u(q), z)

+X1(u(q), z)−1 · (zEi − Vi)T ·X2(u(q), z) = 0.
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The proof for S2, C is similar. �

Small perturbations of the admissible direction. Let (M, p) be an admissible germ,
and τ be an admissible direction at p.

Theorem 4.21. If τ ′ ∈ R is such that |τ − τ ′| < infϕ∈S (p) |τ − ϕ|, then τ ′ is admissible at
p. Moreover, the monodromy data at p computed w.r.t. τ and τ ′ are equal.

Proof. The first claim is straightforward. Let us prove the second claim. There exist funda-
mental systems of solutions Xi(u(p), z) and X ′i(u(p), z), for i = 1, 2, 3, such that

Xh(u(p), z) ∼ Xfor(u(p), z), |z| → +∞, z ∈ Vτ,h, h = 1, 2, 3,

X ′h(u(p), z) ∼ Xfor(u(p), z), |z| → +∞, z ∈ Vτ ′,h, h = 1, 2, 3,

by Theorem 4.14, see also Remark 4.15. We prove that Xh = X ′h for all h = 1, 2, 3.
Let Kh be the connection matrix s.t. X ′h = XhKh. We have

zΛezUKhe
−zUz−Λ ∼ 1, |z| → +∞, z ∈ Vτ,h ∩ Vτ ′,h.

By taking the (j, k)-entry, for any ` ∈ N we have

(Kh)jke
z(uj(p)−uk(p))zδk−δj = δjk +O

(
|z|−`

)
, |z| → +∞, z ∈ Vτ,h ∩ Vτ ′,h.

Assume j 6= k. If uj(p) = uk(p), then necessarily (Kh)jk = 0. If uj(p) 6= uk(p), notice that in
Vτ,h ∩ Vτ ′,h there are rays along which Re(z(uj(p)− uk(p))) is negative, and also rays along
which it is positive. So, we necessarily have (Kh)jk = 0. This proves that Kh is diagonal. It
follows that Kh = 1 for h = 1, 2, 3. �

4.5. Monodromy data for a formal admissible germ. In Sections 4.2, 4.3, 4.4, the flat
F -manifold structure on M is assumed to be analytic. The notion of admissible germs and
of their monodromy data can however extended to the formal case.

Let (H,Φ) be a semisimple formal F -manifold over C, with Euler field E. Associated with
it we have two joint systems of differential equations (3.2) and (3.22) whose coefficients are
matrix-valued formal power series in the coordinates t and u, respectively.

We will say that (H,Φ) is
• doubly resonant, if the origin is coalescing and the formal flat F -manifold is confor-
mally resonant,
• admissible if it is semisimple but not doubly resonant.

The ∂z-equations of the joint systems (3.2) and (3.22) can be specialized at t = 0 and u = uo,
respectively. For these specialized systems of equations we can introduce a triple (λ, µλ, [R])

of monodromy data at z = 0, and a 4-tuple (S̊1, S̊2,Λ, C̊) of monodromy data at z = ∞,
exactly as in the case of an analytic germ (M, p).

The system (λ, µλ, [R], S̊1, S̊2,Λ, C̊) will be referred to as the monodromy data of the formal
structure (H,Φ). A priori, Theorem 4.20 cannot be adapted to this formal picture, but
Theorem 4.21 still holds true, and its proof works verbatim.

In Section 6.4, we will prove that an admissible formal germ is actually convergent: it
defines an analytic flat F -manifold, so that all the results of Sections 4.2, 4.3, 4.4 apply.
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5. Normalizations, and analytic continuation

5.1. Choices of normalizations. The monodromy data of an admissible germ (M, p) are
defined up to several non-canonical choices:

(1) the choice of λ ∈ C,
(2) the choice of a base point in the universal cover Ĉ∗,
(3) the choice of the solution Ξ in Levelt normal form,
(4) the choice of Lamé coefficients (H1, . . . , Hn),
(5) the choice of ordering of canonical coordinates (u1(p), . . . , un(p)),
(6) the choice of an admissible direction τ ∈ R \S (p).

Different choices of normalizations affect the numerical values of the monodromy data. These
transformations of the data can be described by actions of corresponding suitable groups:

(1) the group C,
(2) the deck transformation group Deck(Ĉ∗) ∼= Z,
(3) the group C(−µ∗),
(4) the torus (C∗)n,
(5) the symmetric group Sn,
(6) the braid group Bn.
We first describe actions (1)-(5), and postpone the description of action (6) in the next

sections.

• Action of C: the transformation λ 7→ λ′ implies the following transformations of the
monodromy data by translations

µλ 7→ µλ
′
= µλ + (λ− λ′)1, Λ 7→ Λ− (λ− λ′)1.

For irreducible flat F -manifolds, the choice of λ is equivalent to the choice of an Euler vector
field, see Theorem 2.17.

• Action of Deck(Ĉ∗) ∼= Z: a different choice of the base point in Ĉ∗ is equivalent to the
choice of a different determination of the logarithm (i.e. of the argument arg z). In particular,
by changing log z 7→ log z + 2πk

√
−1 with k ∈ Z, we have the transformations

S1 7→ e−2πk
√
−1Λ S1 e

2πk
√
−1Λ, S2 7→ e−2πk

√
−1Λ S2 e

2πk
√
−1Λ,

C 7→M−k
0 C e2πk

√
−1Λ, M0 := e−2π

√
−1µλe2π

√
−1R, k ∈ Z.

• Action of C(−µ∗): for A ∈ C(−µ∗), the change of solutions Ξ 7→ ΞA implies the transfor-
mation of the central connection matrix

C 7→ A−1C.

• Action of (C∗)n: for (h1, . . . , hn) ∈ (C∗)n, consider the transformation (H1, . . . , Hn) 7→
(H1h1, . . . , Hnhn). The monodromy data transform as follows

S1 7→ hS1h
−1, S2 7→ hS2h

−1, C 7→ Ch−1,

where h := diag(h1, . . . , hn).
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• Action of Sn: for σ ∈ Sn, consider the permutation of canonical coordinates (u1, . . . , un) 7→
(uσ(1), . . . , uσ(n)). The monodromy data transform as follows

S1 7→ PS1P
−1, S2 7→ PS2P

−1, C 7→ CP−1, Λ 7→ PΛP−1,

where P = (Pij)i,j, Pij := δσ(i)j.

5.2. Triangular and lexicographical orders. If an admissible direction τ at p is fixed,
we will say that the canonical coordinates (ui(p))ni=1 at p are in triangular order w.r.t. the
admissible direction τ if the Stokes matrix S1 is upper triangular, and S2 is lower triangular.

On the one hand, in general, triangular orders at p are not unique. This happens for
example if p is a semisimple coalescing point. In such a case, we have (S1)ij = (S1)ji = 0 if
ui = uj with i 6= j, by Proposition 4.17. If S1 is upper triangular, then so is PS1P

−1 for P
corresponding to the transposition i ↔ j. Similarly, the lower triangular structure of S2 is
preserved.

On the other hand, we always have a distinguished triangular order, called lexicographical
w.r.t. τ . Introduce the following rays in the complex plane

Lj := {uj(p) + ρe
√
−1(π

2
−τ) : ρ ∈ R+}, j = 1, . . . , n.

The ray Lj originates from the point uj(p), and it is oriented from uj(p) to ∞.
The canonical coordinates (u1(p), . . . , un(p)) are in lexicographical order if Lj is to the left

of Lk (w.r.t. the orientation above), for any 1 6 j < k 6 n.
The lexicographical order is the unique triangular order at p if the number of nonzero

entries of S1 or S2 is maximal, i.e. n(n−1)
2

.

5.3. Braid group action on matrices. Denote by Un and Ln the groups of unipotent
upper and lower triangular n × n-matrices, and by t the Lie algebra of diagonal n × n-
matrices.

The (abstract) Artin braid group Bn with n-strings is the group with n − 1 generators
β1, . . . , βn−1 satisfying the relations

βiβj = βjβi, if |i− j| > 1, βiβi+1βi = βi+1βiβi+1. (5.1)

Given g = (g1, g2, g3) ∈ Un×Ln× t, define 3(n− 1) block-diagonal matrices B(i)
1 (g), B

(i)
2 (g),

B
(i)
3 (g), with i = 1, . . . , n− 1, as follows:

B
(i)
1 (g) := 1i−1 ⊕

[
(g1)i,i+1 1

1 0

]
⊕ 1n−i−1,

B
(i)
2 (g) := 1i−1 ⊕

[
0 1
1 (g2)i+1,i

]
⊕ 1n−i−1, (5.2)

B
(i)
3 (g) := 1i−1 ⊕

[
~ · (g1)i,i+1 1

1 0

]
⊕ 1n−i−1,

where
~ := e2π

√
−1[(g3)i+1−(g3)i].
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For any βi ∈ Bn, define the triple gβi ∈ Un × Ln × t by

gβi :=
(
B

(i)
1 (g)−1g1B

(i)
2 (g), B

(i)
2 (g)−1g2B

(i)
3 (g), Pi g3 Pi

)
, (5.3)

where Pi is the permutation matrix i↔ i+ 1.

Lemma 5.1. The braid group Bn acts on Un × Ln × t by mapping (βi, g) 7→ gβi for i =
1, . . . , n− 1.

Proof. By a direct computation, one checks that gβ = id for any relator β in (5.1). �

Example. Let n = 3, and

g =

 1 a b
0 1 c
0 0 1

 ,

 1 0 0
α 1 0
β γ 1

 ,

 d1 0 0
0 d3 0
0 0 d3

 .

We have

gβ1 =

 1 α c
0 1 b− ac
0 0 1

 ,

 1 0 0

ae2
√
−1(d2−d1)π 1 0

aβe2
√
−1(d2−d1)π + γ β 1

 ,

 d2 0 0
0 d1 0
0 0 d3

 ,

gβ2 =

 1 b a+ bγ
0 1 γ
0 0 1

 ,

 1 0 0
β − αγ 1 0

α ce2
√
−1(d3−d2)π 1

 ,

 d1 0 0
0 d3 0
0 0 d2

 .

If β = (β1β2)3, the triple gβ = (g′1, g
′
2, g
′
3) equals

g′1 =

 1 ae2
√
−1(d2−d1)π be2

√
−1(d3−d1)π

0 1 ce2
√
−1(d3−d2)π

0 0 1

 = e−2π
√
−1g3 g1 e

2π
√
−1g3 ,

g′2 =

 1 0 0

e2
√
−1(d1−d2)πα 1 0

e2
√
−1(d1−d3)πβ e2

√
−1(d2−d3)πγ 1

 = e−2π
√
−1g3 g2 e

2π
√
−1g3 ,

g′3 =

 d1 0 0
0 d2 0
0 0 d3

 = g3.

5.4. Braid mutations of monodromy data. LetM an analytic homogeneous semisimple
flat F -manifold, and denote by M ′ the open set of tame semisimple points p ∈ M , i.e. at
which the spectrum of the operator U(p) : TpM → TpM is simple.

Consider the following two different settings:
(I) Assume g : [0, 1] → M ′ to be a continuous path such that g([0, 1]) is contained in a

simply connected open set, on which a coherent choice of normalizations (1)-(5) can
be done. Assume also that
• τ is admissible at both g(0) and g(1),
• there exists t̄ ∈ [0, 1] such that τ is not admissible at g(t̄).

(II) Assume p ∈M ′ is a semisimple point, and fix some choice of normalizations (1)-(5).
Let τ0, τ1 ∈ R \S (p), and τ : [0, 1]→M to be a continuous map such that
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• τ(0) = τ0 and τ(1) = τ1,
• there exists t̄ ∈ [0, 1] such that τ(t̄) is not admissible at p.

In both cases (I) and (II), for each t ∈ {0, 1}, we can introduce a set Mt of monodromy
data.

Problem: In both settings (I) and (II), how to describe the transformationM0 7→ M1?

The matrices µλ, R will not depend on t, due to the results of Section 4.3. Hence, we need
to describe how the matrices (S1, S2, C,Λ) will transform. In this section, we prove that this
is described by an action of the braid group, which on the triple (S1, S2,Λ) reduces to (5.3).

Remark 5.2. Pictures (I) and (II) are “dual” to each other. In (I), we have a fixed τ ∈ R
and a variable set S (g(t)) of non-admissible directions such that τ ∈ S (g(0)) ∩S (g(1)).

In (II), we have a fixed set S (p) ⊆ R of non-admissible directions and a continuous map
τ : [0, 1] → R with τ(0), τ(1) ∈ R \ S (p). In both cases, we have to face a wall-crossing
phenomenon: the fixed (resp. variable) point τ is not admissible for some values of the time
parameter.

Given u ∈ Cn introduce a family of Stokes rays in the universal cover Ĉ∗: for any pair
(i, j) such that ui 6= uj set

τij(u) :=
3π

2
− Arg(ui − uj), R

(k)
ij (u) := {z ∈ Ĉ∗ : arg z = τij(u) + 2πk}, k ∈ Z.

Also, for any τ ∈ R introduce the admissible ray

`τ := {z ∈ Ĉ∗ : arg z = τ}.
Both Stokes and admissible rays are equipped with the natural orientation, from 0 to ∞.
Any continuous transformations of u and τ induce continuous rotations of the Stokes and
admissible rays. In the case of settings (I) and (II), the oriented ray crosses some of the
Stokes rays during the transformation. We will call elementary any such transformation of
rays, along which `τ crosses one Stokes ray R(k)

ij only.
Let us focus on the picture (I). Fix uo ∈ Cn \ ∆ with components in τ -lexicographical

order. Consider a continuous map bi : [0, 1]→ (Cn \∆), with i = 1, . . . , n− 1, such that:
(1) bi(0) = uo,
(2) bi(t)h = bi(0)h for all h 6= i, i+ 1,
(3) bi(t)i counter-clockwise rotates w.r.t. bi(t)i+1 in the plane C,
(4) bi(0)i = bi(1)i+1 and bi(1)i = bi(0)i+1.

The map bi can be seen as a loop on Confn(C) := (Cn \∆)/Sn, the configuration space of n
pairwise distinct points in C. The space Confn(C) is aspherical (i.e. πk(Confn(C)) = 0 for
k > 2), and its fundamental group is isomorphic to the braid group Bn, see [KT08]. Consider
the homotopy classes [bi] in π1(Conf(Cn), {ui(0)}) ∼= Bn. It is easily seen that

[bi] ∗ [bj] = [bj] ∗ [bi], |i− j| > 1, [bi] ∗ [bi+1] ∗ [bi] = [bi+1] ∗ [bi] ∗ [bi+1],

where ∗ denotes the concatenation of loops. We identify [bi] with the elementary braid βi.
In the case of picture (II), any of the maps bi’s can be seen as a map with target M ,

by working in a local chart with canonical coordinates in τ -lexicographical order. It is an
elementary transformation: one of the Stokes rays R(k)

i,i+1 clockwise crosses the ray `τ .
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In summary, elementary transformations of type (I) can be identified with elements of Bn.
Dually, by exchanging orientations (counter-clockwise ↔ clockwise), we can identify βi with
the type (II) transformation defined by a counter-clockwise rotation of `τ across one of the
Stokes rays R(k)

i,i+1.

Let (S1, S2,Λ, C) be the 4-tuple of Stokes, formal monodromy, and central connection
matrices computed

• w.r.t. the point g(0), in case (I);
• w.r.t. the line τ(0), in case (II);

In both cases (I) and (II), the monodromy data are always computed w.r.t. the lexicograph-
ical order of canonical coordinates, so that (S1, S2,Λ) ∈ Un × Ln × t.

Theorem 5.3. Along the elementary transformation βi, with i = 1, . . . , n−1, the monodromy
data transform as follows:

(S1, S2,Λ) 7→ (S1, S2,Λ)βi , C 7→ CB−1,

where

B = B
(i)
2 (S1, S2,Λ) = 1i−1 ⊕

[
0 1
1 (S2)i+1,i

]
⊕ 1n−i−1.

Cf. equations (5.2) and (5.3).

Proof. Whatever is the case under consideration, (I) or (II), let us consider the initial “frozen”
configuration of Stokes and admissible rays, R(h)

ij and `τ .
Label the Stokes rays as follows: let R(1) be the first Stokes ray on the left of `τ , R(0) the

first Stokes ray on the right of `τ , and extend the numeration R(k), with k ∈ Z, so that the
label k increases in counter-clockwise order.

Let m be the number of Stokes rays in any sector of Ĉ∗ defined by

(2j − 1)π < | arg z − τ | < 2πj, j ∈ Z.

The number m also equals the number of Stokes rays in the sectors

2πj < | arg z − τ | < (2j + 1)π, j ∈ Z.

For generic initial points uo ∈ Cn \ ∆, we have m = n(n−1)
2

, but some Stokes rays may
coincide4.

Define Π(k), with k ∈ Z, to be the sector in Ĉ∗ from the ray R(k−1) to the ray R(m+k). For
each k ∈ Z, there exists a unique solution X(k)(uo, z) of the ∂z-equation of (3.22), specialized
at u = uo, such that

X(k)(uo, z) ∼ Xfor(uo, z), |z| → +∞, z ∈ Π(k).

Introduce invertible matrices Kk, called Stokes factors, such that

X(k+1)(uo, z) = X(k)(uo, z)Kk, k ∈ Z.

4This happens for example if there are three indices (i, j, k) such that uio, ujo, uko ∈ C are collinear, or there
are four indices (i, j, k, l) such that uio, ujo and uko , ulo define two parallel lines.
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The matrices Kk have the following structure: all diagonal entries are 1, and the entry (Kk)ab
is non-zero only if R(m+k) is one of the rays R(h)

ab with h ∈ Z, see [BJL79].
Recall that the Stokes matrices S1, S2 are defined in terms of solutions X1, X2, X3, see

equation (4.10). We have

X1(uo, z) ≡ X(1−m)(uo, z), X2(uo, z) ≡ X(1)(uo, z), X3(uo, z) ≡ X(1+m)(uo, z).

Hence, we deduce

X2(uo, z) = X(0)(uo, z)K0 = X(−1)(uo, z)K−1K0 = · · · = X(1−m)(uo, z)︸ ︷︷ ︸
X1(uo,z)

K1−m . . . K−1K0.

From equation (4.10), we deduce

S1 = K1−m . . . K−1K0.

Analogously, we have
S2 = K1 . . . Km.

Up to now we have considered a “static” picture, at the initial time t = 0 of the transformation
βi. By letting the time parameter t vary, the Stokes rays and/or the ray `τ rotate. In
particular, immediately before the collision of Stokes and oriented rays, we have R(h)

i,i+1 =

R(1) for a suitable h ∈ Z. After the collision we have R(h)
i,i+1 ≡ R(0). Hence, after the

transformation βi, we have the following transformation of Stokes matrices

S1 7→ S ′1 = K−m . . . K0K1 = K−1
1−m S1K1,

S2 7→ S ′2 = K2 . . . KmKm+1 = K−1
1 S2K1+m.

Similarly, the central connection matrix transforms as follows

C 7→ C ′ = C K−1
1

The only non-zero off-diagonal entries of K1, K1−m, K1+m are

(K1−m)i,i+1 = (S1)i,i+1, (K1)i+1,i = (S2)i+1,i,

(K1+m)i,i+1 = [e−2π
√
−1ΛS1e

2π
√
−1Λ]i,i+1.

The last identity follows from point (4) of Theorem 4.14. Finally, we also need to recover the
lexicographical order, which is lost after the transformation βi. By applying the permutation
i↔ i+ 1, we complete the proof. �

Remark 5.4. Theorem 5.3 generalizes the braid group action in Dubrovin’s analytic theory
of Frobenius manifolds, see [Dub99, Th. 4.8]. The action of the braid group on Un × Ln × t
is just the simplest case of a more general picture described in [Boa01, Boa02]. The starting
point is the observation that the “monodromy manifold”5 Un × Ln × t is isomorphic to the
dual Poisson-Lie group G∗ of G = GL(n,C). In [Boa02, Section 2] P. Boalch generalized the
notion of Stokes multipliers and isomonodromic deformations for general connected complex
reductive groups G. It was also proved that G∗ can be identified with the space of mero-
morphic connections on principal G-bundles over the disc. In such a case one has an action

5In [Boa01, Boa02], meromorphic connections on a closed disk D ⊆ C, with an irregular singularity only,
are studied. We have a connections on C∗ with two singularities, and we need a further piece of information
for a global description of the monodromy: the central connection matrix.
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of π1(treg) on G∗, where treg is the regular subset of a Cartan subalgebra t ⊆ g. This induces
an action on G∗ of the full braid group π1(treg/W ), with W the Weyl group. Such an action
coincides with the De Concini-Kac-Procesi action of π1(treg/W ) on G∗, obtained in [DKP92]
as classical limit of the quantum Weyl group action on the corresponding quantum group,
due to Lusztig [Lus90], Kirillov and Reshetikhin [KR90], Soibelman [Soi90].

Action of the center Z(Bn). Consider the shift of the admissible direction τ 7→ τ + 2π.
We have the following facts:

(1) In the generic case (i.e. for canonical coordinates in general position), the number
of Stokes rays in any sector of C∗ of width 2π equals n(n− 1). An elementary braid
acts whenever the line `τ crosses a Stokes ray. So, in total, we expect that a complete
rotation of `τ correspond to the product of n(n− 1) elementary braids.

(2) The effect of the shift τ 7→ τ + 2π on the monodromy data can be identified with
a transformation of different nature, namely a different choice of normalization (2).
This consists in a different choice of the branch of the logarithm. From this it follows
that the braid corresponding to τ 7→ τ + 2π must commute with any other braids.

From point (2), we deduce that the braid corresponding to τ 7→ τ + 2π is an element of the
center

Z(Bn) ∼= Z ∼= Deck(Ĉ∗).
The center Z(Bn) is the cyclic group generated by the braid β = (β1 . . . βn−1)n. From point
(1), and the action of Deck(Ĉ∗), we deduce the following result.

Proposition 5.5. The braid corresponding to the shift τ 7→ τ+2π of the admissible direction
is the generator β of the center Z(Bn). It acts as follows:

(S1, S2,Λ)β =
(
e−2π

√
−1ΛS1e

2π
√
−1Λ, e−2π

√
−1ΛS2e

2π
√
−1Λ, Λ

)
C 7→M−1

0 Ce2π
√
−1Λ. �

This proposition extends a computation (for n = 3) of the Example of Section 5.3.

Corollary 5.6. The generator β = (β1 . . . βn−1)n of the center Z(Bn) acts on Un × Ln × t
as follows:

gβ =
(
e−2π

√
−1g3 g1 e

2π
√
−1g3 , e−2π

√
−1g3 g2 e

2π
√
−1g3 , g3

)
. (5.4)

Proof. Let g′ be the r.h.s. of (5.4). A simple computation shows that B(i)
j (g)e2π

√
−1g3 =

B
(i)
j (g′) for i = 1, . . . , n − 1 and j = 1, 2, 3. Thus, if there exists β̃ ∈ Bn such that gβ̃ = g′

then β̃ ∈ Z(Bn), i.e. β̃ = βk for some k ∈ Z. We have k = 1, by Proposition 5.5. �

5.5. Analytic continuation of the flat F -structure. There is a more global point of
view from which one can reinterpret the results of the previous sections. It both makes
transparent the appearance of a braid group action on the monodromy data, and clarifies
the “duality” of settings (I) and (II) of the previous section. Moreover, it also describes the
analytic continuation of the flat F -manifold structure.

Admissibility sets An,AOn ,AZn , Ân. Consider the configuration space Confn(C) := (Cn \
∆)/Sn of n points in the plane, together with the following covering space:



RHB INVERSE PROBLEM FOR FLAT F -MANIFOLDS 37

• the ordered Sn-covering ConfOn (C) := Cn \∆,
• the covering ConfZn (C) associated to the center Z(π1(Confn(C))) ∼= Z,
• and the universal cover ̂Confn(C).

The fundamental group π1(ConfOn (C)) is isomorphic to the group Pn of pure braids. Notice
that Z(Bn) = Z(Pn) ∼= Z. The coverings spaces above fit into the chain

̂Confn(C)→ ConfZn (C)→ ConfOn (C)→ Confn(C).

The fundamental group of the space ConfZn (C) is isomorphic to Bn/Z(Bn) ∼= Mn(R2), the
mapping class group of the n-punctured plane, see [Bir74].

Remark 5.7. The space ̂Confn(C) has been described for the first time by S.Kaliman
[Kal75, Kal77, Kal93]: in loc. cit. it is proved that it is isomorphic to C2×T (0, n+1), where
T (0, n+ 1) denotes the Teichmüller space of the Riemann sphere with n+ 1 punctures. The
space T (0, n + 1) is homeomorphic to R2n−4, and it is biholomorphic to a holomorphically
convex Bergmann domain in Cn−2. For further details see the interesting paper [Lin04].

Given p = {p1, . . . , pn} ∈ Confn(C), define the set S (p) ⊆ R by

S (p) := {Arg[−
√
−1(pi − pj)] + 2kπ : k ∈ Z}, Arg(z) ∈]− π, π].

Any number τ ∈ R \S (p) is said to be an admissible direction at p.
Introduce the smooth (2n+ 1)-dimensional real manifolds

Xn := Confn(C)×R, XO
n := Confn(C)×R, X Z

n := ConfZn (C)×R, X̂n := ̂Confn(C)×R,
Define the admissibility open subset An ⊆ Xn by

An := {(p, τ) ∈ Xn : τ ∈ R \S (p)}.

Analogously, define the open subsets AOn ⊆ XO
n , AZn ⊆ X Z

n , and Ân ⊆ X̂n as the pre-images
of An along the projections X̂n → X Z

n → XO
n → Xn. We have the following commutative

diagram
Ân� _
��

// AZn� _
��

// AOn� _
��

// An� _
��

X̂n
��

// X Z
n

��

// XO
n

��

// Xn
��

// R

̂Confn(C) // ConfZn (C) // ConfOn (C) // Confn(C)

Homotopy groups of An,AOn ,AZn , Ân. Consider the subspace A′n of admissibility set An
defined by

A′n := {(p, 0) ∈ Xn : 0 is admissible at p}.

Lemma 5.8. The subspace A′n is a strong deformation retract of An.

Proof. Let (p, τ) ∈ An. If p = {p1, . . . , pn}, denote by pb := 1
n

∑n
j=1 pj the barycenter of the

configuration. Let F : [0, 1]×An → An be defined by a rotation w.r.t. the barycenter

F (t,p, τ) :=
({
e
√
−1tτ (pj − pb) + pb : j = 1, . . . , n

}
, τ(1− t)

)
.
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For all (p, τ) ∈ An, (a, 0) ∈ A′n and t ∈ [0, 1], we have F (0,p, τ) = (p, τ), F (1,p, τ) ∈ A′n,
and F (t,a, 0) = (a, 0). �

Lemma 5.9. The space A′n is contractible.

Proof. We show that the point ({1, . . . , n}, 0) is a strong deformation retract of A′n. Given
(p, 0) ∈ A′n, with p = {p1, . . . , pn}, without loss of generality we may assume that the pj’s
are labelled in 0-lexicographical order. Consider the continuous map F : [0, 1] × A′n → A′n
defined by

F (t,p) =


({(1− 2t)pj + 2tRe(pj) : j = 1, . . . , n} , 0) , 0 6 t 6

1

2
,

({2tRe(pj) + (2t− 1)j : j = 1, . . . , n} , 0) ,
1

2
6 t 6 1.

The map F defines a strong deformation retraction of A′n onto ({1, . . . , n}, 0). �

Theorem 5.10. We have

πi(An) = 0, i = 0, 1, 2, . . . ,

π0(AOn ) = Sn, πi(AOn ) = 0, i = 1, 2, 3, . . . ,

π0(AZn ) = Z, πi(AZn ) = 0, i = 1, 2, 3, . . . ,

π0(Ân) = Bn, πi(Ân) = 0, i = 1, 2, 3, . . . ,

where the homotopy groups are based at an arbitrary point.

Proof. All homotopy groups of An vanish, since An is contractible by Lemmata 5.8, 5.9.
Since An is simply connected, we have the homeomorphisms AOn ∼= An×Sn, AZn ∼= An×Z,
and Ân ∼= An×Bn. Here Sn, Z, and Bn are equipped with the discrete topology. The claim
follows. �

Relative homotopy groups. Given a triple (A,B, c) of pointed topological spaces, with
c ∈ B ⊆ A, the relative homotopy group πk(A,B, c), with k > 1, is the set6 of homotopy
classes of continuous maps f : (Dk,Sk−1, s0)→ (A,B, c). In particular, the set π1(A,B, c) is
the set of homotopy classes of paths f : [0, 1]→ A such that f(0) ∈ B, f(1) = c.

Fix a point x ∈ An, and three points xo ∈ AOn ,xz ∈ AZn , x̂ ∈ Ân over it.

Theorem 5.11. We have

π1(Xn,An,x) ∼= π1(XO
n ,AOn ,xo) ∼= π1(X Z

n ,AZn ,xz) ∼= π1(X̂n, Ân, x̂) ∼= Bn,
πk(Xn,An,x) ∼= πk(XO

n ,AOn ,xo) ∼= πk(X Z
n ,AZn ,xz) ∼= πk(X̂n, Ân, x̂) ∼= 0, k > 2.

Proof. With the morphisms of triples of topological spaces

(X̂n, Ân, x̂)→ (X Z
n ,AZn ,xz)→ (XO

n ,AOn ,xo)→ (Xn,An,x), (5.5)

6The group structure is well defined only for k > 2.
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we can associate the following commutative diagram of relative homotopy groups

. . . // π1(Ân, x̂)

��

// π1(X̂n, x̂)

��

// π1(X̂n, Ân, x̂)

α1

��

// π0(Ân, x̂)

��

// π0(X̂n, x̂)

��

. . . // π1(AZn ,xz)

��

// π1(X Z
n ,x

z)

��

// π1(X Z
n ,AZn ,xz)

α2

��

// π0(AZn ,xz)

��

// π0(X Z
n ,x

z)

��

. . . // π1(AOn ,xo)

��

// π1(XO
n ,x

o)

��

// π1(XO
n ,AOn ,xo)

α3

��

// π0(AOn ,xo)

��

// π0(XO
n ,x

o)

��

. . . // π1(An,x) // π1(Xn,x) // π1(Xn,An,x) // π0(An,x) // π0(Xn,x)

The raws are the long exact relative homotopy sequences for each triples, and columns are
the maps induced by (5.5). The maps α1, α2, α3 are bijections: this follows from the unique
lifting property of paths for coverings. The claim then follows from Theorem 5.10. �

Monodromy data as functions on AZM . Let M be a flat F -manifold with Euler field E,
and denote by M ′ the set of points p ∈ M at which the spectrum spec(E◦p) is simple. We
have the local biholomorphism

υ : M ′ → Confn(C), p 7→ spec(E◦p). (5.6)

Consider the pulled-back fiber bundles on M ′

XM := υ∗Xn, XO
M := υ∗XO

n , X Z
M := υ∗X Z

n , X̂M := υ∗X̂n,

together with their open subsets

AM := (υ∗)−1An, AOM := (υ∗)−1AOn , AZM := (υ∗)−1AZn , ÂM := (υ∗)−1Ân.

Given po ∈ M ′, the monodromy data of (M ′, po) are well-defined after fixing the choice of
normalizations (1)-(6) of Section 5.1.

The choice of (5) only, i.e. an ordering of canonical coordinates at po, is equivalent to the
choice of a point of XO

M over po.
The choice of (6) only, i.e. an admissible direction at po, is equivalent to the choice of a

point of AM over po.
The choice of both (5) and (6) is equivalent to the choice of a point of AOM over po.
If choices of (1),(2),(3),(4) are fixed, however, the 4-tuple (S1, S2,Λ, C) is not well-defined

as a single-valued function on AOM . Indeed, if (po,uo, τ) is a fixed point of AOM , for any k ∈ Z
there exist paths γk : [0, 1]→ AOM such that γ(0) = (po,uo, τ) and γk(1) = (po,uo, τ + 2πk).
Namely γk are lifts of loops in the center Z(π1(ConfOn (C))).

Thus, the joint choice of (2),(5),(6) is equivalent to the choice of a point of AZM over po.
Theorems 4.20 and 4.21 can be reformulated as follows.

Theorem 5.12. Fix a choice of normalizations (1),(3),(4), and a point in AZM . The mon-
odromy data (S1, S2,Λ, C) are locally constant functions on AZM . �
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In total we have cardπ0(AZM) possible values of the monodromy data at z =∞. Different
values at different connected components of AZM , are labelled by paths in π1(X Z

M ,AZM). The
map (5.6) induces a morphism in homotopy

υ∗ : π1(X Z
M ,AZM)→ π1(X Z

n ,AZn ) ∼= Bn.

The paths of settings (I) and (II) of Section 5.4 are representatives of homotopy classes in
π1(XO

M ,AOM) ∼= π1(X Z
M ,AZM). More precisely, consider the double fibrations

AOM

��
p1

��

p2

��

XO
M

ρ1
}}

ρ2
  

M ′ R

Paths of setting (I) represent classes in π1(ρ−1
2 (τ), p−1

2 (τ)) for fixed τ ∈ R.
Paths of setting (II) represent classes in π1(ρ−1

1 (p), p−1
1 (p)) for fixed p ∈M ′.

Thus the “duality” mentioned in Section 5.4 reflects the underlying double fibrations above.
In both cases (I) and (II), we have induced paths in π1(XO

M ,AOM).
Following the terminology of [CDG20], given τ ∈ R we call τ -chamber of M any connected
component of the open set p1(p−1

2 (τ)).

Analytic continuation. Let (M, po) be the germ of a semisimple analytic flat F -manifold
with Euler vector field. Assume that po is tame semisimple. The whole flat F -structure
can be analytically continued. The picture described in this section gives an insight on this
continuation procedure.

By shrinking M , we can assume that the germ is defined on a simply connected set,
sufficiently small so that (5.6) is an embedding. We can thus identify M ′ with υ(M ′) ⊆
Confn(C). By fixing a point ûo ∈ ̂Confn(C) over υ(po), we have an open embedding of
(M ′, po) ∼= (υ(M ′), υ(po)) ⊆ ( ̂Confn(C), ûo). In this way, one finds a maximal tame analytic
continuation of the initial germ. Notice that the coefficients of the joint system of differential
equations (3.22) continue to meromorphic functions of u ∈ ̂Confn(C): this is the Painlevé
property of the solution V λ(u) of the isomonodromic differential equations (3.25). By fix-
ing choices of normalizations (1),(3),(4), the monodromy data (S1, S2,Λ, C) of the system
(3.22) can be seen as locally constant functions on the space Ân. This space has countably
many connected components in bijection with the braid group Bn. All possible values of
(S1, S2,Λ, C) are given by the action of the braid group Bn of Theorem 5.3.

6. Riemann-Hilbert-Birkhoff inverse problem for semisimple flat
F -manifolds

6.1. RHB problem P [u, τ,M] and the Malgrange-Sabbah Theorem.
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Figure 1. Contour Γ, paths Γ±∞,Γ1,Γ2, domains Π0,ΠL,ΠR, and ± sides of Γ.

Admissible data. Denote by Arg(z) ∈]−π, π] the principal branch of the argument of the
complex number z. Let u ∈ Cn, and set

S (u) :=
{

Arg
(
−
√
−1(ui − uj

)
+ 2πk : k ∈ Z, i, j are s.t. ui 6= uj

}
.

Any element τ ∈ R \S (u) will be said to be admissible at u.

Definition 6.1. Let u ∈ Cn and τ admissible at u. A (u, τ)-admissible datum is a 6-tuple
M := (B,D,L, S1, S2, C) of matrices in Mn(C) such that:

(1) the matrix B is diagonal, i.e. B = B′,
(2) D is a diagonal matrix of integers,
(3) we have

trB = trD + trL. (6.1)
(4) the matrices S1, S2, C are invertible, with detS1 = detS2 = 1,
(5) (S1)ii = (S2)ii = 1,
(6) if i 6= j, then (S−1

1 )ij = 0 if Re
(
e
√
−1(τ−π)(ui − uj)

)
> 0,

(7) if i 6= j, then (S2)ij = 0 if Re
(
e
√
−1τ (ui − uj)

)
> 0,

(8) we have
S−1

1 e2π
√
−1BS−1

2 = C−1e2π
√
−1LC. (6.2)

If u ∈ ∆, define the partition {1, . . . , n} =
∐

r∈J Ir such that for any r ∈ J we have {i, j} ⊆ Ir
if and only if ui = uj. We then require the further vanishing condition

(9) (S−1
1 )ij = (S2)ij = 0 if i, j ∈ Ir for some r ∈ J .

Lemma 6.2. Let uo ∈ Cn and τ admissible at uo. If M is (uo, τ)-admissible, then there
exists a sufficiently small neighborhood V of uo such

(1) τ is admissible at u, for all u ∈ V,
(2) M is (u, τ)-admissible for all u ∈ V. �

Let u ∈ Cn and τ admissible at u. Consider the complex z-plane with a branch cut from
0 to ∞:

τ − π < arg z < τ + π.

Let r > 0 and denote by Γ = Γ(τ, r) the union of the following oriented paths, see Figure 1:
(1) the half-line Γ−∞ defined by arg z = τ ± π, |z| > r, originating from ∞;
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(2) the half-line Γ+∞ defined by arg z = τ , |z| > r, ending to ∞;
(3) the half-circle Γ1 defined by τ − π < arg z < τ , |z| = r, counterclockwise oriented;
(4) the half-circle Γ2 defined by τ < arg z < τ + π, |z| = r, counterclockwise oriented.

The orientations uniquely define the + and - side for each path Γ±∞,Γ1,Γ2. For z ∈ Γ−∞
we use the symbol z± if arg z = τ ± π. Set Π0,ΠL,ΠR to be the components of complement
C \ Γ, and T1, T2 to be the two nodes of Γ, as in Figure 1.

Let M := (B,D,L, S1, S2, C) be a (u, τ)-admissible datum. Define two functions

Q(−;u), H(−;u) : Γ→ GL(n,C),

by
Q(z;u) := U(u)z +B log z, U(u) := diag(u1, . . . , un),

H(z;u):=


eQ(z−;u)S−1

1 e−Q(z−;u), along Γ−∞,

eQ(z;u)S2e
−Q(z;u), along Γ+∞,

eQ(z;u)C−1z−Lz−D, along Γ1,

eQ(z;u)S−1
2 C−1z−Lz−D, along Γ2.

We denote by H±∞, H1, H2 the restrictions of H at Γ±∞,Γ1,Γ2.

Problem 6.3 (Problem P [u, τ,M]). Find an analytic function G : C\Γ→Mn(C) such that
(1) G|Πν extends continuously to Πν for ν = 0, L,R;
(2) the non-tangential limits G± : Γ → Mn(C) of G from the - and + sides of Γ exist,

and are continuous;
(3) they are related by

G+(z) = G−(z)H(z;u);

(4) G(z) tends to the identity matrix I as z →∞.

Theorem 6.4 ([Cot20c, Section 3]). Let uo ∈ Cn. Assume that the pair (τ,M) is admissible
at each point of a sufficiently small open neighborhood V of uo. If P [uo, τ,M] is solvable,
there exists an analytic set Θ ⊆ V \ {uo} such that P [u, τ,M] is solvable for all u ∈ V \Θ.
Moreover, the solution G(z;u) is unique and holomorphic w.r.t. u ∈ V \Θ. �

Remark 6.5. In [Cot20c], we showed that Theorem 6.4 is essentially equivalent to a refine-
ment, due to C. Sabbah [Sab18, Th. 4.9], of a previous result of B.Malgrange [Mal83b]. For
this reason, we refer to Theorem 6.4 as Malgrange-Sabbah Theorem. The original result of
Malgrange concerns the case uo ∈ Cn \∆. The result of Sabbah concerns the case uo ∈ ∆.

6.2. Construction of semisimple flat F -manifolds via a RHB inverse problem. Let
uo ∈ Cn, τ be an admissible direction at uo, and M = (B,D,L, S1, S2, C) be a (uo, τ)-
admissible datum. Assume that the RHB boundary value problem P [uo, τ,M] is solvable.
Let V and Θ as in Malgrange-Sabbah Theorem 6.4: the problem P [u, τ,M] is well-defined,
solvable and with unique solution G(z,u), holomorphic w.r.t. u ∈ V \ Θ. Consider the
asymptotic expansions of G(z,u) for z → 0 and z →∞:

G(z,u) = 1 + z−1F1(u) +O
(
z−2
)
, z →∞, z ∈ ΠL/R,

G(z,u) = G0(u) + zG1(u) + z2G2(u) +O(z3), z → 0,
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with coefficients F1, Gi’s holomorphic w.r.t. u. The functions

XL/R(z,u) := G(z,u)zBzzU , z ∈ ΠL/R,

X0(z,u) := G(z,u)zDzL, z ∈ Π0,

are easily seen to be solutions of the joint system of differential equations

∂
∂ui
X =

(
zEi − Vi(u)T

)
X, Vi(u) := [F1(u)T , Ei] ≡ −

(
∂G0

∂ui
·G−1

0

)T
, (6.3)

∂
∂z
X =

(
U − 1

z
V (u)T

)
X, V (u) := [F1(u)T , U ]−B, (6.4)

see [Cot20c, Section 3.4] for details.

Lemma 6.6. The off-diagonal entries (F ′′1 )T satisfy the Darboux-Egoroff equations (3.26),
(3.27), and the homogeneity conditions

n∑
k=1

uk∂kF1(u)ij = (bi − bj − 1)F1(u)ij, B = diag(b1, . . . , bn). (6.5)

Proof. The compatibility condition ∂i∂j = ∂j∂i for the joint system (6.3),(6.4) reads

[Ej, ∂iF
T
1 ]− [Ei, ∂jF

T
1 ] + [[Ei, F

T
1 ], [Ej, F

T
1 ]] = 0.

This coincides with equations (3.26) and (3.27). Let κ ∈ C∗, and set

h(z) := zDzLCκ−BC−1κ−Lz−Lκ−Dz−D.

The piecewise analytic function G̃ : (Π0 ∪ ΠL ∪ ΠR)× (κV \ κΘ)→ C defined by

G̃(z;u) := κ−BG(κz;κ−1u)h(z)−1, z ∈ Π0,

G̃(z;u) := κ−BG(κz;κ−1u)κB, z ∈ ΠL/R,

solves the same RHB problem P [u, τ,M] as G. By uniqueness of solution we have G̃ = G.
This implies that F1(κ−1u) = κ · κ−BF1(u)κB, and (6.5) follows. �

Define the off-diagonal matrix Γ(u) by Γ(u)ij := F1(u)ji .

Corollary 6.7. For any fixedHo ∈ (C∗)n, there exists a uniqueH(u) = (H1(u), . . . , Hn(u)),
analytic in V \Θ, satisfying

∂jHi = ΓijHj, i 6= j, ∂iHi = −
∑
k 6=i

ΓikHk, (6.6)

and such that H(uo) = Ho. Moreover, the functions Hi are never vanishing.

Proof. The linear Pfaffian system (6.6) is completely integrable, by Lemma 6.6. This ensures
uniqueness and existence of solutions Hi. The non-vanishing of solutions is a standard result,
see e.g. [Har20, Ch. 11]. �

Lemma 6.8. Let G0(u), Hi(u) as above. For any α = 1, . . . , n, the one form $α(u) :=∑n
k=1G0(u)kαHk(u)duk is closed.

Proof. Set H := diag(H1, . . . , Hn). We have ∂j[G
T
0H]αi = (GT

0 )αjHiΓ
j
i + (GT

0 )αi HjΓ
i
j =

∂i[G
T
0H]αj . This can be easily seen by invoking equations (6.3), and (6.6). �
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Lemma 6.9. Let G1(u), Hi(u) as above. For any α = 1, . . . , n, the one form ϕα(u) :=∑n
k=1G1(u)kαHk(u)duk is closed.

Proof. Firstly, notice that we have ∂iG1 = EiG0 + ∂iG0 · G−1
0 · G1. This follows from the

fact that X0 is a solution of the joint system (6.3), (6.4). Furthermore, we have the identity
ϕν(u) :=

∑
α[G0(u)−1G1(u)]αν ·$α(u). Hence, we deduce

dϕν =
∑
α,i

∂i[G0(u)−1G1(u)]αν du
i ∧$α =

∑
α,i,k

(G−1
0 )αi (G0)iν (G0)kα Hk du

i ∧ duk = 0. �

Consider a polydisc D(uo) ⊆ V \Θ centered in uo. Define the functions

tα(u) :=

∫ u

uo

$α, F ν(u) :=

∫ u

uo

ϕν , α, ν = 1, . . . , n, (6.7)

where u ∈ D(uo). By definition, the functions t = (tα)α define a system of coordinates on
D(uo), with Jacobian matrix (

∂tα

∂ui

)
α,i

= G0(u)TH(u).

Theorem 6.10. The functions Fα(u(t)) are solutions of the oriented associativity equations
(2.2), and define an analytic semisimple flat F -manifold structure on D(uo). The coordinates
t are flat coordinates, the coordinates u are canonical coordinates.

Proof. Define the product ◦ of vector fields by ∂i ◦ ∂j = ∂iδij, and the connection ∇z, with
z ∈ C, defined by ∇z

∂α
∂β = z∂α ◦ ∂β. Introduce the frame of vector fields fi := H−1

i ∂i, for
i = 1, . . . , n, and let (f [i , . . . , f

[
n) be its dual frame. Given a column vector (xi)i satisfying

the joint system of equations (6.3), the one form ξ :=
∑

i xif
[
i is ∇z-flat. The existence of

a fundamental system of solutions X for the joint system (6.3) implies that the product ◦
defines a flat F -manifold structure on D(uo). The functions Fα(u(t)) are the potentials, by
Corollary 3.2. �

We denote by F [uo, τ,M,Ho] the germ (pointed at uo) of the analytic flat F -manifold
described in Theorem 6.10. Different choices of the vector Ho ∈ (C∗)n correspond to rescal-
ings of the oriented-associativity potentials Fα’s as in Remark 2.7. The unit is given by the
sum e =

∑
i
∂
∂ui

. The sum E =
∑

i u
i ∂
∂ui

defines an Euler vector field. It is not unique: we
can modify it by shifts E 7→ E − λe, as in Remark 2.8. If the germ is irreducible, then all
other Euler vector fields are of this form by Theorem 2.17.

6.3. Reconstruction of admissible germs of semisimple flat F -manifold. In this
section we prove that all admissible germs of analytic flat F -manifolds are of the form
F [uo, τ,M,Ho].

Let (M, p) be an admissible germ of an analytic flat F -manifold. Fix choices of normal-
izations (1)-(6) of Section 5.1. We then have a well defined system (λ, µλ, R, S1, S2,Λ, C)
of monodromy data at p, computed w.r.t. the chosen ordering of uo = u(p), an admissible
direction τ , and the normalization (Ho,1, . . . , Ho,n) ∈ (C∗)n of Lamé coefficients at p.
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Lemma 6.11. The matrix µλ = diag(q1, . . . , qn) − λ · 1 has a unique decomposition µλ =
Dλ + Sλ with

Dλ = diag(d1, . . . , dn), di ∈ Z, i = 1, . . . , n

Sλ = diag(ρ1, . . . , ρn), Re(ρi) ∈ [0, 1[, i = 1, . . . , n.

We have
[Dλ, Sλ] = 0, [R, Sλ] = 0. (6.8)

Proof. The uniqueness of the decomposition, and the first commutation relation of (6.8) are
clear. For any pair (i, j), we have [Sλ, R]ij = (ρi− ρj)Rij = 0. Indeed, for i 6= j we have two
possibilities: if qi − qj /∈ Z<0, then Rij = 0; if qi − qj ∈ Z<0, then ρi − ρj = 0. �

Remark 6.12. It follows that z−µλzR = z−D
λ
zR−S

λ .

Proposition 6.13. The 6-tuple M = (Λ,−Dλ, R− Sλ, S1, S2, C) is (uo, τ)-admissible. The
problem P [uo, τ,M] is solvable.

Proof. Point (1),(2),(3) of Definition 6.1 directly follow from the definitions and properties
of R,Λ, Dλ, Sλ. Points (4)-(9) of Definition 6.1 follow from Propositions 4.16 and 4.17. Let

• Ξ0(t, z) be the fixed solution of the joint system (3.2) in Levelt normal form,
• Xi(u, z), with i = 1, 2, 3, be the solutions of the joint system (3.22) uniquely defined
by the asymptotics (4.6).

The (unique) solution of the problem P [uo, τ,M] is

G(z;uo) =


(

Ψ̃(to)H
−1
o

)T
Ξ0(to, z)z

−Rzµ
λ

, z ∈ Π0,

X2(uo, z)e
−zUoz−Λ, z ∈ ΠR,

X3(uo, z)e
−zUoz−Λ, z ∈ ΠL.

Here we set to := t(p), Uo := diag(u1
o, . . . , u

n
o ), and Ho := diag(Ho,1, . . . , Ho,n). �

Remark 6.14. In [Cot20c] it is proved that solutions of P [u, τ,M] can be factorized via two
auxiliary RHB problems P1[u, τ,M] and P2[u, τ,M]. The problem P1[u, τ,M] is shown to
admit unique solution Ψ(z,u) holomorphically depending on u varying in a neighborhood
of uo, see [Cot20c, Th. 3.7]. Given Ψ(z,u), the problem P2[u, τ,M] is formulated, and it is
shown to be locally uniquely solvable, see [Cot20c, proof of Th. 3.13].

If uo ∈ ∆, assumption (9) of Definition 6.1 is crucial for the proof of the unique solvability
of P1[u, τ,M], see [Cot20c, proof of Lem. 3.6]. If (M, p) is not an admissible germ, then
the monodromy data are not well defined. Indeed Theorem 4.14 does not hold, solutions
Xi(uo, z), with i = 1, 2, 3, are not unique. With each such a triple of solutions we can
associated a pair (S1, S2) of Stokes matrices. In general these Stokes matrices do not satisfy
Proposition 4.17.

Theorem 6.15. The analytic germ F [uo, τ,M,Ho] of flat F -manifold is isomorphic to
the original admissible germ (M, p). They are defined by the same oriented associativity
potentials (modulo linear terms). Different choices of Ho correspond to rescalings of the
potentials. �
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In the light of the construction of Section 6.2, Theorem 6.15 follows from the following
crucial result.

Lemma 6.16. Let one of the following assumptions hold:
(1) uo ∈ Cn \∆,
(2) uo ∈ ∆ and δi − δj /∈ Z \ {0} for all i, j = 1, . . . , n.

Let

F (u) = Fo +
∞∑
k=1

n∑
`1,...,`k=1

1

k!
F (`)

k∏
j=1

u`j , ui := ui − uo,i,

be a matrix-valued formal power series whose off-diagonal entries F i
j are formal solutions of

the Darboux-Egoroff system (3.26), (3.27), (3.28), (3.29), (3.30). The off-diagonal entries of
the coefficients F (`) can be uniquely reconstructed from the off-diagonal entries of Fo.

Proof. We have to show that the derivatives ∂i1 . . . ∂iNF i
j (uo) can be computed from the only

knowledge of the numbers F i
j (uo). We proceed by induction on N . Let us start with the

case N = 1.
Step 1. For i, j, k distinct, by expanding both sides of ∂kF i

j = F i
kF

k
j in power series, and

equating the coefficients, one reconstructs the coefficients of ∂kF i
j (uo).

Step 2. From the identities (3.29) and (3.30) for F i
j , one can compute ∂iF i

j (uo) and ∂jF i
j (uo)

provided that uo,i 6= uo,j.
Step 3. Assume that uo,i = uo,j. By taking the ∂i-derivative of both sides of (3.29) we
obtain

(δj − δi − 2)∂iF
i
j + (uj − ui)∂2

i F
i
j =

∑
k 6=i,j

(uk − uj)[∂iF i
kF

k
j + F i

k∂iF
k
j ]. (6.9)

By evaluating (6.9) at u = uo we can compute all the numbers ∂iF i
j (uo), namely

∂iF
i
j (uo) =

1

δj − δi − 2

∑
k 6=i,j

(uko − ujo)
[
∂iF

i
k(uo)F

k
j (uo) + F i

k(uo)F
k
i (uo)F

i
j (uo)

]
.

Notice that the only terms ∂iF i
k(uo) appearing in this sum are those computed in Step 2.

Step 4. If uo,i = uo,j, the numbers ∂jF i
j (uo) can be computed similarly as in Step 3, by

invoking equation (3.30):

∂jF
i
j (uo) =

1

δj − δi − 2

∑
k 6=i,j

(uko − uio)
[
F i
j (uo)F

j
k (uo)F

k
j (uo) + F i

k(uo)∂jF
k
j (uo)

]
.

This proves that all the first derivatives ∂kF i
j (uo) can be computed.

Inductive step. Assume to know all the N -th derivatives ∂i1 . . . ∂iNF i
j (uo). We show how

to compute the number ∂h1 . . . ∂hN+1
F i
j (uo) for any (N + 1)-tuple (h1, . . . , hN+1).

Step 1. Assume that there exists ` ∈ {1, . . . , N + 1} such that h` 6= i, j. We have

∂h1 . . . ∂hN+1
F i
j = ∂h1 . . . ∂h`−1

∂h`+1
. . . ∂hN+1

[∂h`F
i
j ] = ∂h1 . . . ∂h`−1

∂h`+1
. . . ∂hN+1

[F i
h`
F h`
j ].

By evaluation at u = uo, we can compute all the numbers ∂h1 . . . ∂hN+1
F i
j (uo).
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Now we need to compute the mixed derivatives ∂pi ∂
N+1−p
j F i

j (uo), with 0 6 p 6 N + 1.
Step 2. Assume p > 0 and uo,i 6= uo,j. Take the ∂p−1

i ∂N+1−p
j -derivative of both sides of

(3.29): by evaluation at u = uo we can compute the numbers ∂pi ∂
N+1−p
j F i

j (uo).
Step 3. Assume p > 0 and uo,i = uo,j. Take the ∂p−1

i ∂N+1−p
j -derivative of both sides of

(6.9), to obtain

(δj − δi − p− 1)∂pi ∂
N+1−p
j F i

j + (N + 1− p)∂p+1
i ∂N−pj F i

j + (uj − ui)∂p+1
i ∂N+1−p

j F i
j

= ∂p−1
i ∂N+1−p

j

∑
k 6=i,j

(uk − uj)[∂iF i
kF

k
j + F i

k∂iF
k
j ]. (6.10)

Specialize (6.10) for p = N + 1: by evaluation at u = uo of both sides, we can compute the
derivative ∂N+1

i F i
j (uo).

Specialize (6.10) for p = N : by evaluation at u = uo of both sides, we can compute the
derivative ∂Ni ∂jF i

j (uo).
Repeating this procedure, by decreasing p 7→ p − 1 at each step, we can compute all the
mixed derivatives ∂pi ∂

N+1−p
j F i

j (uo).
Step 4. Assume p = 0. The derivative ∂N+1

j F i
j (uo) can be computed, as in Steps 2 and 3,

by invoking equation (3.30).

This proves that all the (N + 1)-th derivatives ∂h1 . . . ∂hN+1
F i
j (u0) can be computed. �

6.4. Convergence of semisimple admissible formal flat F -manifolds. We are now
ready to prove the following result.

Theorem 6.17. Let (H,Φ) be an admissible formal semisimple flat F -manifold over C,
with Euler field E. The oriented associativity potentials Φ = (Φ1, . . . ,Φn) have a non-empty
common domain of convergence.

Proof. Fix one ordering uo ∈ Cn of the eigenvalues of the operator U(t) at t = 0. We have
n× n matrix-valued (a priori) formal power series in u

V (u) = Vo +
∞∑
k=1

n∑
`1,...,`k=1

1

k!
V (`)

k∏
j=1

u`j , Vi(u) = Vi,o +
∞∑
k=1

n∑
`1,...,`k=1

1

k!
V

(`)
i

k∏
j=1

u`j ,

Ψ(u) = Ψo +
∞∑
k=1

n∑
`1,...,`k=1

1

k!
Ψ(`)

k∏
j=1

u`j , Γ(u) = Γo +
∞∑
k=1

n∑
`1,...,`k=1

1

k!
Γ(`)

k∏
j=1

u`j ,

where ui := ui−uo,i for i = 1, . . . , n. These power series are well defined by the semisimplicity
assumption, and they satisfy properties described in Propositions 3.17 and 3.18.

Set Ho := ΨoΨ̃
−1
o , where Ψ̃o :=

(
∂ui

∂tα

∣∣∣
t=0

)n
i,α=1

.

After fixing choices of normalizations of Section 5.1, we can introduce a system of mon-
odromy data (λ, µλ, R, S1, S2,Λ, C) for the formal flat F -structure, computed w.r.t. an ad-
missible direction τ at uo, and the normalization Ho of Lamé coefficients at the origin.
Proposition 6.13 holds true, with the same proof. We can set the RHB problem P [uo, τ,M].
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This problem is solvable w.r.t. u on an open neighborhood V \ Θ of uo, by Theorem 6.4.
The unique solution G(z;u) is holomorphic in u ∈ V \Θ, and with expansion

G(z;u) = I + 1
z
F an

1 (u) +O
(

1
z2

)
, z →∞, z ∈ ΠL/R,

G(z;u) = G0(u) +G1(u)z +G2(u)z2 +G3(u)z3 +O(z4), z → 0.

Here the superscript “an” stands for analytic. As output of Section 6.2, we also obtain a
compatible joint system of differential equations (with analytic coefficients in u, not just
formal) of the form

∂

∂ui
X =

(
zEi − Vi(u)T

)
X,

∂

∂z
X =

(
U − 1

z
V (u)T

)
X, (6.11)

where

V an(u) := [F an
1 (u)T , U ]− Λ,

V an
i (u) := [F an

1 (u)T , Ei] ≡ −
(
∂G0

∂ui
·G−1

0

)T
=

(
∂

∂ui
(GT

0 )−1

)
·GT

0 .

We also have

V an(uo) = Vo, G0(uo) = (Ψ−1
o )T , ∂iG0 = V an

i G0, i = 1, . . . , n.

From the equality [F an
1 (uo)

T , Ei] = Vo = [Γo, Ei] we deduce that [F an
1 (uo)

′′]T = Γo. Moreover,
by Lemma 6.6, the off diagonal matrix [F an

1 (u)′′]T solve equations (3.26),(3.27),(3.28),(3.29),
(3.30). By Lemma 6.16, we obtain Γ(u) = [F an

1 (u)′′]T . In particular, Γ(u) is convergent. It
follows that Ψ(u) = (G0(u)−1)T , Vi(u) = V an

i (u), and V (u) = V an(u) are convergent.
The oriented associativity potentials Φ1, . . . ,Φn can be reconstructed via formulas (6.7).

The original formal structure (H,Φ) turns out to be equivalent to the analytic flat F -manifold
F [uo, τ,M,Ho]. �

Open question: Does it exist a semisimple and doubly resonant germ of flat F -structure
which is purely formal?

A positive answer would imply the optimality of Theorem 6.17. The study of the doubly
resonant germs goes beyond the general theory developed in [CDG19].

Remark 6.18. Consider a trivial vector bundle E on P1, equipped with a meromorphic
connection ∇o with connection matrix Ω given by

Ω = −
[
Uo +

1

z

(
Λ + [(F ′′o )T , Uo]

)]
dz, Uo = diag(u1

o, . . . , u
n
o ), Λ = diag(λ−δ1, . . . , λ−δn).

Malgrange’s Theorem [Mal83a, Mal86] asserts that, if uo ∈ Cn \∆, the connection ∇o has a
germ of universal deformation. Its connection matrix is

− d(zU)− ([F ′′(u)T , U ] + Λ)
dz

z
− [F ′′(u)T , dU ], (6.12)

where F ′′(u) is the unique off-diagonal solution of the Darboux-Egoroff equations of Lemma
6.16. The same statement holds if uo ∈ ∆ and δi− δj /∈ Z \ {0}: this is Sabbah’s refinement
proved in [Sab18]. In both cases the function F ′′(u) is analytic in a neighborhood of uo.
If uo ∈ ∆ and δi − δj ∈ Z \ {0} for some i 6= j, Lemma 6.16 does not hold, and the
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initial datum (uo, Fo) does not identify a unique (formal) solution F (u) of the Darboux-
Egoroff equations. The universality of the (formal) deformation (6.12) is lost. This answers
a question raised by C. Sabbah in a private communication to the author.

6.5. On the number of monodromy local moduli. Consider all n-dimensional germs
of homogenous semisimple flat F -manifolds, modulo local isomorphisms.

Theorem 6.19. The local isomorphism classes of n-dimensional germs of homogeneous
semisimple flat F -manifolds generically depend on n2 parameters. The local isomorphism
classes of n-dimensional germs of homogeneous semisimple Frobenius manifolds generically
depend on 1

2
(n2 − n) parameters.

Proof. We show that germs of flat F -manifolds are identifiable with points of a “stratified
space” X, whose generic dimension is n2.

To parametrize them, we have at least two ways. After fixing uo, and λo ∈ C, and the
initial value Ho of the Lamé coefficients, one can choose

• the initial datum (Γo) of the Darboux-Egoroff equations, and an n-tuple (δ1, . . . , δn)
of conformal dimensions;
• the monodromy data (µλo , R, S1, S2,Λo, C).

The entries of Γo are in total n2 − n. In the generic case, the conformal dimensions
δ1, . . . , δn do not differ by integers, and we have

dim(generic stratum of X) = n2.

Let us consider the tuple (µλo , R, S1, S2,Λo, C). For the generic case, the entries of µλo do
not differ by integers, so that R = 0. The remaining matrices must satisfy equation (4.12).
In particular, we have

S−1
1 e2π

√
−1ΛoS−1

2 ∈ O(e−2π
√
−1µλo ),

where O(e−2π
√
−1µλo ) denotes the similarity orbit of e−2π

√
−1µλo . The codimension of the orbit

O(e−2π
√
−1µλo ) in M(n,C) equals the dimension of the centralizer

dim{A ∈M(n,C) : [A, e−2π
√
−1µλo ] = 0},

see [Arn71, §2.4]. Hence, for generic µλo we have

dimO(e−2π
√
−1µλo ) = n2 − n.

Moreover, it is easy to see that if a matrix A admits a LDU-decomposition

A = G1G2G3, G1 ∈ Ln, G3 ∈ Un, G2 = diag(g1, . . . , gn),

then such a decomposition is unique, see e.g. [HJ85]. From this, it follows that (S1, S2)

can be used as coordinates on O(e−2π
√
−1µλo ). The total number of parameters (µλo , S1, S2)

equals
dim(generic stratum of X) = n+ n2 − n = n2.

Alternatively, one can choose (µλo , C) as coordinates on O(e−2π
√
−1µλo ), provided that C is

defined up to left multiplication by elements of T = (C∗)n. The point corresponding to
(µλo , C) is

C−1e−2π
√
−1µλoC ∈ O(e−2π

√
−1µλo ).
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In total, we get n + (n2 − n) = n2 parameters. At non-generic points, the space X can get
additional strata.

Let us also consider the subspace XFrob ⊆ X of all n-dimensional pointed germs of homo-
geneous semisimple Frobenius manifolds.

For Frobenius manifolds, one has standard choices λo = d
2
and Ho,i = η(∂i, ∂i)

1
2 . The

initial datum Γo of Darboux-Egoroff equations is symmetric, i.e. ΓTo = Γo, and the conformal
charges δi are all equal (to λo = d

2
). Consequently, the generic stratum ofXFrob has dimension

dim(generic stratum of XFrob) = n2 − n(n− 1)

2
− n =

n(n− 1)

2
.

From the point of view of monodromy data, one has to impose some constraints among
the coordinates. In the system of monodromy coordinates (µλo , S1, S2), one has to impose
the η-skew-symmetry of µλo (this implies that all conformal dimensions are equal), and also
S−1

1 = ST2 , see Remark 4.19. In total we have n + 1
2
(n2 − n) constraints. In the system

of monodromy coordinates (µλo , C), besides the η-skew-symmetry of µλo , we also invoke
equation (4.13). By imposing the triangularity of S, we have a total number of n+ 1

2
(n2−n)

independent constraints. In summary, we find again

dim(generic stratum of XFrob) = n2 − n(n− 1)

2
− n =

n(n− 1)

2
.

Finally, notice that other choices of Ho do not change the isomorphism class of the germ,
and that small perturbations of uo correspond to transformations in the n-dimensional au-
tomorphism group Aut(M)0, by Proposition 2.15. �

Remark 6.20. We underline that the tuple (µλ, R, S1, S2,Λ, C) of monodromy data actually
provides two equivalent systems of “essential parameters” classifying germs. For generic
germs, one system is (µλ, S1, S2), the other is (µλ, C). Both have a total of n2 essential
parameters.

7. Applications to LM-CohFTs, F -CohFTs, and open WDVV equations

7.1. Losev-Manin moduli spaces and LM-CohFTs. A n-pointed chain of projective
lines (C; s0, s∞; s1, . . . , sn) consists of the following data:

(1) a nodal curve C = C1 ∪ · · · ∪ Cm (over C) whose irreducible components Cj are
projective lines;

(2) each component Cj is equipped with two marked points p±j , called poles;
(3) Ci and Cj intersect only if |i− j| = 1;
(4) Ci and Ci+1 intersect transversally in p+

i = p−i+1;
(5) s0 = p−1 ∈ C1 and s∞ = p+

m ∈ Cm are called white points;
(6) s1, . . . , sn ∈ C \ {p±1 , . . . , p±m} are called black points.

A n-pointed chain of projective lines is stable if there is at least one black point on each
irreducible components. Notice that black points are allowed to coincide.

Tow n-pointed chains of projective lines (C; s0, s∞; s1, . . . , sn) and (C ′; s′0, s
′
∞; s′1, . . . , s

′
n)

are isomorphic if there exists an isomorphism ϕ : C → C ′ such that ϕ(sj) = s′j for j =
0, 1, . . . , n,∞.
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s0

s∞

1

2 = 5 3
4 = 76

8
10 9 = 11

12

Figure 2. A stable 12-pointed chain of projective lines.

The spaces Ln. The Losev-Manin moduli space Ln, with n > 1, is defined as the fine-moduli
space of stable n-pointed chains of projective lines [LM00].

The space Ln is a (n−1)-dimensional smooth toric varieties (over C): it contains the open
dense torus

Ln = {(P1; 0,∞; s1, . . . , sn)}/iso ∼= (C∗)n/C∗ ∼= (C∗)n−1.

The space Ln is the toric variety associated with the convex polytope in Cn called permu-
tohedron, defined as the convex hull of the Sn-orbit of the point (1, 2, . . . , n) ∈ Cn, see
[LM00]. Such a toric variety can be constructed via iteration of blow-ups of Pn−1. As a
first step, blow-up n points p1, . . . , pn in general position in Pn−1. Subsequently, blow-up the
strict transforms of the 1

2
n(n−1) lines passing through the pairs (pi, pj) for all i, j = 1, . . . , n.

Continue this blowing-up procedure up to (n−3)-dimensional hyperplanes, see [Kap93, §4.3].
Alternatively, Ln is the toric variety defined by the fan formed by the Weyl chambers of

the roots system of type An−1, with n > 2, [BB11].
The groupS2×Sn naturally acts on Ln by permuting white and black points, respectively.
The cohomology ring H•(Ln,Q) was studied in [LM00, Man04]. It is algebraic: all odd

cohomology groups vanish, and H•(Ln,Q) is isomorphic to the Chow ring A•(Ln,Q), [LM00,
Th. 2.7.1]. See also, [BM14] where the groups H•(Ln,Q) are determined as representation
of S2 ×Sn.

Given n1, n2 > 1, we have a natural morphism Ln1 ×Ln2 7→ Ln1+n2 , defined by concatena-
tion of white points. Furthermore, each boundary divisor of Ln is isomorphic to Ln1 × Ln2

with n1 + n2 = n.
LetM0,n+2 be the moduli space of stable (n+2)-pointed trees of projective lines. We have

a surjective birational morphism pn : M0,n+2 → Ln for any choice of two different labels i, j
in (1, ..., n+ 2) (the chosen white points).

Losev-Manin cohomological field theories. Let V1, V2 be two complex vector spaces
of finite dimensions. A LM-cohomological field theory (for short, LM-CohFT), on the pair
(V1, V2), is the datum of polylinear maps

αn : V ∗1 ⊗ V1 ⊗ V ⊗n2 → H•(Ln,C), with n > 1,

such that, for any chosen bases7 (v1, . . . , vN1) of V1 and (w1, . . . , wN2) of V2, the following
properties are satisfied:

(1) αn is Sn-covariant w.r.t. the natural actions of Sn on both V ⊗n2 and H•(Ln,C),

7In the following paragraphs, if (e1, . . . , eN ) is a basis of a vector space V , then (e∨1 , . . . , e
∨
N ) denotes the

dual basis of V ∗.
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(2) for any partition I
∐
J = {1, . . . , n} with |I| = n1 and |J | = n2 we have8

gl∗αn(v∨i ⊗ vh ⊗
n⊗
i=1

wρi) = αn1(v
∨
i ⊗ vµ ⊗

⊗
i∈I

wρi)⊗ αn2(v
∨
µ ⊗ vh ⊗

⊗
i∈J

wρi),

where 1 6 i, h 6 N1 and 1 6 ρ1, . . . , ρn 6 N2, and gl : Ln1 × Ln2 → Ln1+n2 is the
gluing map.

Remark 7.1. The spaces Ln andM0,n, and their higher genus analogs, are two examples
of moduli spaces of weighted stable pointed curves constructed in [Has03], corresponding to
two different choices of weights. Losev-Manin CohFT’s fit in a more general construction
developed in [BM09], in the setting of moduli spaces of curves and maps with weighted
stability conditions. We borrow the terminology “Losev-Manin CohFT” from [SZ11].

Commutativity equations. Consider two complex vector spaces V1, V2 of dimension
N1, N2 respectively. Fix a basis (w1, . . . , wN2) of V2 and let t := (t1, . . . , tN2) to be the
dual coordinates.

The Losev-Manin commutativity equation for B ∈ C[[t]]⊗ End(V1) is given by
dB ∧ dB = 0. (7.1)

In coordinates t, equation (7.1) is equivalent to the commutation relations[
∂B

∂ti
,
∂B

∂tj

]
= 0, i, j = 1, . . . , N2.

Fix a basis (v1, . . . , vN1) of V1, and let (v∨1 , . . . , v
∨
N1

) be the dual basis of V ∗1 .
Given a LM-CohFT (αn)n>1, define the formal power series Bij ∈ C[[t]], with i, j =

1, . . . , N1, by

Bij(t) :=
∞∑
m=1

N2∑
ρ1,...,ρm=1

tρ1 . . . tρm

m!

∫
Lm

αm

(
v∨i ⊗ vj ⊗

m⊗
`=1

wρ`

)
. (7.2)

The matrix B := (Bij)
N1
i,j=1 represents an element of C[[t]] ⊗ End(V1) in the basis v1, . . . , vN1

of V1.

Theorem 7.2. The matrix B is a solution of the commutativity equation (7.1). Vice-versa,
any solution B of (7.1), such that B(0) = 0, has the form (7.2) for a unique LM-CohFT
(αn)n>1.

Proof. This is an equivalent reformulation of [LM00, Th. 3.3.1, Prop. 3.6.1] and [LM04,
Th. 5.1.1]. �

7.2. F -cohomological field theories. Let V be a complex vector space of finite dimension
N . Denote by Mg,n the Deligne-Mumford moduli space of genus g stable curves with n
marked points, defined for g, n > 0 in the stable regime 2g − 2 + n > 0.

An F -cohomological field theory (for short F -CohFT) is the datum of
• polylinear maps cg,n+1 : V ∗ ⊗ V ⊗n → Hev(Mg,n+1,C), for 2g − 1 + n > 0,
• a distinguished vector e1 ∈ V ,

8Einstein’s summation rule over repeated Greek indices is used.
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such that, for any chosen basis (e1, . . . , eN) of V , the following properties are satisfied:

(1) cg,n+1 is Sn-covariant w.r.t. the natural actions of Sn on both V ∗ ⊗ V ⊗n (permutation
of the n copies of V ) and on Hev(Mg,n+1,C) (permutation of the last n marked points);
(2) π∗cg,n+1(e∨ρ0 ⊗

⊗n
i=1 eρi) = cg,n+2(e∨ρ0 ⊗

⊗n
i=1 eρi ⊗ e1), for 1 6 ρ1, . . . , ρn 6 N , where

π : Mg,n+2 →Mg,n+1 is the map forgetting the last marked point;
(3) c0,3(e∨α ⊗ eβ ⊗ e1) = δαβ , for 1 6 α, β 6 N ;
(4) for any partition I

∐
J = {1, . . . , n} with |I| = n1 and |J | = n2, we have9

gl∗cg1+g2,n1+n2+1(e∨ρ0 ⊗
n⊗
i=1

eρi) = cg1,n1+2(e∨ρ0 ⊗
⊗
i∈I

eρi ⊗ eµ)⊗ cg2,n2+1(e∨µ ⊗
⊗
j∈J

eρj),

for 1 6 ρ1, . . . , ρn 6 N , and gl : Mg1,n1+2×Mg2,n2+1 →Mg1+g2,n1+n2+1 is the corresponding
gluing map.

The genus 0 sector (or tree-level) of a given F -CohFT is the datum of the maps (c0,n)n>2

and the distinguished vector e1 ∈ V only.
Given a tree-level F -CohFT, fix a basis (e1, . . . , eN) of V , and denote by t := (t1, . . . , tN)

the dual coordinates. Define the formal power series Fα ∈ C[[t]], for α = 1, . . . , N , by

Fα(t) :=
∞∑
n=2

N∑
ρ1,...,ρn=1

tρ1 . . . tρn

n!

∫
M0,n+1

c0,n+1

(
e∨α ⊗

n⊗
i=1

eρi

)
. (7.3)

Theorem 7.3. The functions Fα(t) are solution of the oriented associativity equations

∂2Fα

∂t1∂tβ
= δαβ , α, β = 1, . . . , N, (7.4)

∂2Fα

∂tµ∂tβ
∂2F µ

∂tγ∂tδ
=

∂2Fα

∂tµ∂tγ
∂2F µ

∂tβ∂tδ
, α, β, γ, δ = 1, . . . , N, (7.5)

and thus define a formal flat F -manifold structure on V with unit e1.
Vice-versa, any solution (F 1, . . . , FN) of (7.4)-(7.5), with Fα(0) = 0 and ∂βFα(0) = 0 for

all α, β = 1, . . . , N , is of the form (7.3) for a unique tree-level F -CohFT (c0,n)n>2.

Proof. The first part of the statement follows from a simple computation, invoking properties
(1)-(4) above. For a proof of the second part of the statement, see Appendix B. �

7.3. From tree-level F -CohFT to LM-CohFT, and vice-versa. Given a tree-level F -
CohFT on V , a LM-CohFT is naturally defined on the pair (V1, V2) = (V, V ). For any n > 1
define

αn := (pn)∗ ◦ c0,n+2 : V ∗ ⊗ V ⊗(n+1) → H•(Ln,C),

where pn : M0,n+2 → Ln is the surjective birational morphism defined by a choice of two
white points.

Proposition 7.4. The polylinear maps (αn)n>1 define a LM-CohFT on (V, V ).

9Einstein’s summation rule over repeated Greek indices is used.
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Proof. The Sn-covariance of αn follows from the Sn+1-covariance of c0,n+2. For n1 +n2 = n,
we have the following commutative diagram

M0,n1+2 ×M0,n2+2
gl
//

pn1×pn2
��

M0,n+2

pn
��

Ln1 × Ln2

g̃l
// Ln

with proper vertical arrows and local complete intersections as horizontal arrows. The gluing
property of αn then follows from the gluing property of c0,n+2 and the excess intersection
formula [Ful98, Prop. 6.6 and Prop. 17.4.1]. Notice that the excess bundle E has rank 0
(both gl and g̃l have codimension 1), hence

g̃l
∗
(pn)∗ x = (pn1 × pn2)∗ gl∗x,

for all x ∈ Hev(M0,n+2,C) ∼= A•(M0,n+2)C. �

Vice-versa, given a LM-CohFT (αn)n>1 on (V1, V2) we can reconstruct a formal flat F -
manifold, provided that

• dimV1 = dimV2 = N ,
• we are given an extra amount of data, namely a primitive vector.

Definition 7.5. Let B ∈ C[[t]]⊗End(V1) be a solution of commutativity equations (7.1). A
vector h ∈ V1 is primitive for B if the vectors

∂B

∂t1

∣∣∣∣
t=0

· h, . . . ,
∂B

∂tN

∣∣∣∣
t=0

· h

define a basis of V1. Equivalently, h is primitive if, for any chosen basis (v1, . . . , vN) of V1,
we have

det

(
∂Bi

µ

∂tk

∣∣∣∣
0

hµ
)N
i,k=1

6= 0, where h = hµvµ.

If B admits a primitive vector h, we can identify V1 and V2 via the isomorphism wk 7→
∂B
∂tk

∣∣
0
h, for k = 1, . . . , N . Under such an identification, t can be thought as coordinates on

V1
∼= V2.

Proposition 7.6 ([LM04, Prop. 5.3.3]). If B admits a primitive vector h, then there exists
a formal flat F -manifold structure on V1

∼= V2 with flat identity h. The oriented associativity
potentials F = (F 1, . . . , FN) satisfy Bα

β = ∂Fα

∂tβ
.

Proof. Let (v1, . . . , vN) be a basis of V1 with v1 = h. By assumption, we have det
(
∂Bi1
∂tk

∣∣∣
0

)
6=

0. Hence, up to change of basis (w1, . . . , wN) of V2, we can assume that in the coordinates t
we have

∂Bi
1

∂tk
(t) = δik ⇒ Bi

1(t) = ti + c.
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Consider the C[[t]]⊗ V1-valued differential form dB ∧ d(Bh). In the bases (wi)
N
i=1 and (vi)

N
i=1

chosen as above, it has components

[dB ∧ d(Bh)]i =

(
∂Bi

λ

∂tν
dtν
)
∧
(
δλµdt

µ
)

=
∂Bi

µ

∂tν
dtν ∧ dtµ.

On the other hand, dB∧d(Bh) = (dB∧dB)h = 0, since h is t-independent and B a solution
of (7.1). Hence,

∂Bi
µ

∂tν
− ∂Bi

ν

∂tµ
= 0, µ, ν = 1, . . . , N.

This implies the existence of F i ∈ C[[t]] such that Bi
j = ∂jF

i. �

Theorem 7.7. The following notions are equivalent:
(1) formal flat F -manifold,
(2) tree-level F -cohomological field theory,
(3) LM-cohomological field theory with primitive element.

Proof. It follows from Theorems 7.2, 7.3 and Propositions 7.4, 7.6. �

Remark 7.8. Black marked points of stable n-pointed chains of projective lines are allowed
to coincide. It would be tempting to compare these coincidences of black points with the
coalescence phenomenon at irregular singularities of ordinary differential equations studied in
[CG18, CDG19]. Any contingent relation deserves further investigations. I thank Yu.I.Manin
for pointing out such an analogy in a private communication.

7.4. Homogeneous F -CohFTs. A F -CohFT (cg,n+1)g,n is said to be homogeneous if
(1) the vector spaces V and V ∗ are graded, with homogeneous bases (e1, . . . , eN) and

(e∨1 , . . . , e
∨
N),

deg eα = − deg e∨α = qα, α = 1, . . . , N deg e = 0;

(2) there exist r1, . . . , rN , γ ∈ C such that

Deg cg,n+1

(
e∨α0
⊗

n⊗
i=1

eαi

)
+ π∗ cg,n+2

(
e∨α0
⊗

n⊗
i=1

eαi ⊗ rλeλ

)

=

(
n∑
i=1

qai − qα0 + γg

)
cg,n+1

(
e∨α0
⊗

n⊗
i=1

eαi

)
, (7.6)

where Deg : H•(Mg,n)→ H•(Mg,n) rescale a k-th degree class by a factor k
2
, and π : Mg,n+2 →

Mg,n+1 is the morphism forgetting the last marked point.

Proposition 7.9. If a tree-level F -CohFT is homogeneous then the associated formal flat
F -manifold with potentials (7.3) is homogeneous, with the Euler vector field

E =
N∑
α=1

((1− qα)tα + rα)
∂

∂tα
.

Proof. A simple computations shows that equations (7.6), specialized at g = 0, imply equa-
tions (2.4) for the potentials (7.3). �
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The following result follows from Theorem 6.17, and Abel Lemma.

Theorem 7.10. Let (H,Φ) be a formal flat F -manifold over C, with dimCH = N . Let
(c0,n+1)n>2 and (αn)n>1 be the underlying tree-level F -CohFT and LM-CohFT, respectively.
If (H,Φ) is admissible, then there exist real positive constants m, k1, . . . , kN ∈ R+ such that∣∣∣∣∣

∫
M0,|n|+1

c0,|n|+1

(
∆∨β ⊗

N⊗
j=1

∆
⊗nj
j

)∣∣∣∣∣ 6 mn!
N∏
j=1

k
nj
j , n ∈ NN , β = 1, . . . , N,

∣∣∣∣∣
∫
L|n|

α|n|

(
∆∨β ⊗∆γ ⊗

N⊗
j=1

∆
⊗nj
j

)∣∣∣∣∣ 6 mn!
N∏
j=1

k
nj
j , n ∈ NN , β, γ = 1, . . . , N,

where we set n! :=
∏N

j=1 nj, and |n| :=
∑N

j=1 nj. �

7.5. Open WDVV equations. Let k be a commutative Q-algebra. Consider a formal
Frobenius manifold over k, with Euler vector field E, defined by the solution F ∈ k[[t1, . . . , tn]]
of the WDVV equations:

∂3F

∂tα∂tβ∂tµ
ηµν

∂3F

∂tν∂tγ∂tδ
=

∂3F

∂tδ∂tβ∂tµ
ηµν

∂3F

∂tν∂tγ∂tα
, (7.7)

∂3F

∂t1∂tα∂tβ
= ηαβ = const., η = (ηαβ)α,β, η−1 = (ηαβ)α,β, (7.8)

Eν ∂F

∂tν
= (3− d)F +Q(t), Eν = (1− qν)tν + rν , (7.9)

where α, β, γ ∈ {1, . . . , n}, d ∈ k is the conformal dimension (or charge) of the Frobenius
manifold, qν , rν ∈ k, and Q(t) ∈ k[t] is a quadratic polynomial in t.

The open WDVV equations (OWDVV) are the following overdetermined system of PDEs
for F o ∈ k[[t1, . . . , tn, s]]:

∂3F

∂tα∂tβ∂tµ
ηµν

∂2F o

∂tν∂tγ
+

∂2F o

∂tα∂tβ
∂2F o

∂s∂tγ
=

∂3F

∂tγ∂tβ∂tµ
ηµν

∂2F o

∂tν∂tα
+

∂2F o

∂tγ∂tβ
∂2F o

∂s∂tα
, (7.10)

∂3F

∂tα∂tβ∂tµ
ηµν

∂2F o

∂tν∂s
+

∂2F o

∂tα∂tβ
∂2F o

∂s2
=

∂2F o

∂s∂tβ
∂2F o

∂s∂tα
, (7.11)

∂2F o

∂t1∂tα
= 0,

∂2F o

∂t1∂s
= 1, (7.12)

Eν ∂F
o

∂tν
+

(
1− d

2
s+ rn+1

)
∂F o

∂s
=

3− d
2

F o + L(t), (7.13)

where α, β, γ ∈ {1, . . . , n}, rn+1 ∈ k, and L(t) ∈ k[t] is a linear polynomial in t.
The OWDVV equations first appeared in [HS12, Th. 2.7], in the context of open Gromov-

Witten theory. These equations subsequently appeared in [PST14, BCT18, BCT19]: al-
though not explicitly mentioned in loc. cit., the OWDVV equations follow from the open
Topological Recursion Relations equations, see [PST14, Th. 1.5], [BCT18, Th. 4.1], [BCT19,
Lem. 3.6], [Bur18, Sec. 4], [BB19, Sec. 1]. The OWDVV equations play a central role in the
general theory of relative quantum cohomology developed in [ST19].

Proposition 7.11 (P.Rossi, [BB19]). The following conditions are equivalent:
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(1) (F, F o) is a solution of WDVV and OWDVV equations (7.7)-(7.13),
(2)

(
∂F
∂tµ
ηµ1, . . . , ∂F

∂tµ
ηµn, F o

)
is a solution of the oriented associativity equations (2.1)-(2.2)

in the coordinates (t, s), and the corresponding formal flat F -manifold is homogenous.

Proof. The claim follows by a direct check. �

We will refer to the formal flat F -structure of point (2) of Proposition 7.11 as the formal
flat F -manifold underlying the pair (F, F o). As a corollary of Theorem 6.17, we deduce the
following result.

Theorem 7.12. Let F ∈ C[[t]], F o ∈ C[[t, s]] be solutions of the WDVV and OWDVV
equations. If the underlying formal flat F -manifold is semisimple, and it is not doubly
resonant, then both F and F o are convergent. �

Remark 7.13. According to a conjecture of B.Dubrovin, the monodromy data of the quan-
tum cohomology of a smooth projective variety encode information about the derived cate-
gory Db(X), see [Dub98, CDG18, Cot20a, Cot20b]. It would be interesting to look for analog
relations starting from the monodromy data, as defined here, of flat F -structures given by
relative quantum cohomologies of [ST19]. This will be addressed in a future project of the
author.

Appendix A. Proof of Theorem 2.17

Let M be an analytic homogeneous semisimple flat F -manifold, and let E1, E2 ∈ Γ(TM)
be two Euler vector fields.

Lemma A.1. We have [E1, E2] = E1 − E2.

Proof. By Proposition 2.13, we can choose canonical coordinates so that E1 =
∑

j u
j∂j and

E2 =
∑

j(u
j + cj)∂j. We have

[E1, E2] =
∑
j

(Eh
1∂hE

j
2 − Eh

2∂hE
j
1)∂j = −

∑
j

cj∂j = E1 − E2. �

Lemma A.2. We have ∇E1 = ∇E2.

Proof. Since ∇ is torsionless, we have ∇E1E2 = ∇E2E1 + [E1, E2]. For arbitrary vector field
X, we have

∇X∇E1E2︸ ︷︷ ︸
0

= ∇X∇E2E1︸ ︷︷ ︸
0

+∇X [E1, E2]. �

Proof of Theorem 2.17. Introduce the operators U1(X) := E1 ◦X and U2(X) := E2 ◦X, and

µ(X) := X −∇XE1 = X −∇XE2, X ∈ Γ(TM).

Choose canonical coordinates so that E1 =
∑

j u
j∂j and E2 =

∑
j(u

j + cj)∂j. Set Ψ̃i
α = ∂ui

∂tα
.

The matrix Ψ̃ diagonalizes both U1 and U2:

U1 = Ψ̃U1 Ψ̃−1 = diag(u1, . . . , un),

U2 = Ψ̃U2 Ψ̃−1 = diag(u1 + c1, . . . , un + cn).
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Set Ṽ := Ψ̃µ Ψ̃−1, Ṽi := ∂iΨ̃ · Ψ̃−1, and also introduce an off-diagonal matrix Γ̃ = (Γ̃ij) by

Γ̃ij := −(Ṽi)
i
j, i 6= j.

The matrix Γ̃ is a solution of the Darboux-Tsarev equations. Moreover, we have

Ṽ = Ṽ ′ + [Γ̃, U1], and also Ṽ = Ṽ ′ + [Γ̃, U2], (A.1)

where V ′ denotes the diagonal part of V . This follows from Propositions 3.5 and 3.7.

Let j 6= k, and take the (j, k) entry of both equations (A.1). We have

Ṽ j
k (u) = Γ̃jk(u)(uk − uj) = Γ̃jk(u)(uk − uj) + Γ̃jk(u)(ck − cj).

Hence, we have
Γ̃jk(u)(ck − cj) = 0, for any j 6= k.

This means that
cj 6= ck =⇒ Γ̃jk = Γ̃kj ≡ 0.

Introduce the partition
∐N

r=1 Ir = {1, . . . , n} s.t. ci = cj only if i, j are in a same block, i.e.
i, j ∈ Ir for some r.

It follows that Γ̃ij = 0 unless i, j ∈ Ir. Take i, j ∈ Ir and k /∈ Ir. We have

∂kΓ̃
i
j = −Γ̃ijΓ̃

k
j + Γ̃ijΓ̃

j
k + Γ̃ikΓ̃

k
j = 0.

We have proved that
• the function Γ̃ij is not identically zero only if the indices i, j are in the same block Ir;
• the function Γ̃ij only depends on coordinates uk with i, j, k in the same block Ir.

It follows that all the matrices Γ̃, Ṽ , Ṽi, Ψ̃ admits a direct sum decomposition

Γ̃ =
N⊕
r=1

Γ̃(r), Ṽ =
N⊕
r=1

Ṽ (r), Ṽi =
N⊕
r=1

Ṽ
(r)
i , Ψ̃ =

N⊕
r=1

Ψ̃(r),

and each summand Γ̃(r), Ṽ (r), Ṽ
(r)
i , Ψ̃(r) only depends on canonical coordinates uk with k ∈ Ir.

The original flat F -manifold M locally decomposes into N corresponding pieces:

M
loc.∼=

N⊕
j=1

M (j).

The flat F -manifold M is irreducible if and only if N = 1. This completes the proof. �

Appendix B. Proof of Theorem 7.3

In order to complete the proof of Theorem 7.3, we need to recall some preliminary known
results on the (co)homology groups H•(M0,n,C) and H•(M0,n,C).
Graphs. In what follows, a graph τ is an ordered family (Vτ , Hτ , ∂τ , jτ ) where

• Vτ is a finite set of vertices,
• Hτ is a finite set of half-edges, equipped with a vertex assignment function ∂τ : Hτ →
Vτ , and an involution jτ : Hτ → Hτ .
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The set Eτ of 2-cycles of jτ is the set of edges of τ . The set Sτ of fixed points of jτ is the set
of tails of τ . The datum of jτ is thus equivalent to the datum of Eτ and Sτ . For each vertex
v ∈ Vτ define the set Hτ (v) of half-edges attached at v by

Hτ (v) := ∂−1
τ (v),

the set Eτ (v) of edges attached to v by

Eτ (v) := {{f1, f2} ∈ Eτ : ∂τ (f1) = v or ∂τ (f2) = v},

and the set Sτ (v) of tails attached to v by

Sτ (v) := {f ∈ Sτ : ∂τf = v}.

We clearly have a partition Hτ (v) ∼= Eτ (v)
∐
Sτ (v).

An isomorphism τ1 → τ2 of graphs is the datum of two bijections Vτ1 → Vτ2 and Hτ1 → Hτ2

compatible with ∂ and j.
A graph τ is conveniently identified with its associated topological space ‖τ‖. Vertices of τ

are identified with |Vτ | distinct points {p(v)}v∈Vτ on the curve C := {(t, t2, t3) : t ∈ R} ⊆ R3,
an edge {f1, f2} ∈ Eτ is identified with the segment10 joining the points p(∂τ (f1)) and
p(∂τ (f2)), tails at v are identified with a star of |Sτ (v)| small segments originating from p(v),
intersecting neither edges nor other tails at other vertices. The space ‖τ‖ is the union of all
these vertices and segments, equipped with the topology induced from R3. The graph τ is a
tree if ‖τ‖ is connected and H1(‖τ‖,Z) = 0. A tree with n tails, will be called an n-tree.
Dual stable graphs. To each point [C, (x)] ∈ M0,n, we can attach a dual stable graph τ
as follows:

(1) the vertices of τ are in 1-1 correspondence with the irreducible components of C,
(2) each node of C is replaced by an edge connecting the vertices corresponding to the

two sides of the node,
(3) for each i = 1, . . . , n attach an tail with label i to the vertex corresponding to the

irreducible component containing xi.
The resulting graph τ is always a n-tree satisfying the following stability condition: each
vertex has valence |Hτ (v)| at least 3. We say that [C, (x)] has combinatorial type τ .

Vice-versa, for any stable n-tree τ , there exists a locally closed irreducible subscheme
D(τ) ⊆ M0,n parametrizing curves of combinatorial type τ . The stratum D(τ) uniquely
identifies the isomorphism class of τ , and its codimension equals the number of edges |Eτ |.

For example, the n-tree with one vertex corresponds to the open stratumM0,n. The strata
of codimension one are labelled by isomorphism classes of one-edge stable n-trees σ. Each
such class can be identified with a stable unordered 2-partition of the set {1, . . . , n}. This
consists of a set σ = {S1, S2} such that {1, . . . , n} = S1

∐
S2, and |Si| > 2 for i = 1, 2. See

Figure 3.
Given (i, j, k, l) ∈ {1, . . . , n}4 and a stable unordered 2-partition σ, we write ijσkl if i, j

and k, l belong two the two different elements of σ.

10By Vandermode determinant any four points p(v1), . . . , p(v4) are not coplanar, and they are vertices
of a tetrahedron. This argument shows that segments representing edges intersect only at the appropriate
vertices.
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S1 S2

Figure 3. Isomorphism classes of one edges n-trees are parametrized by sta-
ble unordered 2-partitions σ = {S1, S2} of {1, . . . , n}.

Keel’s Theorem. Introduce commuting indeterminates Dσ, indexed by stable unordered
2-partitions σ of {1, . . . , n}. Consider the ideal In ⊆ C[(Dσ)σ] generated as follows:

(1) for each (i, j, k, l) ∈ {1, . . . , n}4 set

Rijkl :=
∑
ijσkl

Dσ −
∑
kjτil

Dτ ∈ In; (B.1)

(2) if σ and τ are such that ijσkl and ijτkl for some (i, j, k, l) ∈ {1, . . . , n}4, then set

DσDτ ∈ In. (B.2)

Theorem B.1. We have an isomorphism of rings

C[(Dσ)σ]/In → H•(M0,n,C) ∼= A•(M0,n)C (B.3)

defined by
Dσ 7→ dual of the closed cycle D(σ).

In particular, all odd cohomology groups vanish.

Good monomials. Consider a stable n-tree τ . Any edge e ∈ Eτ defines a stable unordered
2-partition σ(e) of {1, . . . , n}: by cutting e, we obtain two trees, whose tails (halves of e
excluded) form the two parts of σ(e).

For each stable n-tree τ , define the monomial m(τ) :=
∏

e∈Eτ Dσ(e). This is a monomial
in C[(Dσ)σ] of degree |Eτ |. Monomials of this form are called good monomials.

Under Keel isomorphism (B.3), m(τ) is the dual of the class [D(τ)] ∈ H•(M0,n,C). This
follows from the fact that boundary components intersect transversally.

Theorem B.2 ([Man99, Ch.III, §3.6]). Good monomials modulo In span C[(Dσ)σ]/In. Equiv-
alently, the classes [D(τ)] span H•(M0,n,C).

Manin’s relations in higher codimensions. We need information about linear relations
among all good monomials of fixed degree, generalizing Keel’s relations (B.1).

Let n > 4, and τ to be an n-tree. Given
(1) v ∈ Vτ with valence |Hτ (v)| > 4,
(2) (i, j, k, l) ∈ Hτ (v)4 pairwise distinct half-edges,

set T := Hτ (v) \ {i, j, k, l}. For any ordered 2-partition α = (T1, T2) of T (the case Ti = ∅ is
allowed), we can define two trees τ ′(α) and τ ′′(α), with |Eτ |+ 1 edges each.

The tree τ ′(α) is defined by replacing the vertex v with a new edge e, at whose vertices
we have half-edges {i, j} ∪ T1 and {k, l} ∪ T2, respectively.
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i
j

T1 T2

l
k k

j

T1 T2

l
i

τ ′(α) τ ′′(α)

Figure 4.

The tree τ ′′(α) is defined by replacing the vertex v with a new edge e, at whose vertices
we have half-edges {k, j} ∪ T1 and {i, l} ∪ T2, respectively. See Figure 4.

For each system (τ, v, i, j, k, l) as above, define the polynomial

R(τ, v, i, j, k, l) :=
∑
α

m(τ ′(α))−m(τ ′′(α)) ∈ C[(Dσ)σ].

Theorem B.3. We have R(τ, v, i, j, k, l) ∈ In. Moreover, all linear relations modulo In
between good polynomials of degree r+ 1 are spanned by all the relations R(τ, v, i, j, k, l) with
|Eτ | = r.

For a proof, see [Man99, Ch. III, Prop. 4.7.1, Th. 4.8].
Proof of Theorem 7.3. We are now able to complete the proof. Given potentials

Fα(t) =
∑
n>2

N∑
ρ1,...,ρn=1

tρ1 . . . tρn

n!
cαρ1...ρn , cαρ1...ρn ∈ C, α = 1, . . . , N, (B.4)

equations (7.4) and (7.5) are

cα1β = δαβ , cα1βρ1...ρn = 0 for n > 0, (B.5)
cαµβρ1...ρnc

µ
γδτ1...τk

= cαµγρ1...ρnc
µ
βδτ1...τk

. (B.6)

Notice that the lower indices of the coefficients c’s can be arbitrarily permuted, i.e. cαρ1...ρn
is uniquely identified by α and the set {ρ1, . . . , ρn}. We need to prove that the potentials
Fα are of the form (7.3) for a unique existing tree-level F -CohFT (c0,n+1)n>2. We first prove
the uniqueness, and hence the existence of such an F -CohFT.
Uniqueness. Assume there exists a tree-level F -CohFT (c0,n+1)n>2 such that11∫

M0,n+1

c0,n+1

(
e∨ρ1 ⊗

n+1⊗
i=2

eρi

)
= cρ1ρ2...ρn , (B.7)

for any 1 6 ρ1, . . . , ρn+1 6 N and any n > 1. We claim that it is then possible to compute
the numbers ∫

D(τ)

c0,n+1

(
e∨ρ1 ⊗

n+1⊗
i=2

eρi

)
, (B.8)

11For later notational convenience, we slightly changed the labelings: α 7→ ρ1 and ρi 7→ ρi+1, for i =
1, . . . , n.
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5 6
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8

vo

τ1 τ2

12

3 6

5
4

7
8

vo

Figure 5. Two stable 8-trees τ1 and τ2.

for all stable (n + 1)-trees τ . The homology classes [D(τ)] span H•(M0,n+1,C), by The-
orem B.2. Hence the datum of all possible numbers (B.8), for fixed indices ρ1, . . . , ρn+1 ∈
{1, . . . , N}, uniquely defines the cohomology class c0,n+1

(
e∨ρ1 ⊗

⊗n+1
i=2 eρi

)
as linear functional

on H•(M0,n+1,C). In other words, if we are able to compute all possible numbers (B.8),
then any F -CohFT (c0,n+1)n>2 satisfying (B.7) is unique.

Given τ , the number (B.8) can be computed as follows, by iteration of the gluing property
(4) of F -CohFT’s. Denote by vo ∈ Vτ the vertex of τ such that 1 ∈ Sτ (vo), i.e. at which
the tail 1 is attached. Orient the edges e ∈ Eτ in such a way that vo becomes an “attractor”.
In this way, at each vertex v ∈ Vτ \ {vo} there is a single edge with outward orientation, all
other edges being with inward orientation. At vo all edges are inward. Denote by Ein

τ (v) the
set of inward edges at v, and by Eout

τ (v) the set of outward edges at v.
Consider now the following monomials attached to τ . Each such monomial is product of

coefficients c’s in (B.4). In total we have |Vτ | factors c’s, one for each vertex v ∈ Vτ . An index
which is repeated inside the monomial (once upper and once lower) is said to be saturated.
The factor corresponding to v ∈ Vτ will have a total number of indices (upper and lower)
equal to |Hv|, i.e. in bijection with half-edges. We will have

(1) a total number of |Eout
τ (v)| ∈ {0, 1} upper saturated indices,

(2) and a total number of |Ein
τ (v)| lower saturated indices,

(3) a total number of |Sτ (v)| lower indices selected from (ρ1, . . . , ρn+1).

The saturation of indices is dictated by edges: indices labelled by two halves of the same
edge are saturated (one is up, the other is down). Non-saturated indices are dictated by the
sets Sτ (v): the factor corresponding to v ∈ Vτ will have lower indices ρi with i ∈ Sτ (v). The
vertex vo is the only vertex whose corresponding factor c has upper index ρ1.

The number (B.8) equals the sum of all such monomials, over all possible values (ranging
in {1, . . . , N}) of all saturated indices, according to Einstein’s summation rule. For example,
if n = 7, and τ1, τ2 are the graphs of Figure 5, then

∫
D(τ1)

c0,8

(
e∨ρ1 ⊗

8⊗
j=2

eρj

)
= cρ1ρ6αβc

α
ρ4ρ5

cβγδc
γ
ρ3ρ8

cδρ2ρ7 ,
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l
i
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Figure 6. On the left (resp. right), we draw the two graphs τ ′(α) (resp.
τ ′′(α)) which contribute to the l.h.s. (resp. r.h.s.) of equation (B.9) in the
case v = vo.

∫
D(τ2)

c0,8

(
e∨ρ1 ⊗

8⊗
j=2

eρj

)
= cρ1ρ4αc

α
ρ7ρ6β

cβγδc
γ
ρ2ρ5

cδρ3ρ8 .

This is just an iteration of gluing rule (4) of an F -CohFT, which can be seen as a special
instance of computation of (B.8) for a one-edge (n+ 1)-tree. This proves uniqueness.
Existence. In the previous part of the proof, we described an algorithm. For any fixed

ρ = (ρ1, . . . , ρn+1), the algorithm associates with any stable (n+1)-tree τ , a complex number
Yρ(τ) ∈ C, a polynomial expression in the coefficients c’s in (B.4). If we show that all linear
relations between the homology classes [D(τ)] are preserved by the map τ 7→ Yρ(τ), then we
would have a well-defined linear functional

Ỹρ : H•(M0,n+1,C)→ C, D(τ) 7→ Yρ(τ),

i.e. a cohomology class. This would lead to a candidate as F -CohFT,

c0,n+1 : V ∗ ⊗ V ⊗n → H•(M0,n+1,C),

(
e∨ρ1 ⊗

n+1⊗
i=2

eρi

)
7→ Ỹρ.

Indeed, the properties (1)-(3) of F -CohFT for c0,n+1 would follow from the symmetry of
cρ1ρ2...ρn+1

in the lower indices, and equations (B.5), (B.6). Also, the gluing property (4) would
follow from the definition of the numbers Yρ(τ). This would complete the proof.

By Theorem B.3, it is then sufficient to prove that, for any fixed system (τ, v, i, j, k, l), all
the relations R(τ, v, i, j, k, l) are preserved by Yρ, i.e.∑

α

Yρ(τ
′(α)) =

∑
β

Yρ(τ
′′(β)). (B.9)

The trees τ ′, τ ′′ are obtained from τ by replacing the vertex v ∈ Eτ with an edge. There
are many ways to do this, labelled by 2-partitions of Hτ (v). They induced a 2-partition of
i, j, k, l. We put on the l.h.s. of (B.9) those which split {i, j, k, l} in two pieces {i, j}

∐
{k, l},
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and we put on the r.h.s. of (B.9) those which split {i, j, k, l} in two pieces {k, j}
∐
{i, l}. The

remaining partitions do not contribute.
We have in total 25 possible cases to consider, according wether v coincides with the

marked vertex vo or not, and wether each of i, j, k, l is an edge or a tail.
Consider for example the case in which v = vo and each of i, j, k, l is a tail. In the

l.h.s. of (B.9) we have the contributions coming from two possible graphs, according to the
resulting position of the distinguished tail labeled by 1. Analogously, in the r.h.s. we have
the contributions coming from two graphs. See Figure 6.

Equations (B.9) thus reduces to an identity of the form∑
α

(
cρ1ρiρjλ...c

λ
ρkρl...

+ cρ1ρkρlλ...c
λ
ρiρj ...

)
=
∑
β

(
cρ1ρjρkλ...c

λ
ρiρl...

+ cρ1ρiρlλ...c
λ
ρkρj ...

)
,

where dots stand for all possible partitions of indices, induced by α and β. Both red terms
and black terms in this equation cancel, due to equations (B.6).

The reader can check that all other 31 possible cases can be handled similarly. One can
always recognize in equation (B.9) a linear combination of identities (B.6), whose left and
right sides correspond to the inserted edge in τ ′ and τ ′′, respectively.

This completes the proof.
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