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ABSTRACT. We consider the x-Markov equation for the symmetric Laurent polynomials
in three variables with integer coefficients, which appears as an equivariant analog of the
classical Markov equation for integers. We study how the properties of the Markov equation
and its solutions are reflected in the properties of the x-Markov equation and its solutions.
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1. INTRODUCTION
1.1. Markov equation.

1.1.1. The Markov equation is the Diophantine equation
>+ b +c—abc=0 a,bc€Z, (1.1)

with initial solution (3,3, 3). If a triple (a, b, ¢) is a solution, then a permutation of the triple
is a solution. One may also change the sign of two of the three coordinates of a solution.
The braid group Bs acts on the set of solutions,

7 : (a,b,¢) — (—a,c,b—ac), (1.2)
Ty : (a,b,¢) — (b,a — be, —c).
The classical Markov theorem says that all nonzero solutions of the Markov equation can
be obtained from the initial solution (3, 3,3) by these operations, see [Mar79, Mar80]. This
group of symmetries of the equation is called the Markov group. A solution with positive
coordinates is called a Markov triple, the positive coordinates are called the Markov numbers.
The Markov equation is traditionally studied in the form
a> + b+ —3abc=0, a,bceZ. (1.3)
Equations (1.1) and (1.3) are equivalent. A triple (a,b,c) € Z? is a solution of (1.3) if and
only if (3a, 3b, 3c) is a solution of (1.1).
The equation was introduced by A.A. Markov in [Mar79, Mar80] in the analysis of minimal

values of indefinite binary quadratic forms and was studied in hundreds of papers, see for
example the book [Ail3] and references therein.
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1.2. Motivation from exceptional collections and Stokes matrices.

1.2.1.  Our motivation came from the works by A. Rudakov [Ru89] on full exceptional collec-
tions in derived categories and by B. Dubrovin [Du96, Du98, Du99] on Frobenius manifolds
and isomonodromic deformations.

In 1989 A. Rudakov studied the full exceptional collections in the derived category D°(IP?)
of the projective plane P2. These are triples (E), Fy, E3) of objects in D’(IP?) generat-
ing D’(P?) and such that the matrix of Euler characteristics (x(E; ® F;)) has the form

1 a b

0 1 ¢ |. Rudakov observed that the triple (a,b,c) is a solution of the Markov equa-

0 01
tion. The braid group B3 naturally acts on the set of full exceptional collections and the
induced action on the set of matrices of Euler characteristics coincides with the action of the
braid group on the set of solutions of the Markov equation.

In the 90’s Dubrovin considered the isomonodromic deformations of the quantum differ-
ential equation of the projective plane P?, see [Du99]. This is a system of three first order
linear ordinary differential equations with two singular points: one regular point at the origin
and one irregular at the infinity. Dubrovin observed that the Stokes matrix S of a Stokes

1 a b
basis of the space of solutions at the infinity is of the form S=| 0 1 ¢ |, where (a,b,c)
0 0 1
is a solution of the Markov equation. The braid group Bs naturally acts on the set of Stokes
bases, and the induced action on the set of Stokes matrices coincides with the action of the
braid group on the set of solutions of the Markov equation.

These two observations allowed to Dubrovin to conclude that the Stokes bases of the
isomonodromic deformations of the quantum differential equation of P? correspond to the
full exceptional collections in the derived category D’(IP?) and more generally to conjecture
that the derived category of an algebraic variety is responsible for the monodromy data of
its quantum differential equation, see [Du98, CDG18].

1.2.2. Recently in [TV19] V. Tarasov and the second author considered the equivariant
quantum differential equation for P? with respect to the torus T' = (C*)3 action on P2. That
equivariant quantum differential equation is a system of three first order linear ordinary
differential equations depending on three equivariant parameters z = (z1, 29, z3). The system
has two singular points: one regular point at the origin and one irregular at the infinity. It
turns out that the Stokes matrix S of a Stokes basis of the space of solutions at the infinity

1 a b
is of the form S(z) = | 0 1 ¢ |, where a,b, c are symmetric Laurent polynomials in the
0 0 1

equivariant parameters z with integer coefficients. In [CV20] we observed that the Stokes
bases correspond to T-full exceptional collections in the equivariant derived category D5 (P?).
If (Ey, Esy, E3) is a T-full exceptional collection, then the equivariant Euler characteristic
x1(Ef®FE;) is an element of the representation ring of the torus, that is, a Laurent polynomial
in the equivariant parameters with integer coefficients. It turns out that if a T-full exceptional
collection (E4, Ey, E3) corresponds to a Stokes basis, then the corresponding Stokes matrix
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equals the matrix (xr(E; ® Ej;)) of equivariant Euler characteristics. Moreover the three
symmetric Laurent polynomials (a, b, ¢), appearing in this construction, satisfy the equation
234 28 + 23

17223

aa® 4+ bb* + cc* —ab'c =3 — (1.4)
where f*(21, 22, 23) := f(1/21,1/22,1/23) for any Laurent polynomial, see [CV20, Formula
(3.20)]. If z; = 29 = 23 = 1, then the right-hand side of (1.4) equals zero, the equivariant
Euler characteristics x7(E; ® E;) become the non-equivariant Euler characteristics x(E; ®
E;), and the triple of symmetric Laurent polynomials (a, b, ¢) evaluated at z; = 2o = 23 = 1
becomes a solution of the Markov equation (1.1).

We call equation (1.4) for symmetric Laurent polynomials with integer coefficients the
x-Markov equation.

The transition from the Markov equation to the x-Markov equation provides us with a
deformation of the Markov numbers by replacing Markov numbers with symmetric Laurent
polynomials; which recover the numbers after the evaluation at z; = 2o = 23 = 1.

The goal of this paper is to observe how the properties of the Markov equation and its
solutions are reflected in the properties of the x-Markov equation and its solutions.

1.2.3.  There are interesting instances of the transition from the Diophantine Markov equa-
tion (1.1) to an equation of the form
a(t)? +b(t)* + c(t)® — a(t)b(t)c(t) = R(t),

where a(t),b(t), c(t) are unknown functions in some variables ¢ and R(t) is a given function.
Such deformations among other subjects are related to hyperbolic geometry and cluster
algebras, see the fundamental papers [CP07, FGOT].

The difference between deformations of this type and the *-Markov equation is that equa-
tion (1.4) includes the x-operation dictated by the equivariant K-theoretic setting. It is an
interesting problem to find relations of the x-Markov equation to hyperbolic geometry and
cluster algebras.

1.3. *-Markov equation and *-Markov group.

1.3.1. It is convenient to use the elementary symmetric functions (si, so, s3),
51 =21+t 2+ 23, S2= 2122+ 2123 + 2223, S3 = 212223,
change variables (a,b,c) to (a,b*, c), and reformulate equation (1.4) in a more symmetric

form

3
35182 — 87

aa* + bb* + cc* — abc = (1.5)

53

The problem is to find Laurent polynomials a,b,c € Z[s, so, s3] satisfying equation (1.5).
The equation has the initial solution

21+ 29+ 2 S
I= <Z1+Z2+23,$,21+Z2+Z3) = (817_1781> ) (1.6)
Z1%2%3 83
whose evaluation at s; = sy = 3, s3 = 1 is the initial solution (3,3,3) of the Markov equation.
From now on we call equation (1.5) the *-Markov equation.
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1.3.2.  The group I'j; of symmetries of the x-Markov equation is called the x-Markov group.
It consists of permutations of variables, changes of sign of two of the three variables, the
braid group Bs transformations

7 (a,b,¢) — (—a*, ¢, b —ac), (1.7)
1 (a,b,¢) — (b*, a* —be, —c¥),
and the new transformations
i (a,b,c) — (sha, 53" 77b, she), i,j € L.

We have an obvious epimorphism of the x-Markov group onto the Markov group. This fact
and the Markov theorem imply that for any Markov triple of numbers there exists a triple
of Laurent polynomials, solving the x-Markov equation, obtained from the initial solution 7
by transformations of the x-Markov group, whose evaluation at s; = s, = 3, s3 = 1 gives the
Markov triple.

It is an open question if any solution of the x-Markov equation can be obtained from the
initial solution I by a transformation of the x-Markov group. In analogy with the Markov
equation we may expect that all solutions lie in I'y,[.

1.4. Solutions in the orbit of the initial solution.
1.4.1. As the first topic of this paper we study I'y/I, the set of solutions of the x-Markov

equation obtained from the initial solution I by transformations of the x-Markov group.

In the interpretation of solutions of the *-Markov equation as matrices (xr(E; ® E;)) of
equivariant Euler characteristics for T-full exceptional collections, the set I"y,1 corresponds to
the set of matrices (yr(E; ® E;)) for the T-full exceptional collections in D%.(P?) lying in the
braid group orbit of the so-called Beilinson T-full exceptional collection, see [CV20, BeT78].

Several first elements of I'),I different from I are

(8383 — 52, 51), (1.8)
(55,5250 — 5183 — 53, (57 — 89)%), (1.9)
(57,8559 — 25753 — 5155 + 5953, (5280 — 5153 — 53)°), (1.10)
(5359 — 5153 — 83)%, 5755 — 555953 — 5953 + 5755 — S, (53 — 5153)"). (1.11)

Evaluated at s; = s, = 3, s3 = 1 they represent the Markov triples (3,6,3), (3,15,6), (3,39,15),
(15,87,6), respectively.

Random application of generators of the x-Markov group to the initial solution I will
produce the Laurent polynomial solutions of the *-Markov equation, but they will not be
polynomial. We make them close to being polynomial as follows.

We look for solutions of the x-Markov equation in the form (f}, fo, f3). We say that
a solution (fy, fa, f3) is a reduced polynomial solution if each of fi, fa, f3 is a nonconstant
polynomial in s, s9, s3 not divisible by s3.

For example, all triples in (1.8)-(1.11) are reduced polynomial solutions.

Theorem 1.1. Let (a,b,c) be a Markov triple, 0 < a < b, 0 < ¢ < b, 6 <b. Then there
exists a unique reduced polynomial solution (f{, fo, f3) € Tl representing (a, b, c).

See Theorem 6.4.
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1.4.2. Let f(s1,s2,83) be a polynomial. We consider two degrees of f: the homogeneous
degree d := degf with respect to weights (1, 1, 1) and the quasi-homogeneous degree q := Deg f
with respect to weights (1,2, 3). For example, deg(s]*s3%s5%) = a1 +as+as, Deg(s]'s52s5%) =
ay + 2as + 3as.
Let f(s1,s2,5s3) be a polynomial of homogeneous degree d not divisible by s3, then
So S1 1 )

d
=5 = =, — 1.12
9(51752783) 3f(83783783 ( )
is a polynomial of homogeneous degree d not divisible by s3. If additionally f(si, ss,S3)
is a quasi-homogeneous polynomial of quasi-homogeneous degree ¢, then g(sq, s2,s3) is a
quasi-homogeneous polynomial of quasi-homogeneous degree 3d — q.

The polynomial g is denoted by u(f).

1.4.3. The assignment to a quasi-homogeneous polynomial f its bi-degree vector (d, ¢) could
be seen as a “de-quatization” in the following sense. Let

+8

_ « _ a+2 a+3
§1 = 1€ , S9 = C2€ ﬂv B,

S3 = C3¢€
where «, [ are real parameters which tend to +o0o and ¢y, ¢o, ¢35 are fixed generic real numbers.
If f(s1,$2,5s3) is a quasi-homogeneous polynomial of bi-degree (d, ¢), then

In f(c B et tP ¢ e‘”B)

has leading term da + ¢f independent of the choice of ¢y, ¢9, ¢3, which may be considered as
a vector (d, q).

1.4.4. We say that a polynomial P(sy, S, s3) is a x-Markov polynomial if there exists a
Markov triple (a,b,¢), 0 < a < b, 0 < ¢ < b, 6 < b, with reduced polynomial presentation
(ff, fa, f3) € 'yl such that P = f5. The polynomial s, will also be called a x-Markov

polynomial.

We say that a polynomial Q(s1, S2,s3) is a dual x-Markov polynomial if @) is not divisible
by s3 and p(Q) is a x-Markov polynomial.

For example, s? — s5, $o(s% — s9) — 8381 are *-Markov polynomials, since they appear as
the middle terms in the reduced polynomial presentations in (1.8) and (1.9) and s3 — s;s3,
s1(s2 — s183) — 8359 are the corresponding dual x-Markov polynomials.

Theorem 1.2. Let (ff, fa, f3) € T'nl be the reduced polynomial presentation of a Markov
triple (a,b,¢), 0 <a<b,0<c<b, 6<b. Then each of f1, fs3 is either a x-Markov polyno-
mial or a dual x-Markov polynomial. If f1, fa, f3 have bi-degree vectors (dy, q1), (d2, g2), (ds, q3),
then

(d2,q2) = (d1, q1) + (ds, q3).

Theorem 1.3. Let f(s1, S2, 83) be a *-Markov polynomial or a dual x-Markov polynomial of
bi-degree (d,q). Then f(s1,S2,53) is a quasi-homogeneous polynomial with respect to weights
(1,2,3). Moreover, |2q¢ — 3d| =1 if d is odd and |2q — 3d| = 2 if d is even.

See Theorems 6.4, 7.2, and examples (1.8)-(1.11).
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(3,39, 15) as,87,6) (1), (), (3) HEENG)

FIGURE 1.

1.4.5. It is convenient to put Markov triples at the vertices of the infinite binary planar
tree as in Figure 1 and obtain what is called the Markov tree. Similarly, we may put at
the vertices the triples of polynomials (fi, fa, f3), such that the triples (f}, f2, f3) are the
reduced polynomial presentations of the corresponding Markov triples. In that way we would
put in Figure 1 the triple (fi, f2, f3) shown in (1.9) instead of (3,15,6), the triple (fi, fo, f3)
shown in (1.10) instead of (3,39,15), the triple (fi, fo, f3) shown in (1.11) instead of (15,87,6).
Or we may put at the vertices the triples (dy, q1), (dz, ¢2), (ds, g3) of bi-degree vectors of the
triples (f1, fa, f3), or the triples (dy,ds, d3) of degrees, see Figure 1, or we may even put at
the vertices the triples of Newton polytopes of the polynomials (fi, fa, f3), see Sections 7.7
and 7.8.

These decorated trees have interesting interrelations consisting of “quatizations” and “de-
quantizations”, see short discussion in Section 7.5.

A compelling problem is to study asymptotics of these decorations along the infinite paths
going from the root of the tree to infinity, see remarks in Sections 7.8 and 7.9.

1.4.6. It is well known that the Markov triples of the left branch of the Markov tree are
composed of the odd Fibonacci numbers, multiplied by 3. These triples have the form
(3,302n11, 302n_1), where pa, 11, p2,_1 are odd Fibonacci numbers. We describe the reduced
polynomial presentations (gt _;, Font1, Fy,_;) of these Markov triples, where g,_; = s9 if n
is even, g,_1 = s if n is odd, and F, .1, Fb, 1 are polynomial in sy, s9, s3, called the odd
x-Fibonacci polynomials.

The first of them are

F3(s) = 52 — sy,
Fy(s) = 525y — 5183 — 53,
Fr(s) = 535y — 25253 — 5155 + 5953,
We describe the recurrence relations for the odd *-Fibonacci polynomials, explicit formulas

for them, their Newton polytopes, the Binet formula, the Cassini identity, describe the
continued fractions for Fy, 3/F5,,1 and the limit of this ratio as n — oo.

1.4.7. Tt is well known that the Markov triples of the right branch of the Markov tree are
composed of the odd Pell numbers, multiplied by 3. We describe the reduced polynomial
presentations of these Markov triples in terms of the polynomials, which we call the odd *-Pell
polynomials. We develop the properties of the odd *-Pell polynomials, which are analogous
to properties of odd Pell numbers and to properties of the odd *-Fibonacci polynomials.
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1.4.8. The g-deformations of Fibonacci and Pell numbers is an active subject related to
several branches of combinatorics and number theory, see, e.g., [Ca74, An86, Pa06, MO20]
and references therein. It would be interesting to determine if these numerous ¢g-deformations
of Fibonacci and Pell numbers could be obtained by specifications of our *x-deformation
depending on the three parameters sy, so, s3.

1.5. *-Analogs of the Dubrovin Poisson structure. In [Du96] Dubrovin considered C3

with coordinates (a, b, ¢), the braid group Bs action (1.2), and introduced a Poisson structure
on C3,

{a,b} g = 2¢ — ab, {b,c}y = 2a — be, {c,a}y = 2b— ac.

which is braid group invariant and has the polynomial a?+b?4c? —abc as a Casimir element’.

The second topic of this paper is a construction of a x-analog of the Dubrovin Poisson
structure. Our Poisson structure is defined on C8, is anti-invariant with respect to the braid
group Bs action (1.7), is invariant with respect to the involution

(a,a*,b,b* c,c*) — (a*,a,b",b,c", c),
has the polynomials
aa™ + bb* 4+ cc* — abe,
aa® + bb* + cc* — a*b*c”,
as Casimir elements, and is log-canonical, see Section 11. Here the word anti-invariant means
that the Poisson structure is multiplied by —1 under the action of generators of the braid
group. Recall also that a Poisson structure on a space with coordinates z1,...,x, is log-

canonical if {z;, z;} = a;;x;x; for all 7, j, where a; ; are constants. Our log-canonical Poisson
structure has a;; = £1,0.

1.5.1. The space C? considered by Dubrovin is actually identified with the group Us of
unipotent upper triangular matrices (the Stokes matrices of three dimensional Frobenius
manifolds). Standing on such an identification, M. Ugaglia generalized the construction of
Dubrovin’s Poisson structure to all groups U, see [Ug99] for the explicit equations. Remark-
ably enough, the same braid invariant Poisson structure on U,, was found independently also
in [Bo01, Bo04] from two completely different perspectives. Let By be the groups of upper
and lower triangular n x n matrices. In [Bo01], P. Boalch proved that U, is the stable locus
of a Poisson involution of the Poisson-Lie group B, * B_, and that the standard Poisson
structure of By x B_ induces the braid invariant Poisson structure on U,,. The construction
in [Bo04], is based on the identification of the group U, with the space of Gram matrices
(x(E;i, E;))i; for exceptional collections (Fy, ..., E,) in triangulated categories®. A.Bondal
discovered a symplectic groupoid whose space of objects is U,: the existence of a braid
invariant Poisson structure on U, is then deduced from the general theory of symplectic
groupoids. The quantization of the Poisson structure on U, is also known as Nelson-Regge
algebra in 241 quantum gravity [NR89, NRZ90], and as Fock-Rosly bracket in Chern-Simons
theory [FR97]. Furthermore, L. Chekhov and M. Mazzocco generalized the construction of

'Recall that a function f is a Casimir element for a Poisson structure {, } if {f, g} = 0 for any g.
2Notice that the two identification of U,, as Stokes matrices or Gram matrices of the y-pairing should
coincide, at least for quantum cohomologies, according to a conjecture of Dubrovin, see [Du98, CDG18].



10 GIORDANO COTTI AND ALEXANDER VARCHENKO

the Dubrovin Poisson structures to the space of bilinear forms with block-upper-triangular
Gram matrix, they also extensively studied the related Poisson algebras, their quantization
and affinization, see [CM11, CM13|. See very interesting short paper [CF00] by L.O. Chekhov
and V.V. Fock.

It would be interesting to see the x-analogs of these considerations.

1.6. *-Analogs of the Horowitz theorem. In [Ho75|, R.D. Horowitz proved the following
result, characterizing the Markov group as a subgroup of the group of ring automorphisms
of Zla, b, c].

Theorem 1.4 ([Ho75, Theorem 2|). The group of ring automorphisms of Zla,b, c|, which
preserve the polynomial

H=da+b+c—abe,

15 1somorphic to the Markov group.

As the third topic of this paper we develop x-analogs of the Horowitz theorem, see Section
12 and Appendix A.

1.7. Exposition of material. In Section 2 we introduce the *-Markov equation and evalua-
tion morphism. The x-Markov group and its subgroups, in particular, the important *-Viete
subgroup, are defined in Section 3. The Markov and extended Markov trees are introduced
in Section 4. In Section 5 we introduce the notion of a distinguished representative of a
Markov triple and show that the x-Viete group acts freely and transitively on the set of
distinguished representatives.

In Section 6 we introduce the notion of an admissible triple of Laurent polynomials and the
notion of a reduced polynomial presentation of a Markov triple. One of the main theorems
of the paper, Theorem 6.4 says that a Markov triple has a unique reduced polynomial
presentation. We also introduce the notion of a x-Markov polynomial.

In Section 7 six decorated infinite planar binary trees are defined. They are the x-Markov
polynomial tree, 2-vector tree, matrix tree, deviation tree, Markov tree, Euclid tree. We dis-
cuss the interrelations between the trees. An interesting problem is to study the asymptotics
of the decorations along the infinite paths from the root of the tree to infinity.

In Sections 8 and 9 we introduce the odd *-Fibonacci and odd *-Pell polynomials and
discuss their properties.

In Section 10 we construct actions of the *-Markov group on the spaces C® and C° and a
map F : C® — C° commuting with the actions. Using these objects we construct equivariant
Poisson structures on C° and C® in Section 11.

In Section 12 we establish *-analogs of the Horowitz theorem on C% and C°. In Appendix
A we discuss more analogs of the Horowitz theorem.

In Appendix B we discuss briefly the *-equations for P? and associated Poisson structures
on C'2.

The authors thank P.Etingof, M.Mazzocco, V.Ovsienko, V.Rubtsov, V.Schechtman,
M. Shapiro, L. Takhtajan, A.Veselov, A.Zorich for useful discussions. The authors thank
HIM and MPI in Bonn, Germany for hospitality in 2019.
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2. *-MARKOV EQUATION

2.1. #-Involution. Denote z = (21, 29,23), 8 = (81,52,53). Let Z[z*F!]® be the ring of
symmetric Laurent polynomials in z with integer coefficients. We define an isomorphism
Z[z*1)%3 = Z[sy, s, 53] by sending
(21 “+ z9 + Z23, %129 + 2123 + 2923, 21222’3> — (81, Sa, 53).
Define the involution
(=) Z[z7]% = Z[z*1%, f e [

where
1 1 1

ff(z)=f (—, —, —) . f € Z[zFY%s,
Z1 22 X3
This induces a *-involution on Z[s1, s9, s3]
. s 51 1
f (817327 83) = f (_27 _17 _) .
53 83 S3
Denote s, := (3,3,1). Define the evaluation morphisms
€Vg, - Z[Sla S92, S?ﬁtl] — Z? f(S) = f(80)7
Evs,: (Zls1,s0,581)" = Z%  (a,b,¢) = (a(8,),b(s,), (8,)) .
The evaluation morphism corresponds to the evaluation of a Laurent polynomial f(z1, 22, 23)
at21222223:1.
2.2. Evaluation morphism. The x-Markov equation is the equation
3 3
aa™ + bb* + cc* — abc = m, (2.1)
53

where a,b, ¢ € Z[s, 52, 53']. The solution

I = (81,2,81) (22)
S3

35152 — s\
€Vg, 8— =0.
3

Proposition 2.1. If f = (fi1, f2, f3) is a solution of the x-Markov equation (2.1), then
Evs, (f) is a solution of the Markov equation (1.1). O

is call the initial solution.
We have

For example, the evaluation of the initial solution I gives the triple (3,3,3).
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Remark 2.2. The x-Markov equation (2.1) can be studied by looking for solutions (a, b, ¢)
in A%, where A is a ring more general than Z[z]%8 = Z[s,, 59, s3]
For instance, if we look for solutions of the form (asy, B;—;, vs1), where a, 3,y € C, then
o’ + [ +9"=3,  apy=1
This curve has infinitely many algebraic points, for example

1
a=v-1, p=y\2+V5, 4=

—2-4/5
3. GROUPS OF SYMMETRIES

3.1. Symmetries of Markov equation. Consider the following three groups of transfor-
mations of Z3:

Type I. The group Gf generated by transformations
)\fﬁj: (a,b,¢) — ((—1)ia, (—1)i+jb, (—1)jc) , 1,] € Zo.

Type II. The group G4 generated by transformations
of:(a,b,c) — (bya,c), o5:(a,b,c)— (a,cb).

Type III. The group G¢ generated by transformations
i: (a,b,¢) = (—a, ¢, b—ac),
75: (a,b,¢) — (b, a—be, —c).
We have 7757 = 157775
In these notations the superscript ¢ stays for the word classical.

Remark 3.1. Let B3 be the braid group with three strands, and (1, 35 its standard gener-
ators (elementary braids) with 51581 = B2f102. There is a group epimorphism

¢: By — G, Bi—T1f, i=1,2.
The center Z(Bs3) = ((8152)3) is contained in ker ¢. Thus, the group
Bs/Z(B;) = PSL(2, Z)
acts on the set of solutions of (1.1).

Proposition 3.2. The set of nonzero Markov triples is invariant under the action of each
of the groups G, GS, GS. U

3.2. Markov and Viete groups. Define the Markov group I'j; as the group of transfor-
mations of Z3 generated by G$, GS, GS,

Iy = (G5, G5, G). (3.1)
Define the Viéte involutions v{,vs, v§ € I'y; by the formulas
vi: (a,b,¢) — (bc — a,b,c),
vs: (a,b,c) — (a,ac — b, c),
vg: (a,b,c) — (a,b,ab—c).
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Define the Viete group IT; as the group generated by the Viete involutions vf, v§, v§,
IV = (uf, v5, v5). (3.2)
We have
VI =A1 01Ty, V3= Ao 05T, Uy = ALy TY Oy (3.3)

Theorem 3.3 ([EH74, Theorem 1]). The group I is freely generated by v$,vs,v§, that is,

F&gZQ*ZQ*ZQ. O
Proposition 3.4. We have the following identities:
oy k101 )‘k—&-lh o5 k:lUQ )‘l k1
c.c._c __ _cC c.c _Cc__
O1V107] = Vg, O5V105= VY,
c..c_c __ _cC c.c _Cc__
01V07 = Uy, O5U505= Us,
c,Cc __C c,Cc__C
o301 = VS, O5U505= V3,
C _ Cc J—
Vil = U5, 1=1,2,3.

Corollary 3.5. We have I'5; = (I'G, G§, G5). Moreover, I is a normal subgroup of I'§;.

Proof. The inclusion I'j; D (I, G§, G$) is clear. We have G§ C (I, G{, GS), by equations
(3.3). Hence T, = (TG, G§, GS). We have guvég™! € TY for any g € G, GS by Proposition
3.4. U

Proposition 3.6. We have I'G N (GS, GS) = {id}.

Proof. Any element of I fixes the triple (2,2,2). The only elements of (G, G5) which fix
(2,2,2) are the elements of GS.

Extend the action of both TS and G to the space C3. The point (0,0,0) is a fixed point
for both actions. The Jacobian matrices at (0, 0,0) of the Viete transformations v, v§, v§ are

~10 0 1 0 0 10 0
o 10], [o-10], [01 0],
0 01 0 0 1 00 —1

respectively. Hence, any element of [ has diagonal Jacobian matrix at (0,0,0). The only
transformation of GG§ which can be represented by a diagonal matrix is the identity. 0J

Corollary 3.7. For any element g € I'§;, there ezist unique v € I and h € (G$, GS) such
that g = vh. This implies that I, = T{ % (G, GS).
Proof. Since I'§; = (I'V, G§, GS), any g can be expressed as a product
g = Vi U3 Uiy iy - . Vg, g, € (G, GY).
We can factor g as
!/

g = Vi Viy .. Vg Ay Gy

a;; € (G, Gy), (3.4)

by using the commutation rules described in Proposition 3.4. The decomposition in (3.4) is
unique, by Proposition 3.6. 0]
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3.3. Symmetries of x-Markov equation. Consider the following four groups of transfor-
mations of the space (Z[s1, s, sgﬂ])3.
Type I. The group G; generated by transformations
Nij:(a,b,c) — ((—1)ia, (—1)"7p, (—1)jc) , 1,] € ZLo.

Type II. The group G, generated by transformations
o1: (a,b,¢) — (b,a,c), oy : (a,b,c) — (a,c,b).
Type III. The group G3 generated by transformations
1 (a,b,¢) — (—a*, ¢, b"—ac), (3.5)
10 (a,b,¢c) — (b, a*—be, —c¥).
We have mimam = oo,
Type IV. The group G4 generated by transformations
iy (a,b,c) — (sha, sgi_jb, séc), 1,] € Z.
Proposition 3.8. The set of all solutions of the x-Markov equation (2.1) is invariant under

the action of each of the groups G1,Gs, G3,Gy. O

As in the case of the Markov equation (1.1), we have the action of By /Z(B;3) = PSL(2,Z)
on the set of all solutions of the x-Markov equation (2.1). See Remark 3.1.

3.4. x-Markov and *-Viete groups. Define the x-Markov group I'y; as the group of trans-
formations of (Z[sl, S9, sgﬂ])g generated by G1, G, G3, Gy,
Ly = (Gh, Ge, G, Gy). (3.6)
Define the *- Viéte involutions vy, v9, v3 € I'yy by the formulas
vi: (a,b,¢) +— (be —a*, b* "),
ve: (a,b,c) > (a*,ac—b*, c*),
vs: (a,b,c) > (a*,b* ab— c*).
Define the *- Viete group I'y as the group generated by Viete involutions vy, ve, v3,
Iy = (vy, v9,v3).
We have
U1 = A1101Ta, Vg = A1,00271, V3 = A\ 1T109. (3.7)

Proposition 3.9. We have the following identities,

01)\k,101 = >\k+z,l, 02/\k,102 = )\k,k—i—l;
010V101 = V2, 02V102= V1,
01V2071 = Uy, 02U209= U3,
010301 = V3, 02V302= V2,

A JUidg ) = U, 1=1,2,3,
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Akt Pij Ak = Hig s k,l € Zs, i,J € L,
O1Mi,501 = H—i—j,5 5 Ol jO2 = i —i—j ,
Vi Wij UV = H—i—j , k= 1, 2, 3.
Proof. These identities are proved by straightforward computations. 0

Corollary 3.10. For any element g € (G1,Gs,Gy), there exist unique g1 € G1, g2 € Ga, g4 €
G4 such that

9 = 949192 (3.8)

Proof. Any g € (G1,Gs,G4) can be put in the form (3.8) by Proposition 3.9. The uniqueness
follows from the identities

GyN(G1,Gq) ={id}, GiNGy={id}. OO
Corollary 3.11. We have I'yy = (I, G1,Go,G4). Moreover Iy is a normal subgroup of T'y;.

Proof. The inclusion Ty D (G, Ga, Gy, Ty) is clear. We have Gz C (Gy, Ga, Gy, Tv),
by equations (3.7). Hence I'yy = (Gy, G, Gy, Ty). Tt follows that gv;g~! € Ty for any
g € G1,G4y, Gy, by Proposition 3.9. OJ

Proposition 3.12. We have I'y N (G1, Ga, G4) = {id}.

Proof. Let g € Ty N (G1,Ga,G4). We have g € ker ¢y by Proposition 3.6. The only elements
of the form (3.8) which are in ker ¢y, are the elements of G4. Any element of I, fixes the
triple of constant polynomials (2,2,2). The only element of G4 which fixes (2,2,2) is the
identity. 0
Corollary 3.13. For any element g € Iy, there exist unique v € Ty and h € (Gy, Go, Gy)
such that g = vh. This implies that Tyy = Ty x (G1, Go, Gy).
Proof. Since T'yy = (I'v, G1, G2, G4), any g can be expressed as a product
g = Vi @y ViyQiy - - Vip Ay s Qs - <G1, GQ, G4>

We can factor ¢ as

9= VUi U0 G, € (G, Ga, Gy) (3.9)
by using the commutation rules described in Proposition 3.9. The decomposition in (3.9) is
unique, by Proposition 3.12. O

Let g € I'y,. Consider its restriction g|zs to the subset Z3 C (Z[sl,SQ, sgﬂ])?’. Define the
transformation y(g): Z* — Z* as the composition Evg, o g|zs, i.e.

g|Z3 Evs,

z3 (Z[Sl,SQ,Sg:l])g 73,
Proposition 3.14. We have a group epimorphism

@M : FM —» FX/[,
which acts on the generators as

Aag = gy Oi b 05, Ti> T, Hap e id (3.10)
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Proof. Identities (3.10) are easily checked. Let g, h € I'y;. From the commutative diagram

h 3

(Z[s1, 5o, 3?1])3 SN (Z]s1, s, séd])g — (Z[s1, 82, 55])

i T o Jp.

YA z3 73

e (9) o (h)

it readily follows that pa(hg) = @ (h)en(g). O
Proposition 3.15. We have ker ), = Gy, so that I'§; = Ty /Gy.
Proof. Let g € ker py;. By Corollaries 3.13 and 3.10, there exist unique elements v € [/, ¢ €
Gl,gg € Gg,g4 € (4 such that

g = Vg949192-
We have

em(9) = em(v)en(91)enm(ge) = id.
By Corollary 3.7, together with G{ N G5 = {id}, we have

o) =1d, om(g) =1id, u(g2) = id.
This clearly implies that g; = id and go = id. The element v is of the form v = [[7_, v;,
with i; € {1,2,3}, so that

n n

id = pp(v) = H@M(Uij) - H/UZCJ

j=1 j=1
Since v freely generate I, (by Theorem 3.3), we necessarily have n = 0, and v = id. This
shows that ker o, C G4. The opposite inclusion is obvious. 0

Lemma 3.16. The morphism @y defines isomorphisms between the group G; and GS for
1 =1,2,3, and between the group Iy and I7;. 0

Lemma 3.17. The evaluation morphism Evg, s py-equivariant, i.e.

Evs,(9-a) =¢u(g) Evs,(a), g€Tly, ac (Z[sl, S9, s?jfl])g. O

4. MARKOV TREES

4.1. Decomposition of M°. The set M€ of all nonzero solutions of the Markov equation
(1.1) admits a partition in four subsets,

ME = M UMy U MEy U M, (4.1)

where M€ consists of all positive triples and M¢; consists of all triples with negative entries
in the ¢-th and j-th position.
We have a projection 7 : M¢ — M¢ , forgetting the minuses.

Lemma 4.1. The action of the Viete group Iy, on M€ preserves each of M, M{,, M{s, Mg,.

The action of the group (G5,1Y,) on M€ preserves the sets M and My, U MS3UMSs and
commutes with the projection m : M — M€ O



THE *-MARKOV EQUATION FOR LAURENT POLYNOMIALS 17

4.2. Markov tree. Solutions of the Markov equation (1.1) can be arranged in a graph,
called the Markouv tree.

Define L := o505, R := ofvf € I'5;. Given (z,y,2) € M€, we have

($,:Ey—z,y) (y,yz—x,z) (42)

[

(I7y7 Z)

The Markov tree 7T is the infinite graph obtained by iterating the operations (4.2) starting
from the initial solution (3,3, 3).

(3,102, 39) (39,582, 15) (15,1299, 87) (87,507, 6)

o - ﬂ\\ -
(3,39,15)+\\\\\\\\\\\ ’///////’///%(15,87,6)
(3,15,6)

/Is
(3,6,3)

/'\

(3,3,3)

Theorem 4.2 ([Mar79, Mar80|[Ail3, Theorem 3.3]). Up to permutations in G, all the
elements of M< appear ezactly once in the Markov tree T O

Corollary 4.3. The group I';; acts transitively on the set M°.

Proof. Let ¢,y € M°. There exist 71,7 € (G, GS) such that vy, 1y are vertices of T, by
Theorem 4.2. So, there exist 41,2 € T, such that 61(3,3,3) = y1& and 05(3,3,3) = 1y.
We have

’72_15261_1’}/113 =1. [l

Theorem 4.4 ([Ail3, Lemma 3.1]). The triples (3,3,3) and (3,6, 3) are the only vertices of
T with repeated numbers. O

4.3. Extended Markov tree. Define the extended Markov graph as the infinite graph
T, with vertex set M¢. We connect two vertices (a,b,c), (a',V,c") of T** by an edge if
(a,b,c) =vi(a',V, ) for some i € {1,2,3}, where v{ are Viete involutions.
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Theorem 4.5. The Viete group acts freely on the vertex set M of the extended Markov
graph with one orbit, M =17(3,3,3). Moreover T is a tree.
The graph 7 is called the extended Markov tree.

The proof of Theorem 4.5 requires the following lemma. Define the function m: M¢ — N,
which assigns to a triple (z,y, z) its maximal entry. It is known that

minm(M$) = 3,
and that such a minimum is achieved at (3,3, 3).
Lemma 4.6. For any (v,y,2) € ML\{(3,3,3)} there exists a unique Viete transformation
vf, with i € {1,2,3}, such that m(v§(z,y,2)) < m(x,y, z).
Proof. We have
Uf<x7y7z) = (yz_xay7z)7 Ug(xayaz) = (xal‘z_yaz)y Ug(%%z):(%yaﬂvy_z)
We claim that if m(z,y,2z) = z, then the transformation is v¢; if m(z,y,2) = y, then the
transformation is v§; if m(x,y, z) = z, then the transformation is v§.

To prove the first case we need to show that yz —z <z, 22 —y >z, vy — 2 > x.
We may assume that z < y < x. Consider the function ¢: R — R defined by

o(t) =t +y* + 2% — tyz.
We have p(z) = p(yz — x) = 0, so that
p(t) =t —=z)(t = (yz — ).
If yz—x > x, so that ¢(t) > 0 for all t < . Then on the one hand we have y < z, but on

the other hand we have

2 2P = o(y) = 2% + 22 — y?2 < 0.

2Ly = 2P+ 22 <3<

This shows that the assumption yz — x > x is contradictory. We also have
rZ2—Yy >3 —y > 2 >,
xYy —z2>3xr —z2>2x > 7.

This completes the proof in the first case. The other two cases are proved similarly. 0
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Corollary 4.7. Any (x,y,2) € M can be transformed to (3,3,3) by an element of the
Viete group I'j,. Consequently, M =1%,(3,3,3). O

Proof of Theorem 4.5. 1t is sufficient to prove that if v(3,3,3) = (3,3, 3) for some v € I'{,
then v =id. Any element v € I'{, is of the form

v=[]v k=123 (4.3)
k=1
Define ‘
j
m; :m[<vak)(3,3,3)], j=1,...,n
k=1
Define
M = max m, J:=min{j: m; = M}.
Jj=1,...,n
We claim that vf , = vf . Indeed, the assumption v;,,, # v;, would imply that m 41 >

my = M, which is impossible. Hence, we can decrease the number of factors in (4.3) by two.
By repeating the argument, we prove that all the factors in (4.3) cancel.
The same argument shows that the graph 7 has no loops. ([l

Corollary 4.8. For any,j the Viete group 'y, acts freely on the set M; with one orbit. [

5. DISTINGUISHED REPRESENTATIVES

5.1. *-Markov group orbit of initial solution. Let I'y;I be the orbit of the initial solution
I of the *-Markov equation (2.1) under the action of the *-Markov group I'y;. Any element
of T'y/1 is a solution of the *-Markov equation (2.1), see Proposition 3.8.

Proposition 5.1. The evaluation morphism Evgs, maps the set Iy I onto the set M€ of all
nonzero solutions of the Markov equation (1.1).

Proof. If @ € T'y/I, then Evg, (a) € M°, by Proposition 2.1. We check surjectivity. Let
x € M°. There exists v € I'§; such that x = ~ - (3,3,3), by Corollary 4.3. There exists
4 € T’y such that ¢y (5) = 7, by Proposition 3.14. We have that Evg, (7 - (s1, $3,51)) = @,
by Lemma 3.17. U

5.2. Initial solution and *-Viete group. Let p = (a,b,c) € M$. Let v? € I, be the
unique element of the Viete group such that v*(3,3,3) = (a,b,c). Define the distinguished
element fP € I'y/I by the formula

fr=o
where v? is considered as an element of the x-Viete group I'y,. Notice that evg (f?) = (a, b, ).

Lemma 5.2. For p',p € M, let VPP € T, be the unique element such that vP'*Pp = p'.
Then vP'? f? = ¥ where vP"P is considered as an element of Ty .

Proof. We have vP'P fP = oP' PyP] = vP'J | O
Theorem 5.3. Let p = (a,b,c), p' = (a',V,c) € M be such that the triple p' is a permu-

tation of the triple p. Then f? is obtained from fP by the same permutation of coordinates
of fP composed with a transformation from the group Gy.
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Proof. Let f7 = (f7, f2, f2) and f* = (f¥, f', f¥'). Let w be the permutation such that the
evaluation of wf¥ is (a, b, c), the same as the evaluation of f?.
The triple wf? lies in the orbit I'y,I. So

wf? = vgagrgol = vgagel = viul, (5.1)

where v € I'y, g; € G, g» € G4. Here we may conclude that ¢g; = 1, since (a,b,c) are
positive. We may also conclude that gsgo1 = g4I for some g4 € G4 since any permutation of
coordinates of the initial solution (s1, $1/s3, 1) can be performed by a transformation from
(4. On the other hand, we also have

P =wl, (5.2)
where v in (5.2) is the same as in (5.1). We also know that vgy = gjv, for some ¢} € G4, by
Proposition 3.9. Hence wfP = vjyl = gjvl = g} f?. This proves the theorem. U

Theorem 5.4. Let p = (a,b,c) € M. Let p' = (a',V,c) € M€ be such that (a',V', ) is
obtained from (a,b, c) by a permutation and possibly also by change of sign of two coordinates.

Let ' € Tyl be an element, whose evaluation is p'. Then f' is obtained from fP by an
element of (G1,Gs,Gy).

Proof. We have f' = gvl, where g € (G, G2, Gy) and v € I'y. The evaluation of v/ has to
be a permutation of (a, b, c),

Evs, (vI) = o(a,b,c), o€ (Gy.

Hence vl = fo(@b¢) By Theorem 5.3, fo(@b¢) = pgfl@be) 1 € G,. Hence f' = gvl =
guo f(@b) that proves the theorem. 0

6. REDUCED POLYNOMIALS SOLUTIONS AND *-MARKOV POLYNOMIALS

6.1. Degrees of a polynomial. Let f(sq, 2, s3) be a polynomial. We consider two degrees
of f: the homogeneous degree d := degf with respect to weights (1,1,1) and the quasi-
homogeneous degree q := Degf with respect to weights (1,2, 3).

Lemma 6.1. Let f(s1,S2,83) be a polynomial of homogeneous degree d not divisible by s3,
then
d.(5 511 )
S1,89,83) (= 8§ -, =, — 6.1
9lonm2,55) 1= 5§ f (37 (6.1)
is a polynomial of homogeneous degree d not divisible by s3. If additionally f(s1, se,S3) is a
quasi-homogeneous polynomial of quasi-homogeneous degree q, then g(si, S, 83) S a quasi-
homogeneous polynomial of quasi-homogeneous degree 3d — q.

Proof. If s{'5525%% is a monomial entering the polynomial f with a nonzero coefficient, then
1 5253 )
a1 .as d—(ai1+a2+a3)

85" 57785 is a monomial entering g with a nonzero coefficient. Hence g is a polyno-
mial.
d—(a1+az+
The homogeneous degree of s 52237 (M1+22+93) ouals d — as. Hence deg g < d.
2 51753 3

Since f is not divisible by s3, there is a monomial s}'s5* entering f. Hence the monomial

S9! s?ngf(aﬁ”) enters g and has homogeneous degree d. Hence degg = d.
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Since deg f = d, there is a monomial s{'s5?s5* entering f such that a; + a2+ a3 = d. Then
the monomial s3!s%2s3 (“9273) — 1492 enters g and hence g is not divisible by s.

ai ,a2 .a3

If additionally all monomials s]'s5°s5° of f have the property a; + 2as 4 3as = g, then the

corresponding monomials s3s%2s4 (@ 192T9) of o have the property 2a; + as + 3(d — (a1 +
a2+a3)):3d—q. O]
The polynomial g will be denoted by u(f). Clearly
evs,(f) = evs,(9), 1 (f) = f. (6.2)
The polynomials f, g are called dual. The bi-degree vectors of dual polynomials are
(d.q),  (d,3d—q). (6.3)

The linear transformation
7? — 72, (d,q) — (d,3d — q),
is an involution with invariant vector (2, 3) and anti-invariant vector (0, 1).

It is convenient to assign to the polynomial f the 2 x 2 degree matriz

d d
My = (q 3d — q> : (6.4)
whose columns are the bi-degrees of f and p(f). Then
d d d d 0 1
M) = <3d_ q q) - (q 3d — q) (1 O) = M;P, (6.5)

where P is the permutation matrix.

6.2. Transformations of triples of polynomials. Consider a triple f = (f1, f2, f3) of
polynomials fi, fo, f3 in s1, S, s3 such that

(1) each f; is not divisible by s,

(2) each f; is a quasi-homogeneous polynomial with respect to weights (1,2,3),

(3) denote by (d;,q;) the bi-degree vector of f;, then

(di,q1) + (d3; g3) = (da; g2)- (6.6)
Such a triple (fi, fa, f3) is called an admissible triple.

Equation (6.6) is equivalent to the equation

My, + Mg, = My, . (6.7)

Define new triples
Lf = (p(f1), u(fr) fo = 55 fo, f2), (6.8)
Rf = (fa, fon(f3) — 5g3f17M(f3))- (6.9)

The transformation f +— Lf is called the left transformation of an admissible triple f,
because of the new first and second terms of Lf are on the left from the surviving term fs.
Similarly the transformation f +— Rf is called the right transformation, because of the new
second and third terms of Rf are on the right from the surviving term fs.
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Theorem 6.2. Let f = (fi, fo, f3) be an admissible triple of polynomials with bi-degree
vectors ((dy, q1), (d2, q2), (ds,qs3)). Then the triples Lf and Rf are admissible. The bi-degree
vectors of Lf are

((d1,3dy — qu), (dy + d2, 3dy — q1 + q2), (d2, ¢2)) (6.10)
and the bi-degree vectors of Rf are
((d2, g2), (dy + d3, g2 + 3ds — g3), (d3, 3d3 — q3)). (6.11)

Proof. Clearly the polynomials zu(f1) fo — s fs, fauu(fs) — 5 f1 are nonconstant and are not
divisible by s3. The homogeneous degrees of Lf are (di,d; 4+ da,dy). This follows from
Lemma 6.1 and admissibility of the triple f. For the quasi-homogeneous degrees we have

Deg(iu(f1)f2) = 3d1 — q1 + @2 = 3dy + g3 = Deg(s3" f2),

by Lemma 6.1. Hence pu(f1) fo—s% f3 is a quasi-homogeneous polynomial of quasi-homogeneous
degree 3d; — ¢1 + q2. The quasi-homogeneous degree of p(f;) is 3d; — ¢;. This proves the
statement for Lf. The argument for Rf is similar. U

Corollary 6.3. Let f = (f1, fo, f3) be an admissible triple of polynomials with degree matri-
ces (My, My, M3). Then the degree matrices of Lf and Rf are

(M, P, M1 P + My, M), (My, My + M3P, M3P), (6.12)
where P is the permutation matriz. O

6.3. Reduced polynomial solutions. Any solution of the x-Markov equation (2.1) can be
written in the form (f5, fo, f5), where f1, f2, f3 are Laurent polynomials. For any mq, ms € Z,
the triple

((s5" f1)*, 557 fo, (557 f5)")

is also a solution. Given a solution (ff, f2, f5) there exist unique mj,ms € Z such that
ss' f1, s5 f3 are polynomials and each of s3" f1, s5 f3 is not divisible by s3.

A solution (f}, fa, f3) of (2.1) is called a reduced polynomial solution if each of fi, fo, f3 is
a nonconstant polynomial in $1, sy, s3 not divisible by s3. In this case we say that (f], fa, f7)
is a reduced polynomial presentation of the Markov triple (a,b, c) == Evs, (ff, f2, f3)-

For example,
(S; S% — 52, Si)a (337 82(3% - 32) — 8381, (S% - 32)*) (613)
are reduced polynomial presentations of the Markov triples (3,6, 3) and (3, 15,6).

Theorem 6.4.

(i) Let (a,b,c) be a Markov triple, 0 < a < b, 0 < ¢ < b, 6 < b. Then there exists a
unique reduced polynomial solution (fy, fa, f3) € U'ml, such that Evg, (ff, fa, f3) =
(a,b,c). Moreover, for that reduced polynomial solution (ff, fa, f5) the triple f =
(f1, fo, f3) is admissible.

(i) Let (f], fa, f3) be the reduced polynomial presentation of a Markov triple (a,b,c) with

0<a<b 0<c<b 6<b Denote f = (fi,fo,[f3). Let Lf = (u(f1), u(f1)fo —
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s8 fs £o) and Rf = (fa, fopu(fs) — 95 f1, u(f3)) be the left and right transformations

of f. Then

(u(f1)*, u(fo) fa = 55" fs, f5) (6.14)
is the reduced polynomial presentation of the Markov triple (a,ab — ¢,b) and

(f3. fon(fs) = s5°fr. p(f3)") (6.15)

is the reduced polynomial presentation of the Markov triple (b,bc — a,c).

Proof. First we prove the existence. The proof is by induction on the distance in the Markov
tree from (a, b, c) to (3,3, 3).

Let us find the reduced polynomial presentations in I'y/I for the Markov triples (3,6, 3),
(3,15,6). We transform the initial solution as follows,

I = (s1,55,81) — (85,57 — 59,57) = (52/53,57 — 89,5}

> (89,57 — 89, (5351)%) > (85, s9(s% — 59) — 8351, (52 — 52)%).
The triples
(s7,81 = s2,81), (53, 82(51 — s2) — 5351, (51 — 52)") (6.16)

are desired reduced polynomial presentations of (3,6,3) and (3,15,6). For example, the
polynomials sg, so(57 —s9)—$351, 52 — $5 are quasi-homogeneous of quasi-homogeneous degrees
(2,4,2) with 2 + 2 = 4 as predicted and of homogeneous degrees (1,3,2) with 1 + 2 = 3.
These three polynomials form an admissible triple.

Now assume that a Markov triple (a,b,¢), 0 < a < b, 0 < ¢ < b, 6 < b, has a reduced
polynomial presentation (fy, fa, f), where (fi, fo, f3) is an admissible triple. Then

(F7s oo 3) = ((f1) /55, fo, £5) = (u(fr), fou (55 £3)7) = (u(F1)", (1) fo — 850 fs, f3) (6.17)

and

(f5s oo £3) = (FF foo i f) /55°) v (552 1), fou il f)) = (fs mlf) fo — 857 fuo pu(f3)") (6.18)

are transformations by elements of the Markov group I'y;. The triple (u(f1)*, u(f1)f2 —
s fs, f3) presents the Markov triple (a,ab — ¢, b), and the triple (f5, u(fs)fo — 52 f1, u(f3)*)
presents the Markov triple (b,bc — a,c). These two triples satisfy the requirements of part
(ii) of the theorem.

Let us prove the uniqueness. Let (f], fa, f5) and (h}, he, h%) be two reduced polynomial
presentations of a Markov triple (a,b,c¢) with 0 < a < b, 0 < ¢ < b, 6 < b. By Theorem 5.4
(hy, he, hY) is obtained from (f}, f2, f3) by a transformation of the form gog194, where g; € G;.
It is clear that a transformation g, cannot be used because it will destroy the property of
fifofs to be not divisible by s3. We also cannot use g; because it will destroy the fact
that (fy, f2, f3) represents a positive triple (a,b,c). If the numbers a, b, c are all distinct,
we cannot use go. If (a,b,c) = (3,6,3), the presentation (s}, s? — so,s}) is symmetric with
respect to the permutation of the first and third coordinates. The theorem is proved. 0
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6.4. *-Markov polynomials. We say that a polynomial P(sy,ss,s3) is a x-Markov poly-
nomial if there exists a Markov triple (a,b,¢), 0 < a < b, 0 < ¢ < b, 6 < b, with reduced
polynomial presentation (fy, fa, f3) € I'p 1, such that P = fs.

In particular, this means that P is quasi-homogeneous and is not divisible by ss.

The polynomial s, will also be called a *-Markov polynomial.

We say that a polynomial Q(sy, S2,s3) is a dual x-Markov polynomial if @) is not divisible
by s3 and p(Q) is a x-Markov polynomial.

In particular this means that () is quasi-homogeneous.

For example, s? — 89, S2(s7 — S3) — S351 are *-Markov polynomials, since they appear as
the middle terms in the reduced polynomial presentations in (6.13) and s3 — sys3, s1(s3 —
$183) — S359 are the corresponding dual *-Markov polynomials.

Corollary 6.5. Let (a,b,c) be a Markov triple with 0 < a < b, 0 < ¢ < b, 6 < b. Let
(ff, fo, f3) € Tpl be the reduced polynomial presentation of (a,b,c). Then each of fi, fs is
either a x-Markov polynomial or a dual x-Markov polynomial. Moreover, if (g1, g2, g3) € Tal
is any presentation of (a,b,c), then

g1 = s u(f1), 9o = S5 fo, g3 = s fa), (6.19)

for some ki, ko, ks € Z, and hence each of g1, g3 is either a x-Markov polynomial or a dual
x-Markov polynomial multiplied by a power of s3, and gs is a x-Markov polynomial multiplied
by a power of ss.

Proof. The first statement follows from Theorem 6.4 and the second statement follows from

Theorem 5.4. U
Remark 6.6. Consider the three versions of the x-Markov equation,
aa* + bb* + cc* — abe = 38%3_8?, (6.20)
aa® 4+ bb* + cc* — ab*c = 38%3_5?, (6.21)
aa”™ + bb* + cc* — a*bc* = 39%3_8? (6.22)

The first of them is the *-Markov equation (2.1), the second was considered in the introduc-
tion, see (1.4) and [CV20]. The third is a new one. All of the equations are obtained one
from another by an obvious change of variables. For example, the third equation is obtained
from the first by the change (a,b,c) — (a*,b,c*). That is, if (f}, f2, f3) is a solution of the
x-Markov equation (6.20), then (fi, fa, f3) is a solution of equation (6.22).

Hence, by Theorem 6.4, for any Markov triple (a,b,¢), 0 < a < b, 0 < ¢ < b, 6 < b,
there exists a polynomial solution (fi, fo, f3) of equation (6.22), such that Evg_ (f1, f2, f3) =
(a,b,c).

7. DECORATED PLANAR BINARY TREES

7.1. Sets with involution and transformations. A set with involution and transforma-
tions is a set S with an involution 7 : S — S, 72 = idg, a subset 7' C S x S x S with a
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marked point t° = (¢9,19,t9) € T and two maps

L:T—T, (t1, b2, t3) > (7(t1), La(t1, 12, 83), t2), (7.1)
R:T—T, (t1,ta,t3) = (to, Ra(ty, t2,3), 7(t3)),

where Lo, Ry : T'— S are some functions.

A morphism ¢ : (S,T,t°, 7,L,R) — (S",T',t*, 7/, L', R") is a map S — S’, which com-
mutes with involutions and induces a map (7,°) — (7",t”) commuting with transforma-
tions.

Here are examples.

7.1.1. Let S be the set of all polynomials in Z[sy, so, s3] not divisible by s3 and T' C S* the
subset of all admissible triples. Let

9 = (s9,80(57 — 89) — 8351, 57 — 83), (7.2)
T S=5 [ u(f), (7.3)
L 2 T—=T,  (fi,fafs) = (1), m(f1) f2 = 85 fs, f2), (7.4)
R : T—-T, (f1, fo, f3) V= (fo, fan(f3) — S§3f1,u(f3)), (7.5)

where p is defined in Section 6.1.

7.1.2. Let S=C? and T C C? x C? x C? the subset of all triples of vectors w;, ws, w3 such
that w; + w3 = wy. Let

0 = ((172)7(374)’(272))7 (76)
T C*—C? (d,q) — (d,3d — q), (7.7)
L . T—>T, (wy, wa, w3) = (T(wy), T(wy) + we, wy), (7.8)
R : T—T, (w1, wa, w3) — (wa, wo + 7(w3), T(w3)). (7.9)

7.1.3. Let S be the set Mat(2,C) of all 2 x 2-matrices with complex entries and T C
Mat (2, C)? the subset of all triples of matrices My, Mo, M3 such that M; + Mz = M. Let

11\ (3 3) (22
"= ((2 1>’ (4 5)? (2 4>)’ (7.10)
7 Mat(2,C) — Mat(2,C), M MP, (7.11)
L :© T—T, (MM, M) (MP,MP + My, M,), (7.12)
R @ T—T, (MMM~ (M, M+ MsP, MyP). (7.13)

Let

= (1,-1,-2), (7.14)
T : C—=C, w = —w, (7.15)
L : T—T, (w1, we, w3) — (—wy, —wy + wa, wo), (7.16)
R : T-—T, (w1, wa, w3) — (wWa, Wy — w3, —ws). (7.17)
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7.1.5. Let S=C and T = C3. Let

t = (3,15,6), (7.18)
7 = idc (7.19)
L . T—-T, (a,b,c) — (a,ab — ¢, b), (7.20)
R : T—T, (a,b,c) — (b,bc — a,c). (7.21)
7.1.6. Let S=C and T = C3. Let

= (1,3,2), (7.22)
T = idc (7.23)
L : T—T, (a,b,c) — (a,a+b,b), (7.24)
R : T—T, (a,b,c) — (b,b+c,c). (7.25)

7.1.7. De-quantization. Let S be the set with involution and transformations in Example
7.1.1 and S’ the set with involution and transformations in Example 7.1.2. The map

0:S— S8, fr(deg(f),Deg(f)),

defines a morphism of the sets with involution and transformations.

We may think of that ¢ : S — S is a de-quantization of the set S with involution
and transformations as explained in Section 1.4.3. Namely, Let 51 = ce®"?, s = coe*™2P,
s3 = c3e®T3? where o, B are real parameters which tend to +o0o0 and c;, ¢y, c3 are fixed generic
real numbers. If f(sq,$92,53) is a quasi-homogeneous polynomial of bi-degree (d,q), then
In f(ce®?, c1e2*P c1etP) has leading term da + g independent of the choice of ¢, co, c3,
which may be considered as a vector (d, q).

Taking the leading terms of all quasi-homogeneous polynomials in formulas of Example
7.1.1 we obtain the 2-vectors in formulas of Example 7.1.2. For instance, the triple of leading
terms of the triple (sq, so(s% — 89) — 8351, 87 — 89) is the triple (o + 283, 3a + 40, 2a+ 23), cf.
(7.2) and (7.6).

7.1.8. Let S be the set with involution and transformations in Example 7.1.1 and S’ the
set with involution and transformations in Example 7.1.3. The map

p:8 =9 f— My,
where M see in (6.5), defines a morphism of the sets with involution and transformations.

7.1.9. Let S be the set with involution and transformations in Example 7.1.3 and S’ the
set with involution and transformations in Example 7.1.4. The map

p:8 =9, (an a12) = A1 — 22,
a1 a2
defines a morphism of the sets with involution and transformations.
7.1.10. Let S be the set with involution and transformations in Example 7.1.1 and S’ the
set with involution and transformations in Example 7.1.5. The map
p:S—9, f—=eve, (f),

defines a morphism of the sets with involution and transformations.
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FIGURE 2.

FIGURE 3.

7.1.11. Let S be the set with involution and transformations in Example 7.1.1 and S’ the
set with involution and transformations in Example 7.1.6. The map

p:S—9, f = deg(f),

defines a morphism of the sets with involution and transformations.

7.2. Planar binary tree. Consider the oriented binary planar tree, growing from floor, and
the domains of its complement, see Figure 2. The boundary of any domain of the complement
has a distinguished vertex with shortest number of steps to the root along the tree.

There are two initial domains, which touch the floor. In Figure 2 they are Dy and Ds.
The root of the tree is the distinguished vertex of the two initial domains.

The boundary of the left initial domain D; consists of the left half-floor and the infinite
sequence of edges [y,ls,..., see Figure 2. In the notation [, the letter [ means that the
domain D, is on the left from the edge, when we move from the root to this edge along the
tree, and k& means that it is the k-th edge counted from the root of the tree.

The boundary of the right initial domain D3 consists of the right half-floor and the infinite
sequence of edges 71,79, ..., see Figure 2.

The boundary of any other domain consists of two infinite sequences of edges ry,7s,. ..
and [y, (s, ..., see Figure 3.

Every edge of the tree gets two labels, a label [, from the left and a label r;, from the right.
We denote such an edge with labels by I,|r,. The first edge of the tree has labels [;|r. All
other edges of the tree have labels

l|7g or li |1 with k>1,
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FIGURE 4.

see Figure 3.

7.3. Decorations. Let (S,T,t°, 7, L, R) be a set with involution and transformations. First
we assign an element of the set T to every vertex of the planar binary tree different from
the root vertex, and then assign an element of the set S to every domain of the complement.
Thus the decoration procedure consists of two step.

Denote by v; the vertex of the tree surrounded by the domains Dy, Do, D3 in Figure 2.
We assign to the vertex v; the marked triple t° = (9,9, ¢3).

Let vy be any other vertex of the tree different from the root. Let p be the path connecting
v; and vy in the tree. The path is a sequence of turns p,p,_1 ...pap1, where p; is the turn
to the left or right on the way from v; to vy. We assign to vy the element ¢t € T obtained
from t° by the application of the sequence of transformations L and R, where we apply L if
p; is the turn to the left and apply R if p; is the turn to the right. For example, the element
LRt is assigned to the vertex v, in Figure 4.

This is the end of the first step of the decoration.

At the second step we assign to the initial domains Dy, D3 in Figure 2 the elements ¢9, 3,
respectively, where #), ¢J are the first and third coordinates of the initial triple (¢9,¢9,t3).

Let C' be any domain of the complement different from Dy, D3. Let v be the distinguished
vertex of the domain C, and t = (¢y, t5, t3) the element of T assigned to v. We assign to C
the element ¢5.

For example we assign the element tJ to the domain D, in Figure 2.
This is the end of the decoration procedure.

The decoration associated with (S, T,t°, 7, L, R) is functorial with respect to morphisms
of sets with involution and transformations.

Let us describe how to recover the element of T" assigned to a vertex from the elements of
S assigned to the domains of the complement.

Theorem 7.1. Let v be a vertex surrounded by domains Cy,Co,C5 as in Figure 4. Let
t1,ta,t3 be elements of S assigned to C, Cy, C3, respectively, at the second step of the decora-
tion. Let the edge entering the vertexr v has labels l,|ry. Then the element (797 (t1), t2, 7°71(3))
15 an element of the set T and that element was assigned to v at the first step of the deco-
ration.

Proof. The proof is by induction on the distance from v to the root. O

7.4. Examples.
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7.4.1. Let (S,T,t° 7, L, R) be the set of Example 7.1.1. Then the domains of the comple-
ment to the binary tree are labeled by *-Markov polynomials. The resulting decorated tree
is called the x-Markov polynomial tree, see Figure 5.

FIGURE 5.

The polynomials A;(s) are given by the formulas

Ay (8) = 9,

Ay(8) = so(s3 — 59) — 5183,

As(s) = 57 — sy,

Ay(8) = stsy — 5155 — 25753 + 5953,

As(8) = 5783 — 85 — 575953 + s1535 — 5953,

Ag(8) = 5353 — 5185 — 3528983 + 25553 + 5153,

Aq(8) = 5755 — 25755 + 55 — 575053 + 505553 + 5183 — 3575955 + 25355 + 5155,
Ag(8) = 5755 — 5255 — 575953 — 2555553 + 2515553 + 25153 + 575955 — 5255 — 5154,
Ag(s) = 5355 — 5155 — 2515355 + 8555 4 505952 + 2555252 — 515552 — 5158 + 5153,

Let v be any vertex. It enters the boundary of three domains, which we denote by
C1,Cy, Cy as in Figure 4. Let fi, f2, f3 be the x-Markov polynomials, assigned to the domains
C1, Oy, U5, respectively at the second step of the decoration. Let the edge entering the vertex
v have labels [,|r,. Then the triple of polynomials (7¢71(f1), fo, 7°71(f3)) is assigned to v at
the first step of decoration, and the triple of polynomials

(T ) o (P (f)))

is a reduced polynomial solution of the *-Markov equation (2.1).

7.4.2. Let (S,T,t°,7,L,R) be the set of Example 7.1.2. Then the domains of the com-
plement to the binary tree are labeled by 2-vectors with positive integer coordinates. The
resulting decorated tree is called the 2-vector tree, see Figure 6.

7.4.3. Let (S,T,t° 7, L, R) be the set of Example 7.1.3. Then the domains of the comple-
ment to the binary tree are labeled by 2 x 2-matrices with positive integer coordinates. The
resulting decorated tree is called the matrix tree, see Figure 7.
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FIGURE 7.

7.4.4. Let (S,T,t° 7, L, R) be the set of Example 7.1.4. Then the domains of the comple-
ment to the binary tree are labeled by integers. The resulting decorated tree is called the
deviation tree, see Figure 6.

7.4.5. Let (S,T,t° 7, L, R) be the set of Example 7.1.5. Then the domains of the comple-
ment to the binary tree are labeled by Markov numbers. The resulting decorated tree is
called the Markov tree, see the left picture in Figure 8.

7.4.6. Let (S,T,t° 1,L,R) be the set of Example 7.1.6. Then the domains of the com-
plement to the binary tree are labeled by positive integers. The resulting decorated tree is
called the Fuclid tree, see the right picture in Figure 8.

The decorated trees in Figures 6-8 can be obtained from the x-Markov polynomial tree
in Figure 5. Namely the 2-vector tree is obtained by taking the bi-degree vectors of -
Markov polynomials; the matrix tree is obtained by taking the degree matrices of x-Markov
polynomials; the deviation tree is obtained by assigning to a x-Markov polynomial with
bi-degree (d, q) the number

q— (3d—q) = 2q — 3d;

the Markov tree is obtained by applying the evaluation map evg_; the Euclid tree is obtained
by taking the homogeneous degrees of x-Markov polynomials.
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7.5. Do asymptotics exist? Having a decorated tree it would be interesting to study
asymptotics of the triples assigned to vertices along the infinite paths in the tree going from
root to infinity. In [SoV19, SpV17, SpV18] the Markov and Euclid trees were considered.
For any such a path the Lyapunov exponent was defined. The Lyapunov function on the
space of paths was studied. Relations with hyperbolic dynamics were established.

The interrelations of the triples assigned to vertices of the Markov and Euclid trees were
analyzed in [Za82] to study the growth of Markov numbers ordered in the increasing order.
More precisely, if (u,v,w) is a Euclid triple with « 4+ w = v, then the triple

a = 2cosh wu, = 2cosh v, ¢ =2cosh w (7.26)

is a solution of the modification of the Markov equation
a® 4+ b* + & — abe = 4, (7.27)
considered by Mordell [Mo53]. This observation was used in [Za82] to evaluate asymptotics

of Markov numbers in terms of asymptotics of Euclid numbers, see [SpV17].

Combining these remarks we observe a full circle of relations. We started with Markov
triples and upgraded them to triples of x-Markov polynomials; taking the homogeneous
degrees of x-Markov polynomials we obtained the Euclid triples; formulas (7.26) send us
to triples solving the modified Markov equation (7.27); and the triples solving equation
(7.27) approximate the true Markov triples. This circle of relations is a combination of
“quantizations” and “de-quatizations”.

7.6. Values of 2q — 3d.

Theorem 7.2. Let P be a x-Markov polynomial of bi-degree (d,q). Then |2q¢ — 3d| = 1 if
d is odd and |2q — 3d| = 2 if d is even. Moreover, the only triples of integers attached to
vertices of the deviation tree are the elements of the set

T°={(1,-1,-2), (-1,1,2), (-2,-1,1), (2,1,-1), (1,2,1), (-=1,-2,—1)}.

Proof. The statement is true for the triple t° = (1, —1, —2) assigned to the first vertex of the
deviation tree, see (7.14). Tt is easy to check that the set TV is preserved by the L and R
transformations in formulas (7.16) and (7.17). This proves the theorem. O
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Corollary 7.3. We have

q= Z%d +0(1) as d— oc. (7.28)

OJ
7.7. Newton polygons. Let P be a x-Markov polynomial of bi-degree (d,q). Let Np be

the Newton polytope of P. Recall that for each monomial s7*s3%s5*, entering P with nonzero
coefficient, we mark the point (ay,as,a3) € R?, and the Newton polytope is the convex hull

of marked points.

Since P is a quasi-homogeneous polynomial of degree ¢, the Newton polytope is a two-
dimensional convex polygon, lying inside the bounding polygon Ngqg ,

Nag = {(a1,a9,a3) € R® | a; + 2a3 + 3a3 = ¢; 0 < ay, a9, a3 < d}. (7.29)

We divide all coordinates by d and obtain the normalized Newton polygon Np inside the
normalized bounding polygon Ng,,

Ngg = {(a1,as,a3) € R* | a; + 2ay + 3a3 = q/d; 0 < ay,az,a3 < 1}. (7.30)

It is convenient to project the polygons Np and Ny, along the az-axis to R? with coordinates
ay, az and obtain the projected normalized Newton polygon Np inside the projected normalized
bounding polygon Ng,.

7.8. Limit d — oco. The Euclid tree shows the distribution of the homogeneous degrees of
x-Markov polynomials. The homogeneous degree d tends to infinity along the paths of the
planar binary tree from root to infinity. Along these paths we have ¢ — 3d/2. In this limit
the normalized bounding polygon N, turns into the quadrilateral N,

Ny = {(a1,a2,a3) € R’ | ay + 2a; + 3a3 = 3/2; 0 < a1,as,a3 < 1}, (7.31)

and the projected normalized bounding polygon ]\~fd7q turns into the projected quadrilateral
Noo, the convex quadrilateral with vertices (0,0),(3/4,0),(1/2,1/2),(0,3/4). See the pic-
tures of N, and N, in Figure 9.

Question. Could it be that for any infinite path from root to infinity, the projected nor-
malized Newton polygon Np tends in an appropriate sense to a limiting shape inside the
projected quadrilateral N7

We show that this is indeed so in the two examples of the left and right paths of the
planar binary tree, which are related to the #-Fibonacci and *-Pell polynomials discussed
in Sections 8 and 9. In the first case the limiting shape is the interval with vertices (0,0),
(1/2,1/2), see Section 8.3. In the second case the limiting shape is the whole projected
quadrilateral N, see Section 9.3.

7.8.1.  Any *-Markov polynomial P has a monomial of the form s;s5* or sy55* entering P
with a nonzero coefficient and has no monomials of the form s5*. This easily follows by
induction. Hence for any infinite path from root to infinity the point (0,0) is a limiting
point of the projected normalized Newton polygon Np.
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3
(07 1

1
(07 07 5)

(0,0) 2,0)

FIiGURE 9.

7.8.2. Elementary computer experiments show that the expected limiting shape of the
polygon Np along an infinite path is a 6-gon like in Figure 10, with width monotonically
increasing from 0, for the x-Fibonacci polynomials, to the maximal value, for the *-Pell
polynomials, when the path changes from the leftmost to the rightmost. This 6-gon is
symmetric with respect to the diagonal a; = as, and hence its width completely determines
the 6-gon. It looks like the speed of convergence to the limiting shape increases if the path
has many changes of direction from left to right and back.

a2

3
0,5

(0,0) (3,0
FIGURE 10.

7.9. Planar binary tree decorated by convex sets. The study of the limiting shapes
of Newton polygons is closely related to the following decorated planar binary tree.

7.9.1. Consider R? with coordinates a;,as. For a subset A C R? we denote by conv|[A] the
convex hull of A. We denote by p(A) the subset A reflected with respect to the diagonal
a1 = as. For d € Ry, we denote

dA ={dv | v e A}.
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For subsets A, B C R? we denote by A + B the Minkowski sum,
A+B={a+b|lac A, bec B}.
7.9.2. Define a set (S, T,t°, 7, L, R) with involution and transformations. Let S be the set

of all pairs (A, d), where A is a convex subset of R? and d a positive number. Define the
involution 7 by the formula

7SS, (Ad) e (u(A),d).

Let T C S? be the subset of all triples ((Ay,d;), (As, ds), (A3, d3)) such that dy = d; + ds.
We fix the initial triple

t0 = ((A(l)7 1)7 (Agv 3)7 (Ag7 2)) €T, (732)

where A{ is the point (0,1), AJ is the interval with vertices (1,0),(0,1/2), and A3 is the
triangle with vertices (1/3,0),(2/3,1/3),(0,2/3).
Define the left and right transformations by the formulas
L o T =T, ((A,dv), (A, d2), (A3, d3)) = ((1(A1), d1), (L2, di + d2), (As, d2)), (7.33)
R : T—=T, ((Aludl)a<A27d2)7<A37d3)) = ((A27d2>7(R27d2+d3>7(:u(143)7d3>>7 (734>

where

dy do ds
Ly, = A A A :
9 conv |:(d1 +d2,u( 1) + T4 2) U i 3} , (7.35)

d2 d3 dl
Ry — A A U84l
2 WWK@+@2+@+@M3O @+@1}
Cf. (7.4) and (7.5).

Having this set with involution and transformations we may consider the associated dec-
orated planar binary tree. The problem is to study the asymptotics of triples of convex
subsets of R? along the paths of the tree. Such asymptotics reflect the asymptotics of the
Newton polygons of the x-Markov polynomials.

Remark 7.4. The triple of convex sets in (7.32) are the projected normalized Newton
polygons of the triple (sq, so(s7 — s3) — 8351, 5 — So).

The L and R transformations in (7.33) and (7.34) are just the reformulations of the L and
R transformations of polynomials in (7.4) and (7.5) in the language of the their projected
normalized Newton polygons.

8. ODD *-FIBONACCI POLYNOMIALS

8.1. Definition of odd *-Fibonacci polynomials. The left boundary path of the Markov
tree corresponds to the sequence of Markov triples (3,15, 6), (3,39, 15), (3,102,19), ... , with
general term (3, 3¢o,11, 3¢2n—1), Where o, 11, Yo,—1 are odd Fibonacci numbers,

901:17 903:27 905:57 907:137 909:347 )
with recurrence relation

Pant3 = 3Pan41 — Pan—1- (8.1)
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We define the odd x-Fibonacci polynomials recursively by the formula
Fi(s) = sy, F3(s) = 53 — sy,
Fony3(8) = gnloni1(8) — s3Fon-1(8),
where g, = s5 if n is odd, and g, = s; if n is even. In other words we have
Finys = $1Fun1 — $3Fun 1, (8.4)
Finys = s2F 413 — $3Funy1 .
Lemma 8.1. We have evg, (Fani1) = 3¢2n11- O

The first odd *-Fibonacci polynomials are

2 2
= 5182 — 5183 — Sq,
3

Fy(s)
F5(s)
Fr(s) = 518y — 25753 — 5153 + 5283,
Fy(s) = s}s5 — 3578083 — 5155 + 5153 + 25583,

Fi1(8) = s1s3 — 4535953 — 5355 + 35253 + 3515553 — 5253,

Fi3(8) = s1s3 — Bsis5s3 — 5755 + 65359535 — 5155 + 4515553 — 35353 .
Theorem 8.2. For n > 1 the triple

(Gn—1: Fons1, Foy) (8.5)

is the reduced polynomial presentation of the Markov triple (3, 3waont1, 3¢P2n—1)-

Proof. The proof is by induction on n. The statement is true for n = 2, since
(97, F5, F5) = (55, 52(s7 — 82) — 5351, (57 — 52)")

is the reduced polynomial presentation of the Markov triple (3,15,6), see (6.13).
Assume that (¢! _,, Font1, F5,_;) is the reduced polynomial presentation of the Markov

triple (3,3¢2n41,39an—1). Denote f = (f1, fo, f3) := (gn-1, Fons1, Fon—1). Let Lf be the
triple defined in Theorem 6.4. By Theorem 6.4 the triple

Lf = (M(gn—ﬂ, M(Qn—1)F2n+1 — 53F5,_1, F2n+1)
= (gm InLoni1 — 83F5, 1, F2n+1)
= (g’m F2n+3, F2n+1)

is such that the triple (g7, Fon+t3, F5,, 1) is the reduced polynomial presentation of the Markov
triple

(3, 992041 — 3V2n—1, 3P2n+1) = (3,3(3¢2n+1 — V2n—1), 3P2n+1) = (3, 3V2n+3, 3P2n+1)-
This proves the theorem. 0

Corollary 8.3. The odd x-Fibonacci polynomials are x-Markov polynomials. 0



36 GIORDANO COTTI AND ALEXANDER VARCHENKO

Remark 8.4. There are many g-deformations of (odd) Fibonacci numbers. For example,
S. Morier-Genoud and V. Ovsienko [MO20] consider the odd Fibonacci polynomials for11(q),
defined by the relations

il = ¢ filg=1+q, (8:6)

fonrs = (1+q+ %) font1 — ¢ fonr. (8.7)
As V. Ovsienko informed us, our recurrence relation (8.3) turns into relation (8.7) under the
specification s; = sy = 1+ ¢ + ¢%, s3 = ¢>. Our initial conditions (8.2) turn into 1 + ¢ + ¢?,
(14+q+¢*)(q+ ¢*). Hence for any k the odd *-Fibonacci polynomials Fy1(s) evaluated at
s1=s3=1+q+q" s3=q" equals (¢ + ¢°) fors1(q).

8.2. Formula for odd *-Fibonacci polynomials.

Theorem 8.5. Forn > 0, we have

(8.8)
n . n—1 .
Fava(8) = 51 Z (2ni— Z> (—83)i(8182)n_i . Z (QTL —il — z) (—33)i57f_1_i83_i :
i=0 1=0
(8.9)
Finis(s) = s, zn: (2” +Z,1 B ’) (—s3)'sTT 17807 — 5y s <2ni_ Z) (—53)"(5150)" "
i=0 1=0

Proof. The proof is by induction. The formulas correctly reproduce Fy, F3. Then sy Fy,11 —
s3Fy,_1 equals

L ) n—1 .
2n —1 . , o —1—i ‘ ‘ |
O (7 Yt (i
=0 i=0
n—1 2n_1_2 1l zn_z_l
—S3 <Sl < . ) (—53)23?—133—1—1 — 89 Z ( ] ) (_83)1(8182)n—1—z) '
=0 ' =0 v
We have
" ) n—1 .
2n —1 . » o — 1 — i A
g ( ' )(_83)2(8182)71 ~ 9351 Z ( : )(—83) shisht
=0 ! i=0 ¢
"L (2n 41— , o
= S ( n + Z) (_83)18711+1—Z8721—z
i—0 t
and

5159 nzjl 2n—1—1 (_Sg)isn—l—isn—i — 535 nz‘i 2n—2—1 (_sg)i(slsz)n—l—i
i ! 2 i

=0 =0
" (on—i : .
= 852 ( . )(—83)1(5132)71 "
0

Hence, s1Fy, 11 — $3F 41 = Finis. The other identity is proved similarly. O



THE *-MARKOV EQUATION FOR LAURENT POLYNOMIALS 37

Corollary 8.6. For the ordinary Fibonacci integers we have formulae

n . n—1 .

e 3 G ISV R D Y i G e N )
1=0 =0

e = 3 (7 ) -2y () cayae, (s.11)
1=0 =0
" (n+1—i omalo9 N (20— oo

" — _1 Z3 n+1-27 _1 23271 21 812

ouss =3 (") ) S s e
" (2n+1—i iooma 2

Pints = Y ( @' >(—1) g2, (8.13)
=0

Proof. Formulae (8.10) and (8.12) follow from (8.8) and (8.9). Formulae (8.11) and (8.13)
easily follow from the identities

Pant2 = Pant+3 — Pant1,  Pantd = Pant3 T Pant2- O

8.3. Newton polygons of odd *-Fibonacci polynomials.

Lemma 8.7. The odd x-Fibonacci polynomials Fy, 11 and Fy, 5 are of bi-degree (2n+1,3n+
1) and (2n + 2,3n + 2), respectively. O
The Newton polygon Np,, ., of Fy, 1 is the convex hull of four points (n+1,n,0), (1,0,n), (n—

1,n+1,0),(0,2,n—1). The projected normalized Newton polygon Ng,, , is the convex hull
of four points

<n+1 n )( 1 0)<n—1 n+1)<0 2 )
n+1"2n+1/"\2n+1"" /" \2n+1"2n+1/"\"2n+1/

The limit of Np,,,, as n — oo is the interval with vertices (0,0) and (1/2,1/2).
The Newton polygon Npg,, , is the convex hull of four points (n+2,n,0),(2,0,n), (n,n +
1,0),(0,1,n). The projected normalized Newton polygon Np,, ., is the convex hull of four

The limit of Np,, , as n — oo is the interval with vertices (0,0) and (1/2,1/2), see Section
7.8.

8.4. Generating function. Introduce the generating power series of odd *-Fibonacci poly-
nomials,

F(s,t) =Y Fappr(s)t™ " (8.14)
n=0

Theorem 8.8. We have
S953t" +1° (83 — s183) + 3 (52 — %) — s1t

F(s,t) = . (8.15)

—s2t8 — (283 — sy89)t4 — 1
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Proof. Split the series F(s,t) as follows

ZF4k 10 s —|—ZF4k 5 ()t 3 (8.16)
n=0
]—'1(s,t) ng;,t)

From the recursive relation (8.2), we deduce

(1 + s3tM) Fi(s,t) —t2s1 Fi(s,t) + (1 + sst) Fo(s, t) —t*sy Fa(s,t) = Fit —F_ysst®,
~ 2 —_— —~~

where F_, = s5/s3, I} = s;. The terms marked by * have only powers t***1 with & > 0

The remaining terms have only powers %3 with k& > 0. We have a linear system
1+ s3tt —sot? Fi(s,1) Fit
( —sit2 1 +53t4) (f2(s,t)) - (—F_133t3> ' (8.17)
Hence
Fi(s.t) (s183 — s%)ﬁ) + 51t  Fsit) = So53t7 + (89 — S%)tj (8.18)
(sgth 4+ 1)7 — 51894 $189t% — (s3tt 4+ 1)
Equation (8.15) follows from (8.16) and (8.18). O
Corollary 8.9. For anyn > 0, we have
1 o2t
Foni1(8) = SR F(s,t). (8.19)
0
Remark 8.10. At s = s, the generating function F(s,t) reduces to
F(so,1) = 3—) =3(t+26° + 5"+ 13T +34t° + ...,
tt—3t2+1

the generating function of odd Fibonacci numbers multiplied by 3.

8.5. Binet formula for odd *-Fibonacci polynomials. In this section we consider the
generating function F(s,t) as a rational function of ¢ with coefficients depending on the
parameters s varying in a neighborhood of s,.

The poles of F(s,t) are the roots of the polynomial s3t% + (2s3 — s159)t* + 1.
We will use the roots of s3t* + (2s3 — s189)t + 1,

NI

5189 — 283 £ (5253 — 4518953)

at(s) := (8.20)

2
253

with a4 (sg) = 7ig\/g.

Introduce «y, aq, Bo, 51,71, Y2 by the formulas
t((s183 — s2)t* + s1) = aut® + apt,
t°(—sz + 57 — ss5t") = Put” + Sot?,
S35 4 (283 — s189)t + 1 = t® + 1t + 1.
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Then
£5 t t" + Bot?
f1(87 t) _ aq + 0450 ’ .FQ(S, t) _ 61 /Bf )
Yot® + itt + 1 Yot + ittt + 1
Theorem 8.11. We have
> aray + g aja_ + Qg Ak+1
Fi(s,t) = — ( + )t , (8.21)
kz:% a1 (2vay +m) T (29 +m)
= Bray + Bra_ + f
Fas,t) = - Z ( B o kot : - >t4k+3-
P (272a4 +m) a7 (2720 +m1)

Proof. We prove the first formula. The proof of the second is similar.
The roots of s3t® 4 (2s3 — s159)t* + 1 are

ba(8) = w"a (8)%, bipn(s) :=w"a_(s)7, n=1,2 34, (8.22)

=

where w = e™=1/2. We have Fy(s,t) = S0, ti‘&fg), where

Oélbn(8>4 + (7))
bn(8)?(872bn(8)* +471)

An(8) = resi—p, () F1(8,t) =

Hence

oo 8
An Oélb + (%))
= — —_— tm
T;); by (s)™ n;); by (8)™H3( 8725 (8)* +471)
_ f: ( a4 (8) + ag aja_(s) + ag ) th41
—\ayp(s)" (27204 (s) +71)  a—(8)** (2720 (s) + ) '
([l
Corollary 8.12. We have
a1ay + g aira_ + Qg
F4k 1(8) (823)
" T (2mas + ) AT (2yas + )
Fura(s) = Pras + Bo Bia_ + By
+ =- - .
ai (270 +m) T (2700 + 1)
If s is in a small neighborhood of s,, then |ay(s)| > |a_(s)| and
ara_ + ag Bra_ + By
Fia(s) ~ — . Fugs(s) ~ — ) (8.24)
" a1 (270 + ) ’ (270 4 )
E F. _
59 4k+3(8) ~ /Bla + /80 S1 4k+5(8) ~ 51 ad + o0 ) (825)
Fu(s)  Zaa_+ay Fui3(8) a_(Bra- + Bo)

as n — Q.
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Lemma 8.13. We have

prar+ 0o Q10+ + Qg
S9 = 51 . (826)
Q1a+ + Qg ax(Brax + Bo)
Proof. The proof is by direct verification.
OJ
8.6. Odd *-Fibonacci polynomials with negative indices. The relations
Finys = $1Fun1 — 83641,
Fanis = SoFunts — S3Funy -
can be reversed and written as
S9 1
F_(ang3) = — F_any1) — — F_an—1),
83 83
S1 1
F_tanys)y = — F(ang3) — — F_(any) -
S3 S3
This allows us to define the x-Fibonacci Laurent polynomials with negative indices.
Theorem 8.14. For any n we have F_o, 1 = (Fy,11)". O

For example, F} = sy, F.1 = (F})" = 2.

53

8.7. Cassini identity for odd *-Fibonacci polynomials. The odd *-Fibonacci numbers
satisfy the following identities:

Dot — Pont5Pomt1 = Popy1 — Ponts3Pon—1 =+ = —1.
Indeed, we have
Donis — Pont5Pmt1 = Pants(3Pamt1 — Pano1) — PonssPm41
= Vont1(3Pon+3 — Pants) — Pon+3Pon—1 = ()OgnJrl — P2n+3¥2n—-1 -
Theorem 8.15. The odd x-Fibonacci polynomials satisfy the following identities:
In1Fsn 5 — GnFonisFoni1 = $3(gnFa 1 — gn1FongsFan—1) = s ' (sis3 + 55 — s7s3) .
Proof. We have
Gni1Fm 3 — GnFoni5Font1 = Gni1 Fonsa(0nFont1 — $3Fon-1) — gnFonss Fonta

= gnF2n+1(gn+1F2n+3 - F2n+5) — 83Gn+1Fon13F0n—1
= 53(9nF22n+1 — Gn-1Fon43F5,-1)

and
GgoF}E — g 1 F 1 F3 = s3'(s7s3 + 55 — 5353) . O
Corollary 8.16. We have
F,, F, s252 — s353 — §3
F2n+3 F2n+1 F2n+3F2n+1
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Identity (8.27) evaluated at s = s, takes the form

Pon+5 N ©on+3 o 1

Ponts Pl PontsPonts
If s lies in a small neighborhood of s,, then the right-hand and left-hand sides of formula
(8.27) tend to zero as n — oo, see (8.24), (8.25), (8.26).

8.8. Continued fractions for odd *-Fibonacci polynomials. Consider the field Q(s)
of rational functions in variables s with rational coefficients. Consider a continued fraction
of the following form

by bs by
|:a’0;_7"'a_ ::a0+ by GQ(S)a
a as ag + —2——
a2t
a3+ by
a4+ﬁ
where ag, ..., a5 € Z[sy, s2, s3] and each of by, ..., bs is of the form
a a a
51'89°85°%, ay,ay € Ly, a3 € 4.
Similarly we define continued fractions [ao; %, cee Z—”] for any positive integer n.
n
For example,
) S1 S1 S1 S%Sg + 5152 + 5153
[SQa_a_} = S9 + 51 - .
So 83 S2+ 5, 5283 + S1
Theorem 8.17. Forn > 1 we have
F2n+3 N . —S83 —S3 —S83 —S83 —S9
= |9n; ’ [ ) ’ } .
Font1 In—1 Gn-2 g g0 S1

Proof. The formula follows from the recurrence relations for the *-Fibonacci polynomials. [

For example,

F5 —S83 —S2 53 53

- [gla ) } = 91— 5, — S22 — )

F3 Jgo  S1 9o — 3 51— 3

F7 . [g . —S3 —S53 —82] —g 53 — S3

™ 2 ) ) — Y2 s — °1 — 5- .

I g 9 s 9~ So— o om
S1 S1

Remark 8.18. Formulas (8.25) show that the continued fraction of Theorem 8.17 converges
to a an element of a quadratic extension of the field Q(s).

9. ODD *-PELL POLYNOMIALS

9.1. Definition of odd *-Pell polynomials. The right boundary path of the Markov
tree corresponds to the sequence of Markov triples (3,15, 6), (15,87,6), (87,507,6), ... , with
general term (3t9,_1, 3¢2,41,6), where g1, 19,1 are odd Pell numbers,

,lvz)l = ]-7 ¢3 = 5a ,QZ)B = 297 ¢7 = 1697 e

with the recurrence relation

Vants = 6Uany1 — op—1 . (9.1)
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We define the odd x-Pell polynomials recursively by the formula

Pl(S) = Sog, P3<S) = 8%52 — $183 — Sg, (92)
P2n+3(5) = th2n+1(S) - S§P2n_1(8) )

where h,, = s3 — 5183 if n is odd and h,, = s3 — sy if n is even. In other words we have

2 2
Pyyys = (81 - 52>P4n+1 - S3P4n71 )

Pinys = (85 — 5153) Pints — 83 Piny1 -
Lemma 9.1. We have evg,(Pani1) = 3ton11- O
The first odd *-Pell polynomials are
Pi(s) = s,

Ps(s) = 5255 — 5183 — 53,
2.3 _ 3 2.2 4
(8) = 5785 — s5s9853 — S953 + 5155 — Sy,
_ 5
(8) = 5185 + 5753 — 578983 + 575553 — 25755 — 3575053 + 5155 + 85 + 25553,

4.5 2.6 2.3 .2
5155 — 25785 + 55 — 518583 + 35555 + 3s° 3233 4535553 — 2505553

I J D

s
— 515585 + 8953 + 4815985 + 885953 — 25785 — s7sh .
Theorem 9.2. For n > 0 the triple
(PZ*n—lv P2n+17 h;kz—l) (93)
is the reduced polynomial presentation of the Markov triple (319, 1, 3Won11,6).

Proof. The proof is by induction on n. The statement is true for n = 1, since
(Py, Py, ) = (85, 50(51 — s2) — sas1, (s1 — 52)")

is the reduced polynomial presentation of the Markov triple (3,15, 6), see (6.13).
Assume that (Pj,_y, Pant1, b)) is the reduced polynomial presentation of the Markov

triple (312n—1,3%2n11,6). Denote f = (fi, f2, f3) = (Pan-1, Pony1,hn-1). Let Rf be the
triple defined in Theorem 6.4. By Theorem 6.4 the triple

Rf = (P2n+17 P2n+1,u(hnfl) - 5§P2n—1> ,u(hnfl)>
= (P2n+17 P2n+1h'n - 3§P2n717 hn)
= (P2n+1a P2n+37 hn)

is such that the triple (P51, Pants, hy,) is the reduced polynomial presentation of the Markov
triple

(3¢2n+17 181/}2714-1 - 32/}2n—17 6) = (3¢2n+17 3<6w2n+1 - w2n—1)7 6) - (3w2n+17 3w2n+37 6)
This proves the theorem. 0

Corollary 9.3. The odd x-Pell polynomials are x-Markov polynomials. 0]
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9.2. Formula for odd *-Pell polynomials.

Theorem 9.4. Forn > 0, we have

n . n—1 .
(2n — 1 (2n—1—1 X X
Pini1(8) = s9 Z(—1)1< . )(hohq)n 28;2:,1 — 51 Z(—l)l( 4 )h1(hoh1)n_z_15?+l .

1 1
=0

Paats) =5 S0 (1 Yoyt - S0 (3 ehay i

- ] 1
=0 =0

Proof. The proof is by induction. First one checks that the formulas correctly reproduce
Py, P;. Then hoPy,.1 — s3Py,_1 equals

n—1 .
2n—1—1 i 2
S9 Z ( . )ho(hohl)n 53— 5 Z ( ; )(hohl)n syt

=0

. n—1 .
(2n—1—1 i i i Zn—1—2 n—i— )
) Z(_1)1< ; >ho(hoh1)n 122 4 5y Z(—l) < ) > (hohq) LgZits,
=0

X 1
=0

We have
3 (2n L (-1 o
S9 (Z(—1)1< . >h0(hoh1)n_zsgl + Z(—l)zﬂ ( i >h0(h0h1)n—z—lsgz+2>
i=0 P
" (2n+1—
i=0

81 <§(_1)i+1 (2n —il - Z> (hohy)"~'s2Ht 4 Z ( 2) (hohl)nils§i+3>

=0
=51 (zn:(—w' (Q”i_ Z) (hohl)"isgiﬂ) .

=0

Hence, hoPy, 1 — $§P4n,1 = Pjn+3. The other identity is proved similarly. O
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Corollary 9.5. For the ordinary Pell numbers, we have

Yinp1 = i(—l) <2”i )62” % _ f(—1)i<2” _Z,i - 1> G221 (9.4)

i=0 =0
l & 20—\ o o " 20— 0\ o o
Yant2 = 52(—1) ( ; )62 2l —Z(—1) ( Z, )62 2 (9.5)
=0 =0
- 2n—1+1 n—3i - 2n — n—2i
VYany3 = Z(—l) ( . )62 i+l —Z(—l) ( Z_ )62 & (9.6)
=0 =0

2n —i+1 2
Vanya = 22 ( nol )62" 2l g = Z ( ni )62" 2 (9.7)
i #TT V c2n-2i
—32(—1)( Z, )62 2,
i=0

Proof. Formulas (9.5), (9.7) follow from the recurrence relation for Pell numbers
wn—i-l = 2¢n + ¢n—17 n = 1. l
9.3. Limiting Newton polygons of odd *-Pell polynomials.

Lemma 9.6. The odd -Pell polynomials Py,+1 and Py, 3 are of bi-degree (4n + 1,6n + 2)
and (4n + 3,6n + 4), respectively. O

The Newton polygon Np,, ., of Py,41 contains the points (0,1,2n), (2n,2n+1,0), (0,3n +
1,0),(3n,1,n). Hence the limit of Np,, , as n — oo contains the points (0,0), (1/2,1/2),
(0,3/4), (3/4,0). Therefore the limit of Np,,, is the projected quadrilateral Nu.

Similarly one checks that the limit of Np,, .5 a8 m — oo is the projected quadrilateral Nao,
see Section 7.8.

9.4. Generating function. Introduce the generating power series of odd *-Pell polynomials

= Poa(s)t* (9.8)

Theorem 9.7. We have
—5185t7 + (87 + s9) 83 — 515353) 17 + ((57 — 89) 52 — 5183) 3 + sot
S3t8 + (8383 — 518983 + 55 — s983 + 2834 + 1

P(s,t) = (9.9)

Proof. The proof is similar to the proof of the corresponding theorem on the odd Fibonacci
polynomials. O

Corollary 9.8. For any n > 0, we have

1 82n+1
(2n+ 1)1 92+,

Py i1(8) = P(s,t), (9.10)

where P(s,t) is given by (9.9).
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Remark 9.9. At s = s, the generating function P(s,t) reduces to
3(t—t3)
th—6t2+1

namely the generating series of odd Pell numbers multiplied by 3.

P(8,,1) = = 3(t + 5t° + 29t° + 169t" + 985¢Y + ...), (9.11)

9.5. Other properties of *-Pell polynomials. The *x-Pell polynomials have properties
similar to the properties of *-Fibonacci polynomials discussed in Section 8. In particular one
easily obtains a Binet-type formula like in Corollary 8.12.

As examples of properties of *-Pell polynomials we formulate the continued fraction prop-
erty and an analog of the Cassini identity.

Theorem 9.10. For n > 1 we have

Py - —s2 —s2 —s2 —s2 —5153}
Ponya n’hn717hn72’.”7 hi’ hy’ s .
O
Theorem 9.11. The odd x-Pell polynomaials satisfy the following identities:
hn+1P22n+3 — " PopysPopy1 = 8§(th22n+1 - hnflp2n+3p2n71)
=51 ((s% — 52)8383 — 51 (85 — s153)((s] — $2)82 — 3133)) .
O
10. *-MARKOV GROUP ACTIONS
In this section we study the action of the x-Markov group on C°® with coordinates
(a,a*, b,b*, ¢, c*). It is convenient to denote these coordinates by (z1, ..., xg).
10.1. Space C® with involution and polynomials. Consider C® with coordinates & =
(x1,...,26), involution
v CG — (C67 (l‘b T2, T3, T4, Ts, xﬁ) = (.ﬁUg, L1, T4,T3,Te, C("5)7
polynomials
H1 =TT + T3Ty + T5Tg — T1X3T5, H2 = T1T2 + T3T4 + T5T6 — T2TyTg.
The *-Markov group I'j; acts on C® by the formulas
>\i,j: T — ((—].)Z[Eh (—1)il’2, (—1)i+j1]3, (—1)i+j5(]4, (—1)j$5, (-1)JI6) s
o1: x — (T3, 14,21, Ta, T5, Tg),
09! T — ($17x2,$5,$6,$37$4),
T T — (—x9, —11, Tg, Ty, Ty — T1X5, T3 — ToTg), (10.1)
Ty: T — (x4, T3, To — T3Ts, T1 — Tylg, —Tg, —T5), (10.2

and the elements i, ; act on C% by the identity maps.
The action of the *-Markov group on C° commutes with the involution v.
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Lemma 10.1. The I'y-action preserves each of the polynomials Hy, Hy, and
V*Hl :HQ, V*H2:H1.

Hence the differential forms dHy,, dHs, dHy A dHsy are T yr-invariant, and dHy A dHs is v
anti-invariant. ]

Lemma 10.2. The holomorphic volume form

dV :=dxqy Ndxy N\ drs Adxy N\ des A dxg

is i j, 01,092 tnvariant and Ty, T2,V anti-invariant. O
Lemma 10.3. The differential 4-form
QO = T1T3 d.TQ AN dl’4 AN dl’5 AN dl’ﬁ + T124 dl‘g AN dl’g VAN dI5 A d.CL’G (103)

—x125 dxo A dxs Ndrg Ndrg — z1x6dxe N drs A dxg A dzs
4xoxszdry ANdxy Ndrs \Ndrg + xoxydry A\ drs Adxs A drg
—xoxsdry Ndxs \dry Ndrg — xoxgdry A drs A dry A drs
4235 dry Adreg Adey Adrg + x3x6dry A drg Adxg \dxs
4x4x5dry Adrog Ndrs Ndrg + xaxgdry Adao N drs A\ dxs .
is Nij, T1, T2 ‘nvariant and oy, 09,V anti-invariant.
Proof. The proof is by direct verification. For example, we have
71 = x5(xy — 125)d2y A dxg A dxs A dxg + x6(x3 — xox6)dxy A drg A day A drs
+a5(x3 — 29x6)(dry A drg A drg N\ drg — x1d2y A dxg A dxs A dg)
—x¢(ry — 175)(—dxy A dxe A dxg A drs — Todxy A dxe A dxs A dxg)
+2ox5(—x1(wedry A dxg A\ dxs A drg — dxy A dxs A dxs A deg) + xedry A deg A dxy A dzg
—dxy Ndxs AN dey N dxg) — xo(xy — 2125) (x6dxy A dog A dxs A deg — dxy A dxg A dxs A dxg)
+ao(x3 — Tox6)dry A dry A des A drg — voxe(—z6dry A drg A dxy A dcs
—zodzy A\ dxy N drs A dxg + dzy A dxg Adzy A dxs) + x1(xy — 2125)d2s A deg A des A dzg
+xi25(xsday A deg A dxg A deg + xideg A des A des A deg — dae A dzs A dag A dze)
+x1 (23 — Tox6)(x5dry A dwg A ds A dzg + dzg A dzy A dzs A dze)
—z126(x5(—dxy A drg A dxg A des — xedxy A dzg A dxs A drg) + dae A dxs A day A dzs
—zodxy N\ dxy A drs A dxg) = €.
See another proof of the lemma in Corollary 10.10. That other proof also provides reasons
for the existence of such a 4-form €. O
10.2. Casimir subalgebra. Denote
hi = x129, hgy = x314, hs = 2576, hs = 212375, hs = Tax4Ts, (10.4)
and h = (hq,...,hs). Then
hihohs — hyhs =0

and
H1:h1+h2+h3—h4, H2:h1+h2+h3—h5.
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Define the Casimir subalgebra C C C[x] to be the subalgebra generated by hy, ..., hs.

Theorem 10.4. The Casimir subalgebra is v and I"y; invariant. More precisely,
v:hw (hy, ho, hs, hs, hy),
71 : h— (hy, hg, ha + hihs — hy — hs, —hs + h1hs, —hy + hihg),
Ty : b= (ha, hy + hohg — hy — hs, hs, —hs + hohs, —hy + hohs),

ha, hi, hs, hy, hs),

hi, h, ha, by, hs),

and the elements A; j, i ; € I'ns fix elements of C point-wise. U

o1:h—(
th—(

10.3. Space C®> with polynomials. Consider C® with coordinates y = (y1,...,vs), and
involution

v C5 — (C57 (y17y27y37y47y5) — (y17y27y37y57y4)-

The *Markov group acts on C® by the formulas of Theorem 10.4. The *-Markov group
action on C® commutes with the involution v.

Denote
J=11Yoys —Yays, Sr=y1+Y2+ys—ys, J=vy1+y2+Ys —ys,
dW = dyy N\ dys N\ dys A dyy A dys.
Lemma 10.5. The polynomials J, Jy, Jo are I yr-invariant. We have
v J =J, v J = Ja, vy = J.

The differential form dW 1is 11, Ty invariant and oy,09,v anti-invariant. The differential
form dJ NdJy NdJy is Ty, Te, 01,09 tnvariant and v anti-invariant. O

Let Y = {y € C° | J(y) = 0} be the zero level hypersurface of the polynomial J. The
hypersurface Y has a well-defined holomorphic nonzero differential 4-form at its nondegen-
erate points, w = dW/dJ, called the Gelfand-Leray residue form. It is uniquely determined
by the property

AW = dJ A w. (10.5)

For example, if at some point ¢ € Y we have 22 (q) # 0, then at a neighborhood of that

. oy1
point

1 1
w = 57dys A dys N dys N dys = ——dya N dyz N\ dys N dys
o Yoly3

with property (10.5).

Corollary 10.6. The form

1
w = —dyg N dyg A dy4 A dy5,
Y23

restricted to 'Y, extends to a nonzero differential 4-form on the reqular part of Y. That form
18 T1, To thvariant and o1, 09,V anti-invariant. O
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Consider the map F : C® — C® defined by the formulas
Y1 = T1X2, Y2 = T3xy, Y3 = Ts5Te, Y4 = T1T3T5, Y5 = T2X4Ts- (10.6)

Lemma 10.7. We have the following statements:

(i) The map F commutes with the actions of the *-Markov group on C® and C>.
(ii) The Casimir subalgebra C C Clx] is the preimage of the algebra Cly] under
the map F.
(iii) The image of F lies in the hypersurface Y . O

Corollary 10.8. The preimage F*w of the differential form w under the map F is Ty, Ty
mwvariant and o1, 09,V anti-tnvariant. [

Lemma 10.9. We have F*w = Q, where Q is defined in (10.3).

Proof. The lemma easily follows by direct verification from the formula
d d d d
P = (B dmy, (d doy (10.7)
T3 L4 Ts T
A\ <x3x5dx1 + x1x5d23 + xlacgdx5) A (ac4x6dx2 + Toxgdry + x2$4dx6).
O

Corollary 10.10. The differential form €2 is 1y, 7o invariant and oy, oo, v anti-invariant. [J

Cf. Lemma 10.3.

11. POISSON STRUCTURES ON C8 anDp C°
11.1. Nambu-Poisson manifolds.

Definition 11.1 ([Ta94]). Let A be the algebra of functions of a manifold Y. The manifold
Y is a Nambu-Poisson manifold of order n if there exists a multi-linear map

{,...,}:A®" = A,
a Nambu bracket of order n, satisfying the following properties.
(i) Skew-symmetry,
{f1> sy fn} = (_1)6(0){f0(1)7 ceey fo(n)} 5
forall fi,...,f, € Aand o € S,,.
(ii) Leibniz rule,
Uifes fao s fasad = [idfos foo ooy fua b + ol 1 fa s fain s
for all fi,..., fur1 € A.
(iiii) Fundamental Identity (FI),
{fi... s fomr Aot = fomn b 920 g0 (11.1)
+{917{f1;---7fn—1792}7937-~-,gn}+---
+ {917 <oy On-1, {fla s >fn—1agn}} )
for all fi,..., fu_1,91,---,9, € A.
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In particular, for n = 2 this is the standard Poisson structure.

Remark 11.2. The brackets with properties (i-ii) were considered by Y.Nambu [Na73],
who was motivated by problems of quark dynamics. The notion of a Nambu-Poisson mani-
fold was introduced by L. Takhtajan [Ta94] in order to formalize mathematically the n-ary
generalization of Hamiltonian mechanics proposed by Y. Nambu. The fundamental identity
was discovered by V. Filippov [Fi85] as a generalization of the Jacobi identity for an n-ary
Lie algebra and then later and independently by Takhtajan [Ta94] for the Nambu-Poisson
setting.
The fundamental identity is also called the Filippov identity.

The dynamics associated with the Nambu bracket on a Nambu-Poisson manifold of order
n is specified by n — 1 Hamiltonians Hy,..., H,_1 € A, and the time evolution of f € A is
given by the equation

%: {Hi,... ,Huy 1, f}. (11.2)

Let ¢; be the flow associated with equation (11.2) and U, the one-parameter group acting
on Aby f=Ulf) = fogp.

Theorem 11.3 ([Ta9%4]). The flow preserves the Nambu bracket,

U{fis-- o fu}) = {Ue( 1), Ue(fa)}) (11.3)
forall f1,..., f, € A. O

A function f € A is called an integral of motion for the system defined by equation (11.2)
if it satisfies {Hy,..., H,_1, f} = 0.

Theorem 11.4 ([Ta94]). Given Hy, ..., H,_1, the Nambu bracket of n integrals of motion
15 also an integral of motion. 0

These two theorems follow from the fundamental identity.

11.2. Examples. An example of a Nambu-Poisson manifold of order n is C* with standard

coordinates 1, ..., x, and canonical Nambu bracket given by
{fl, ey fn} = detmzl <8_:L‘]> . (114)

This example was considered by Nambu [Na73]. Other examples of Nambu-Poisson man-
ifolds see in [CT96, Ta94]. See also [BF75, Ch96, DT97, GM00, OR02].

It turns out that any Nambu-Poisson manifold of order n > 2 has presentation (11.4)
locally.

Theorem 11.5. Let Y be an m-dimensional manifold which is a Nambu-Poisson manifold
of order n, m = n > 2, with bracket {,..., }. Let x € X be a point such that {,..., } is
nonzero at x. Then there exists local coordinates 1, ..., Zy, in a neighborhood of x such that

{fi,.. . fu} = dethﬂ(g_i) '
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This statement was conjectured by L. Takhtajan [Ta94], proved in [AG96, Ga96]. It was
discovered eventually that the theorem is a consequence of an old result in [We23]|, reproduced
in the textbook by Schouten [Sc89], Chap. II, Sections 4 and 6, formula (6.7). See on that
in [DESTO7).

11.3. Hierarchy of Nambu-Poisson structures. A Nambu-Poisson manifold structure of
order n on a manifold X induces an infinite family of subordinated Nambu-Poisson manifold
structures on X of orders n — 1 and lower, including a family of Poisson structures, [Ta94].

Indeed for Hy, ..., H, ) € A define the k-bracket {,..., }y by the formula
{hi,...;¢hw}uw ={Hy,...,Hy g, h1,..., h}. (11.5)

Clearly, the bracket {,..., }y is skew-symmetric and satisfies the Leibnitz rule. The funda-
mental identity for {,..., }5 follows from the fundamental identity (11.1) for the original
bracket.

For example, for n = 6 and k£ = 4, the fundamental identity for the bracket
{h1, ha, hs, hat g, g, = {Hy, Ha, h1, ho, hs, hy} (11.6)
and 7 functions uy, ug, us, vy, v9, v3, vy follows from the fundamental identity for n = 6 and
11 functions fi, f2, f3, f1, f5, 91, 92, 93, 94, g5, g6 it
(f1, f2, f3, far f5, 915 92, 93 9> 95, G6) = (H1, Ha, uy, s, uz, Hy, Ha, vy, 02,03, 04) |

The family of subordinated k-brackets, obtained by this construction from a given n-
bracket, satisfy the matching conditions described in [Ta94].

Example. Consider C? with coordinates a, b, ¢ and canonical Nambu bracket of order 3,

dfiy Ndfs Nd
(o 5} = TLLD R

The braid group Bs acts on C? by the formulas,
7 : (a,b,¢) — (—a,c,b—ac),
T : (a,b,¢) — (bya — be, —c) .

The polynomial H = a? +b? + ¢ — abc is braid group invariant. The subordinated 2-bracket
{h1,ho}y = {H, hy, ha}

is the braid group invariant Dubrovin Poisson structure on C?,
{a,b}yg = 2¢ — ab, {b,c}y = 2a — be, {c,a}y = 2b— ac.

11.4. Poisson structure on C°. Let us return to the space C® with involution v, two
polynomials Hy, H,, the holomorphic volume form dV', differential form 2, considered in
Section 10.

On C° consider the canonical Nambu bracket of order 6,

{f1,...,j’6}:dflAdf?/\df:a/\df4/\df5/\dfG7

o (11.7)
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and associated brackets

dHy N dHsy N dfy N dfs A dfs A d,
{f1. o f3 fudamm, = — 2 J;V ERALE f4, (11.8)
QA dfy A dfs
= "= 11.9

{fh f2}Q AV ( )
Theorem 11.6. The Nambu bracket{ ,..., }u, n, defines a Nambu-Poisson manifold struc-
ture on C° of order 4. The structure {, ..., Yu, 1, 1S Nij, 01,09,V tnvariant and 71, Ty anti-
mvariant.
Proof. The theorem is a corollary of Lemmas 10.1 and 10.2. 0

Theorem 11.7. The bracket { , }q defines a Poisson structure on C5. The Poisson structure
{, }a is \ij, v invariant and T, T, 01, 02 anti-invariant.

Proof. By formula (10.7), the form 2 is the wedge-product of four differentials. Hence the
bracket {, }q defines a Nambu-Poisson manifold structure on C° of order 2. The invariance
properties of it follow from Lemmas 10.2 and 10.3. 0

Lemma 11.8. The Poisson structure {, }q is log-canonical. The Poisson brackets {x;, x;}q
are given by the following matrix,

0 0 —X1T3 T4 T1xs —X1Te
0 0 Tol3 —ToXy —T2Tsy Tolg
T1T3 — T3 0 0 —I3T5 T3Lg
—X1T4 T2y 0 0 TyTx — Xy Tg
—X1T5 T2T5 I3y —TyT5 0 0
T1T¢ —Toxg —T3Tg TaZlg 0 0

Proof. Explicit computations give
QANdry Ndry =0,
QNdxy Ndrs = —x123dV,
QANdry Ndry = 124 dV,
QANdxy N\drs = x125dV,

and so on. 0

Lemma 11.9. For any f € Clz] and h € C, we have {f,h}q = 0. In particular, {f, H1 }q =
{f. Hato =0 for any f € Clz].

This statement justifies the name of the Casimir subalgebra for the subalgebra C C Clx].

Proof. The equalities {z;,h;}q = 0,1 =1,...,6, j = 1,...,5, are easily checked directly.
The statement also follows from the fact that the image of F lies in Y and w is a top degree
form on Y. O

Lemma 11.10. The symplectic leaves of the Poisson structure {, }q are at most two-
dimensional and lie in fibers of the map F'. OJ

11.5. Remarks.
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FIGURE 11.

11.5.1. The log-canonical Poisson structure {, }o can be encoded by the quiver in Figure
11. It would be interesting to determine if some of the x-Markov group transformations can
be obtained as a sequence of mutations in the cluster algebra of that quiver. We were able to
represent in this way only the action of the permutations o1, 0. To obtain ¢; one needs to
mutate the cluster variables at vertex 1, then at vertex 3, then at vertex 1 and so on as in the
sequence 1313124242 (10 mutations). The permutation o9 is obtained by the sequence
of mutations 3535346464. Cf. [CS20], where the braid group action was presented by
mutations for the A, quivers.

11.5.2.  We say that a Poisson structure on C° is quadratic, if the {;, x;} are homogeneous
quadratic polynomials in .

Lemma 11.11. The Poisson structure {, }q is the unique, up to rescaling by a nonzero
constant, nonzero quadratic Poisson structure on C® having both H, and H, as Casimir
elements.

Proof. Let {x;,z;} = >, Qffxrr; with unknown coefficients @} € C. Assume the skew-
symmetry of {-,-}, and that both H; and H, are Casimir elements. This gives a system
of linear equations for Qf]l A computer assistant calculation shows that the matrix of
coefficients of that system has rank 1, and the space of solutions is spanned by the Poisson
tensor {, }q. O

11.5.3. Let {z;,2;} = Q;;(x) be a polynomial Poisson structure on C°® having Hy, Hy as
Casimir elements. Expand the coefficients Q;(x) at the origin, Qy;(z) = S.0_, Pt
fj € C. A computer assistant calculation shows that Qf, ;= 0foralli,j k.

11.5.4. A computer assistant calculation shows that the Poisson structure {, }q is the
unique, up to rescaling by a nonzero constant, nonzero log-canonical Poisson structure on
C®, which remains to be log-canonical after the action on it by any element of the braid
group Bs.

11.6. Poisson structure on C°. Consider C° with coordinates y = (y1,...,¥s), and objects
discussed in Section 10.3.
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Consider on C® the canonical Nambu bracket of order 5,

{fr, o s = dfv A\ dfa N dfs \dfs A dfs

dW ’
and the associated bracket
dJ NdJy NdJy Adfy A dfs

U folona, = dW

Theorem 11.12. The bracket {, };7 7, defines a Poisson structure on C* with Casimir
elements J, Ji, Jo. The Poisson structure {, };1,.5, S Nij, T1, Ta, V invariant and oy, 09 anti-
mvartant.

(11.10)

(11.11)

Proof. The theorem follows from Lemma 10.5. U
Introduce new linear coordinates on C®, (uy, ug, us, ug, us) := (Y1, Y2, Y3, J1, J2).
Lemma 11.13. The Poisson brackets {u;,w;}j .., are given by the formulas:
{ur, ust sy, 0 = urug — 2(uy + ug + ug) + ug + us,

{Ug, Ug}JJl,JQ = U2U3 — 2(’&1 + (5 + Ug) + Uy + Uus,

{Ug, ul}JJl,J? = Usu; — 2(U1 + U2 =+ U3) —+ Uy -+ Us,
and {ui, u4}J7J17J2 = {U,i7 u5}J’J17J2 =0 fOT’ all 1. [

Notice the similarity of these formulas with Dubrovin’s formulas (11.7). Similarly to
Dubrovin’s case the linear and quadratic parts of the Poisson structure {, }; . s, form a
pencil of Poisson structures, that, is any linear combination of them is a Poisson structure
too.

Remark 11.14. It would be interesting to compare the Poisson structures of this Section
11 with numerous examples in [OR02].

12. *-ANALOG OF HOROWITZ THEOREM

In this section we discuss analogs of the Horowitz Theorem 1.4.

12.1. Algebra R and r-endomorphisms. Let @ = (z1,...,26). Define an involution v
on the polynomial algebra R := Z[s, 59, 55 '|[x] as follows. For an element
f= Z Ay et e aPait et gt Aq € Z[sy, 59,55,
aeN©6
define

vf= E Al xPaqt gt el st rg®.
acN6

A 7Z[s1, 59, 53" ]-algebra endomorphism ¢: R — R is called a v-endomorphism if

ewf)=velf), [feR.

If ¢ is invertible, then ¢ is called a v-automorphism of R. The group of v-automorphisms
of R is denoted by Aut,(R).
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There is a one-to-one correspondence between v-endomorphisms of R and triples of poly-
nomials (P, Q, R) € R3. Such a triple defines a v-endomorphism

ZL‘1I—>P, l‘gi—>Q, 1‘5'—>R,
o> vP  xy—vQ, x6+— VR.

In what follows we often define a v-endomorphism by giving a triple (P, Q, R).

12.2. Markov group of rv-automorphism. Consider the following four groups of
v-automorphisms of R:

Type I. The group G3** of v-automorphisms generated by transformations

Ai,j: T — (—1)i.771, T3 — (—1)i+j333, Ty > (—1>j375, ’l,] € ZQ.

Type II. The group G5 of v-automorphisms generated by transformations,
Y1 ox xr3, X3+r» Ty, Istr> Ts,

Yo I X1+ Ty, T3> Ty, Tyt I3

Type III. The group G5 of v-automorphisms generated by transformations
Ty @ 21— —x9, T3 > Tg — T1T3, Ty — Ty,
Ty : 21— x4 — 2175, T3 > o, Ts — —Tg.
We have T TyT; = TyT;Ts.
Type IV. The group G§"* of v-automorphisms generated by transformations
M; ;1 = s3'my, x5 séﬂxg, T5 > sgj:cg,, 1,7 € Z.

Define the x-Markov group T3} of v-automorphisms of R as the group generated by
Gzitut7 G;ut, G?);ut7 Giut'
Define the Viéte v-involutions Vi, Va, V3 € T'3% by the formulas

Vi Ty > T3T5 — T2, T3 > Ty, T5 — Tg,
Va: Ty > Ta, T3 > T1T5 — Xy, T5 > Tg,
Vs T o, T3 > Ty, Ts > T1X3 — Xg.

We denote by I'8"* the group generated by Vi, Vs, V3. We have
Vi=MAg Xy Ty, Vo= A ¥p Ty, Va=Ai1 Ty 2.
Theorem 12.1. We have the following identities:
YA X1 = Nigjg s
Yol Y0 = Niitj,
Vi = Vs, 2oViXe= V1,
2 Vox =W, 2oVoXie=Vj,
Yy V3t = Vs, 2o V33o= Vs,
A Vil = Vi 1=1,2,3,
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A M A =M, k.leZy, 1,j€ELZ,
M3 =My, YoM, 3 =M; g,
ViM, ;jVie =M_; 5, k=1,2,3.
Proof. These identities are proved by straightforward computations. 0

Theorem 12.2. We have an epimorphism of groups v: Ty — T35 defined on generators by

L()\@j) = Ai,ja L(O‘i) = Ei) L(Uj) = V}, L(,um) = Mi,j~ (121)
Proof. Let us show that the morphism ¢: Ty — 3% is well defined. First, notice that (12.1)
uniquely extends to a group morphism on each of the groups G1, Gy, G4, I'y. Any g € 'y

admits a unique decomposition g = vg49192 with v € Iy, g1 € Gy, g2 € Ga, g4 € Gy, by
Corollaries 3.10 and 3.13. We define

t(g) = t(v)e(ga)e(g1)e(g2)-
Given g € I'y, we have to show that ¢(gg) = ¢(g)c(g). We have
99 = v94919209191G2 = vV 9134919192,
where in the second line we use the commutations relations of Proposition 3.9. The map ¢

preserves the commutations relations among the generators A, g, 2i, V;j, M, g, by Theorem
12.1. So, we have

9494)1(9191)1(g232)
0')e(g4)1(g4)e(91)e())e(g2)e(G2)
Lg4)(1)( 2)L(0)e(Ga)e(G1)e(g2)

~
\/-\

This completes the proof. O
Let P(x) € R. Define the map P: (Z]s1, s, sgﬂ]) — 751, 59, 53] by the formula

ﬁ: <f17f27f3) = P(f17f17f27f27f37f3)'
Proposition 12.3. For any P € R, g € Ty, (f1, fo, f3) € (Z[sl, 32,s§1])3, we have

U9 P(frs for f3) = P (67 (fr, for ) -

Proof. This is easily checked on the generators of I'y;. 0
Proposition 12.4. The morphism v is an isomorphism.

Proof. Consider the polynomials x1, x3, x5 € R. They define the natural projections
~ 3
Ty ( (51,52, 55 ) — Lls1, 52,85, (fis far f3) = o,
33: ( 81782733 ) —>ZSl,82,S;’t], (fl?f?afS)}_)f%

Ts: (2[81,82783i ]) — Z[3178273§t1]a (f17f27f3) = 3.
Let g € ker. By Proposition 12.3, we have

T (fr o f3)) = i, Ts(g7 (s fou f3)) = for Ts(g7 (1, for f3) = f.
Hence ¢g~! = id. O
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12.3. v-Endomorphisms of maximal rank. Let ¢: R — R be a v-endomorphism, de-
fined by a triple P,Q), R € R,
rn— P, x3—Q, x5~ R, x9—>VP, x4—1vQ, x5+ VR.
For any fixed p € C?, denote by P, Qp, Rp, VP, vQp, VR, € C[z] the specialization of
P,Q,R,vP,vQ,vR at z = p.
For any fixed p € C3, we have a polynomial map ¢,: C% — C°® defined by

q— (Pp(q), vPp(a), Qplq), vQp(q), Rp(qa), vRy(q)).

A v-endomorphism ¢ of R is said to be of maximal rank if there exist p € C* and q € C°
such that the Jacobian matrix of ¢, at the point g is invertible.

12.4. Horowitz type theorem for x-Markov group. Define the v-Horowitz group Gyo,
as the group of r-automorphisms of R which preserve the polynomial
H= T1XTg + T3Ty4 + T5Xg — T1T3T5.

Define I'™#* to be the set of v-endomorphisms of R of maximal rank, which preserve the
polynomial H.
We have '3 C Gyop C ™2,

Theorem 12.5. We have I'§)" = Guor = ™. In particular, any element of T™> is a

v-automorphism.

Proof. Tt is sufficient to prove that '™ C T'3%. The proof is an adaptation of the original
argument of [Ho75, Theorem 2]. Let

=P, 23— Q, x5— R, 29— VP, 14— 1vQ, x6— VR, (12.2)

be an element of I'™* where P, @, R € R. Up to an action of G5, we can assume that the
total degrees of P, (), R with respect to x1, xo, 3, 24, T5, g are in ascending order, i.e.

Deg P < Deg @@ < Deg R.
Set
P=P,+P,_1+---+ P, (12.3)
Q=Qs+ Qg1+ -+ Qo,
R=R,+R.1+-+ Ry,

where Py, Qi, R) are homogeneous polynomials in x1, 22, 3, 24, 5, £ of degree k. Necessar-
ily, we must have p,q,r > 1, otherwise (12.2) does not define an endomorphism of maximal
rank. Since (12.2) is an element of '™, we have

P-vP+Q -vQ+ R-vR— PQR = 2119 + T34 + T5T6 — T113T5. (12.4)

Suppose that p = ¢ = r = 1. By comparison of the highest degree terms of the l.h.s. and
r.h.s. of (12.4), we deduce that PiQ1R; = xix3xs. Since x1,x3, z5 are irreducible, unique
factorization implies that up to reordering of P, 01, R; we have

P =vzi, Qi1=yw3, Ri="s, (12-5)

where v1,73,75 € Z[s1, S2, 53] and 717375 = 1. Hence each of v; is of the form +s3’.
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If we substitute (12.5) in (12.3), and expand (12.4), we deduce that Py = Qy = Ry =0
(since the r.h.s. of (12.4) has no terms xjx3, 125, x3x5). Thus, the only possible form of
(12.2) is

z1 = (—1)'sPry, a3 (=1)"MsPag, x5 e (—1) 5P,

vy = (—1)'sy " w,  warr (1) s3a, we = (—1) 55w,

where 7,j € Zo and ay,as,a3 € Z, a3 + as + a3 = 0. All these transformations are in
(G, G") C T3y

Now we proceed by induction on the maximum r of the degrees of P, Q, R. If we expand
(12.4) using (12.3), we obtain

P, - vP,+ Q- vQqu+ R, - VR, — P,QuR, + - - = 2129 + T3%4 + X506 — 112325,  (12.6)

where the dots denote lower degree terms. The term P,Q,RR, is of degree at least 4. The
degree of every term of the r.h.s. of (12.6) is less than 4. Hence P,Q), R, must cancel with
another term of the 1.h.s. This is possible if and only if r = p 4+ ¢. If r = p + ¢, then the
terms of highest degree are R, - vR, and P,Q,R,, and we must have R, -vR, — P,Q,R, = 0.
Thus,

vR, = P,Q,. (12.7)
The transformation
= vP, x3—vQ, x5+ PQ — VR, (12.8)

extends to a v-endomorphism of R. Such an endomorphism is the composition of (12.2)
with V3 € T4, The endomorphism (12.8) has the highest degree less than r, because of
(12.7). Hence, by induction hypothesis, the endomorphism (12.8) is a v-automorphism in
['a%. This completes the proof. O

12.5. Horowitz type theorem for C°. Recall the action of the *-Markov group on C® with
coordinates (yi,...,¥s). In particular, the *-Viete involutions act on C® by the formulas

v (Y1, Ys) = (Y1 + Y2Ys — Ys — Ys, Yo, Y3, —Ys + Y23, —Ya + Y2y3),
Vot (Y1, Ys) = (Y1, Y2 + Y1Ys — Ya — s, Y3, —Ys + Y1Ys, —Ya + Y1Y3),
vy (Yry ey ys) = (Y1, Y2, Ys + Y1Ya — Ya — Ys, —Ys + V1Yo, —Ya + Y1Ya2).

Theorem 12.6. Let 1) : C° — C° be a mazimal rank polynomial map, which preserves the
polynomials

J = Y1Y2Y3 — YaYs, Ji =y + Y2+ ys — Y, Jo=y1+y2+y3 — ys.
Then 1 is invertible and lies in the image of the x-Markov group.

Remark 12.7. One can easily add the parameters Z[s, so, s3'] and reformulate Theorem
12.6 similarly to Theorem 12.5.

Corollary 12.8. If the map 1 satisfies the assumptions of Theorem 12.6, then it commutes
with the involution

V(Y- Ys) = (Y1, Y2, U3, Uss Ya)-
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Proof of Theorem 12.6. Let ¥ send (y1,...,ys) to (Py,..., Ps). Then
PPy Py — PyPs = y1yays — Yays.

Py=P—P—Py=ys—y1 — Y2 — Us, Ps—P —P—Py=ys—y1 —y2 — Y.
Hence
Pr=ys—yi—v2—ys+ P+ P+ P
Ps=ys—vy1—y2—ys+ P+ P+ D5,
and the map v is completely determined by the three polynomials Py, P, Ps.

First assume that ¢ is a linear map, P, = P, o+ a;, where a; € C and F; ¢ are homogeneous
polynomials in y of degree 1. Then

Y1Y2ys = P1,0P2,0P3,0-
Hence after a permutation of Py, P, P; we will have

]DZ' = bzyz + a;, 1= 1, 2,3, bz € C, blbgbg =1.

We have
Py = yu—ypi—ype—ys+ P+ P+ D
=ys+ (by — Dy1 + (by — D)y + (bs — 1)yz + a1 + as + as,
Ps = ys—y1—y2—ys+ P+ P+ Ps
=ys+ (br — Dyr + (ba — D)y2 + (b3 — 1)ys + a1 + az + as,
Hence

(ya + (b — Dyr + (by — D)yo + (bs — L)ys + a1 + as + as)
X (ys + (b1 — D)y1 + (b — D)yo + (b3 — L)ys + a1 + a2 + as)
—(biyr + a1)(bayz + a2)(bsys + az) = Yays — Yy1Y2ys.
This means that b; = 1 for all 7 and hence
(y4+a1+a2+a3)(y5+a1—|—a2+a3)
— (1 +a1)(y2 + a2)(ys + a3) = Yays — 19295

This implies that a; = 0 for all 7.
Equation PyPs — P, P, P3; = y4y5 — y1Yy2y3 can be rewritten as

Wa—t—ve—p+ P+ P+ B)(ys—n—2—ys+ P+ P+ P3) — PR3 (12.9)
= YaYs — Y1Y2ys-.
Let us write P, = P,; +...,%=1,2,3, where P, ; is the top degree homogeneous component

of P;. Denote d; the degree of P;. Since 9 is of maximal rank, we have d; > 0.

Assume that the maximum of dy, ds, d3 is greater than 1. After a permutation of the first
three coordinates we may assume that d; > dy > d3. Then equation (12.9) implies that
dy = dy + d3 and there are exactly two terms of degree 2d; which have to cancel,

PPy Py — P12,1 = Pl,l(P2,1P3,1 — P1,1) = 0.
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Let us compose 1 with involution vy. Then vy o 1) sends (Y1,---,Y5) toO (pl, - ,f’g,), where
Py =P, Py = P3,
P, =P, + PPy — P, — Ps
=P+ PP~ (p—y—vo—ys+ P+ P+ Ps)
—(Ws—y1— 2 —ys+ P+ P+ Ps)
= PP — P — 2P, — 2P3 — ys — y5 + 2y1 + 2y3 + 2ys,

1542—(?/5—%—yz—y3+P1+P2+P3)+P2P3,
Pi=—(yu—wyi—y2—ys+ P+ P+ P3) + PoPs,

These formulas show that deg P, < deg Py, while deg P, = deg P, for i = 2,3, and the
theorem follows from the iteration of this procedure. 0

APPENDIX A. HOROWITZ TYPE THEOREMS

A.1. Classical setting. Let aq,...,a, € Z be non-zero integers such that
a; divides ay, for j=1,...,n.
Consider the polynomial in n variables x1,..., z,,

n n
._ 2 .
H = g a;x; aOHa:j.
Jj=1 Jj=1

The polynomial H is quadratic with respect to each variable x;. This ensures that the
polynomial has a nontrivial group of symmetries.

Theorem A.1. Let 0 € &, be such that (ao(1); - -, Gom)) = (a1,...,a,). Then the permu-
tation (x1,...,T,) = (To(1)s - - - » To(n)) preserves the polynomial H. O
Theorem A.2. For anyi=1,...,n, the transformation
ao
v (X1, ) (xl, e Ti1, —Ti + a—inj,xiH, . ,xn>
J#i
18 an 1nvolution preserving the polynomial H.
Proof. We check this for vi. Denote y = £ ][, #;. Then
H(=21+y, %, ., @n) = ar(—71 + y)* — ao(—21 + y) H%’ + Zx?
i>1 >1
2 ag 2 ag 2 2
=z} — 2x1aoH:cj + a—lnxj +aox1H:cj - a_l.ij +3 4
7>1 7>1 7>1 7>1 >1
= H(z1,29,...,2,). O

The permutations of Theorem A.1 and the Viete maps of Theorem A.2 are automorphisms
of the algebra Z[x].
We say that an endomorphism of algebras ¢: Z[x| — Z[z] defined by

z;— Pj(x), PjelZlx], j=1,...,n,
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is of maximal rank if there exists a point g € C" such that the Jacobian matrix of ¢ at q is
invertible.
The following is a stronger version of the original Horowitz Theorem.

Theorem A.3. Any endomorphism of maximal rank preserving the polynomial H is an
automorphism. The group of all automorphisms of Zlx| preserving H is generated by the
Viete transformations, by the permutation of variables preserving the n-tuple (ay, ..., a,),
and by multiplication by —1 of an even number of variables.

Proof. The argument is the same of the proof of Theorem 12.5. U
A.2. x-Setting. Let m,n be two positive integers. Let ay,...,a, be symmetric Laurent
polynomials in zq, ..., 2z, with integer coefficients and such that

a; =aj, and a; divides a9 for j=1,...,n,

in the algebra Z[z*!]% of symmetric Laurent polynomials.

Consider the polynomial in 2n variables x1, 2y ..., T, 1, Ton,

n n
H = E A;T2j—1T25; — Ag H Toj—1-
j=1 j=1

The algebra Z[z*!]%[z] admits an involution
V:Xoj—1 > Taj, T2j = T2j—1, ]: ]_,...7TL.

The notions of a v-endomorphism and a r-automorphism given in Section 12.1 obviously
extend to the algebra Z[z*!]m[x].

The polynomial H has a nontrivial group of symmetries.

Theorem A.4. Let 0 € &,, be such that (asn1),---,0om)) = (a1,...,a,). Then the permu-
tation T — (T20(1)—1, T2o(1) - - - » L20(n)—1> L20(n)) Preserves the polynomial H. O

Theorem A.5. For any i =1,...,n, the transformation v; defined by

Ty > Za, To = Ty, ..., T2i-3F> T2, Toj—2 > Tai—3,
Qo Qo
Toi1 > —T9 + o H@j—b To; = —T2i—1 + o H$2j,
b b i
Toi+1 F2 L2442, T2i42 F7 T2i41, ... , Tan—1 > Tap, Top F2 Top—1,

15 an involution preserving the polynomial H.
Proof. The proof is by straightforward calculation, the same as for n = 3. U

The permutations of Theorem A.4 and the Viete maps of Theorem A.5 are v-automorphisms
of the algebra Z[z*!]%"[z].

Given P € Z[z*|®"[z] and p € C™ denotes by P, € Clz| the specialization of P at
z=0p.
Let : Z[z*®m[z] — Z[2*!]%"[z] be a v-endomorphism defined by

l'gj,l'—)Pj(fB), $2j|—>VPj($), jzl,,n
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For any p € C™ there is a map ¢,: C*" — C?" defined by
x> (Prp(x),vPp(x),...,Pp(x), VP, p(x)).

The v-endomorphism ¢: Z[z*®"[x] — Z[2zF!]"[z] is said to be of maximal rank if
there exist a point p € C™ and a point ¢ € C*" such that the Jacobian matrix of ¢, at ¢ is
invertible.

Theorem A.6. Any v-endomorphism of maximal rank preserving H is a v-automorphism.
The group of all v-automorphisms of Z[z*'|%[x] preserving H is generated by the Viéte
transformations of Theorem A.5, by the permutation of variables preserving (ay,...,a,), by

multiplication by —1 of an even number of variables, and by multiplication of variables by

powers of Sy, = szl 2.

Proof. The proof is the same as for n = 3. 0J

APPENDIX B. %-EQUATIONS FOR P? AND POISSON STRUCTURES

B.1. »-Equations for P3. As we wrote in the Introduction, a T-full exceptional collection

(E1, Eq, E3) in D5.(P?) has the matrix (xyr(E; ® E;)) of equivariant Euler characteristics of
1 a b

the form [ 0 1 ¢ |, where (a,b, c) are symmetric Laurent polynomials in the equivariant
0 01

parameters zq, 29, 23 satisfying the x-Markov equation

234 28 + 23

2172273

aa™ +bb* + cc* —ab'c =3 — (B.1)

Similar objects and equations are available for any projective space P". For example,

1 a b c
for P? the matrix of equivariant Euler characteristics has the form 8 (1] Cll ; , where
00 01

(a,b,c,d, e, f) are symmetric Laurent polynomials in the equivariant parameters 2y, 22, 23, 24
satisfying the system of equations

aa* + bb* + cc* + dd* + ee* + f f*
—a*bd* — a*ce* —bcf* —def* + a*cd* f* (B.2)
292324 217324 212224 217223

3 3 3 3
21 Z9 z3 Zy

=4+

—2aa™ — 2bb" — 2cc* — 2dd* — 2ee” — 2f f*
+ab*d + a*bd* + ac’e + a*ce® + b cf* + bc* f +de* f + def”
—ab*ef* —a*be* f — bc*d e — b*cde”

+aa” ff* + bb*ee” + cc*dd” (B.3)
2.2 2.2 2.2 ,2.2 2.2 .22
2525  zazi  2izs  z5zi  Ziz 2z
N G N

2222 0 2222 0 2222 0 2222 2222 222
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aa® + bb* + cc* + dd* + ee* + f f*

—ab*d —ac’e — bc* f — de* f + ac*df (B.4)
IR N

ZoR3%Y Z1723%4 RZ172274 2’122237

see [CV20, Formulas (3.24)-(3.26)]. One may study this system of equations similarly to our
study of the x-Markov equation.

In this appendix we briefly discuss the analogs for the system of equations (B.2)-(B.4)
of the Poisson structure on C® constructed in Section 11. It will be a family of Poisson
structures on C'2.

B.2. Poisson structures on C'?. Consider C'? with coordinates & = (xy,...,x12), invo-

lution

and polynomials

Hl(ZD) =

Hg(l’) =

Hg(w) =

. 12 12 -
v:C*—=C , Toj—1 F T2j, Toj = T2j—1, j—l,...,6,

r1To + T34 + T5Tg + X7 + T9T10 + 211212

—ToT3Tg — ToT5T10 — T4T5T12 — TL9T12 + T2T5T8T 12,
—21‘11’2 — 2[)’231}4 — 21['51'6 — 21’71‘8 — 25(]91‘10 — 231711.1712
+SL’3.T8$2 + T5X10T2 + T1X4X7 + T1Tgxog + T3Lgl11
+T7210%11 + T4X5212 + TeTgT12 — T3X10T11T2 + T1T11T1202
FT5T6T708 — T3TeLgT9 — T4TL5T7T10

FL3T4T9T10 — T1T4T9T12,

T1Xo + T3y + T5L¢ + 7Ly + L9110 + 1112

—X1T4T7 — T1T6T9 — T3LeL11 — T7L10T11 T T1LeT7TL11.

We have V*Hl = Hg, l/*HQ = HQ, V*Hg = Hl-

Consider the braid group B, with standard generators 71, 75, 73. The group B, acts on C'2,

fol =

Ty g
Ty T3
Tf$4
Tfilfg,
T xg
T X7
7'1*1'8

TfiL'g

—XT2, 7'5.%1 = T3 — 17Xy, T:;Il =T,

-1, TyTy = Ty — Tols, Ty Ty = g,

—ToT3 + T7, TyT3 = T1, T3T3 = Ty — T311,

—$1Z’4+$8, T5$4 = T2, 7';5134 = Xg — X419,

—ZToZ5 + Tg, Ty L5 = Ts, T3 X5 = T3,

—Z1%6 + Z10, Ty Te = T, T3 %6 = Ty,

T3, TyT7 = —Tg, Ty T7 = Ty — T7X11,

Ly, 72*18 = =7, T§5E8 = T10 — TgT12,
7'5179:—1'8.1'94‘1'11, T§$9:$7,

= Ts,
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* * *

T1T10 = g, ToX19 = —X7x10 + T12, T3T10 = X8,
* * *

T 11 = 11, ToX11 = X9, T3T11 = —212,
* * *

Ty Z12 = T12, ToX12 = X10, T3X12 = —T11.

Theorem B.1. The space V of all quadratic Poisson structures on C'2, which have Hy, Hy, Hy
as Casimir elements, is a 3-dimensional vector space consisting of log-canonical structures.
For suitable coordinates b = (by, by, b3) on V', the Poisson structures have the form:

{z1,22} =0, {xg,24} =0, {x5,26} =0, {z7, 25} =0, {xg, 210} =0, {x11,212} =0,

{IB1,$11} = byw1711,

{xz,l‘n} = —bowyx11,

{23, 29} = —(b1 — by + b3) 7370,
{24, 29} = (b1 — by + bs) w4y,
{$5, 1’7} = (bl - b3)x5x7,

{%’, 957} = —(b1 — b3)wer,
{71, 13} = —bzz123,

{@2, 23} = b3wous,

{71, 25} = — (b3 — ba) 125,
{@2, 25} = (b3 — bo)wams,
{$1,I7} = —bszy27,

{552,3?7} = b3y,

{xh xg} = —(b3 — by)x 179,
{$2, 96’9} = (b3 - 52)5529597

{$3, $5} = —(b1 — by)x3T5,

{$4, 1‘5} = (bl - b2)$4$5,

{$3, 957} = —bzxzx7,
{@4, 27} = bswyar,
{$3,$11} = —(bl - 52)133511,

{$4,l‘11} = (bl - b2)x4x11,

{555, 5157} = (bl - 53)555377,

{$6, I?} = —(b1 - b3)l‘6I7,
{@5, 29} = —(b3 — ba) w579,
{6, 29} = (b3 — b2)z69,

{955,3511} = _(bl - 52)9555611,

{%Jn} = (bl - b2)$6$117

{551,57612} = —byx 1719,

{Iz,xu} = by 12,

{x3, 210} = (b1 — by + b3) 23710,
{z4, 210} = —(b1 — by + b3) 410,
{$5,$8} = _(bl - 53)955%3,
{$67$8} = (by — b3)xws,

{561,374} = b3z 24,

{Z2, 14} = —b3wom4,

{z1, 25} = (bs — ba) w176,
{@2, 26} = —(bs — b2) 26,
{$17$8} = b1y T3,

{x9, 28} = —b3wams,

{fl, xlO} = (b3 - bz)xll’lm
{$2, 96’10} = —(b3 - 52)95233107
{1’37%’} = (b1 — by)x376,
{74, 26} = —(b1 — ba) w4,
{$37$8} = b3r3s,

{w4, 08} = —bzz42s,
{$3,$12} = (bl - 52)$3$12,
{$4,$12} = _(bl - bz)$4l’12,

{$57l'8} = _(bl - 53)9351'8,
{1U67$8} = (bl - b3)l‘6$87

{355, 51710} = (53 - 52)335%10,

{$6, xlo} = —(b3 - 52)966%10,
{$5,x12} = (bl - b2)9€5$12>
{%‘, 9512} = _(bl - 52)$6$12,
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{$7, 1’9} = —biz71y, {$77$10} = biz77190,

{ws, 19} = brag7y, {ws, 110} = —b1w8710,
{1E7, !1311} = —biwrx11, {5137,$12} = b117219,
{xs, 211} = biwgayy, {zs, 212} = —b173719,
{iUg, 9311} = —b1z9711, {339,2712} = b1T9T12,
{1‘10,%11} = b1T10711, {$107$12} = —b1T10712.

FEach of these Poisson structures is v-invariant. If (b1, by, b3) # (0,0,0), then the Poisson
structure is of rank 2.

The Poisson structure with parameters b is denoted by {, }.

Proof. A computer assistant calculation shows that the only requirements on a quadratic
bracket {, } to be skew-symmetric and have Hy, Hy, H3 as Casimir elements uniquely deter-
mines the Poisson structures above. 0]

Another computer assistant calculation shows that if a polynomial Poisson structure {, }
on C'? has H,, Hy, Hs as Casimir elements, then its Taylor expansion at the origin, has to
start with at least quadratic terms.

B.3. Braid group B, action. Given a Poisson bracket {, } on C!? define the Poisson
bracket {, }™ by

{f,g}7 =1 {fo Ti_l,g o Ti_l}, i=1,2,3.

These formulas define a braid group B, action on the space of Poisson structures on C*2.

Theorem B.2. The three-parameter family of Poisson structures {, }p is invariant with
respect to the braid group Bs-action on the space of all Poisson structures. The induced
braid group By action p on the space of parameters V is a vector representation defined by
the formulas,

T (b1, ba,b3) = (by — by,  —ba, —b3),
To: (b1, b, b3) = (=by, —by +by—bs, —bs3),
T3: (bl, bg, bg) —> (—bl, —bz, —bQ —+ bg)

The representation p factors through a representation of the symmetric group Sy, p(1?) = id,
i = 1,2,3. The representation p : &4 — GL(V) is irreducible and is isomorphic to the
standard three-dimensional representation tensored with the sgn representation. 0

By Theorem B.2, there is no a By-invariant or Bs-anti-invariant quadratic Poisson structure
on C'2, which has Hy, Hy, Hs as Casimir elements.

Remark B.3. A computer assistant calculation shows that if a log-canonical Poisson struc-
ture {, } on C' remains to be log-canonical after the action on it by any element of the
braid group By, then {, } is one of the Poisson structures {, }, in Theorem B.1.
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B.4. Coefficients of {, }; and elements of weight lattice. Consider C! with stan-
dard Euclidean quadratic form (, ). Denote (1,-1,0,0), (0,1,—1,0), (0,0,1,—1) € C* by
vy, Vg, v3. We identify the space of parameters V with the subspace {t € C* | Z?Zl t; =0},
by sending a point of V' with coordinates (b, bo, b3) to the point byvy; + byvy + bzvs. The
vectors vy, v9, v3 generate the root lattice in V.

For i = 1,2, 3, the linear map p(7;) : V' — V permutes the i-th and i 4+ 1-st coordinates of
vectors of V' and multiplies the vectors by —1.

The weight lattice in V is the lattice of the elements t = (t;,to,%3,t4) € C* such that
St =0and (t,v;) € Z, i = 1,2,3. The weight lattice has a basis w, = (3, —1, 1, —1) /4,
we = (2,2,-2,-2)/4, ws = (1,1,1,—3) /4 with the property (w;, v;) = d;; for all 4, j.

There are exactly 8 vectors of the weight lattice of square length 12/16,

iwl? :l:wl + wa, :l:w2 + ws, :l:w37 (B5>
and there are exactly 6 vectors of the weight lattice of square length 1,
:tUJQ, ,iwl + weo :l:wg, +w; F ws. (B6)

All other vectors of the root lattice are longer. These two groups of vectors form two Sy-
orbits.
The scalar products of these 14 vectors with the vector bv; + bavs + b3vs give us the linear
functions in by, by, b3,
+by, £by Fby, EbyFbz, bz, Lby, b Fbo b3, Lby Fbs.

These are exactly the linear functions appearing as coefficients of the Poisson structure {, },
of Theorem B.1.

B.5. Casimir subalgebra. Denote by C the subalgebra of C[x| generated by the following
20 monomials:

my; = 2172, Mo = T34, ms3 = T5T¢, my = I7Zg,

ms = X910, me = 11712, m7 = X2X3Ts, mg = TaZT5X10,
mg = T4T5T12, mip = Tglgl12, miyp = 12427, Mmig = T1Texo,
mi3 = T3Tel11, miyg = T7T10%11, Mis = TaTs5T8x12, mig = T2X3X10L11,
my7 = T3Telsly, mig = T4Ts5T7T10, mig = T1T4T9T12, Moy = T1TeT7T11-

It is easy to see that the polynomials H;, Hy, H3 are elements of the subalgebra C.

Theorem B.4. For every b each element of the subalgebra C is a Casimir element of the
Poisson structure {, }p». The subalgebra C is v-invariant and the braid group By action
mvariant.

Proof. The theorem is proved by direct verification. For example, easy calculations lead to
formulas like

Time = —my + myme + my —my,
*
T3Mig = M7 — M1gMay — M13My + MaMyMeg,

which prove the braid group invariance of C. O
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B.6. Symplectic leaves. Since {, } is of rank 2, the symplectic leaves of {, }; are two-
dimensional. In logarithmic coordinates logx;, ¢ = 1,...,12, they are two-dimensional affine
subspaces. More precisely, we have the following statement.

Theorem B.5. Given (by, by, b3) # (0,0,0), then the function
Cb(m) = (bl — bg) log X1 + (bg — b3) IOg I3 + bg log Ts

is a Casimir element of {, }u; the C-span of Cp and the functions logm;, i = 1,...,20, is
10-dimensional, while the C-span of the functionslogmy, i = 1,...,20, is 9-dimensional. [

Hence the symplectic leaves of {, }; are the surfaces, on which the functions of this 10-
dimensional C-span are constant. In particular, the leaves do depend on b.
We may also conclude that z§' 2252725 is a Casimir element of {, }, functionally in-

dependent of the Casimir elements m;, i =1, ..., 20.
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