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Abstract

We study solutions of the Thermodynamic Bethe Ansatz equations for relativis-
tic theories defined by the factorizable S-matrix of an integrable QFT deformed
by CDD factors. Such S-matrices appear under generalized TTbar deformations
of integrable QFT by special irrelevant operators. The TBA equations, of course,
determine the ground state energy E(R) of the finite-size system, with the spatial
coordinate compactified on a circle of circumference R. We limit attention to the-
ories involving just one kind of stable particles, and consider deformations of the
trivial (free fermion or boson) S-matrix by CDD factors with two elementary poles
and regular high energy asymptotics – the “2CDD model”. We find that for all val-
ues of the parameters (positions of the CDD poles) the TBA equations exhibit two
real solutions at R greater than a certain parameter-dependent value R∗, which we
refer to as the primary and secondary branches. The primary branch is identified
with the standard iterative solution, while the secondary one is unstable against it-
erations and needs to be accessed through an alternative numerical method known
as pseudo-arc-length continuation. The two branches merge at the “turning point”
R∗ (a square-root branching point). The singularity signals a Hagedorn behavior
of the density of high energy states of the deformed theories, a feature incompatible
with the Wilsonian notion of a local QFT originating from a UV fixed point, but
typical for string theories. This behavior of E(R) is qualitatively the same as the
one for standard TTbar deformations of local QFT.
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1 Introduction

The so-called TTbar deformations [1, 2] of two-dimensional quantum field theories
(QFTs) has brought about a renewed interest to UV properties of Renormalization
Group (RG) flows generated by higher dimensional (a.k.a. “irrelevant”) operators.
The TTbar deformation is defined as the one-parameter family of formal “actions” Aα,
determined by the flow

d

dα
Aα =

∫
(T T̄ )α(x) d2x , (1.1)

where (T T̄ )α(x) is a special composite operator built from the components of the
energy-momentum tensor associated with the theory Aα [3]. The deformation (1.1)
has a number of notable properties. The theory Aα is “solvable”, in the sense that
certain characteristics can be found exactly in terms of the corresponding ones in the
undeformed theory Aα=0. This is remarkable, because the deformation operator (T T̄ )α
has exact dimension 4, meaning the perturbation in (1.1) is “irrelevant” in the RG
sense. Normally, such deformations are expected to break the short-distance structure
of the quantum field theory, generally rendering the theory UV incomplete, and possibly
violating causality at short scales. The abnormal UV properties of the theory Aα are
manifest already in the short-scale behavior of its finite-size ground-state energy. If the
spatial coordinate of the 2D space-time is compactified on a circle of circumference R,
its ground-state energy Eα(R) is determined exactly, via the equation [1, 2]

Eα(R) = E0(R− αEα(R)) , (1.2)

in terms of the ground state energy E0(R) of the undeformed theory, at α = 0. The
equation (1.2) shows that, depending on the sign of the deformation parameter α, the
ground state energy either develops a square root singularity at some R∗ ∼ 1/

√
|α|, or

has no short-distance singularity at all. Neither of these types of behavior is compatible
with the idea of QFT as the RG flow stemming out of a UV fixed point. The theory
defined by (1.1) therefore is not a local QFT in the Wilsonian sense [4]. Moreover,
at negative α, the singularity at finite R signals a very fast growth of the density of
states at high energies, a common hallmark of string theories, leading to the Hagedorn
transition [5]. The behavior of Eα(R) at positive α is possibly even more puzzling,
as it suggests a finite number of states per unit volume, an unlikely feature if one
thinks of a QFT as a system of continuously many interacting degrees of freedom,
unless quantum gravity is involved1. Therefore, the deformed theory determined by
(1.1) cannot be considered a conventional UV complete local QFT. At the same time,
however, the TTbar deformation has a number of robust features which makes one

1A relation of the TTbar deformation to the Jackiw-Teitelboim gravity was indeed proposed in [6, 7].
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reluctant to simply dismiss it as “pathological”. It is instead tempting to think that
the deformation (1.1) exemplifies some meaningful extension of the notion of local QFT.
In particular, an interesting interpretation of the theory Aα in terms of its gravitational
dual was proposed in [8], where a relation to the state of the bulk gravity in the dual
theory was suggested. Several questions about 2D physics of the deformed theory need
to be elucidated in order to put such suggestions on a solid ground. For example, does
the deformation preserve any part of the local structure of QFT? Notice how the very
definition (1.1) depends on the notion of the energy-momentum tensor, conventionally a
part of such a local structure. Another important question concerns the macro-causality
in 2D space-time. While the deformation (1.1) with positive α is suspected to display
super-luminal propagation [6, 8], the case of negative α is most likely free from this
problem. We will not dwell on this question, as it is the negative-α deformation which
will be of interest to the present discussion. In any case, we believe it is important to
understand the physical origin of the above abnormal short-distance properties.

Another exact result about the theory Aα concerns the deformation of its S-matrix,
whose elements differ from the corresponding undeformed ones by a universal phase
factor, available in closed form [6]. In particular, the 2→ 2 elastic scattering amplitude
has the form

Sα(θ) = S0(θ) exp
(
−iαM2 sinh θ

)
, (1.3)

where S0(θ) = Sα=0(θ) is the 2 → 2 scattering amplitude of the undeformed theory.
Here θ = θ1 − θ2 is the difference between rapidities of the two particles involved –
assumed for simplicity to be identical – and M denotes their mass; in what follows we
set the units so that M = 1. A notable feature of the additional phases acquired under
the deformation is their abnormally fast high-energy growth, which is evident already
in the form (1.3)2. The scattering phase in (1.3) determines the density of two-particle
states, suppressing it when α > 0 but greatly enhancing it at negative α. In the latter
case, one might be led to believe that the Hagedorn behavior is directly related to this
rapid growth of the 2→ 2 scattering phase. One of the results of the present work is to
show that the situation is more subtle: the growth of the two-particle scattering phase
in (1.3) is not a necessary condition for the formation of the singularity of the finite-size
energy at finite real R. We will study certain generalizations of the TTbar deformation
which can be defined whenever the original QFT is integrable [1]. In most of such
deformations, the scattering phases present a less exotic high-energy behavior – i.e.,
they have finite limit at θ →∞ – while, at the same time, the overall density of states
grows nonetheless exponentially with the energy, leading to the Hagedorn singularity.

The generalizations of the TTbar deformations we will be interested in are based on
the integrability of the original QFT. This assumes that the theory possesses infinitely

2A similar behavior of the scattering phase was previously found in non-commutative field theories
[9].
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many conserved local currents of higher Lorentz spins s+ 1, with s taking values in the
set {s} of odd natural numbers: s = 1, 3, 5, 7, ...3. The deforming operators T T̄ (s)(x)
are constructed from these currents in the exact same way as the operator T T̄ (x) is
built from the energy-momentum tensor, see [1] for details. It can be then shown
that the theory deformed by adding such operators retains its integrability, preserving
the same set of conserved local currents. Therefore the deformations of an Integrable
QFT (IQFT) by the operators T T̄ (s) generate an infinite-dimensional family of flows
generalizing (1.1),

∂A{α}
∂αs

=

∫
T T̄

(s)
{α}(x) d2x . (1.4)

Here {α} denotes the infinite set of the deformation parameters {α} := {αs}, and the
subscript {α} under the operator T T̄ (s)(x) is added to emphasize that it is constructed
in terms of the conserved currents of the deformed theory A{α}. In what follows we refer
to (1.4) as the generalized TTbar flow4. For integrable theories, the infinite-parameter
flow (1.4) generalizes the one-parameter deformation (1.1). The latter corresponds to
the special case αs = 0 for s > 1, and α1 = α. To distinguish them, below we often
refer to (1.1) as the ”TTbar proper”, or simply TTbar, reserving the term ”Generalized
TTbar” to the generic deformation (1.4). It was argued that the deformation (1.4) leads
to the following deformation of the elastic two-particle S-matrix

S{α}(θ) = S{0}(θ) Φ{α}(θ) , Φ{α}(θ) = exp

{
−i

∑
s∈2Z+1

αs sinh (s θ)

}
, (1.5)

with the same notations as in (1.3) and (1.4)5. The phase factor Φ{α}(θ) is known with
the name of CDD factor [13]. Generally, it is an energy-dependent phase factor Φ(θ)

3Generally, the set of spins {s} of local Integrals of motion may be different in different integrable
theories. Here we assume, again for simplicity, the most common situation – represented e.g. by sinh-
Gordon or sigma models – where {s} involves all odd natural numbers. In different models the CDD
factor discussed below may be constrained by additional conditions, which however do not change the
overall conclusions below.

4In [10], a different family of generalizations of the TTbar flow, in which the deforming operators
T T̄s are asymmetrically constructed from the energy-momentum tensor and a higher-conserved current,
was explored.

5The parameters αs in (1.3) coincide with the flow parameters defined in (1.4) provided a specific

normalization of the fields T T̄
(s)

{α}(x) is chosen, otherwise the terms in the sum in (1.3) would have

additional normalization-dependent numerical coefficients. The form (1.3) was explicitly derived in [1]
for the deformed sine-Gordon model, to leading order in the deformation parameters. However, this
form of the S-matrix deformation under the flow (1.4) can be proven in the general case, using the
methods of [11] or the approach developed in [12]. We will elaborate this point elsewhere.

4



which can be added to the 2→ 2 scattering amplitude without violating the analyticity,
unitarity and crossing symmetry conditions. The unitarity and crossing demand that
Φ(θ) satisfies the functional relations

Φ(θ)Φ(−θ) = 1 , Φ(θ) = Φ(iπ − θ) , (1.6)

which Φ{α}(θ) in (1.5) obviously does term by term in the sum over s. Moreover, it
is easy to see that (once the overall sign ambiguity is ignored) any solution of (1.6)
can be represented by the form (1.5), with the series in the exponential converging in
some vicinity of the point θ = 0. However, the series does not need to converge at all
θ. The S-matrix analyticity forces Φ(θ) to be a meromorphic function of θ, with the
locations of the poles constrained by the condition of macro-causality (more on this
momentarily). Therefore, for (1.5) to represent a physically sensible S-matrix, the sum
over s is allowed to have a finite domain of convergence, while its analytic continuation
must admit the representation

Φ{α}(θ) = Φpole(θ) Φentire(θ) , (1.7)

where the first factor absorbs all the poles located at finite θ, whose number N is in
general arbitrary (possibly infinite),

Φpole(θ) =
N∏
p=1

sinh θp + sinh θ

sinh θp − sinh θ
, (1.8)

and

Φentire(θ) = exp

{
−i
∑
s

as sinh (s θ)

}
. (1.9)

In this last factor, the series in the exponential is assumed to converge at all θ, so
that Φentire(θ) represents an entire function of θ. Macro-causality restricts possible
positions of the poles θp to either the imaginary axis Re θp = 0, or to the strips Im θp ∈
[−π, 0] mod 2π since, in virtue of (1.6), Φ(θ) is a periodic function, Φ(2πi+ θ) = Φ(θ).
Let us stress here that the representation (1.7–1.9) of the generic CDD factor Φ{α}(θ)
differs from the one given in (1.5) only in the parameterization: any factor (1.7–1.9)
can be written in the form (1.5), with the parameters αs expressed in terms of as and
θp, and conversely any factor Φ{α}(θ) defined in (1.5), being analytically continued to
the whole θ-plane, can be written in the form (1.7).

In the present work we focus our attention on the class of S-matrices (1.5) having
CDD factors (1.7) for which the entire part (1.9) is absent6,

Φ{α}(θ) = Φpole(θ) , (1.10)

6A first analysis of models whose S-matrix is deformed by a CDD factor consisting of only of a
generic entire part (1.9) has been performed in [14].
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and the product in (1.8) involves finitely many factors, i.e. N <∞. Note that, unlike
(1.3), such CDD factors have regular limits at θ → ±∞. Therefore, if the undeformed
S-matrix S0(θ) behaves regularly – presenting no abnormal growth of the scattering
phase – at large θ, so does the deformed S-matrix S0(θ)Φ(θ). We now raise the follow-
ing question: how does an S-matrix deformation such as the one just described affect
the short-distance behavior of the theory? Unfortunately, for the general TTbar defor-
mation (1.4) no closed form of the finite-size energy levels similar to (1.2) is available
with which one could analyze their dependence on the size R of the system. However,
having an exact expression for the deformed IQFT S-matrix, the finite-size ground-
state energy E(R) can be obtained by solving the associated Thermodynamic Bethe
Ansatz (TBA) equation [15, 16].

In general, the form of the TBA equations depends on the particle spectrum of the
theory. Here we consider, for simplicity, the case of a factorizable S-matrix involving
only one kind of particles, having mass M = 1. In this case the two-particle S-matrix
consists of a single amplitude S(θ), which itself satisfies the equations (1.6). Therefore
we can limit attention to the functions S(θ) of the form (1.8)7. There are two substan-
tially different cases, depending on the sign of S(0) = σ = ±1. Following [16], we refer
to these cases as the “bosonic TBA” when σ = +1 and “fermionic TBA” for σ = −1.
Given S(θ), let ϕ(θ) be the derivative of the scattering phase,

ϕ(θ) =
1

i

d

dθ
logS(θ) . (1.11)

Then the TBA equation takes the form of a non-linear integral equation for a single
function ε(θ), the pseudo-energy,

ε(θ) = R cosh θ −
∫

ϕ(θ − θ′)L(θ′)
dθ′

2π
, (1.12)

where

L(θ) := −σ log
(

1− σ e−ε(θ)
)
. (1.13)

The ground state energy can then be recovered from the pseudo-energy via the following
expression

E(R) = −
∫ ∞
−∞

cosh θ L(θ)
dθ

2π
. (1.14)

In most cases the TBA equations are impervious to the exact analytic derivation of
their solutions but are amenable to numerical approaches. These can yield important

7One can think of these as CDD deformations of the free S-matrix S(θ) = ±1.
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insight into high energy, viz. short distance, properties of the deformed theories (1.4). A
numerical solution can be obtained, with practically arbitrary accuracy, by numerical
integration of (1.12). This approach was employed to obtain E(R) in a number of
IQFT’s with known S-matrices, see e.g. [16, 17]. Usually, the numerical solution is
obtained by iterations, starting from a seed function, conventionally taken to be ε(θ) =
R cosh θ, and successively substituting the result of the previous iteration in the right-
hand-side in (1.12). We will review this approach in §3.1. If one considers the S-matrix
associated with a UV complete local IQFT – such as a conformal field theory (CFT)
perturbed by a relevant operator, the sine-Gordon model, or an integrable sigma-model
– the iterations turn out to converge for all R > 0, and the resulting ground-state-energy
E(R) happens to be analytic at all positive real R, developing a Casimir singularity at
R = 0. But how adding a CDD factor to the S-matrix will affect the TBA solution?
This question was addressed in the early 90’s by Al. Zamolodchikov, who has considered
the modification of the trivial fermionic S-matrix S(θ) = −1 by the simplest possible
rational CDD factor, namely (1.8) with N = 1. In the resulting theory, the celebrated
“staircase model” [17], the iterative solution of the TBA still converges at all positive
R, producing a ground-state-energy E(R) analytic for R > 0. He also observed that
when adding more general CDD factors the situation changes qualitatively. Typically,
the convergence of the iterative solution breaks down at R below a certain critical
value R∗, and the form of the numerical solution at R > R∗, where the iterations
converge, strongly indicates the existence of a square-root singularity of E(R) at R∗
[18]. A similar observation was made in [19], where a particular CDD deformation of
the trivial bosonic S-matrix S(θ) = 1 was studied and the numerical solution of the
associated TBA equation was found consistent with the existence of a singularity at
finite R∗ > 0. We wish to stress that the presence of the singularity at finite R∗ and,
moreover, its square-root character, are features very similar to the ones displayed by
E(R) in the TTbar deformed QFTs, as shown in Fig 2 below.

In this work we study a few simple cases of CDD deformed TBA equations, using
a refined numerical routine based on the so-called “pseudo-arc-length continuation”
(PALC) method. This allows one to recover solutions to the TBA equation (1.12) which
are unstable under the standard iterative approach. This method is explained in detail
in §4. The object of our attention will be trivial S-matrices S(θ) = σ = ±1 deformed
by CDD factors (1.8) with N = 1, 2. The case N = 1 with σ = −1 corresponds to
either the sinh-Gordon or the staircase model, depending on the position of the pole.
As mentioned just above, these models do not display any abnormal short-distance
behavior and were extensively studied in the literature. The bosonic TBA with N = 1
was considered in [19] and we will comment on it in §5, along with the N = 2 case. Of
these, we mostly address the fermionic cases, although some results for the bosonic TBA
are also presented. We find that for all allowed values of the parameters θp (p = 1, 2) the
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fermionic TBA equation (1.12) with sufficiently large R possesses two real solutions, or
“branches”, which merge at some finite R = R∗. For R < R∗ these branches are likely to
continue as a pair of conjugated complex-valued solutions. Of these two real solutions at
R > R∗, one reproduces the iterative solution of the TBA equations (1.12). We will call
this solution the “primary branch”, while referring to the other one as the “secondary
branch”. Let us stress here that it is the primary branch which directly corresponds
to the deformed theory: E(R) on the primary branch represents the finite-size vacuum
energy of the deformed theory (in particular, at R → ∞ the effect of the deformation
disappears, as expected); it also gives the specific free energy of the deformed theory at
temperature T = 1/R (in particular, it is the primary branch solution which correctly
sums up the virial expansion associated with the input particle theory). In this sense,
one could call the primary branch the “physical” one, although we will not use such
a term8. The secondary branch always has lower energy E(R) than the primary one,
which is qualitatively similar to the behavior observed in the TTbar deformations with
negative α, see Fig 2. Since the two branches merge at some finite R = R∗, this can be
regarded as a “turning point”, where the continuation along the graph of E(R) turns
backward into the secondary branch. This is precisely the kind of situation the PALC
method is designed to deal with. The secondary branch remains real for all R > R∗
and, moreover, develops a linear asymptotic ∼ e∞R as R → ∞. This, again, is in
full qualitative agreement with the TTbar deformations, together with the important
fact that the singularity of the pseudo-energy ε(θ|R), viewed as a function of R, occurs
at R = R∗ that is independent of θ. Of the above features, the existence of primary
and secondary branches with the turning point at finite R∗, independent from θ, repeat
verbatim in the bosonic 2CDD model. On the other hand, we still cannot check the large
R behavior of the secondary branch with sufficient accuracy, due to some instability in
the numerical procedure. We will return on this problem in a future work.

It is likely that the general situation displayed in the models studied here, i.e. the
solution of the TBA equation developing a square-root singularity at finite R∗, which
signals the presence of a Hagedorn transition, remains qualitatively the same when
more CDD poles are added in (1.8) – with the possible exceptions of special domains,
hypersurfaces of lower dimension, in the parameter space9. This of course will have
to be carefully verified. We regard the present work as a first step in the program of
systematically studying the short-distance behavior of the generalized TTbar deforma-
tions (1.4) of IQFTs. The qualitative similarity to the TTbar-deformed QFTs, with

8The reason is that this would imply that the secondary branch is “unphysical”, which we are
reluctant to claim. Although the secondary branch definitely does not have direct interpretation in
terms of “physics” of the input S-matrix, it might very well have some physical content of its own.
In fact, understanding physical mechanism behind the secondary branch is one of the outstanding
problems which remains open both for the generalized TTbar deformations and for the TTbar proper.

9Examples of such cases can be found in [20, 21, 22].
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negative α, suggests that the same mechanism behind the formation of the Hagedorn
singularities is at play in all of these models. Understanding the physics underlying
this phenomenon remains the most important open problem in this context, as well as
the main motivation for the present work.

2 From TBA to Hagedorn: the TTbar case

Henceforth we will assume that the theory under consideration is integrable, with a
factorizable S-matrix. Let us briefly remind how, in this case, equation (1.2) can be
derived from the S-matrix deformation (1.3) via the TBA equations. We will present a
somewhat simplified version of the much more general arguments of [2] (for related work
see [23, 24] and the more recent [25, 26]). Whereas the analysis in [2] applies to all the
energy eigenvalues of the TTbar deformed theory (1.1), we limit our considerations to
the ground-state energy, which we denote as E(R). The advantage is that the simple
arguments presented below apply to the deformation (1.3) of an essentially generic
integrable theory. The only assumptions, made for simplicity, are that the particle
scattering theory associated with A0 involves only one kind of neutral particles, with
the factorizable scattering of fermionic type10, i.e. S0(0) = −1. The goal is to emphasize
some important properties of the solution which, as we will see, are shared by the TBA
solutions by more general CDD deformations.

The TBA equation (1.12) associated with the deformed S-matrix (1.3) has the
following kernel

ϕα(θ − θ′) = ϕ0(θ − θ′)− α cosh(θ − θ′) . (2.1)

Recall that the ground state energy Eα(R) is given by (1.14), which in our case reads

Eα(R) = −
∫ ∞
−∞

cosh θ Lα(θ|R)
dθ

2π
, (2.2)

where Lα(θ|R) := log
(
1 + e−εα(θ|R)

)
satisfies the deformed TBA equation (1.12),

εα(θ|R) = R cosh θ −
∫

ϕα(θ − θ′)Lα(θ′|R)
dθ′

2π
. (2.3)

Due to the fact that the pseudo-energy is even, as is easily shown, we can separate
the dependence on θ and θ′ in the rightmost term in the kernel (2.1) so that the TBA

10Extension to the bosonic case S(0) = +1 is trivial. Less straightforward but still possible is the
generalization to the cases of a scattering theory involving many species of particles,including the bound
states, with different or equal masses. We will elaborate on such cases elsewhere.
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equation can be written as follows

εα(θ|R) = (R− αEα(R)) cosh θ −
∫

ϕ0(θ − θ′)Lα(θ′|R)
dθ′

2π
, (2.4)

where we used the definition (2.2). For reasons that will become clear shortly we have
made explicit the fact that ε(θ|R) and L(θ|R) are functions of R as well as of the
rapidity θ. This last form (2.4) shows that εα(θ|R) satisfies the same TBA equation as
ε0(θ|R), only with R replaced by R− αEα(R). It then follows that

εα(θ|R) = ε0(θ|R− αEα(R)) (2.5)

which immediately implies the equation (1.2) for the deformed energy.
It is also worth reminding here how the singularity of Eα(R), signifying the Hage-

dorn density of states, follows from (1.2). This takes a particularly simple form in terms
of the function Rα(E), inverse to the function Eα(R), where α is regarded as a fixed
parameter,

Rα(E) = R0(E) + αE . (2.6)

This expression shows that the graph of the deformed function Eα(R) differs from the
graph of E0(R) just by an affine transformation (R,E) → (R + αE,E) of the (R,E)
plane. If we assume, as we do, that the undeformed theory A0 is a conventional QFT,
defined à la Wilson as the RG flow from some UV fixed point down to an IR one (see
[4]), then the graph of E0(R) looks qualitatively as shown in Fig 1.

E

R

ε0R

− πc
6R

Figure 1: Finite-size ground state energy E0(R) of a conventional Wilsonian relativistic QFT.
Its R→ 0 behavior −πc/6R is controlled by the UV fixed point. At large R, E0(R) shows the
linear behavior ' ε0R, with the slope ε0 representing the bulk vacuum energy density. We have
to stress that the TBA equations actually compute the difference Evac(R) − ε0R, and in our
subsequent analysis E(R) stands for this difference. (That is why in all plots below the R→∞
slope of the primary branch is always set to zero.)
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At large R the function E0(R) approaches a linear asymptotic ε0R, where ε0 is the
vacuum energy density of the infinite system, with the rate of the approach controlled by
the IR fixed point, which, typically, is a non-critical one. On the other hand, at R→ 0
it diverges as the Casimir energy determined by the UV fixed point, E0(R)→ −πc/6R,
where c is the Virasoro central charge of the UV fixed point CFT. Then, according
to (2.6), the plot of Eα(R) will look as either one of the panels a) or b) in Fig 2,
depending on the sign of α. In what follows we will concentrate our attention to the
case of negative α, shown in panel a). Note that the curve Eα(R) has two branches,
each of which having real values for R above a certain critical value R∗. It is the upper
“primary” branch that corresponds to the ground state energy of the TTbar-deformed
theory (1.1).

E

R

εαR

1
αR

R∗

(a) α < 0

E

R

εαR

1
αR

(b) α > 0

Figure 2: Finite-size ground state energy of the TTbar deformed theory. (a) α < 0. The graph
Eα(R) shows the “turning point” at some finite R∗, which signals the Hagedorn transition. (b)
α > 0. Eα(R) shows no singularity at R = 0.

The two branches merge at R = R∗, where the function Eα(R) develops a square-
root branch point, i.e. the derivative dEα(R)/dR diverges as (R−R∗)−1/2. At R < R∗,
the analytic continuation of Eα(R) returns complex values and the two branches are
complex conjugate.

It is the singularity at R∗ that signals the Hagedorn phenomenon in the deformed
theory, which can be inferred as follows. When the Euclidean theory is considered in
the geometry of a very long cylinder of circumference R, as shown in Fig 3, its partition
function Z is saturated by the finite-size ground state

− logZ ' LEα(R) , (2.7)

where L → ∞ is the length of the cylinder. This corresponds to the picture in which
the coordinate y along the cylinder is taken as the Euclidean time. Alternatively, if one
uses the picture where x plays the role of Matsubara time, the same partition function
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x

y

Figure 3: The Euclidean space-time cylinder representing the finite-size geometry in our anal-
ysis. The coordinate x is compactified on a circle of circumference R, while the length L of
the cylinder is assumed to be asymptotically large. In the picture where y is regarded as the
Euclidean “time” the partition function (2.7) is dominated by the finite-size ground state con-
tribution. In the complementary picture, where y is interpreted as spatial coordinate while x
plays the role of the Matsubara “time”, the same partition function is given by the thermal
trace (2.8).

is represented as the trace

Z = tr
(
e−RĤx

)
=

∫ ∞
0

dE Γ(E) e−RE = e−RF (R) (2.8)

where dEΓ(E) ∼ dE eS(E) denotes the density of states, i.e. the number of states in the
energy interval dE . While in a local QFT whose high-energy limit is governed by the
UV fixed point the entropy S grows as S(E) '

√
2πc/3

√
LE as E → ∞ – this is known

as Cardy formula [27] – the singularity of F (R) at finite positive R = R∗ is formed
when the entropy S(E) grows much faster,

S(E) ' R∗ E , (2.9)

so that the partition sum diverges at R < R∗. We will discuss the density of states in
the TTbar deformed theories in more details in §6.

In the above discussion we have denoted by R∗ the position of the singularity of
Eα(R) as a function of R. It is important to observe that the solution εα(θ|R) displays
a singularity at the same position R = R∗, independent on the value of the rapidity
θ. In other words, in the two-dimensional space spanned by the variables (θ,R) the
singularity of εα(θ|R) occurs along the line (θ,R = R∗). We will see that this feature
of the singularity associated with the Hagedorn transition will be reproduced in the
generalized TTbar flows studied below.

As already mentioned, the enhancement of the density of states in the deformed
theory is well expected. The scattering phase in (1.3) grows fast with the center of

12



mass energy, leading to the increase of the density of two-particle states, implying a yet
greater increase of the density of all multi-particle states. The calculation presented
above demonstrates that the resulting entropy displays the Hagedorn behavior (2.9). It
is then tempting to assume that the formation of the Hagedorn density (2.9) is directly
related to the fast growth of the scattering phase. In the next section we will show that
the Hagedorn singularity develops just as well in models whose associated CDD factor
has a finite behavior at high energies, as in (1.8) with finite N , which indicates that
the physical origin of the Hagedorn transition in the deformed theories is substantially
more intricate.

3 The models

Here we study the CDD deformations of the trivial (fermionic or bosonic) S-matrix by
the pole factor (1.8), which we write as

S(θ) = σ
N∏
p=1

i sinup + sinh θ

i sinup − sinh θ
(3.1)

where, as before, σ = − (resp. σ = +) corresponds to the fermionic (resp. bosonic) case.
The parameters up may be taken to be complex and, in view of the obvious periodicity
of S(θ), we may limit our attention to the strip −π < Re(up) < π. The standard
analytic requirements for the physical S-matrix, however, impose restrictions on the
possible locations of the poles θp = iup. Taking these restrictions into consideration,
the parameters up are allowed to be either real or complex with negative real parts.
The poles θp = iup, with real positive up signal the existence of bound states – new
stable particles of mass 2M cos(up/2). Since the presence of such particles violates our
working assumption that the mass spectrum of the theory only involves a single kind
of stable particle with mass M , henceforth we will assume that all parameters up in
(3.1) possess a negative real part11:

−π ≤ Re(up) ≤ 0 , ∀p = 1, . . . , N . (3.2)

This leaves us with poles θp = iup lying in the unphysical region, i.e. the region
of the complex center-of-mass energy s-plane reached by analytically continuing the
scattering amplitude through the two-particle branch cut. When up has nonzero imag-
inary parts, such poles are associated to unstable particles, having complex masses

11This leaves out the possibility of having a pole at θ = 2πi/3 which may be identified with the
same particle of the mass M = 1. Such interpretation requires that S(θ) satisfies additional bootstrap
condition. This possibility, known as the “ϕ3 property”, cannot be realized in the 2CDD model
considered in this work, but may be relevant when N is greater than 2. We hope to address this type
of models elsewhere.
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Mp = 2M cos(up/2), with the real and imaginary parts identified as usual with the
mean center of mass energy and the width of the resonances. The poles with real neg-
ative up do not have clear particle interpretation, but the number of such poles signify
the increment of the scattering phase as the function of θ at low energies; these poles
are often referred to as the virtual states (see e.g.[28]).

A final requirement is that of unitarity of the physical S-matrix, which demands
that S(−θ) = S∗(θ) at all real θ, or, equivalently, that S(θ) takes real values at pure
imaginary θ. It follows that any non-real parameter up in (3.1) either has fixed real
part Re(up) = −π/2 or appears together with its conjugate u∗p. We can then refine the
range (3.2) to the following three cases

a) Im(up) = 0 and Re(up) ∈ (−π, 0) ,

b) Im(up) 6= 0 and Re(up) = −π
2
, (3.3)

c) Im(up) > 0 and Re(up) ∈
(
−π,−π

2

)
∪
(
−π

2
, 0
]

and ∃p′ ≤ N s.t. up′ = u∗p .

Thus, each subfamily (σ,N) of (3.1) contains a number of, in principle, different models,
determined by a given combination of the ranges (3.3) for each of the parameters
{up}Np=1. Some simple combinatorics12 tells us that this number is

1

4
N2 +N +

7 + (−1)N

8
=


(
N
2 + 1

)2
N ∈ 2Z>0

N+1
2

N+3
2 N ∈ 2Z>0 − 1

. (3.4)

Since for any model determined by (3.1), with parameters in the ranges (3.2), the
mass spectrum contains a single stable excitation, the resulting single-particle TBA
equation takes the simple form (1.12), with the kernel ϕ(θ) being the derivative of the
scattering phase which, in the case of (3.1), explicitly reads

ϕNCDD(θ) =
1

i

∂

∂θ
logSNCDD(θ) = −

N∑
p=1

2 sinup cosh θ

sin2 up + sinh2 θ
. (3.5)

An equivalent, sometimes more useful, expression of this kernel is its partial fractions
expansion

ϕNCDD(θ) =
N∑
p=1

[
1

cosh
(
θ + i(up + π

2 )
) +

1

cosh
(
θ − i(up + π

2 )
)] . (3.6)

12Given the number N of poles one needs to partition it into three non-negative integers na, nb and
nc with the constraint that na + nb + 2nc = N . Once a value of nc = 0, 1, . . . , bN/2c is chosen, one
is obviously left with N − 2nc + 1 non-equivalent arrangements of poles between the cases a) and b).

Thus the number of different models is given by
∑bN/2c
nc=0 (N − 2nc + 1), which gives the result (3.4).
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In what follows, we are going to concentrate our attention on two particular subfamilies:
the “1CDD models” where N = 1 and the “2CDD models” with N = 2.

The 1CDD models When N = 1 the S-matrix (3.1) consists of a single factor

S1CDD(θ) = σ
i sinu1 + sinh θ

i sinu1 − sinh θ
. (3.7)

According to the breakdown of cases (3.3), for each choice of the TBA statistics we
only have two possible models, corresponding to the following ranges of the parameter
u1:

(a) u1 ∈ R and −π < u1 < 0,

(b) u1 = −π/2 + iθ0 and θ0 ∈ R.

Considering at first the fermionic case σ = −1, one recognizes in (3.7), for the case (a),
the well-known S-matrix of the sinh-Gordon model

SshG(θ) = − i sinu1 + sinh θ

i sinu1 − sinh θ
, −π < u1 < 0 . (3.8)

On the other hand, the case (b) corresponds to the S-matrix of the “staircase model”,
introduced in [17]

Sstair(θ) =
sinh θ − i cosh θ0

sinh θ + i cosh θ0
, θ0 ∈ R . (3.9)

In both the cases (a) and (b) of the fermionic 1CDD model, the iterative solution to
the TBA equation converges at all positive values of R, producing a function E(R)
analytic in the half-line R > 0 and displaying a Casimir-like singularity at R = 0, in
full agreement with the interpretation of E(R) as the ground state energy of a UV
complete local QFT.

For what concerns the two bosonic 1CDD models, the solution of the TBA equation
has a considerably more intricate behavior. The case (a) of u1 real was first addressed
in [19], where it was observed that the iterative solution of the TBA equation only
converges for sufficiently large radius R > R∗ > 0. The authors also noticed that the
function E(R) appears to develop some sort of singularity at R = R∗. Below in §5 we
will show that the solution to the TBA equation, and, consequently, the ground state
energy E(R), possesses, as a function of R, two branches. These merge at R = R∗,
meaning that R∗ is a square-root branching point. We also show that this behavior
extends to the case (b) of complex parameter u1 = −π/2 + iθ0.
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The 2CDD model In the N = 2 subfamily, a pair of CDD factors is present in (3.1):

S2CDD(θ) = σ
i sinu1 + sinh θ

i sinu1 − sinh θ

i sinu2 + sinh θ

i sinu2 − sinh θ
. (3.10)

Following the breakdown (3.3), we see that there are 4 possibly distinct models, corre-
sponding to the following ranges of the parameters u1 and u2

(a) u1 ∈ R and −π < u1 < 0,
u2 ∈ R and −π < u2 < 0,

(b) θ0 ∈ R and u1 = −π/2 + iθ0,
u2 ∈ R and −π < u2 < 0,

(b’) u1 ∈ R and −π < u1 < 0,
θ0 ∈ R and u2 = −π/2 + iθ0,

(c) θ0 ∈ R and u1 = −π/2 + iθ0,
θ′0 ∈ R and u2 = −π/2 + iθ′0,

(d) θ0 ∈ R, γ ∈ (−π/2, π/2), u1 = γ − π/2 + iθ0 and u2 = u∗1.

The model (a) can be considered as a special instance of the more general case d). On
the other hand the models (c) and (b) – equivalent to (b’) – are genuinely distinct.
All the models above display, both for the bosonic and fermionic statistics, the same
type of behavior observed in the bosonic 1CDD models mentioned above: the itera-
tive procedure for solving the TBA equation (1.12) only converges for R larger than
some positive value R∗ > 0 and the ground state energy E(R) apparently develops a
singularity at R = R∗.

While we are going to present some data for all the various 2CDD cases, we devoted
most of our attention to the case (d), that we will call, with some definitional abuse,
the “2CDD model”. Its S-matrix and TBA kernels explicitly read as follows

S2CDD(θ) = σ
sinh θ − i cosh(θ0 + iπγ)

sinh θ + i cosh(θ0 + iπγ)

sinh θ − i cosh(θ0 − iπγ)

sinh θ + i cosh(θ0 − iπγ)
. (3.11)

ϕ2CDD(θ) =
∑

η,η′=±

1

cosh(θ + ηθ0 + iη′γ)
. (3.12)
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3.1 Iterative solution

The chances of a non-linear integral equation of the form (1.12) to be amenable to an
explicit analytic solution are considerably slim. For this reason the main investigation
approach to the TBA equations is of numerical nature13. In most situations, a simple
iterative procedure of the following type

εn(θ) = R cosh θ + σ

∫
ϕ(θ − θ′) log

[
1− σe−εn−1(θ′)

] dθ
2π

, (3.13)

appropriately discretized, is shown to converge to the actual solution

lim
n→∞

εn(θ) = ε(θ) , (3.14)

when the seed function ε0(θ) is chosen as the driving term14

ε0(θ) = R cosh θ . (3.15)

The existence and uniqueness of the limit (3.14) has been proven rigorously in [30]
for the fermionic single-particle15 TBA equation (1.12) with a kernel satisfying the
requirement

||ϕ||1 :=

∫
|ϕ(θ)| dθ

2π
≤ 1 . (3.16)

The fermionic 1CDD models do satisfy this condition and, as such, the iteration proce-
dure is guaranteed to converge nicely in the whole range R ∈ R>0, a fact which is easily
verified numerically. All the other models we considered above, on the other hand,
violate one or more of the hypotheses of the existence and uniqueness theorem in [30]
– being either of bosonic statistic, or having a kernel with L1 measure ||ϕ||1 = 2, or
both – and are not guaranteed to possess a convergent iterative solution. Notice that
the L1 measure of the TBA kernel (3.6) counts the number of CDD factors

||ϕNCDD||1 = N , (3.17)

meaning that, in the class of models described by the S-matrix (3.1), only the subfamily
with (σ,N) = (−1, 1) is guaranteed to have a convergent iterative solution.

13In some limiting cases, it is possible to derive exact expressions, e.g. for the ground-state energy
in the conformal limit, via the so-called “dilogarithm trick”, as explained nicely in [29].

14In the case in which the iterative procedure does converge, there is actually a vast freedom in the
choice of the seed function. However the standard choice indicated in the main text is the most natural
one.

15See also [31] for an extension to fermionic multi-particle TBA equations.
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Figure 4: Ground-state energies for the various models discussed above, along with
that of the T T̄ -deformed free fermion (black dots). The empty (resp. filled) markers
correspond to models with bosonic (resp. fermionic) statistics. The fermionic sinh-
Gordon and staircase models can be solved iteratively all the way to the R→ 0 limit,
while the rest fail to converge below a certain model-specific scale R∗. The parameters
of the models were chosen as to allow a comfortable visual comparison between the
curves and are the same for both bosonic and fermionic versions of the same model.
Insets: inverse square of the (numerical) derivative. As shown by the fits (dotted lines),
the fermionic sinh-Gordon and staircase models show the conventional UV behavior
∝ R4, while the other models develop a ∝ R behavior reminiscent of the square-root
branching singularity of the ground state energy.

We investigated numerically the 1CDD models (a) and (b) and the 2CDD models
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(b) to (d)16, for both the bosonic and fermionic statistic, using the iterative procedure
(3.13). As already mentioned above we observed that only for the 1CDD fermionic
models this procedure converges for all positive values of the radius R. In every other
case, there exists a positive “critical radius” R∗ > 0 such that for R ≤ R∗ the iterative
routine stops converging. As R approaches R∗ from larger values, we noticed that
the rate of convergence of the iterative numerical routine slows down dramatically,
a telltale sign of the existence of some kind of singularity nearby17. In Figure 4 we
collected the plots of the ground-state energy E(R) for one representative point in the
parameter space for each of the models we mentioned above along with one for the T T̄ -
deformed free fermion. The shape of the curves suggests that all the cases, apart from
the fermionic 1CDD models, behave qualitatively in the same way as the T T̄ -deformed
free fermion, that is to say they develop a square-root type singularity at some critical
value of the radius R = R∗ > 0:

E(R) ∼
R→R+

∗

c0 + c1/2

√
R−R∗ +O(R−R∗) . (3.18)

In order to further confirm this suspicion we plotted the derivative of the ground-state
energy to the power −2 in the vicinity of the supposed critical point. As we can see
in the insets of Figure 4, the numerical results are in good accord with the hypothesis
that R∗ is a singular point of square root type, as expressed by (3.18).

3.2 Two branches

Having our expectation confirmed leaves us with the question of how to deal numerically
with such a square root critical point. In particular, the behavior (3.18) implies the
existence of a secondary branch of the ground-state energy, behaving as

Ẽ(R) ∼
R→R+

∗

c0 − c1/2

√
R−R∗ +O(R−R∗) , (3.19)

in the vicinity of the critical point. Here and below we are going to use the notation
Ẽ(R) for the secondary branch. We would like to be able to access numerically to
this secondary branch and to explore its properties, e.g. its large R behavior and the
possible existence of further critical points. The iterative routine (3.13) is ill suited for
this job and we need to employ a more refined method, the PALC mentioned in the
introduction and described in §4. Deferring a more thorough analysis of the properties
of E(R) to §5, let us present here its main qualitative features, concentrating on a single
point in the parameter space of the fermionic 2CDD model (d) as a representative case.

16Remember that the 2CDD model (a) is really a sub-case of model (d).
17This same “critical slowing down” of the numerical iterative procedure is observed as R → 0 in

any TBA system with iterative solution converging in R ∈ R>0. In this cases it reflects the existence
of a Casimir-like singularity of the ground-state energy at R = 0.
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Figure 5: Here is plotted the ground-state energy E(R) for the model with S-matrix
(3.11) with θ0 = 1/2 and γ = 3π/20, obtained through the PALC routine described in
§4. The numerical points are sided by three lines, approximating E(R) for large R on
both branches and for R & R∗.

More specifically let us set θ0 = 1/2 and γ = 3π/20 and compute numerically
the ground-state energy of the model defined by the S-matrix (3.11). The result is
displayed in Figure 5. We see that the function E(R) does indeed possess two branches
with distinctly different IR behavior. The primary branch is characterized by the
universal IR behavior

E(R) ∼
R→∞

− 1

π
K1(R) +O

(
e−2R

)
, (3.20)

whereK1 stands for the modified Bessel function while the secondary branch approaches
a linear behavior at large R

Ẽ(R) ∼
R→∞

−ε−R , (3.21)

with a rate of approach likely to be some negative power of R. For the specific case
depicted in Figure 5 the coefficient of the linear term is found to be

ε−

(
θ0 =

1

2
, γ =

3π

20

)
= −2.87452 . . . , (3.22)
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while the constant term is vanishing up to the precision we used for our numerical
routines. We will see in §5 that this is the asymptotic behavior predicted by analytical
considerations. In the zoomed box in Figure 5 we also plotted a fit of the function
E(R) in the vicinity of the critical point R∗. As expected the behavior in this region is
best described by the square-root function (3.18) (and (3.19) for the secondary branch),
with the coefficients taking the following values

c0

(
θ0 =

1

2
, γ =

3π

20

)
= −1.11767 . . . ,

c1/2

(
θ0 =

1

2
, γ =

3π

20

)
= 2.03547 . . . , (3.23)

R∗

(
θ0 =

1

2
, γ =

3π

20

)
= 0.61478849 . . . .

Another notable fact is that we see no trace of additional singular points: the PALC
method can, apparently, reach arbitrarily large values of R on the secondary branch and
the resulting ground-state energy quickly approaches the expected asymptotic linear
behavior.

We note again that the behavior of E(R) depicted in Figure 5 is qualitatively
identical to the one exhibited by the ground-state energy of T T̄ -deformed models for
negative values of the deformation parameter α, as described in §2 (see e.g. Figure 2).

Finally, we stress that the features of E(R) described here for a point in the param-
eter space of a specific model really are representative of the general behavior of the
ground-state energy in the family of models defined by the S-matrices (3.1), at least
for what concerns the case of fermionic statistics. As we will discuss in §5 the status
of the models with bosonic statistics is still not completely settled. In particular it is
still unclear whether the secondary branch of E(R) displays additional critical points
or continues undisturbed in the deep IR and, if this was the case, what type of behavior
it follows.

4 Numerical Method

The results displayed in the previous section suggest that the solution to the TBA
equation (1.12), for S-matrices of the form (3.1), may generally possesses a singular
dependence on the parameter R. In particular the slope of the tangent to the graph of
E(R) apparently diverges at some R = R∗. Such critical points are known as turning
points. Their presence in the dependence of the ground-state energy E on the system
size R evokes the case of the TTbar deformed models, in which all the quantities
obtainable from the TBA display a square-root singularity at the same value R = R∗.
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The iterative procedure described in §3.1 becomes unstable at R→ R∗, therefore it
is not particularly suitable for analyzing the vicinity of the singular point. Fortunately,
many powerful methods exist that are capable of handling numerically critical points
in non-linear equations. We refer to the nice monograph by Allgower and Georg [32]
for an introduction, paired with an extensive literature, to the subject. The simplest of
these numerical routines is the already mentioned PALC method which, in spite of the
simplicity of its implementation, will be entirely sufficient to handle the situations of
interest for us. In this section we will quickly review this method and its main features.

4.1 The pseudo-arc-length continuation method

Before starting let us point out a trivial fact: the TBA equation (1.12) is non-linear. It is
then not at all surprising that its solutions can develop a highly non-trivial dependence
on the parameters. Conversely, what is remarkable is that in the vast majority of
instances known in the literature, the solution to the TBA equations display a simple
behavior as functions of R. In full generality, we should expect a solution ε(θ|R) to
potentially present, as a function of R18, any type of critical point imaginable. As
we will see later, in the cases of the 1CDD and 2CDD models we are concerned with
here, only turning points appear. We will thus restrict our attention to the simple
cases in which every critical point is a turning point. This considerably simplifies
both the discussion and the actual implementation of the PALC method, although, if
needed, it is entirely possible – and not exceedingly difficult – to include the existence
of bifurcations in the game.

Since our goal is to analyze the TBA equation (1.12) numerically, we are going to
describe the principles of the PALC for maps between finite-dimensional spaces. Let
us then truncate and discretize the real θ-line on a N -point lattice {θk | k = 1, 2, . . . , N}
which, for the moment, we are not going to specify further. Now, consider a parametrized
map H which takes as input a parameter R ∈ R together with the values εk = ε(θk) ∈ R
of some real function on the lattice, and yields N real numbers:

H :

RN × R −→ RN

(~ε,R) 7−→ ~H(~ε,R)

, (4.1)

where we packaged the values εk and Hk into vectors ~ε and ~H. We wish to explore the
following fixed-point condition

~H(~ε,R) = ~0 . (4.2)

18In principle, the solution might possess critical points also in its dependence on the other parameters
present in the TBA equation. We found no hint of such a possibility and we will thus simplify our
discussion by concentrating on the dependence on the parameter R.
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Note that the TBA equation (1.12), appropriately discretized and truncated, can be
written in the above form. By definition, the map H acts between spaces of different
dimensionality, meaning

dim[Ker(H)] ≥ 1 , (4.3)

or, in other words, the image of the null vector ~0 ∈ RN under the inverse map H−1 is
a space of dimension at least 1. Hence at a generic point, where dim[Ker(H)] = 1, this
image is a curve

C : J ⊂ R −→ RN × R . (4.4)

We call this the solution curve for the map H.
Our goal is to follow the solution curve from a given starting point Ci = (~εi, Ri)

to a final one Cf = (~εf , Rf ). The most straightforward way to achieve this is to
simply parametrize the curve by R and employ some numerical iterative routine, such
as the one reviewed in §3.1, to move from Ci = C(Ri) to Cf = C(Rf ). However this
simple-minded approach fails at any point in the parameter space where the rank of
the Jacobian

Jkl =
∂Hk

∂εl
, (4.5)

is not maximal. There we can no longer rely on the implicit function theorem to
solve (4.2) for ~ε in terms of R. More geometrically, what happens is that the curve
C(R) displays a turning point, where d

dRC(R) diverges. Fortunately there exists a very
simple cure for this problem: instead of parameterizing the curve C by the parameter
R, we can use an auxiliary quantity s, traditionally chosen to be the arc-length of C
or a suitable numerical equivalent, whence the name pseudo-arc-length given to this
approach. The condition (4.2) then becomes

~H(C(s)) = ~0 , s ∈ J ⊂ R . (4.6)

In order to proceed, let us take a derivative of this condition with respect to the
parameter s. We immediately obtain

H ′(C(s))Ċ(s) = ~0 , (4.7)

where the extended Jacobian

H ′(C(s)) =

(
J
∣∣∣∣∣ d ~HdR

)
, (4.8)
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is a N × (N + 1) block matrix, while

Ċ(s) =

(
d
ds~ε

d
dsR

)
, (4.9)

is an (N + 1) column vector. At this point we seem to be short of 1 condition, since we
introduced an additional parameter. However, remember that we decided to choose s
as the (pseudo-)arc-length of C, which means

||Ċ(s)|| = 1 . (4.10)

Summing up, we converted our non-linear problem, supported by the starting point
(~εi, Ri), into an initial value problem

H ′(C(s))Ċ(s) = ~0 , ||Ċ(s)|| = 1 , C(si) = (~εi, Ri) , (4.11)

capable of dealing with the presence of turning points. Still, this formulation is some-
what unnatural as it completely disregards the fact that the curve C is the fixed point
of the map H, and, as such, should enjoy powerful local contractive properties with
respect to iterative solution methods – such as Newton’s method. We are then led
to an integrated approach in which we numerically integrate (4.11) very coarsely and
subsequently employ some kind of iterative method to solve (4.6) locally. This is the
general strategy behind the approaches known as predictor-corrector routines. In Ap-
pendix A we are going to describe the one that we employed in this work and present
a pseudo-code of its implementation.

5 Results for the 2CDD model

Here we present some results obtained using the numerical techniques of the previous
Section. We first concentrate on the fermionic 2CDD models and then discuss some
facts about the bosonic models.

5.1 Fermionic case

The numerical data we collected, of which we have shown some example in §3.2, strongly
indicate the following properties of the ground-state energy E(R) as a function of R:

– E(R) is a double-valued function of R, in the range R > R∗ with values in the
negative real numbers;

– The point R = R∗ is a square-root branching point – or, using the terminology
of §4, a turning point – of the function E(R);
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– There is no sign of additional turning or singular points other than R = R∗;

– The two branches display the large-R behaviors (3.20) and (3.21).

We could not find a convincing analytic argument proving the first three properties and
we regard them as experimental observations. On the other hand, the last property
(3.21) can be verified analytically, as we are now going to show.

5.1.1 The large R behavior

Let us analyze the possible behaviors of the TBA equation (1.12) at large R. To this
end, we write the equation as follows

ε(θ) = d(θ)− χ(θ) , (5.1)

where d(θ) is the driving term and χ(θ) the convolution:

d(θ) = R cosh θ , χ(θ) =

∫
ϕ(θ − θ′) log

[
1 + e−ε(θ

′)
] dθ′

2π
. (5.2)

As R →∞, the driving term becomes large, ∼ R, and, in order for the equation (5.1)
to be satisfied, it has to be balanced by a similar behavior in either ε(θ), χ(θ) or both.
The standard assumption is that

ε(θ) ∼
R→∞

d(θ) , χ(θ) �
R→∞

d(θ) , (5.3)

which turns out to be consistent, since, as one easily verifies,

χ(θ) ∼
R→∞

∫
ϕ(θ − θ′) log

[
1 + e−R cosh θ′

] dθ′
2π

∼
R→∞

ϕ(θ)√
2πR

e−R �
R→∞

R cosh θ . (5.4)

However this is not, in general, the only possibility. It might be the case that the
convolution term χ(θ) is diverging as R → ∞ and becomes comparable with either
ε(θ), d(θ) or both. It is then not difficult to check that only two possibilities are
consistent:

1. ε(θ) −→
R→∞

0 and the kernel ϕ(θ) is not integrable on the real line;

2. ε(θ) ∼
R→∞

−Rf(θ) where f(θ) is positive only in some finite19 subset Θ ⊂ R of

the real line and negative everywhere else.

19The subset Θ cannot be infinite, since the equation (5.1) forces ε(θ) to behave as d(θ) for θ → ±∞.

25



The scenario 1 cannot arise for the class of models we are dealing with20, since the
kernels (3.6) are obviously bounded functions of θ ∈ R. The situation 2 is, on the other
hand, a possible one. Let us explore its consequences.

In the hypothesis that

ε(θ) ∼
R→∞

−Rf(θ) ,

{
f(θ) > 0 , θ ∈ Θ ⊂ R ,
f(θ) ≤ 0 θ ∈ Θ⊥ = R−Θ ,

(5.5)

the convolution can be approximated as follows

χ(θ) ∼
R→∞

R

∫
Θ

ϕ(θ − θ′) f(θ′)
dθ′

2π
+

∫
R

ϕ(θ − θ′) log
[
1 + e−R|f(θ′)|

] dθ′
2π

. (5.6)

Discarding the second term in the right-hand side, we arrive at the linear equation

f(θ) = − cosh θ +

∫
Θ

ϕ(θ − θ′) f(θ′)
dθ′

2π
. (5.7)

Due to our hypothesis on the function f(θ), we see that the integrand in the right-hand
side above is positive for any (θ, θ′) ∈ R2, which implies the following bound

0 ≤
∫
Θ

ϕ(θ − θ′) f(θ′)
dθ′

2π
≤ Max

t∈Θ
[f(t)]

∫
Θ

ϕ(θ − θ′) dθ
′

2π
. (5.8)

Now, let θM ∈ Θ be such that f(θM) = Max
t∈Θ

[f(t)], then the following inequalities are

true

− cosh θM ≤ f(θM) ≤ − cosh θM + f(θM)

∫
Θ

ϕ(θM − θ′)
dθ′

2π
. (5.9)

Rearranging the right inequality above, we find that∫
Θ

ϕ(θM − θ′)
dθ′

2π
≥ 1 +

cosh θM

f(θM)
> 1 , (5.10)

which we can interpret as a constraint on the class of models which allow for this
scenario. In fact, remember that the integral of the kernel on the whole real line,

20This scenario is, however, possible in models whose S-matrix presents a non-vanishing factor
Φentire(θ) (1.9). In particular it describes the large R behavior of the secondary branch Ẽ(R) in
the T T̄ -deformed theories.
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(3.17), counts the number N of CDD factors appearing in the S-matrix (3.1). But,
since we assumed that Θ is a finite subset of R, we find that

N >

∫
Θ

ϕ(θM − θ′)
dθ′

2π
> 1 =⇒ N > 1 . (5.11)

Thus we have found that the fermionic 1CDD models, namely sinh-Gordon and the
staicase models, can only display the standard large R behavior (5.3), (5.4). We stress
that this result should not be read as a proof of the absence of turning points in these
models, but rather as a sanity check for the correctness of our computations, since
the ground-state energy for fermionic 1CDD models is well known to be a smooth and
monotonously increasing function of the radius in the whole range R > 0. Conversely,
all fermionic NCDD models with N > 1 allow for both the standard large R behavior
(5.3), (5.4) and the non-standard one (5.5). Consequently, their ground-state energy
will possibly display both the asymptotic behavior (3.20) and (3.21), where

ε− =

∫
Θ

cosh θ f(θ) dθ , (5.12)

in accordance with the numerical data we have obtained.

5.1.2 Analysis of the numerical data

The fermionic 2CDD models were classified in §3 into cases (a) to (d). We have per-
formed numerical analysis for all the different cases and the results show that the
behaviors are qualitatively the same. Thus, we are going to show here the details of
the numerical analysis only for the representative case (d). We begin by analyzing
the numerical solution obtained through the PALC method for large values of R. It
was argued in the previous section that the pseudoenergy should behave as in (5.5),
assuming negative values in a finite subset of the real line and positive values elsewhere.
This is indeed checked to be true for all the 2CDD models under consideration, as il-
lustrated for a particular member of this family in Figure 6, and to be contrasted with
the standard iterative solution (the primary branch) which is positive everywhere. The
numerics indicate that the negativity region is always a single interval centered at the
origin of the form Θ = {θ ∈ R | − Λ ≤ θ ≤ Λ}. They also indicate that the inter-
val size Λ is model-dependent. In particular, it seems to grow with θ0 and decreases
with γ. Nevertheless, the precise dependence of Λ on the parameters deserves further
investigation.

We then proceed to analyze the secondary branch solution in the opposite extremum
of R, i.e., as R approaches the critical value R∗. For some of the plots it will be

27



−6 −4 −2 0 2 4 6

0

100

200

300

θ

ε(
θ)

R = 5
R = 2
R = 0.29
R = 0.29
R = 2
R = 5

Figure 6: Pseudoenergy ε(θ) for the secondary branch solution (blue) at large values of
R, showing the expected behavior (5.5), namely it is below 0 (marked with the dashed
line) in a finite interval. Corresponding behavior of the iterative solution (red). Here
the model parameters are θ0 = 2 and γ = 4π/10, though we checked the qualitative
picture to remain the same within the whole set of admissible values of θ0 and γ.

convenient to show the results in terms of the log-scale distance

x = log(R/2) (5.13)

that alleviates the exponential dependence (with x∗ = log(R∗/2) for the corresponding
critical point). Here we find it more instructive to display L(θ) instead of the pseu-
doenergy itself in order to ease the comparison with the primary branch solution. The
situation is illustrated in Figure 7. The two branches approach each other as the value
of R decreases, eventually merging at R = R∗ after which they become complex-valued.
For each R, the function L(θ) for the secondary branch is everywhere larger than the
corresponding primary branch counterpart, which is compatible with the previously
mentioned fact that it has lower energy (recall the overall minus sign in (1.14)).

The critical value R∗ could in principle have a dependence on θ. We ran an ex-
tensive numerical test exploring this possibility, but all the numerical results indicate
θ-independence to high accuracy, even though at this moment we do not have an an-
alytic proof of this property. The analyses were as follows. We first ran the iterative
numerical routine and computed the pseudoenergy ε(θ) for at least ten different values
of x differing from each other and from x∗ by 10−8. Then, we selected several values of
θ and for each value we performed a square root fit of the form a(θ)+b(θ)

√
−x∗(θ) + x.

The fits were done using Mathematica’s NonlinearModelFit function by giving an ini-
tial estimate for x∗(θ). By comparing all the obtained x∗(θ), we verified that they agree

28



−6 −4 −2 0 2 4 6

0

2

4

θ

L
(θ
)

R = 0.0257
R = 0.0225
R = 0.0200
R = 0.0193
R = 0.0193
R = 0.0200
R = 0.0225
R = 0.0257

Figure 7: L(θ) for both the primary (red) and secondary (blue) branch solutions as
R approaches the critical value R∗. For each color (blue or red), the color gradient
indicates the decrease of R towards R∗, where the two branches merge. Here θ0 = 5
and γ = 4π/10, which lead to R∗ ≈ 0.0192.

up to errors greater than 10−8 which was our minimal working precision. The analysis
was performed for several values of θ0 and for γ in the range 0 ≤ γ ≤ (99/200)π. In
many cases, when the number of necessary points in the discretized θ grid was not very
high it was possible to work with even higher precision. In those cases, another way of
getting x∗ with high precision is by assuming a square root behavior for the pseudoen-
ergy and solving the resulting equations using Mathematica’s FindRoot function.

In addition, we also verified that R∗ depends smoothly on the model parameters θ0

and γ, as shown in Figure 8 for both the fermionic and bosonic models. In particular,

for large θ0 we have the asymptotic behavior x∗ = log(R∗/2) ≈ −θ0 +x
(0)
∗ (see §5.3 for a

derivation in the special limit where γ is close to π/2, for which x
(0)
∗ = log log(2+2

√
2);

for other values of γ the linear term remains the same, though x
(0)
∗ is different).

5.2 Bosonic case

We have also repeated the analysis described above using the PALC method to the
case of bosonic systems. The numerical routine used in this case only differs from the
fermionic case by a few signs. As already mentioned in §3, the solutions to the TBA
equation for the bosonic models have intricate behavior already for the 1CDD cases.
It was first noticed in [19] (for the case of real u1, in the notation of (3.7)) that the
numerical iterative routine stops converging for some R∗, signaling the presence of a
singularity. In fact, we have verified numerically that all the bosonic models up to two
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Figure 8: Dependence of the critical x∗ in the model parameters. Black lines corre-
spond to fermionic 2CDD models, red lines correspond to bosonic ones. On (a), we
demonstrate the validity of the narrow resonance limit approximation for x∗ (red and
black bullets/boxes), see in 5.3.

CDD factors behave similarly to the fermionic 2CDD models of previous section, i.e.,
they have a “primary branch” and a “secondary branch” which merge at a critical scale
R∗, where the energies E(R) have square-root singularities in R∗, and the value of R∗
is independent of θ.

There is a simple argument based on the well-known relation between bosonic and
fermionic TBA which makes this behavior of the bosonic 1CDD model rather natural.
Consider the TBA equation (1.12), (1.13) with σ = +1 and an NCDD kernel (3.1),
and introduce the following function

ε̃(θ) = log
[
eε(θ) − 1

]
. (5.14)

Some trivial manipulations show that this function satisfies a fermionic TBA equation
with kernel

ϕ̃(θ) = ϕ(θ) + 2πδ(θ) , (5.15)

with the δ(θ) being the Dirac δ-function. Therefore, a general bosonic NCDD model
is equivalent to the (N + 1)CDD fermionic TBA, taken in the limit when uN+1 → 0
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Figure 9: L(θ) for the 2CDD bosonic model of type (d) with θ0 = 5 and γ = 3π/10,
in which case R∗ ≈ 0.2382. Similarly to the fermionic case the function L(θ) for the
secondary branch is everywhere greater than the one for the first branch.

(see (3.6))21. Recalling the arguments presented in §5.1.1, we conclude that bosonic
NCDD models admit two different types of large R behaviors whenever N > 0.

The large R regime of the pseudoenergy ε(θ) for the primary branch is as expected
and it is easily accessed numerically, however for the secondary branch it is more
involved to compute it. By increasing the value of R, eventually we reach a value
R′ where the PALC method suddenly ceases to provide a real solution and reverts back
to the primary branch solution. Analyzing the behavior of ε(θ) for complex values of
θ, we verified that a pair of complex conjugate zeros of z(θ) = 1− e−ε(θ) is approaching
the real axis and causing the numerical instability. In principle it is possible to refine
the numerical methods so as to obtain solutions for R > R′. However, it is not clear
at the moment whether or not those singularities of L(θ) ever cross the real axis. In
case they do, an analysis similar to the one performed in [33] for the excited state TBA
could be carried out. We leave the analysis of the large R behavior of the secondary
branch in bosonic models for a future study.

The behavior of the models for R close to R∗ is illustrated in Figure 9 by the
L(θ) function for a 2CDD model of type (d). The qualitative picture is similar to
the fermionic case, i.e. the function L(θ) for the secondary branch solution is greater
everywhere than the one for the primary branch and the two merge as the critical
point is approached. We conclude this subsection by showing in Figure 8 the smooth
dependence of x∗ on the model parameters and in particular in the limit γ → π/2.
In addition, notice that the bosonic curve is always above of the fermionic curve for

21Notice that limu→0 log i sinu−sinh θ
i sinu−sinh θ

= iπ sign(θ), for the principal branch of the log function.
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the same parameters. This can be understood by analyzing the map (5.15) and the
fact that the additional delta function term always give a positive contribution to the
convolution term of the TBA equations.

5.3 Narrow resonance limit

Here we consider the special limit γ → π
2 of the kernel (3.12). In this limit the poles

of the kernel get closer to the real line, finally forming two Dirac δ functions. We
shall refer to this as the Narrow Resonance (NR) limit. After integration of the delta
functions and exponentiation, TBA (1.12) becomes the difference equation

Y (θ|R) = e−R cosh θ[1− σY (θ + θ0|R)]−σ[1− σY (θ − θ0|R)]−σ , (5.16)

where we introduced the notation Y (θ|R) = e−ε(θ|R). Note that this can be seen as an
infinite set of equations relating the values of Y on the grid points θ ∈ (−θ0, θ0) + θ0Z.

Let us focus on the fermionic case (σ = −1). Introducing yk = Y (θ + kθ0) and
gk = e−R cosh(θ+kθ0) we can write (5.16) as

yk = gk(1 + yk−1)(1 + yk+1) , (k ∈ Z) (5.17)

and look for a solution for different grids specified by a choice of θ. This is an infinite
set of equations, however starting with k = 0 one can obtain an approximate solution
by truncating the system for some |k| ≤ m, since gk and yk decay very rapidly with R
and θ0, and hence with k. Truncating to m = 1 leads to the quadratic equation

y0 = k0[1 + g1(y0 + 1)][1 + g−1(y0 + 1)] . (5.18)

One can now choose the integer lattice (i.e., θ = 0), to get

y0 = −1− e−R cosh θ0 +
1

2
eR(1+2 cosh θ0)

(
1±

√
1− 4e−R(1+cosh θ0)(1 + e−R cosh θ0)

)
.

(5.19)

The solution develops a square root singularity at x∗ ≈ −θ0 +log log(2(1 +
√

2)), which
is compatible with our findings in §5.1.2. This point is shown as a red bullet in Figure
8a. In contrast to the general case, it is clear that here the branching point depends
on the choice of θ lattice. Let us also comment that a similar analysis of the truncated
system in the bosonic case (σ = +1) using the half-integer lattice leads to the black
box shown in Figure 8a.22

22The analog of (5.19) comes with a more complicated square root argument and no analytical
solution for x∗ as a function of θ0 can be found in that case, although it is straightforward to find it
numerically.
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Figure 10: Approaching the Narrow Resonance (NR) limit for θ0 = 2 and x = 1.75

Note that the truncation to m = 1 is only valid for sufficiently large R and θ0.
Increasing the truncation order leads to more coupled equations, which in turn can be
recast as an (more complicated) algebraic equation for y0, with parameters depending
on θ. The number of solutions increases accordingly. However, for any θ ∈ (−θ0, θ0)
there is always a single pair of solutions which collide and form a branching point at
some x∗(θ) ≈ −θ0 + const., corresponding to real, positive R∗(θ), a feature that is not
altered by increasing the truncation order.

Finally, we remark that in the further special limit θ0 = 0, the difference equa-
tions (5.16) become simple algebraic equations for Y (θ) that can be exactly solved
both in the fermionic and the bosonic case, leading to exact expressions x∗ = log log 2
and x∗ = log log 3

2

√
3 for the critical points, respectively. These points are also shown

in Figure 8a, emphasizing the smooth nature of the limit γ → π
2 .

In Figure 10 we present as an example a solution with m = 8 truncation together
with the iterative solution of the integral equation (1.12) for θ0 = 2 and γ approaching
π/2, just before reaching the (first) critical R∗(θ) of the NR limit. The transition seems
to be smooth, however we do not yet have a complete understanding of the nature of
this limit. We plan to revisit the narrow resonance model in a more sistematic way in
the future.

6 Discussion

There are two general questions which we believe our results shed some light upon.
One concerns the short-distance behavior of the theory under the generalized TTbar
deformation (1.4). Our results supports the expectation that, at least in the cases when
the CDD factor in the associated S-matrix deformation has the form (1.10), (1.8) with
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finite N , the theory develops the Hagedorn singularity corresponding to a density of
high-energy states much greater than what is allowed in a Wilsonian QFT. Although
we demonstrated this in a limited set of examples – the 2CDD deformations of the free
S-matrix with both fermionic and bosonic statistics and the 1CDD deformations of the
free boson S-matrix – this result likely extends to more general NCDD deformations, at
least for massive theories involving only one kind of particles. In fact the case N =∞,
a model known as Elliptic sinh-Gordon, is shown to display the same behavior as the
ones studied here [34]. We note that this behavior is qualitatively the same as the
one encountered under the “TTbar proper” deformation (1.1) of a generic local QFT.
Moreover, the singularity of E(R) at the Hagedorn point R∗ is a square-root branching
point, exactly as in the TTbar deformations with negative α. From a formal point of
view, this nature of the singularity is not entirely unexpected. Indeed, the character
of the singularity relates to the rate of approach of the Hagedorn asymptotic (2.9) at
high energy E → ∞. Assume that the approach is power-like23

S(E) = R∗ E −
aLκ+1

Eκ + · · · (6.1)

where κ is some positive number, L is the spatial size of the system which is assumed
to be asymptotically large, and the dots represent yet higher negative powers of E . The
dependence on L of the subleading term reflects the extensive nature of the entropy,
which must behave as Lσ(E/L) in the limit L→∞, with the intensive quantity - the
entropy density σ - depending on the energy density E/L. Inspection of (6.1) reveals the
mass dimension of the coefficient a to be a ∼ [mass]2κ+1. Having in mind that all the
deformation parameters αs in (1.4) have even integer dimensions, one could expect that
the exponent 2κ+1 is an integer. The lowest positive κ consistent with this assumption
is κ = 1, and then (6.1) leads exactly to the square-root singularity of E(R). Still, the
physics behind this simple character of the singularity appears mysterious. Analytic
continuation of E(R) below R∗ returns complex values of E. This likely signals an
instability of the ground state at R < R∗ against some sort of decay. If so, what is the
product(s) of the decay? Usually in a theory with finite range of interaction the decay
of the unstable ground state goes through the process of nucleation, as in the “false
vacuum” decay studied in [36, 37]. However such a decay would imply a much weaker –
and analytically more complicated – singularity at R∗. Therefore the simple algebraic
character of the actual singularity appears puzzling. A different, but possibly related,
question is the physical interpretation of the secondary branch of E(R) discovered in
§5.

An even more general question concerns the relation between the S-matrix and
the underlying local structure. Suppose we are given an S-matrix, i.e. a collection of

23It is interesting to compare this assumption with the analysis of thermodynamic stability in [35].
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masses of stable particles as well as the full set of scattering amplitudes, satisfying all
the standard requirements of the S-matrix theory - unitarity, analyticity, crossing and
bootstrap conditions (see e.g. [38, 39]), with the singularity structure consistent with
the macro-causality [40]. Is there a local QFT generating such a scattering theory?
The answer is generally no. There are consistent S-matrices which cannot be derived
from Wilsonian QFT, and indeed do not have an underlying local structure, meaning
a complete algebra of local operators. This possibility is famously realized in string
theories. The results presented here support the expectation that the overwhelming
majority of self-consistent S-matrices are not derivable from local QFT. Although this
expectation arise from a general analysis of the RG flows [4], we substantiate it by
providing concrete examples in 1+1 dimensions with factorizable S-matrices consisting
of pure CDD factors. We studied a number of examples of such S-matrices and verified
that they lead to the Hagedorn density of high-energy states (2.9), familiar to the string
theories. What’s more, it looks likely that this situation is rather general: with the
exception of a small subset of “local field-theoretic” S-matrices, the bulk part of the
space of consistent, factorizable S-matrices in 1+1 dimensions, leads to a Hagedorn
transition. This statement of course needs to be verified on a more systematic level,
but it is tempting to conjecture that this is a general situation, not limited to integrable
theories and to low space-time dimensions. If so, would it mean that the majority of
consistent S-matrices correspond to some kind of string theories? Or maybe there is
a more general class of theories, besides the strings, which break the standard local
structure of QFT while preserving macro-causality and exhibit the stringy density of
states?

The present work represents a first step of a project having as a goal the systematic
analysis of the TBA equations for completely general CDD-deformed factorizable S-
matrices, with arbitrarily complicated CDD factors (1.7), possibly including the factors
(1.9) with singular behavior at high energies. Clearly, also CDD deformations of more
complicated S-matrices, involving more than one kind of particles – possibly having
mass degeneracies, a situation leading to off-diagonal scattering – have to be studied.
Such S-matrices lead to systems of TBA equations more complicated than the simple
equation (1.12). Nonetheless, we believe that the numerical methods adopted here,
in particular the PALC routine, can be adopted in full generality. Finally, a similar
analysis can be extended to the CDD deformed “massless TBA systems” (see e.g.
[41, 42, 29]). Although the physical foundation here is less firm – since the notion of
S-matrix is ambiguous for massless theories in 1+1 dimensions – these cases might
yield welcome surprises.
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A Predictor-corrector routine

In general, a predictor-corrector routine is, as the name suggests, a two-step procedure
to solve an equation, by first performing an educated (numerical) guess and subse-
quently adjusting it. In the case we are concerned with, we wish to solve the equation

H(ε, R) = −ε(θ) +R cosh θ −
∫

dθ′

2π
ϕ(θ − θ′) log

(
1 + e−ε(θ

′)
)

= 0 , (A.1)

with ϕ being the 2CDD kernel (3.12)

ϕ(θ) =
∑

σ,σ′=±1

1

cosh(θ + σω + iσ′γ)
. (A.2)

Obviously, we are going to deal with an appropriate truncation and discretization of
the above equation, taking the following form

Hk(~ε,R) = −εk +R cosh θk −
1

2π

∑
l

∆θϕkl log
(

1 + e−εl
)

= 0 , (A.3)

with ∆θ being the lattice step (taken to be constant, for simplicity) and

ϕkl =
∑

σ,σ′=±1

1

cosh((k − l)∆θ + σω + iσ′γ)
. (A.4)

The two steps of the predictor-corrector routine can be then described as follows
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• Predictor. This part of the routine takes as input a point c(sj) = (~εj , Rj) on
the solution curve and uses the initial value problem form (4.11), which we recall
here

H ′(c(s))ċ(s) = ~0 , ||ċ(s)|| = 1 , c(sj) = (~εj , Rj) , (A.5)

to yield a reasonable guess for a new point c(0)(sj+1) = (~ε
(0)
j+1, R

(0)
j+1). The simplest

way to obtain such a point is to employ the so-called Euler predictor, which
implements the equation

(~ε
(0)
j+1, R

(0)
j+1) = (~εj , Rj) + δs

tj
||tj ||

, (A.6)

where the N + 1 vector tj is tangent to the extended Jacobian H ′(c(s)) at the
point (~εj , Rj):

H ′(~εj , Rj)tj = 0 . (A.7)

• Corrector. This second part of the routine engages in the problem of adjusting

the predictor’s output (~ε
(0)
j+1, R

(0)
j+1) to a point actually lying on the solution curve.

It does so by some iterative method for solving the equation ~H = 0 starting
from an initial, reasonably close, guess. The fastest and least expensive of these
methods is the Newton’s one, which in our case would take the following form

~ε
(`+1)
j+1 = ~ε

(`)
j+1 − [J (~ε

(`)
j+1, R

(`)
j+1)]−1H(~ε

(`)
j+1, R

(`)
j+1) , R

(`+1)
j+1 = R

(`+1)
j (A.8)

if only we were not worried to encounter a point where J is not invertible. In
fact we are concerned precisely with such an eventuality, it being the very reason
that led us to consider the PALC method and the associated predictor-corrector
routine. Hence, we need to appropriately modify Newton’s method in order to
accommodate the possibility of a singular J , with H ′ of maximal rank N . The
way to handle such a situation is to consider the concept of quasi-inverse (also
called Moore-Penrose inverse) A+ of a matrix A, defined as

A+ = AT (AAT )−1 , (A.9)

where a superscript T denotes standard matrix transposition. Notice that, if A is
a square matrix, the above definition is equivalent to the standard inverse. Now,
if A is instead an N × (N + 1) matrix of maximal rank N and t is its tangent
vector At = 0, then the following statements are equivalent

1. Ax = b and tTx = 0,
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2. x = A+b,

3. x = min
v

[
||v||

∣∣∣ Av = b
]

which, in plain words, means that x is the vector of

minimal norm which solves the equation Ax = b.

Without going too much in the details (see chapter 3 of [32]), the takeaway is
that we can implement Newton’s method in the usual way, as long as we trade
the inverse of the Jacobian for the quasi-inverse of the extended Jacobian:

(~ε
(`+1)
j+1 , R

(`+1)
j+1 ) = (~ε

(`)
j+1, R

(`)
j+1)− [H ′(~ε (`)

j+1, R
(`)
j+1)]+H(~ε

(`)
j+1, R

(`)
j+1) . (A.10)

The above equation is then iterated as long as necessary, until reaching a point

(~ε
(L)
j+1, R

(L)
j+1) ≡ (~εj+1, Rj+1) deemed, by some appropriate convergence test, close

enough to a point on the solution curve.

Here follows a pseudo-code summarizing the procedure expounded above. As we can
immediately see, the algorithm requires an initial point solving the TBA equation. This
can be provided by using the standard iterative procedure of §3.1 to solve the equation
at some value of R > R∗. This will yield a solution (~ε0, R0) on the first branch, from
which to start the PALC.
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Algorithm 1: Euler-Newton predictor-corrector routine

Part 1: Input;

1 (~ε0, R0), s.t. ~H(~ε0, R0) = ~0 INITIAL POINT;
2 δs STEP SIZE;
3 Nstep STEP NUMBER;
4 η � 1 NUMERICAL TOLERANCE;
Part 2: Initialization;

5 Solve (J )0 ~x = − d
dλ
~H0 FIND INITIAL TANGENT;

6 (~t, τ) = (~x,1)√
1+||~x||2

NORMALIZE TANGENT;

for j = 1 to Nstep do
Part 3: Predictor;

7 Solve

(
J d

dλ
~H

~t τ

)
j−1

(
~t
τ

)
j

=

(
0
1

)
FIND NEW TANGENT;

8 (~ε
(0)
j+1, R

(0)
j+1) = (~εj , Rj) + δs

(~tj ,τj)

||(~tj ,τj)||
EULER PREDICTOR;

Part 4: Corrector;
for ` = 0 to ∞ , until break do

9 (δ~ε, δR) = −
[
H ′
(
~ε

(`)
j+1, R

(`)
j+1

)]+
~H
(
~ε

(`)
j+1, R

(`)
j+1

)
CORRECTION STEP;

10

(
~ε

(`+1)
j+1 , R

(`+1)
j+1

)
=
(
~ε

(`)
j+1, R

(`)
j+1

)
+ (δ~ε, δR) RELAXATION;

11 if ||δ|| < η BREAK CONVERGENCE CONDITION;

12 (~εj+1, Rj+1) =
(
~ε

(`)
j+1, R

(`)
j+1

)
MOVE TO NEXT POINT;
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