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Abstract

Five-dimensional N = 1 theories with gauge group U(N), SU(N), USp(2N) and SO(N)
are studied at large rank through localization on a large sphere. The phase diagram of
theories with fundamental hypermultiplets is universal and characterized by third order
phase transitions, with the exception of U(N), that shows both second and third order
transitions. The phase diagram of theories with adjoint or (anti-)symmetric hypermultiplets
is also determined and found to be universal. Moreover, Wilson loops in fundamental and
antisymmetric representations of any rank are analyzed in this limit. Quiver theories are
discussed as well. All the results substantiate the F-theorem.
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1 Introduction

Supersymmetric quantum field theories in five and six dimensions are valuable windows onto
the dynamics of interacting systems: they are constrained enough to be treated analytically,
yet they are rich enough to uncover new phenomena. Five-dimensional N = 1 field theories
admit UV completion at superconformal fixed points [1], which are necessarily isolated [2] and
strongly coupled [3]. 5d N = 1 gauge theories, which are the main characters of the present
work, sit in the IR of such superconformal field theories (SCFTs) and are connected to them by
a renormalization group (RG) flow. The Coulomb branches of these theories have a geometric
meaning inherited from M-theory compactified on a singular Calabi–Yau threefold X [4]. The
extended Kähler cone of X, that we denote C (X), is the union of chambers that parametrize
different crepant resolutions of X, as sketched in figure 1. In the gauge theory description,
the extended Kähler cone C (X) is identified with the extended Coulomb branch and the walls
separating two chambers correspond to codimension-one loci on the Coulomb branch at which
a state becomes massless [4–6].

Figure 1. Schematic illustration of the extended Kähler cone C (X) of a singular Calabi–Yau threefold
X. Across the blue wall separating distinct chambers, a state becomes massless.

Five-dimensional N = 1 Yang–Mills theories with classical gauge group descend from 6d
N = (1, 0) SCFTs compactified on a circle, with subsequent RG flows triggered by massive
deformations. The combination of geometric and field theoretic perspectives, integrated with
new combinatorial tools [7, 8], yields a firm grasp of the gauge theories consistently realized
within this framework [5–15].

The importance of weakly coupled, Lagrangian gauge theories resides in the fact that super-
symmetry protected quantities carry information on the strongly interacting UV fixed point.

The supersymmetric localization program [16] aims at reducing the path integral description
of supersymmetric observables, as the sphere partition function or the vacuum expectation value
of Wilson loops, to finite-dimensional integrals. In recent years, a wealth of exact results has
been obtained from localization on a broad variety of compact manifolds. Localization on the
five-sphere has been carried out in [17–22], see also the review article [23].

The goal of the present work is to analyze the phase structure of the sphere partition function
and of half-BPS Wilson loops at large rank of the gauge group. There exists a vast literature
discussing the large N behaviour of 5d N = 1 theories on the sphere [24–33], mostly pivoting
around the match with the holographic dual. A thorough analysis of the large N phases of
certain theories on the five-sphere appears in the work of Minahan and Nedelin [34, 35].
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A fruitful approach to study the phase diagram consists in putting the theory on a very large
sphere. This procedure, named decompactification limit, has been successfully applied to super-
symmetric theories in 4d [36–43] and 3d [44–49]. The first realization of a decompactification
limit in 5d is in [50]. Curvature effects are negligible from this vantage point, thus providing a
reliable approximation of flat space dynamics without spoiling the computability guaranteed by
localization.

In this work, we undertake a systematic study of the phases of five-dimensional N = 1 gauge
theories in the decompactification limit. We discuss both the sphere partition function and
the vacuum expectation value of Wilson loops, for various choices of gauge group and matter
content. It is worthwhile to emphasize that phase transitions are a signature of systems with
infinitely many degrees of freedom, whilst localization on S5 reduces the observables to matrix
integrals over zero-modes. For this reason, the large N limit is instrumental for the ensuing
analysis and crucial for the appearance of critical loci in parameter space: it will be this limit,
rather than the large sphere limit, to give rise to a non-analytic behaviour.

The paper is organized as follows. In the rest of this introductory section, we list concisely
our main results and mention potential avenues for future research.

The next section is the core of the subsequent analysis. In subsection 2.3, the most general
solution to the sphere free energy is obtained, for theories with fundamental hypermultiplets.
After that, we discuss half-BPS Wilson loops in the fundamental and in the antisymmetric rep-
resentation and find the most general solution for these observables in subsection 2.4. Subsection
2.5 extends the results to theories with hypermultiplets in representations of higher dimension.

The sections that follow are devoted to a detailed analysis of various gauge theories with
gauge group U(N) in section 3, SU(N) in section 4 and the other classical groups in section 5.
We study unitary quiver gauge theories in section 6. In subsection 6.1 we present two examples
of quivers with gauge group U(N)×U(N). Long quivers, in which the number of nodes is taken
large, are dealt with in subsection 6.2, although without completely determining their phase
structure. The text is complemented with three appendices.

1.1 Summary of results and outlook

Before entering the body of the paper, we summarize our main results and present related open
problems.

In the study of gauge theories with simple gauge group we find a rich phase diagram, with
the models undergoing a phase transition each time a mass parameter is decreased below or
above a characteristic scale.

• For gauge group U(N) and hypermultiplets in the fundamental representation, the phase
transitions are generically second order. There are, however, exceptions of two types:

(i) In the theory with symmetric assignment of masses the phase transitions are third
order;

(ii) In absence of a Yang–Mills term all the phase transitions are third order.

• For gauge groups SU(N), USp(2N), SO(2N) or SO(2N + 1) with fundamental hyper-
multiplets the phase transitions are always third order.

• Expectation values of Wilson loops in the fundamental representation follow a perimeter
law. Moreover,

– In U(N) theories, their derivative is discontinuous;
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– They have second order discontinuities when the gauge group is SU(N), USp(2N),
SO(2N) or SO(2N + 1), and for unitary group in case (i) above.

• Wilson loops in the antisymmetric representation follow a perimeter law and have discon-
tinuities in the first derivative in U(N) theories, and in the second derivative in all other
theories.

• For any gauge group and an adjoint hypermultiplet, the theory has a second order phase
transition.

We conclude that all gauge theories with a known UV SCFT completion belong to the same
universality class. On the contrary, the critical behaviour of U(N) gauge theories depends on
the deformation pattern. This raises the question of what kind of UV completion they admit,
if at all. It might be that only balanced theories possess a UV fixed point. Another possible
explanation is that every U(N) gauge theory descends from a bona fide SCFT, but the Abelian
factor introduces some subtlety in the order of limits, namely strong coupling and large N limit
do not commute. Point (ii) above would fit in this scenario, but other puzzles would remain.
In either case, a deeper understanding of these models by diverse and more refined methods is
highly desirable.

There are various directions worth pursuing to extend the results of the present work. An
intriguing one is to understand the phase structure of theories with defects. A formulation of
these theories on the sphere may entail a generalization of [22, 51, 52] along the lines of [53, 54].

Gauge theories with eight supercharges can be localized on a d-dimensional sphere [55, 56],
extending the setup of the present work away from d = 5. It is possible to show that the
continuation is analytic in 4 < d < 6, but the method of subsection 2.3 as it stands does not
yield a consistent solution for non-integer d. In 4 < d < 5, fundamental hypermultiplets become
massless in real codimension higher than one, thus no phase transition is expected in that case.
To investigate further the phase diagram of more general theories in non-integer dimension is
an interesting open problem.

Finally, a systematic understanding of the relation between phase transitions and one-form
symmetries, elaborating on the observations in subsection 4.5.3, is left for future work.

2 Gauge theories with large rank on the five-sphere

2.1 Coulomb branch localization and large N limit

The moduli spaces of supersymmetric vacua of five-dimensional N = 1 gauge theories consist of
various branches. Among them, the Coulomb branch is parametrized by the zero-mode of the
real scalar φ in the N = 1 vector multiplet, conjugated in a Cartan subalgebra. For the sake of
clarity, the ensuing exposition is based on gauge group U(N), but the aspects we review hold
for any compact semi-simple Lie group G.

The Coulomb branch is a wedge inside Rrank(G) fixed by the choice of Weyl chamber:

Cgauge = R
rank(G)

/Weyl(G). (2.1)

It is convenient to consider the extended Coulomb branch of the theory,

C (X) = Cgauge × Cflavour. (2.2)

In the left-hand side we have adopted the notation C (X) from M-theory on the singular Calabi–
Yau threefold X, and on the right-hand side we have split the extended Coulomb branch into
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the gauge part, defined in (2.1) and parametrized by the dynamical scalar φ, and a flavour
part, parametrized by the real scalar fields {mα} in a background vector multiplet for the
flavour symmetry group. More generally, one may think of C (X) as a Cgauge-fibration over the
parameter space Cflavour [9].

Hypermultiplet modes are massive at generic points of the Coulomb branch and become
massless at codimension-one loci inside the extended Coulomb branch.

In this work, we analyze the phases of the 5d N = 1 gauge theories looking at the matrix
model obtained from localization on S5 [17, 18, 20] (for a review, see [23]). The partition function
of the theory in its Coulomb branch localized on S5 is

ZS5 =
1

N !

∫ +∞

−∞
dφ1 · · ·

∫ +∞

−∞
dφN Zclass(φ)Zvec

1-loop(φ)Zhyp
1-loop(φ)Zinst(φ) (2.3)

where Zclass is the classical contribution by the BPS field configuration, Z1-loop are the one-loop
determinants and Zinst contains the non-perturbative contributions from instantons on P2 ⊂ S5

[17, 18, 20]. The integration domain has been extended from Cgauge
∼= RN /SN to the whole RN

using the Weyl invariance of the integral, at the cost of a factor 1
N ! .

The classical piece is

Zclass(φ) =
N∏
a=1

e−V (φa), (2.4a)

V (φ) =
πr3k

3
φ3 +

8π3r3

g2
YM

φ2. (2.4b)

k is the Chern–Simons level and gYM is the Yang–Mills coupling, and we will henceforth use the
notation

h =
8π2

g2
YM

(2.5)

for the inverse gauge coupling, with mass dimension one. The 5d N = 1 gauge theories we study,
with the exception of those with gauge group U(N), are massive deformations of a UV SCFT,
with h determining the scale of such deformation. If the UV completion is a 6d N = (1, 0)
theory compactified on a circle of radius β, then h ∝ β−1.

The one-loop determinants for gauge group U(N) or SU(N) are [18]:

Zvec
1-loop(φ) =

∏
1≤a<b≤N

[
sinhπr (φa − φb) e

1
2
f(ir(φa−φb))

]2
, (2.6a)

Zhyp
1-loop(φ) =

F∏
α=1

N∏
a=1

[
coshπr (φa +mα) e−f(

1
2
−ir(φa+mα))−f( 1

2
+ir(φa+mα))

]nα
4
. (2.6b)

Here we have assumed that the matter content consists of Nf fundamental hypermultiplets with
degenerate masses, so that nα of them have equal mass mα, and

Nf =
F∑
α=1

nα. (2.7)

This choice of masses is non-generic, and the singular loci of the Coulomb branch degenerate
into walls having nα layers, as in figure 2.
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Figure 2. When the masses are degenerate, nα walls inside the Coulomb branch collide.

The function f(x) appearing in the one-loop determinants (2.6) has been defined in [17, 18]
and comes from the zeta function regularization of the infinite product

∞∏
n=1

(
1− x2

n2

)n2

. (2.8)

For our purposes, it suffices to say that it is manifestly even, f(−x) = f(x), and its derivative
satisfies

df(x)

dx
= πx2 cot (πx) . (2.9)

We do not discuss the non-perturbative contributions, since Zinst → 1 exponentially fast in
the setup of this work.1

When the gauge group is SU(N), the scalar φ must satisfy the constraint

N∑
a=1

φa = 0, (2.10)

that can be enforced adding a linear term in the potential (2.4b) and imposing the independence
of the partition function from the Lagrange multiplier. Writing this linear shift as

V (φ) 7→ V (φ) + 4πr2ξφ (2.11)

with V (φ) as in (2.4b), we recognize in the Lagrange multiplier ξ a Fayet–Iliopoulos parameter.
A geometric reduction from a U(N) to a SU(N) factor in the gauge group has been described
in [14], and we revisit their argument in the matrix model language in appendix A.2.

Before proceeding we notice that, for the integral representation of the partition function to
be convergent, one has to impose

N − |k| − 1

2

F∑
α=1

nα ≥ 0, (2.12)

which is a necessary (and believed sufficient) condition for the theory to descend from a non-
trivial SCFT in the UV [57].

1Equivalently, in the ’t Hooft limit taken below, instantons become infinitely massive and decouple.
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2.2 Large N and decompactification limit

We will take the large N limit of the matrix model (2.3) and then compute its decompactification
limit r →∞. Writing the partition function in the form

ZS5 =

∫
dφ e−Seff(φ), (2.13)

we see that the leading contributions in the large N and large r limit come from the stationary
points of Seff, while away from these points the integrand is damped as e−r

3N2(··· ). Therefore,
the problem is reduced to finding the solutions φ∗ to the saddle point equations (SPEs)

∂Seff(φ)

∂φa

∣∣∣∣
φ=φ∗

= 0, a = 1, . . . , N. (2.14)

Let us now look into the simplifications brought in by the large radius limit. Using the
parity of f , property (2.9) and retaining only the leading contribution at large r, we see that the
hypermultiplet and vector multiplet one-loop determinants contribute to the SPE respectively

−πr
3

2

Nf∑
α=1

(φ∗a +mα)2 sign (φ∗a +mα) , (2.15a)

πr3
∑
b 6=a

(φ∗a − φ∗b)
2 sign (φ∗a − φ∗b) . (2.15b)

Putting these terms together with the derivative of the classical piece we arrive at the system
of N SPEs

k (φ∗a)
2+2hφ∗a+ξ̌−1

2

F∑
α=1

nα (φ∗a +mα)2 sign (φ∗a +mα) = −
∑
b 6=a

(φ∗a − φ∗b)
2 sign (φ∗a − φ∗b) (2.16)

for a = 1, . . . , N . In the latter expression we have introduced the scaled quantity ξ̌ = 4ξ
r , to

keep track of the Lagrange multiplier at large radius.2

Integrating the SPE (2.16) and summing over a, we arrive at twice the prepotential of
[6]. The factor of two is predicted from the equivariant localization on the round sphere: the
partition function only receives contributions from small neighbourhoods of the two fixed points
of an isometry rotating a P2 inside S5. A slightly different prepotential has been derived in [9],
and in appendix B we relate it to a different decompactification limit.

2.3 Solution

Our goal is to solve the SPE (2.16) in a large N ’t Hooft limit, with

N

h
= λ fixed,

N

k
= t fixed. (2.17)

We moreover consider a Veneziano limit, in which the numberNf of fundamental hypermultiplets
grows linearly with N , hence we introduce the Veneziano parameters

nα
N

= ζα fixed, ∀ α = 1, . . . , F. (2.18)

2The linear coupling between ξ and φ actually comes from a mixed Chern–Simons term, so it should scale with
r3, as the pure Chern–Simons term. The introduction of a new variable ξ̌ is an artefact of the normalization, not
an additional scaling that we impose.
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We also keep ξ̃ = ξ̌
N fixed. The convergence condition (2.12) in this limit becomes

1

|t|
+

1

2

F∑
α=1

ζα ≤ 1. (2.19)

The large N limit of a 5d N = 1 U(N) Yang–Mills theory in the decompactification regime
has been addressed in [50], but only for a very special choice of masses and no Chern–Simons
term. We now derive the phase structure of the most general consistent gauge theory with
simple gauge group in the decompactification limit.

Let us introduce the eigenvalue density ρ(φ), which is normalized:∫
dφρ(φ) = 1 (2.20)

and has compact support. The effective action Seff(φ) is not an even function, therefore we
do not expect the support of the eigenvalue density to be symmetric. Moreover, ρ(φ) is not
required to be a function and, in general, it is sufficient that ρ(φ)dφ is a measure on the union
of intervals along a selected integration cycle. Throughout all this work, the integration cycle is
the real axis and the measure is supported on a compact interval,

suppρ = [A,B] ⊂ R . (2.21)

In the scaling limit (2.17)-(2.18) the system of N saddle point equations is recast into a
single integral equation

−
∫ B

A
dψρ(ψ) (φ? − ψ)2 sign (φ? − ψ) =

1

t
(φ?)2 +

2

λ
φ? + ξ̃ −

F∑
α=1

ζα
2

(φ? +mα)2 sign (φ? +mα)

(2.22)
to be satisfied by every φ? ∈ [A,B]. Here we have denoted φ? the variable running over the
continuous spectrum of eigenvalues of φ∗, being φ∗ the solution to the SPE (2.16). We have done
so in the hope of avoiding confusion between the original N -dimensional integration variable φ =
(φ1, . . . , φN ), the fixed N -dimensional saddle point φ∗ = (φ∗1, . . . , φ

∗
N ), and the one-dimensional

real variable φ? ∈ [A,B]. Henceforth, we will simply use φ instead of φ? to reduce clutter.

The mechanism triggering the phase transitions is read off from (2.22): the right-hand side
changes when a mass parameter crosses A or B, leading to a new eigenvalue density.

Taking three derivatives, we find that the generic solution to the SPE (2.22) is

ρ(φ) = cAδ (φ−A) + cBδ (φ−B) +

F∑
α=1

cαδ (φ+mα) , (2.23)

with coefficients

cα =

{
ζα
2 −mα ∈ [A,B]

0 otherwise
α = 1, . . . , F. (2.24)

Throughout this work, we define the δ-functions centered at the endpoints of suppρ taking the
limit from inside the support [50],

δ (φ−A) = lim
ε→0+

δ (φ− (A+ ε)) ; δ (φ−B) = lim
ε→0+

δ (φ− (B − ε)) . (2.25)

7



The solution (2.23) is given in terms of two coefficients cA, cB and two endpoints A, B to
be determined. Plugging (2.23) back into the cubic equation (2.22) yields a system of three
equations:

−cA + cB −
F∑
α=1

cαs̃α =
1

t
−

F∑
α=1

ζα
2
s̃α (2.26a)

cAA− cBB −
F∑
α=1

cαs̃αmα =
1

λ
−

F∑
α=1

ζα
2
s̃αmα (2.26b)

−cAA2 + cBB
2 −

F∑
α=1

cαs̃αm
2
α = ξ̃ −

F∑
α=1

ζα
2
s̃αm

2
α (2.26c)

in which we have introduced the shorthand notation

s̃α =
1

2
[sign (A+mα) + sign (B +mα)] =


−1 −mα > B

0 A ≤ −mα ≤ B
+1 −mα < A.

(2.27)

The normalization condition (2.20) applied to (2.23) imposes

cA + cB +
F∑
α=1

cα = 1. (2.28)

Therefore the two coefficients cA and cB and the two endpoints A and B of suppρ are determined
as functions of the gauge theoretical parameters t, λ, {ζα,mα}, from the system (2.26) completed
by the normalization (2.28).

Solving (2.26a) together with (2.28) yields

cA =
1

2

[
1− 1

t
−

F∑
α=1

(
cα − s̃α

(
ζα
2
− cα

))]
(2.29a)

cB =
1

2

[
1 +

1

t
−

F∑
α=1

(
cα + s̃α

(
ζα
2
− cα

))]
. (2.29b)

To find the endpoints A and B we plug these values in (2.26b)-(2.26c). The system is quadratic
in the variables A and B, thus we find a pair of solutions: at each point in the parameter
space, we should retain the one consistent with A < B, which must hold by construction. We
stress that (2.23) has been derived taking derivatives with respect to φ, thus working under the
assumption that the interior of suppρ is not empty. Whenever a consistent pair of endpoints A,
B cannot be found, we should drop this assumption and take into account solutions supported
at a single point, ρ(φ) = δ(φ).

Phase transitions in the theory are signalled by non-analyticities in the free energy

FS5 = − 1

πr3N2
log |ZS5 | . (2.30)

In the decompactification and large N ’t Hooft limit it becomes

FS5 =
1

6

∫
dφρ(φ)

∫
dψρ(ψ) |φ− ψ|3 +

∫
dφρ(φ)

[
1

3t
φ3 +

1

λ
φ2 −

F∑
α=1

ζα
6
|φ+mα|3

]
. (2.31)
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The linear term proportional to ξ̃ does not contribute by construction. Using the solution (2.23)
for ρ(φ), FS5 is found to be

FS5 =
1

3

[
cAcB|B −A|3 +

F∑
α=1

cα

(
cA|A+mα|3 + cB|B +mα|3 +

F∑
α′=1

cα′

2
|mα −mα′ |3

)]
(2.32)

+
1

3t

[
cAA

3 + cBB
3 −

F∑
α=1

cαm
3
α

]
+

1

λ

[
cAA

2 + cBB
2 +

F∑
α=1

cαm
2
α

]

−
F∑
α=1

ζα
6

[
cA|A+mα|3 + cB|B +mα|3 +

F∑
α′=1

cα′ |mα −mα′ |3
]
.

Recall that the coefficients cα vanish unless A < −mα < B, in which case cα = ζα
2 . This

implies that whenever A < −mα < B the one-loop contribution of the hypermultiplets of mass
mα is almost entirely cancelled between the first and the last line in (2.32). This is consistent
with the mass mα being below the characteristic energy scale of the problem: the hypermultiplet
cannot be integrated out, whence no one-loop effect is generated. The cancellation of the one-
loop effects between the first and third line of (2.32) when A < −mα < B leaves behind a
contribution

−
F∑

α′=1

ζαζα′

12
|mα −mα′ |3. (2.33)

It reproduces the one-loop contribution of the massive W-bosons in the background vector
multiplet for the flavour symmetry broken by the solution in the phase considered.

The continuity of A and B at each critical surface and the jump by ζα
2 of cA when −mα

crosses A, or of cB when −mα crosses B, guarantee the continuity of the free energy at each
transition point. Furthermore, the continuity of ρ(φ) can be used to prove that the transition
must be at least second order. This is confirmed by the explicit computations in each case.

In sections 3 and 4 we consider gauge theories with gauge group U(N) and SU(N) respec-
tively, and with the other classical groups in section 5, and present their large N phase structure
explicitly.

2.3.1 F-theorem

The sphere partition function measures the degrees of freedom of a field theory in odd dimensions
[58]. In 5d and with normalization (2.30), the F-theorem states [58]

F (IR)
S5 > F (UV)

S5 . (2.34)

Compelling evidence for this claim has been presented, for instance, in [59, 60]. Inequality (2.34)
holds when both sides are evaluated at fixed points but, under favourable circumstances, the
free energy can be shown to be monotonic all along the RG flow connecting the UV and the IR
fixed points. Expression (2.32) can be used to provide new support for the F-theorem.

For fixed values of the masses, λ → 0 drives the theory to the IR. From (2.32) and using
the dependence of A and B on λ through (2.26), it follows that (2.34) is satisfied between any
two points on the RG flow. A direct proof of (2.34) is less obvious from (2.32) at fixed λ and
increasing masses, but it can nevertheless be confirmed using the explicit results in section 4.
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2.3.2 Remarks on the decompactification limit

We follow the standard nomenclature denoting the large sphere limit as decompactification limit,
but it ought to be remarked that the localization procedure requires a (equivariantly) compact
topology, and the limit r → ∞ should be really meant as the zero curvature limit 1

r → 0. As
already emphasized in the introduction, this allows to neglect curvature effects in a controlled
way, but only after putting the localization machinery at work on a compact manifold.

A further remark concerns the sign of the Yang–Mills ’t Hooft coupling λ. We will con-
sider λ−1 ∈ R. The interpretation of this may be puzzling from a field theoretic viewpoint,
because then instanton corrections would contribute exponentially (instead of being exponen-
tially suppressed) for λ−1 < 0. Moreover, as reviewed in appendix A.1, the parameter h in (2.5)
has the meaning of a volume, thus it should not become negative. Nevertheless, the pertur-
bative partition function can be analytically continued letting h ∈ R in (2.3) but keeping the
non-perturbative quantities, such as instanton masses, as functions of |h|. For a thorough dis-
cussion on negative Yang–Mills coupling, see [50, 35]. Besides, the SPE (2.22) may be likewise
analytically continued to negative values of the Veneziano parameters ζα.

One last comment is about flavour symmetry. For U(N), the mass parameters belong to
a background SU(Nf ) vector multiplet. In order not to violate the flavour symmetry, we will

assume Nf = 1 +
∑F

α=1 nα and give the extra hypermultiplet a mass

mNf = −
F∑
α=1

nαmα. (2.35)

Its contribution is suppressed in the Veneziano limit (2.18) and drops out of the SPE.

2.3.3 Remarks on phase transitions and matrix models

As already mentioned, integrals over matrix degrees of freedom do not admit a notion of phase
diagram, unless the number N of eigenvalues is sent to infinity. From a field theoretical perspec-
tive, a phase structure may originate from the infinite volume limit as well. Phase transitions
among distinct chambers of C (X) in flat space belong to this latter class, while the phase
transitions we are concerned with are instead of the first type.

The presence of a phase transition in the decompactification limit does not automatically
imply that the transition exists at large N but finite radius. In fact, this implication fails in
3d [44]. Nevertheless, we will now argue that the situation is different in 5d and the transitions
discovered with the aid of the decompactification limit persist at finite radius.

A generic effect of finite 1
r2 corrections is to smoothen the δ-singularities into peaked curves

of finite height and width. In 3d Chern–Simons theories with fundamental hypermultiplets, the
solution at large N but finite r is given by a deformation of the pure Chern–Simons eigenvalue
density, on top of which a peak forms each time a mass parameter is decreased [44, 49]. The
shape of the eigenvalue density is changed without breaking its support [44], therefore there is
no phase transition at finite radius.

On the contrary, in 5d we do not have a distribution on top of which the peaks are formed,
and we expect that each new peak will produce a new cut in the support of ρ(φ). Let us elaborate
further on this statement. Starting with a pure gauge theory and assuming a very small size of
the support, the sinh(φa − φb) ≈ (φa − φb) in (2.6a) will dominate against the ef term, leading
to the equilibrium equation of a cubic matrix model. The generic solution is supported on two
intervals and the two pieces degenerate into δ(φ−A) and δ(φ−B) as 1

r → 0. A phase transition
when the two intervals merge was observed in [34]. In turn, we can work with finite but large
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enough r to guarantee that the model remains in the two-cut phase. Most importantly, in the
one-cut phase suppρ is moved away from the real axis [34], thus such solution is discarded by
the procedure adopted in the present work.

Decreasing the masses of the hypermultiplets from infinity, new peaks will form on top of
the finite radius solution. However, as these new peaks are moved away from one endpoint, they
will break the support and produce additional intervals, until they reach the other endpoint and
the two intervals merge. In conclusion, the phase transitions uncovered throughout this work
are expected to be genuine large N phase transitions, associated with splitting of suppρ, and
not a consequence of the large r approximation.

Phase transitions as the ones observed are ubiquitous in gauge theories with an underlying
cohomological structure, that allows to reduce the observables to a matrix model. Prototypical
in this respect is the Gross–Witten–Wadia third order phase transition [61–63] in 2d. We ought
to emphasize that the integrals from localization of 5d N = 1 gauge theories are not of standard
random matrix type, meaning that there seem to be no change of variables to recast the vector
multiplet one-loop determinant in the form of a Vandermode determinant. As a consequence, the
mechanism underlying the phase transitions is inherently technically different from the Gross–
Witten–Wadia transition. Nonetheless, a recurrent theme is that phase transitions are triggered
by states becoming massless. In the present setup the light states come from the matter sector.
Conversely, in pure 2d Yang–Mills theory there are no propagating perturbative particles, thus
the transition is induced by instantons [64].

2.4 Wilson loops

The eigenvalue density (2.23) can be exploited to compute the vacuum expectation value (vev)
of Wilson loops on S5 that preserve half of the supercharges (that is, are half-BPS) in the large r
and large N limit. The contribution to the effective action from a Wilson loop in a representation
of fixed size is sub-leading and does not alter the eigenvalue density in the large N limit. We
conclude that the vev of a Wilson loop in the fundamental representation F is

〈WF 〉 =

∫ B

A
dφρ(φ)e2πrφ = cAe

2πrA + cBe
2πrB +

F∑
α=1

cαe
2πrmα . (2.36)

The continuity of this expression follows from the continuity of A and B at the critical values,
together with the jump by ζα

2 of cA or cB when −mα crosses A or B respectively. The Wilson
loop vev follows a perimeter law, log 〈WF 〉 ≈ (2πB)r, as expected and in agreement with [27].

For classical gauge group, it is proven in subsection 4.4 that the Wilson loop is differentiable,
as a consequence of the scalar φ being traceless.

2.4.1 Wilson loops in large antisymmetric representations

Expectation values of Wilson loops in a given representation whose size grows with N deserve
further consideration. Let AK be the rank-K antisymmetric representation of the gauge group.
This implies 0 ≤ K ≤ N for U(N) and 0 ≤ K ≤ N − 1 for SU(N). We consider a Wilson loop
in the representation AK along a great circle inside S5.

The formalism to study the vev of such loop operators in the large N limit, with K growing
with N , was developed in [65] for 4d N = 4 Yang–Mills, and applied to 4d N = 2 in [66] and to
3d Chern–Simons theories in [49]. The derivation of [65] does not depend on the specific theory,
as long as the Wilson loop vev is localized to a finite-dimensional integral, and directly extends
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to the present five-dimensional setting, with a few improvements to accommodate a non-even
eigenvalue density. The central idea is to introduce the generating function

ΦA(w) =

〈
N∏
a=1

(
w + erφa

)〉
(2.37)

and notice that the expectation value 〈WAK 〉 is extracted as

〈WAK 〉 =

∮
dw

2πi

ΦA(w)

wN−K+1
, (2.38)

with integration cycle a closed loop in C around w = 0. We are interested in the large N with
the ratio

κ =
K

N
fixed, 0 ≤ κ ≤ 1. (2.39)

From the definition of ΦA(w) in (2.37) we have, at large N ,

ΦA(w) = exp

[
N

∫ B

A
dφρ(φ) log

(
w + erφ

)]
, (2.40)

with the eigenvalue density ρ(φ) as in (2.23). It is convenient to map the complex w-plane to a
cylinder [65]. We use a change of variables

logw = r [A+ z (B −A)] , (2.41)

with z the holomorphic variable on a multiply-sheeted cover of the cylinder. The original
integration cycle in (2.38) is mapped onto a circle Γ wrapping the cylinder at fixed <z, and
shrinking the original cycle around w = 0 pushes Γ towards <z → −∞, see figure 3.

Figure 3. Left: integration cycle in the w-plane. Right: the exponential map sends C to a cover of the
cylinder, and the circle around w = 0 to a circle Γ wrapping the cylinder once.

Following [65, 49] we arrive at

〈WAK 〉 = erAKr(B−A)

∮
Γ

dz

2πi
exp

{
Nr

[∫ B

A

dφ

r
ρ(φ) log

(
1 + er(φ−A−z(B−A))

)
+ κz(B −A)

]}
(2.42)

in the large N approximation. The integrand has branch cuts at

0 ≤ <z ≤ 1 and =z =
(2n+ 1)π

r(B −A)
, n ∈ Z, (2.43)

and the integration cycle Γ lies on their left.
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Using the general solution (2.23) for the eigenvalue density, we get

〈WAK 〉 = erAKr(B −A)

∮
Γ

dz

2πi
ezNκr(B−A)

[
1 + e−zr(B−A)

]NcA
(2.44)

×
[
1 + e(1−z)r(B−A)

]NcB F∏
α=1

[
1 + e−r(mα+A+z(B−A))

]Ncα
.

There are two ways to obtain the Wilson loop vev from (2.44). We can go back to the complex
w-plane, compute the residue, take the logarithm and then retain only the leading order in
1
r . The alternative approach consists in approximating the integrand in (2.44) at large r first,
obtaining the exponential of a piecewise linear function of z. Then, we use the fact that we are
working at large N , thus the leading contribution to the integral will come from a neighbourhood
of the local extrema of the integrand. Direct inspection easily shows that these extrema are to
be looked for in the region 0 ≤ <z ≤ 1 and =z = 2πn, n ∈ Z. Due to the presence of the branch
cut, however, only those points with =z = 0 should be retained. We have checked in the explicit
examples to be discussed below that the results computed in the two ways agree.

Regardless of the details of each specific phase of any theory, the upshot is that log 〈WAK 〉
grows linearly in N and r, meaning that it follows a perimeter law, and is of the general form

log 〈WAK 〉 ≈ c1rK + c2rN (2.45)

at leading order in both N and r, with c1 and c2 simple functions of A, B and the masses {mα}.

2.5 Hypermultiplets in other representations

So far the spotlight has been on theories with fundamental hypermultiplets. We now turn our
attention to other types of matter content and analyze the large N limit of SU(N) theories with
hypermultiplets in the adjoint, symmetric or rank-two antisymmetric representation.

2.5.1 Adjoint hypermultiplet

We consider Yang–Mills theory with a massive adjoint hypermultiplet [26]. This model has
enhanced N = 2 supersymmetry at m = 0. The SPE in the large N decompactification limit is

2

λ
φ =−

∫ B

A
dψρ(ψ) (φ− ψ)2 sign (φ− ψ) (2.46)

+

∫ B

A
dψρ(ψ)

[
1

2
(φ− ψ +m)2 sign (φ− ψ +m) +

1

2
(φ− ψ −m)2 sign (φ− ψ −m)

]
.

The Lagrange multiplier ξ̃ has been omitted because the solution turns out to be automatically
balanced, with cA = cB and A = −B.

Without loss of generality we assume m > 0, and also take λ > 0 for concreteness, being the
case λ < 0 completely analogous. It is not hard to check that the eigenvalue density is given by

ρ(φ) =

{
1
2δ
(
φ+ 1

λ

)
+ 1

2δ
(
φ− 1

λ

)
m > 2

λ
1
2δ
(
φ−m+ 1

λ

)
+ 1

2δ
(
φ+m− 1

λ

)
1
λ ≤ m ≤

2
λ .

(2.47)

At m = λ−1 nothing special happens, but −B and B cross and we should rename the endpoints
of the interval. The free energy in this limit is

FS5 =

{
5
3

1
λ3 − m

λ2 − m3

6 m > 2
λ

−1
3

(
m− 1

λ

)3 − m3

6 0 ≤ m ≤ 2
λ ,

(2.48)
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which implies that
∂2FS5
∂m2 is discontinuous. The model shows a second order phase transition. We

ought to stress that the large N limit we take differs form that in [34], and hence the transition
we find is different in nature. Besides, taking m→ 0 first in (2.48), we are left with a third order
phase transition at 1

λ → 0, which corresponds to pass through a 6d N = (2, 0) superconformal
point. This transition reflects a flop transition in the dual Calabi–Yau geometry (see appendix
A.1).

The free energy in (2.48) is a monotonically increasing function of 1
λ , thus satisfying the

F-theorem (2.34), discussed in subsection 2.3.1, all along the RG flow from the SCFT to the
deep IR.

The vev of a Wilson loop in the fundamental representation in this model is

〈WF〉 =

{
cosh

(
2πr
λ

)
m > 2

λ

cosh
(
2πr

(
m− 1

λ

))
0 ≤ m ≤ 2

λ

(2.49)

with discontinuous derivative, in agreement with the result for FS5 .

2.5.2 Antisymmetric or symmetric hypermultiplets

5d SU(N) gauge theories with nA ∈ {0, 1, 2} hypermultiplets in the rank-two antisymmetric
representation or nS ∈ {0, 1} hypermultiplets in the symmetric representation descend from
SCFTs [12]. The free energies of the theories with nS = 1 or nA = 1 differ by terms that are
sub-leading at large N and therefore have identical phase diagram. The case nA = 2 does not
admit a large Chern–Simons level nor a large number of additional fundamental hypermultiplets.
The phase structure of SU(N) theories with (anti-)symmetric matter is derived in subsection
4.5.

3 Phases of U(N) theories

In this section, the large N limit (2.17)-(2.18) of U(N) gauge theories with Nf fundamental
flavours is studied. For unitary group, we set ξ̃ = 0.

Before delving into the detailed analysis, it is instructive to analyze the solution. When
−mα ∈ [A,B] for a subset F ⊂ {1, 2, . . . , F} of the F mass scales, we see from (2.23) that
the eigenvalue density is a sum of δ-functions supported at −mα, for α ∈ F , as well as at the
endpoints of suppρ. The situation is schematically represented in figure 4. The eigenvalues are
clustered at |F |+ 2 points, breaking the U(N) group

U(N)→ U (cAN)× U (cBN)×
∏
α∈F

U
(nα

2

)
(3.1)

with each factor rotating the eigenvalues placed at the support of the corresponding δ-function.
Moving a mass, the corresponding δ-function will eventually cross the boundary of suppρ

and drop out. When −mα hits A or B, the corresponding coefficient cA or cB jumps by ζα
2 in

order to preserve the total number N of eigenvalues.

3.1 Pure gauge theory

We start our analysis with the pure Yang–Mills-Chern–Simons theory without matter, thus
setting nα = 0. This theory lives in the IR of all the other theories with charged hypermultiplets,
and is reached giving large masses to the matter fields and integrating them out. The presence
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ϕ

ρ(ϕ)

Figure 4. Eigenvalue density at large N , in a phase in which three out of the F mass parameters fall
inside suppρ. The solid lines are the eigenvalues at the endpoints, the dashed lines are the eigenvalues at
−mα. The range of the vertical axis is

[
0, 12
]

for a better visualization.

of a Chern–Simons level k is therefore necessary, because it is generated dynamically along the
RG flow as the effect of integrating out hypermultiplets.

The SPE in pure Yang–Mills-Chern–Simons theory is

−
∫ B

A
dψρ(ψ) (φ− ψ)2 sign (φ− ψ) =

1

t
φ2 +

2

λ
φ (3.2)

and is solved by the ansatz ρ(φ) = cAδ (φ−A) + cBδ (φ−B). Following the steps described in
subsection 2.3, we find

cA =
1

2
− 1

2t
, A = − t

λ

(
1±

√
t+ 1

t− 1

)
, (3.3a)

cB =
1

2
+

1

2t
, B = − t

λ

(
1±

√
t− 1

t+ 1

)
, (3.3b)

with the same choice of sign of the square root in A and B. Notice that we have derived the
equations assuming A < B, and we must retain the solution which respects this hypothesis,
depending on sign(λ). We plot them in figure 5.

Removing the Yang–Mills term sending |λ| → ∞, the eigenvalues are attracted to the origin
and, for a pure Chern–Simons theory without any mass deformation, the saddle point configu-
ration reduces to the trivial one.

Figure 5. Plot of A (black) and B (gray) in the pure gauge theory. Left: t = 1.3. Right: t = −1.3.
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3.2 One mass scale

We now consider a single mass scale, F = 1. In other words, the theory has Nf hypermultiplets
all of equal mass m, and thus a single Veneziano parameter ζ as defined in (2.18).

At very large values of the mass, the hypermultiplets can be integrated out to obtain an
effective theory with Chern–Simons level k − Nf

2 sign(m). Therefore, as m is increased from
−∞ up to +∞, the effective description interpolates between two different pure Chern–Simons
theories. At large gauge coupling, λ → ±∞, there is no mass scale other than m, thus we
expect a phase transition at m = 0. Nevertheless, a finite λ−1 sets a scale under which the
hypermultiplet cannot be integrated out. We now show how this picture is realized.

The SPE reads

−
∫ B

A
dψρ(ψ) (φ− ψ)2 sign (φ− ψ) =

1

t
φ2 +

2

λ
φ− ζ

2
(φ+m)2 sign (φ+m) . (3.4)

For clarity, we focus first on the limit |λ| → ∞, in which the Yang–Mills contribution drops out
of the computations, and come back to the more general setting below.

3.2.1 Infinite Yang–Mills ’t Hooft coupling

We start increasing m from −∞, which gives sign (φ+m) < 0. This inequality characterizes
the first phase of the theory, which extends as long as B < −m. The explicit expressions of the
solutions are reported in appendix C.1, equation (C.2).

The solution we have found holds as long as B < −m. Increasing m from large negative
values, −m will descend and eventually hit suppρ at B. From the explicit form of B in (C.2)
we find that the inequality B < −m breaks down at m = 0.

We may assume the existence of an intermediate phase in which m ∈ suppρ, but then the
solution to (3.4) would only be consistent with A = 0 = B. Therefore we pass to a new phase,
for which A > −m and hence sign(φ + m) > 0. The solution is found exactly as before, and is
also recovered from the ones at m < 0 flipping the sign of the Veneziano parameter, ζ 7→ −ζ.

We notice an important aspect: ρ(φ) is supported on the real line only for t < −
(

1− ζ
2

)−1

when m < 0, and only for t >
(

1− ζ
2

)−1
when m > 0. We also find real solutions in the region

0 < t <
(

1− ζ
2

)−1
when m < 0, and with opposite sign when m > 0, which however fall out

of the window (2.19). These solutions should not be discarded in principle, because the matrix
model could still be defined at large N if suppρ lies entirely on the positive real axis when

0 < t <
(

1− ζ
2

)−1
, or on the negative real axis for negative t. However, evaluating A and B

in that range, we find that the solutions do not satisfy the convergence condition, and therefore
are inconsistent with the matrix model we have started with.

We use ρ(φ) to evaluate the free energy FS5 (2.30). In the large N and large r limit and at
infinite |λ|, FS5 is given by

FS5 (t, |λ| → ∞, ζ,m) =
cAcB

3
|B −A|3 +

1

3t

(
cAA

3 + cBB
3
)
− ζ

6

(
cA|A+m|3 + cB|B +m|3

)
,

(3.5)
with (cA, cB, A,B) functions of the gauge theoretical parameters as given in (C.2). The phase
transition is third order, as proven by direct calculations, but it can also be predicted looking
at the formula for FS5 . It is a cubic function of |m|3, because A and B are linear functions of
m: the expressions up to the second derivative will automatically vanish at m = 0, determining
the order of the phase transition.
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To summarize, at infinite Yang–Mills ’t Hooft coupling there are two phases separated by
the critical surface mcr = 0. The result is schematically presented in figure 6.

Figure 6. Phases diagram of the theory with Nf hypermultiplets all of mass m at λ → ±∞, in the(
m, 1t

)
-plane. In the shaded region the matrix model is ill-defined. Crossing the blue wall mcr = 0, the

theory undergoes a third order phase transition, indicated by the solid, black arrows in the picture. The
dashed, red arrows indicate a phase transition between the two non-trivial regions.

3.2.2 Finite Yang–Mills ’t Hooft coupling

We now come back to the more general setting with |λ| < ∞, hence turning on an additional
massive deformation. We start again increasing m from −∞. The first phase is as in the large
λ limit studied above, but now for λ−1 6= 0 the inequality B < −m breaks down at a critical
mass mcr,1 < 0. On the other hand, we could equivalently start decreasing m from +∞, and see
that the theory is in a phase equivalent to the second phase above. However, also in this case,
the inequality A > −m only holds for m > mcr,2 > 0.

We see that the theory develops an intermediate phase

mcr,1 < m < mcr,2, (3.6)

in which the mass of the hypermultiplets is comparable to scale of the problem, determined by
λ−1. The matter fields cannot be integrated out and enter the IR dynamics. The deformation
by λ−1 has moved the two critical parameters away from mcr = 0.

The explicit form of the eigenvalue density ρ(φ) is given in (C.3) in appendix C.1. As for
large λ, we find that the first and third phases are non-trivial only for negative t and for positive
t, respectively. Imposing the condition

B(I)(t, λ, ζ,m) = −m, (3.7)

with B computed under the assumption B < −m, we find the first critical surface m =
mcr,1(t, λ, ζ). A direct computation using (C.3) gives:

mcr,1 =
t

λ

(
1 +

√
(ζ − 2)t+ 2

λ2((ζ − 2)t− 2)

)
(3.8)

as plotted in the left panel of figure 7. This solution vanishes for λ → ±∞, in agreement with
the discussion at infinite Yang–Mills ’t Hooft coupling.
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The second transition point is likewise determined decreasing m from large positive values
until the inequality A > −m breaks down, see the right panel of figure 7. Explicitly, this second
critical surface is

mcr,2(t, λ, ζ) =
t

λ

(
1−

√
(ζ − 2)t− 2

λ2((ζ − 2)t+ 2)

)
. (3.9)

-20 -10 10 20
λ

-4

-2

2

4
mcr,1

-20 -10 10 20
λ

-4

-2

2

4
mcr,2

Figure 7. Critical surfaces plotted as functions of λ. Left: mcr,1(t, λ, ζ) at ζ = 1
2 and t = −5. Right:

mcr,2(t, λ, ζ) at ζ = 1
2 and t = 5. The blue horizontal line is the asymptote m = 0.

We now pass to the intermediate phase (3.6). The solution is well behaved and non-trivial
in the whole allowed (ζ, t)-region (2.19), and A and B do not depend explicitly on m, as we
already know from the general solution (2.23). This region is characterized by −m ∈ [A,B], and
therefore we can as well extract the critical values mcr,1 and mcr,2 from

−mcr,1(t, λ, ζ) = B(II)(t, λ, ζ), −mcr,1(t, λ, ζ) = A(II)(t, λ, ζ), (3.10)

where (II) means the quantity evaluated in the intermediate phase. The solutions (3.8)-(3.9) are
correctly reproduced.

We compute the free energy FS5 at finite λ. In the first and last phase, it has the form

FS5 (t, λ, ζ,m) =
cAcB

3
|B −A|3 +

1

3t

(
cAA

3 + cBB
3
)

+
1

λ

(
cAA

2 + cBB
2
)

(3.11)

− ζ

6

(
cA|A+m|3 + cB|B +m|3

)
while in the middle phase we obtain

FS5 (t, λ, ζ,m) =
cAcB

3
|B −A|3 +

1

3t

(
cAA

3 + cBB
3 − ζ

2
m3

)
+

1

λ

(
cAA

2 + cBB
2 +

ζ

2
m2

)
.

(3.12)
In these expressions, (cA, cB, A,B) are explicitly known functions of the gauge theoretical pa-
rameters (t, λ, ζ,m), given in (C.3).

Taking the derivative of FS5 with respect to m, we find at one critical point

∂FS5

∂m

∣∣∣∣
m↑mcr,1

=
2tζ

λ2 (2 + t(2− ζ))
=
∂FS5

∂m

∣∣∣∣
m↓mcr,1

(3.13)

and a closely related expression at the other critical point. The second derivative however is
discontinuous, thus we find a pair of second order phase transitions. We summarize the result
in figure 8.
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Figure 8. Phase diagram of the theory with a single mass scale, plotted in the
(
m, 1t

)
-plane.

3.2.3 Large Chern–Simons ’t Hooft coupling

We now consider the limit of large Chern–Simons ’t Hooft coupling, t→ ±∞, that realizes the
large N limit at fixed Chern–Simons level k.

We start noting that, if λ > 0 and ζ ≤ 2 (possibly analytically continued to negative
values), the effective action Seff(φ) is non-negative definite, and the large N limit describes trivial
dynamics. On the contrary, for λ < 0, Seff(φ) admits a non-trivial saddle point configuration.

The solution is given in (C.4). The critical values are

mcr,1 (|t| → ∞, λ, ζ) =

[
λ

(
1− ζ

2

)]−1

, (3.14a)

mcr,2 (|t| → ∞, λ, ζ) = −
[
λ

(
1− ζ

2

)]−1

. (3.14b)

Recall that λ < 0, so mcr,1 < 0 and mcr,2 = −mcr,1 > 0.
In the intermediate phase we find an even ρ(φ) with symmetric support A = −B:

ρ(φ) =
2− ζ

4
[δ (φ+B) + δ (φ−B)] +

ζ

2
δ(φ+m), B = −

[
λ

(
1− ζ

2

)]−1

. (3.15)

The phase transitions are still second order.
In the intermediate phase, the saddle point configuration clusters the eigenvalues in three

peaks, around A,B and −m. Approaching a critical value, the peak at −m moves towards A or
B, and eventually the two sets of eigenvalues coalesce. The phase transition is thus a signal of
the partial restoration of symmetry

U

(
N

2
−
Nf

4

)2

× U
(
Nf

2

)
−→ U

(
N

2
−
Nf

4

)
× U

(
N

2
+
Nf

4

)
(3.16)

in going from the second to the first or third phase. Note that this is a symmetry enhancement
because

Nf
2 ≤ N .

3.3 Two opposite mass scales

We proceed in our analysis breaking the degeneracy in the masses of the hypermultiplets, setting
F = 2 distinct mass scales. We start with a symmetric setting, in which n1 out of the Nf < 2N
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fundamental hypermultiplets have mass m and the others have mass −m. We work in the
Veneziano limit (2.18) and assume ζ1 = ζ2 ≡ ζ in this symmetric setting. The case with
vanishing Chern–Simons level has been addressed in [50], finding two phases separated by a
third order transition.

The SPE is

−
∫ B

A
dψρ(ψ) (φ− ψ)2 sign (φ− ψ) =

1

t
φ2 +

2

λ
φ (3.17)

− ζ

2

[
(φ+m)2 sign (φ+m) + (φ−m)2 sign (φ−m)

]
.

3.3.1 Infinite Yang–Mills ’t Hooft coupling

We first consider the limit |λ| → ∞. The solution to the SPE (3.17) is given in (C.5)-(C.6).
We again find two phases, with a phase transition at m = 0, as anticipated from general
arguments. As discussed in section 2.3, we find a pair of solutions for A and B in each phase.
One solution, reported in (C.5), is consistent with t > (1− ζ)−1 and the other, reported in
(C.6), is consistent with t < − (1− ζ)−1. Crossing from one phase to the other, the solutions
are mapped consistently.

The free energy and its first and second derivatives are continuous at m = 0 in this limit,
but the third derivative is not. The situation is summarized in figure 9.

Figure 9. Phase diagram of the theory with two opposite mass scales at |λ| → ∞: two effective
Chern–Simons theories are separated by a third order phase transition at m = 0.

3.3.2 Finite Yang–Mills ’t Hooft coupling

Reintroducing the mass deformation leading to a Yang–Mills term brings in a new mass scale, and
consequently an intermediate phase when m is small compared to λ−1. The phases corresponding
to large positive or negative mass are found as for infinite Yang–Mills coupling. The solution is
given in (C.7).

The asymmetry of suppρ, that is A 6= −B, implies that we find different solutions for the
critical value mcr,1, and the physically realized is the first one for which any of the two inequalities
A > m and B < −m breaks down. We find that one scenario is realized for tλ > 0 and the
other for tλ < 0:

mcr,1 (t, λ, ζ) =


2t

λ(
√
t2−1+(2ζ−1)t−1)

tλ > 0

t(
√
t2−1+(2ζ−1)t+1)

λ+λt(2(ζ+(ζ−1)ζt)−1) tλ < 0.
(3.18)

Beyond this first critical point, the system is in a new phase, in which the singularity at φ = m
or at φ = −m enters in the interval [A,B], while the other singularity falls out of the interval,
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see (C.7) for the explicit solution. The effective theory in this new phase is equivalent to the
F = 1 theory with renormalized Chern–Simons coupling. We find consistent solutions for λ < 0.
This second phase holds until the second singularity at ±m (depending on the sign of t) reaches
[A,B]. For negative t, this means that a new phase transition takes place at B = −m, with B
computed in the second phase. This equation yields two solutions, but only one is consistent
with mcr,1. The analogous reasoning applies to the other situation with positive t. We find a
second phase transition at

mcr,2 (t, λ, ζ) =


(ζ−1)t2+

√
t2((ζ−1)2t2−1)+t

λ+(ζ−1)λt tλ > 0

−
√
t2((ζ−1)2t2−1)

(ζ−1)λt−λ − t
λ tλ < 0,

(3.19)

beyond which both m and −m belong to [A,B]. The solution is given in (C.7). In this third
phase ρ(φ) has the same form for both positive and negative t, and holds for λ−1 ∈ R. Increasing
m further, the system goes through the same phases in the converse direction, with the role of
m and −m swapped. Such behaviour is expected in this especially symmetric case, due to the
Z2 invariance under exchange of the masses, m1 ↔ m2.

We summarize the phase structure in figure 10.

Figure 10. Phase diagram of the theory with two opposite mass scales.

The free energy FS5 is evaluated using the eigenvalue density ρ(φ) in each phase, as in (2.32).
Taking derivatives of the resulting expression we find a third order phase transition for both
signs of tλ. This extends the result of [50] to a more general setting.

3.3.3 Large Chern–Simons ’t Hooft coupling

Consider two symmetric masses and |t| → ∞. As in the one-mass setting, a non-trivial saddle
point configuration requires λ < 0. We find a symmetric ρ(φ) supported on [−B,B], with

B =

{
− 1
λ −mζ m < mcr

− 1
λ(1−ζ) m > mcr.

(3.20)

The intermediate phases disappear in this limit, because

lim
t→±∞

mcr,2 (t, λ, ζ) = lim
t→±∞

mcr,1 (t, λ, ζ) =
1

λ (1− ζ)
. (3.21)

The results of [50] are then recovered.3

This model has a Z2 symmetry. In the intermediate phase, ρ(φ) presents four clusters of
eigenvalues, placed at ±B and ±m. Approaching the critical locus, the eigenvalues at m and

3The dictionary between [50] and the present work is: Λ|there = −λ−1|here and 1
2
ζ|there = ζ|here.
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the ones at −B coalesce, and simultaneously the eigenvalues at −m and the ones at B coalesce,
see figure 11. The phase transition is thus a signal of the symmetry enhancement

U

(
N

2
−
Nf

4

)2

× U
(
Nf

4

)2

−→ U

(
N

2

)2

. (3.22)

The Z2 symmetry is manifest on both sides of the arrow in (3.22).

ϕ

ρ(ϕ)
Two opposite mass scales, phase II

ϕ

ρ(ϕ)
Two opposite mass scales, phase I

Figure 11. Schematic representation of the clustering of eigenvalues at large N in the theory with two
opposite mass scales. Left: Eigenvalue density in the intermediate phase, with −m,m ∈ [−B,B] (dashed
lines). Right: Eigenvalue density when −m,m /∈ [−B,B]. The range of the vertical axis is [0, 1].

3.4 Two mass scales

Consider now a generic assignment of masses m1 and m2, and two Veneziano parameters ζ1 and
ζ2. The SPE is

−
∫ B

A
dψρ(ψ) (φ− ψ)2 sign (φ− ψ) =

1

t
φ2 +

2

λ
φ− ζ1

2
(φ+m1)2 sign (φ+m1) (3.23)

− ζ2

2
(φ+m2)2 sign (φ+m2) .

When |m1| and |m2| are both large, we find the usual solution ρ(φ) with two δ-function
singularities at the endpoints. The first phase transition takes place when one of the masses
hits suppρ. We focus first on infinite Yang–Mills ’t Hooft coupling limit and reintroduce the
corresponding deformation later.

3.4.1 Infinite Yang–Mills ’t Hooft coupling

The complete solution to the SPE (3.23) in the limit 1
λ → 0 is given in (C.8).

In order to effectively have a single free mass modulus, throughout the present subsection
we impose this constraint

ζ1m1 + ζ2m2 = 0. (3.24)

The first phase, as usual, arises when the masses fall out of suppρ, and the solution ρ(φ) is
a sum of δ-functions at the endpoints A and B of the support, reported in equation (C.8). At
this point, two possible scenarios disclose: moving the values of the masses with the constraint
(3.24), either the singularity at φ = −m2 hits suppρ from below, or the singularity at φ = −m1

hits suppρ from above. A simple computation imposing (3.24) shows that these two scenarios
are realized simultaneously: the mass parameter hit the endpoints at m2 = 0 = m1 for all values
of t consistent with (2.19). Crossing the critical point, the eigenvalue density in the new phase
is obtained via the formal substitution (ζ1, ζ2)↔ (−ζ1,−ζ2), see (C.8).
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The free energy FS5 is, as usual, a cubic function of A, B and m1, m2, and all of them vanish
at the critical point. Taking derivatives, we find a third order phase transition. We conclude
that the picture is equivalent to the symmetric case studied in subsection 3.3.1 and summarized
in figure 9.

3.4.2 Infinite Yang–Mills ’t Hooft coupling revisited

Let us consider the situation in which the massive deformation leading to a Yang–Mills term
is removed, |λ| → ∞, but dropping the constraint (3.24). In this way, we have two real mass
parameters to play with.

The explicit solution for ρ(φ) is found by the standard calculation, and is reported in (C.9).
Having two real mass moduli, we can either increase m1 keeping m2 fixed, or decrease m2 keeping
m1 fixed, or any linear combination of the two. In the former case, the system undergoes a
phase transition when the singularity at −m1 hits B from above, whilst in the latter case a
phase transition takes place when the singularity at −m2 hits A from below.

We move m1 and study the new phase, characterized by −m1 ∈ [A,B]. The explicit solution
for ρ(φ) is reported in (C.10). The critical surface is determined imposing −m1 = B(II), with B
evaluated in the second phase. If we compute the critical point from the first phase, we get two
solutions, and the physical one is the lowest value, that is, the first value for which −m1 > B
does not hold as m1 is increased from −∞. The critical value obtained in this way matches the
value of B in the second phase, as required by consistency.

From the second phase, we can either keep −m1 ∈ [A,B] and decrease m2 until −m2 reaches
A, or increase m1 further until −m1 < A. Let us first focus on the former choice. We notice
that, decreasing m2 the support [A,B] of ρ(φ) shrinks. Therefore, to keep −m1 ∈ [A,B] we
should in fact decrease m1 at the same time as we decrease m2. This procedure leads to a third
order phase transition at m2 = 0 = m1.

Increasing m1 further with m2 fixed at a large positive value, the singularity at −m1 even-
tually reaches the lower boundary of suppρ. This triggers a new phase transition. The critical
values for both transitions encountered at fixed m2 and moving m1 are linear functions of m2,
see (C.10). The rest of the phase diagram is described analogously.

Evaluating the free energy in each phase, we find third order phase transitions.

3.4.3 Finite Yang–Mills ’t Hooft coupling

We come back to the general setting reintroducing a Yang–Mills term.
In the middle phase, when both −m1 and −m2 fall inside the support [A,B] of the eigenvalue

density, we find

cA =
2− ζ1 − ζ2

4
− 1

2t
, A = − t

λ

(
1±

√
cB
cA

)
, (3.25a)

cB =
2− ζ1 − ζ2

4
+

1

2t
, B = − t

λ

(
1±

√
cA
cB

)
. (3.25b)

In the latter expression the sign must be chosen in consistency with our starting assumption
A < B, and is the same in both formulas.

We henceforth focus on λ < 0 for concreteness. In this case, A < 0 and B > 0 and are
explicitly given in (C.11). Let us assume we increase m2 to positive values: the δ-function
singularity at φ = −m2 moves toward the endpoint A and eventually hits the boundary of
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suppρ at

m2cr,1 =
t

λ

(
1−

√
1− 4

(ζ1 + ζ2) t− 2t+ 2

)
. (3.26)

Increasing m2 beyond this point, the gauge theory enters in a new phase in which the
solution, that holds for positive t, is reported in (C.12). Notice that B soon becomes negative
in this phase as we increase m2, meaning that we should increase m1 at the same time so that
−m1 ∈ [A,B]. Then, we can either increase m1 further or decrease it, driving the system toward
a new phase. The explicit results are reported in equations (C.14)-(C.15).

We can equivalently begin keeping −m2 ∈ [A,B] and moving m1. If we increase m1 > 0,
we recover the setting just analyzed, upon relabelling ζ1 ↔ ζ2. Decreasing m1 < 0, instead,
the singularity at φ = −m1 is moved toward B, and eventually the theory undergoes a phase
transition at

m1cr,1 = − t
λ

(√
4

(ζ1 + ζ2) t− 2(t+ 1)
+ 1− 1

)
. (3.27)

The solution in the new phase, characterized by −m2 ∈ [A,B] and B < −m1, is given in
(C.13), and holds for negative t. The description of the other phases is obtained in a completely
analogous fashion.

We plot the phase structure of the F = 2 theory in the (m1,m2)-plane in figure 12. A more
qualitative description of the phases is in figure 13.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

m1

m
2

Figure 12. Phase diagram in the half-plane {m1 ∈ R,m2 ≥ 0}. The plot is at (t, λ, ζ1, ζ2) =(
22,−10, 13 ,

6
5

)
. In the darker shaded region both singularities lie in the support of the eigenvalue density.

In the lighter shaded regions one singularity lies inside and the other lies outside the support. In the
white region none of the singularities lies inside the support.

3.4.4 Limiting cases

The present framework with F = 2 encompasses the previously studied theories as special cases.
Setting ζ2 = 0 we expect to recover the F = 1 theory of subsection 3.2, whilst setting ζ2 = ζ1

we should recover the symmetric framework of subsection 3.3.
In the first mentioned limiting case we check that, sending ζ2 ↓ 0, all the expressions in

appendix C.1 for the F = 2 theory reduce to F = 1. An alternative approach is to take
|m2| → ∞ and integrate out the massive hypermultiplets. Then we obtain the F = 1 theory
with a renormalized Chern–Simons ’t Hooft coupling t|F=1 = t|F=2 − n2

2 . This result may be
visualized comparing the upper strip of figure 13 with the phase diagram of the F = 1 theory
in figure 8.

To recover the F = 2 symmetric case with two opposite masses, set m1 = −m2. Moving
along the diagonal in the (m1 ≤ 0,m2 ≥ 0)-quadrant of figure 12 reproduces the phases on the
right half (m2 ≥ 0) of figure 10.
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Figure 13. Phase diagram of the theory with two mass scales. Note that the solid blue walls, representing
the critical surfaces, are not straight lines in the (m1,m2)-plane, cf. figure 12.

3.5 Three or more mass scales

The generic solution for F real mass scales is (2.23), and the procedure is a direct extension
of what we have presented so far. The explicit determination of the phase diagram requires a
detailed case by case study, with each mass mα moved independently. The upshot is that, for
generic λ and {mα}, a second order phase transition takes place whenever one of the singularities
drops in or out of [A,B].

We have followed a bottom-up approach in our presentation, starting with a pure gauge
theory in subsection 3.1 and increasing F . We might have adopted a top-down approach as well,
following the RG flow. Indeed, starting with a given F , the other theories with lower F ′ < F are
phases of the original theory, reached giving large mass to (F − F ′) families of hypermultiplets.

3.5.1 Infinite Yang–Mills ’t Hooft coupling and constrained masses

While, as we have shown, the phase transitions are generically second order for U(N), there
is a selected sub-class of theories for which we find third order transitions. These are Chern–
Simons theories at infinite Yang–Mills coupling and with a single modulus controlling the theory,

mα = xαm, xα ∈ R, α = 1, . . . , F. (3.28)

Without loss of generality, we impose

F∑
α=1

x2
α = 1, (3.29)

as any scaling of all the xα together can be absorbed in a redefinition of m. The definition (3.28)
is a change to polar coordinates in RF for each sign of m, with |m| parametrizing the radial
direction. Note, however, that the theories we consider allow m ∈ R.

For very large m, which we take positive for concreteness, the singularities fall out of suppρ,
either above or below depending on the sign of xα. We get

cA = − 1

2t
+

1

2
+
∑
α

ζα
4

sign(xα), cB =
1

2t
+

1

2
−
∑
α

ζα
4

sign(xα), (3.30)
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while A and B are linear functions of m,

A = mA0, B = mB0, A0 and B0 independent of m. (3.31)

This implies that, moving m, all the singularities reach the boundary of suppρ simultaneously
at m = 0. Recall that the free energy FS5 is a cubic function of A, B and {mα}. It follows that
the free energy is continuous and vanishing at the critical locus, up to its second derivative. We
establish that the phase transition is third order.

In the geometric picture sketched in appendix A.1, the rewriting (3.28) corresponds to take
all the Kähler parameters that are dual to non-compact divisors in a resolution of the Calabi–Yau
threefoldX to be proportional to a single parameterm. Then, sending λ−1 → 0 first, corresponds
to keep the volume vol

(
P1

0

)
of a certain curve P1

0 finite while by the number of exceptional divisors
fibered over it grows to infinity (see appendix A.1 for notation and definitions). After that,
we decrease the Kähler parameter m controlling the volumes of the non-compact exceptional
divisors, until it vanishes. Then, the gauge theory undergoes a third order phase transition,
which agrees with the expected geometric flop transition.

From the explicit results in subsection 3.4.2, the present picture with the associated third
order transition is expected to hold even dropping the constraint (3.28).

3.6 Wilson loops

We have argued in subsection 2.4 that Wilson loops are always continuous but generically not
differentiable. It is worthwhile to focus on the special instances in which the partition function
undergoes a third order transition, and analyze the behaviour of the Wilson loops.

3.6.1 Fundamental Wilson loop: Two opposite mass scales

We consider the theory without Chern–Simons term and with two opposite mass scales, with
equal Veneziano parameters, discussed in [50] and revisited in subsection 3.3.3. The vev of a
Wilson loop in the fundamental representation is

〈WF〉 =

cosh
(
2πr

(
ζm− 1

λ

))
|m| > 1

λ(1−ζ)

(1− ζ) cosh
(

2πr
λ(1−ζ)

)
+ ζ cosh (2πrm) |m| < 1

λ(1−ζ) .
(3.32)

Taking the logarithm and differentiating, we find

∂

∂m
log〈WF〉

∣∣∣∣
m↓ 1

λ(1−ζ)

− ∂

∂m
log〈WF〉

∣∣∣∣
m↑ 1

λ(1−ζ)

= 0 (3.33a)

∂2

∂m2
log〈WF〉

∣∣∣∣
m↓ 1

λ(1−ζ)

− ∂2

∂m2
log〈WF〉

∣∣∣∣
m↑ 1

λ(1−ζ)

= ζ(1− ζ) (3.33b)

meaning that the Wilson loop vev experiences a second order non-analyticity, one order less
than the free energy. Note that the second and higher derivatives vanish as ζ → 1, because
in that case there exists a single phase valid for all m. To conclude, we mention that, as we
work in the decompactification limit, the functions cosh(2πrx) should be replaced by e|2πx| in
all the expression above. Using this substitution before taking the derivatives does not alter the
conclusion.
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3.6.2 Fundamental Wilson loop: Infinite Yang–Mills coupling

The other situation in which the phase transition is third order is for theories without Yang–
Mills ’t Hooft coupling, |λ| → ∞. We consider the F = 1 theory of section 3.2 as an explicit
example. The endpoints A = mA0 and B = mB0 are linear functions of m, and

∂

∂m
log〈WF〉

∣∣∣∣
m→0

= 2πr
cAA0 + cBB0

cA + cB
= 2πr (cAA0 + cBB0) . (3.34)

This does not vanish unless cAA0 +cBB0 = 0, and therefore the Wilson loop vev has a first order
discontinuity. This may indicate an inconsistency in the strong coupling limit of non-balanced
U(N) theories, or at least an ambiguity in the order of strong coupling and large N limits.

3.6.3 Antisymmetric Wilson loop: Pure gauge theory

We now apply the framework presented in section 2.4 to compute the expectation value of
half-BPS Wilson loops in antisymmetric representations of large rank.

We begin with the pure gauge theory analyzed in section 3.1. The theory has no mass
scales other than the inverse Yang–Mills ’t Hooft coupling λ−1, and presents a single phase.
Specializing the argument of section 2.4 to such theory without hypermultiplets, we have to
evaluate

〈WAK 〉 = erAK
∮

dw̃

2πi
w̃K−1

[
1 +

1

w̃

]bNcAc [
1 +

er(B−A)

w̃

]bNcBc
(3.35)

keeping the leading contribution at large radius. We observe that such contribution will differ
depending on cB > κ or cB < κ, where the scaling parameter κ = K

N has been introduced in
(2.39). We find

log 〈WAK 〉 =

{
rBK K ≤ N+k

2

r
[
AK + (B −A)

(
N+k

2

)]
K > N+k

2

(3.36)

with k the Chern–Simons level. The inequalities are understood at large N . Besides, strictly
speaking this solution only holds as long as κ ≤ cA + cB, but recalling the normalization
cA + cB = 1 and that 0 ≤ κ ≤ 1 by definition, this latter requirement is always satisfied.
We stress that the Wilson loop is a continuous but not differentiable function of κ.

This result holds for all gauge theories with massive matter, in the phases in which all the
masses fall outside of suppρ, up to a renormalization of the Chern–Simons coupling.

3.6.4 Antisymmetric Wilson loop: One mass scale

We discuss the antisymmetric Wilson loop in the U(N) theory with a single mass scale m. In
the first and last phase, with −m > B and −m < A respectively, the solution is analogous
to the one for the pure gauge theory, upon replacement N+k

2 7→ N+k
2 +

Nf
4 if −m > B, and

N+k
2 7→ N+k

2 − Nf
4 if −m < A.

In the intermediate phase, characterized by A < −m < B, we must take into account two
possibilities, namely A < −m < B − A and B − A < −m < B. The final results in the two
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sub-cases are

log 〈WAK 〉
(II)
∣∣∣
−m<B−A

=


rBK 0≤K<N+k

2
−
Nf
4

r
[
(A−m)

(
K−N+k

2
+
Nf
4

)
+B
(
N+k

2
−
Nf
4

)]
N+k

2
−
Nf
4
≤K<N+k

2
+
Nf
4

r
[
A
(
K−N+k

2
+
Nf
4

)
+B
(
N+k

2
−
Nf
4

)
−m

Nf
2

]
K≥N+k

2
+
Nf
4
,

(3.37a)

log 〈WAK 〉
(II)
∣∣∣
−m>B−A

=


r(A−m)K 0≤K<

Nf
2

r
[
(A−m)

Nf
2

+B
(
K−

Nf
2

)]
Nf
2
≤K<N+k

2
+
Nf
4

r
[
A
(
K−N+k

2
+
Nf
4

)
+B
(
N+k

2
−
Nf
4

)
−m

Nf
2

]
K≥N+k

2
+
Nf
4
,

(3.37b)

where the superscript (II) means that we have computed the Wilson loop vev in the intermediate
phase. Condition (2.19) guarantees that the inequalities are always well posed.

The Wilson loop is continuous but not differentiable function of m at both critical loci. It is
also a continuous but not differentiable function of the scaling parameter κ in every phase.

The study of the expectation value of a Wilson loop in a large antisymmetric representation
AK for any number of mass scales can be addressed by the method presented here, specializing
the argument of section 2.4 to a given F and analyzing the various sub-cases in each phase.

4 Phases of SU(N) theories

SU(N) gauge theories descend from (twisted) compactifications of 6d SCFTs on a circle of radius
β, with the Yang–Mills deformation h ∝ β−1.

The analysis is closely related to that of the U(N) theory, but we now reintroduce the
Lagrange multiplier ξ̃. At the end, we will set it to its physical value, determined by the
requirement ∫ B

A
φρ(φ)dφ = 0. (4.1)

The details for finding the explicit solution ρ(φ) in each SU(N) theory are exactly as in the
corresponding U(N) theory analyzed in section 3, except that the endpoints A, B will carry
an additional dependence on ξ̃. Notice that cA and cB are the same in the U(N) and SU(N)
theory, and for this reason we will not explicitly discuss them throughout this section.

The generic solution ρ(φ) is again given by (2.23), and the constraint (4.1) reads

cAA+ cBB −
F∑
α=1

cαmα = 0. (4.2)

This is meant as an equation fixing ξ̃ through the dependence of A and B on it.

A remark is in order to clarify the role of the multiplier ξ̃. A power counting in the integral
representation (2.3) of the partition function suggests that the difference between SU(N) and
U(N) is sub-leading in a 1

N expansion. Indeed, only the ratio ξ̃ ∝ ξ
N enters the SPE (2.22),

showing that ungauging an Abelian factor U(1) ⊂ U(N) gives a next-to-leading order correction.
In this work we do not go beyond the leading order at large N , and adopt the approach of [34]
scaling the Lagrange multiplier in a ’t Hooft-like way, with ξ̃ fixed at large N , to keep track of
the tracelessness condition at large N . Stated more formally, we work in the direct limit Lie
algebra u(∞) and restrict to the traceless subspace.

From the geometric engineering viewpoint, the ’t Hooft limit (2.17) blows up the volume of a
curve P1

0 belonging to the base B of the elliptic fibration X̃ → B. Imposing the same scaling for
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ξ̃ corresponds to scale the metric on the base B in such a way that the volume of a different curve
P1
∗ ⊂ B, transverse to P1

0, grows linearly with vol
(
P1

0

)
. Essentially, this procedure amounts to

keep track of the difference between ALF and ALE metrics on the Calabi–Yau threefold.4

4.1 Pure gauge theory

The first theory we consider is the pure Yang–Mills-Chern–Simons gauge theory without matter.
We compute A and B when the multiplier ξ̃ is taken into account in the SPE, and then impose
(4.2) and solve for ξ̃. This gives

ξ̃ = − t

λ2(t2 − 1)
. (4.3)

Plugging this value back in A and B we obtain

A = − t
λ
∓ t2

λ(t− 1)
, B = − t

λ
± t2

λ(t+ 1)
, (4.4)

with signs chosen consistently depending on sign(λ). There is no crucial difference between
SU(N) and U(N) pure gauge theories, except for the details in determining A and B. In the
present case, the tracelessness condition implies A < 0 and B > 0 ∀λ−1 ∈ R.

4.2 One mass scale

The first example which includes matter is the F = 1 theory. As in subsection 3.2 we discuss
first the |λ| → ∞ case, and then reintroduce a finite Yang–Mills term.

4.2.1 Infinite Yang–Mills ’t Hooft coupling

We begin with the analysis of the SU(N) theory with all hypermultiplets of equal mass and no
Yang–Mills term. Solving for A, B and imposing (4.2) we find

ξ̃ =

{
− ζm2(t(ζ−2t)+2)

(ζ2−4)t2+4ζt+4
m < 0

− ζm2(t(ζ+2t)−2)
(ζ2−4)t2−4ζt+4

m > 0.
(4.5)

Plugging this back into A and B in both phases gives the explicit solution reported in appendix
C.2, equation (C.16). These expressions are much simpler than the ones obtained in the U(N)
theory. We find a third order phase transition at m = 0 but, in contrast to the U(N) theory,
the solution is non-trivial for all values of 1

t in the window (2.19) on both sides of the critical
wall. The phase structure is represented in figure 14.

4.2.2 Finite Yang–Mills ’t Hooft coupling

At finite Yang–Mills ’t Hooft coupling |λ| < ∞, we solve the SPE and impose the constraint
(4.2), which gives

ξ̃ =


ζλ2(−m2)(t(ζ−2t)+2)+2ζλmt(ζt+2)+2t(ζt+2)

λ2((ζ−2)t+2)((ζ+2)t+2)
m < mcr,1

t(−mζλ(ζλm−2(ζ−2)t)−4)
λ2((ζ−2)2t2−4)

mcr,1 < m < mcr,2

ζλ2(−m2)(t(ζ+2t)−2)+2ζλmt(ζt−2)−2t(ζt−2)

λ2((ζ−2)t−2)((ζ+2)t−2)
m > mcr,2.

(4.6)

4The author thanks M. Del Zotto for this remark.
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Figure 14. Phase diagram of the SU(N) theory with Nf hypermultiplets all of mass m at λ → ±∞.
Across the blue wall mcr = 0 the theory undergoes a third order phase transition.

The endpoints of the support, reported in (C.17), are uniquely determined and take an especially
simple form. The two critical surfaces are

mcr,1(t, λ, ζ) =

[
λ

(
1 +

1

t

)]−1

(4.7a)

mcr,2(t, λ, ζ) =

[
−λ
(

1− 1

t

)]−1

(4.7b)

which, remarkably, are independent of ζ. These solutions have been obtained under the assump-
tion A < B, which is self-consistent only for λ < 0, in agreement with the analysis of the U(N)
theory. A major difference with the U(N) theory is that the condition (4.2) has introduced an
explicit dependence on m in A and B in the intermediate phase. This dependence is necessary
to balance the average

∫ B
A φρ(φ)dφ as the δ-function at −m is moved inside the interval [A,B].

The free energy is explicitly given by

FS5 |m<mcr,1 =
2ζλ3m3 + 2ζ2λ3m3t− t2(ζλm(λm(3ζ + 2λm) + 6) + 4)

3λ3((ζ − 2)t+ 2)((ζ + 2)t+ 2)
(4.8a)

FS5 |mcr,1<m<mcr,2 =
2ζλ3m3 − (ζ − 2)t3

(
3ζλ2m2 + 2

)
+ 2ζλmt2

(
(ζ − 1)λ2m2 + 3

)
− 6ζλ2m2t

3λ3 ((ζ − 2)2t3 − 4t)
(4.8b)

in the first and second phase respectively, and by (4.8a) with ζ 7→ −ζ in the third phase. Taking
derivatives, we obtain

∂FS5

∂m

∣∣∣∣
m↑mcr,1

= − 2ζt3

λ2(t+ 1)2((ζ − 2)t+ 2)
=
∂FS5

∂m

∣∣∣∣
m↓mcr,1

(4.9a)

∂2FS5

∂m2

∣∣∣∣
m↑mcr,1

= − 2ζ(t− 1)t

λ(t+ 1)((ζ − 2)t+ 2)
=
∂2FS5

∂m2

∣∣∣∣
m↓mcr,1

(4.9b)

yielding a third order phase transition. We conclude that the phase diagram of the SU(N)
theory is similar to that of the corresponding U(N) theory, but with different critical loci and

30



the order of the transitions is increased from second to third.5

4.2.3 Large Chern–Simons ’t Hooft coupling

For λ < 0 and |t| → ∞ the solution is given in (C.2). The system has three phases, separated
by third order transitions at the critical curves

mcr,1 = λ−1 = −mcr,2. (4.10)

In contrast to subsection 3.2.3, the support of the eigenvalue density does not collapse sending
|λ| → ∞.

4.3 Two opposite mass scales

We consider the SU(N) theory with F = 2 opposite mass scales (−m,m) and equal number of
hypermultiplets per mass, ζ1 = ζ2 ≡ ζ. This is the traceless counterpart of the analysis carried
out in subsection 3.3. The SPE reads

−
∫ B

A
dψρ(ψ) (φ− ψ)2 sign (φ− ψ) =

1

t
φ2 +

2

λ
φ+ ξ̃ (4.11)

− ζ

2

[
(φ+m)2 sign (φ+m) + (φ−m)2 sign (φ−m)

]
.

4.3.1 Infinite Yang–Mills ’t Hooft coupling

To begin with, we remove the Yang–Mills term sending |λ| → ∞, thus the unique mass scale
remaining in the problem in m. Solving (4.11) for A and B as functions of ξ̃ and imposing (4.2)
we get

ξ̃ = −4ζ2m2t

t2 − 1
(4.12)

in both phases. A and B are given in (C.19). We find a third order phase transition at m = 0,
consistent with the general arguments presented so far.

4.3.2 Finite Yang–Mills ’t Hooft coupling

Without loss of generality we restrict the analysis to m > 0, thanks to the Z2 symmetry ex-
changing the two sets of hypermultiplets.

Reintroducing a finite Yang–Mills term, |λ| <∞, we solve (4.11) in analogy with the U(N)
theory of section 3.3. The solution in each phase is reported in equation (C.20). The Lagrange
multiplier ξ̃ takes the values

ξ̃ =


− t( 1

λ
−ζm)

2

t2−1
m > mcr,1

ζλ2(−m2)+ζ(t−(ζ−1)λmt)2+t(2−2ζλm)

2λ2(t+1)((ζ−1)t+1)
mcr,2 < m < mcr,1 and tλ < 0

ζλ2m2−ζ(t−(ζ−1)λmt)2+t(2−2ζλm)
2λ2(t−1)((ζ−1)t−1)

mcr,2 < m < mcr,1 and tλ > 0

− t
λ2((ζ−1)2t2−1)

m < mcr,2.

(4.13)

5A change from second to third order phase transition upon removal of a centre of mass “gauge” degree of
freedom was observed in [67] in a different context. Likewise, in the Gross–Witten–Wadia model [61–63] the
centre U(1) ⊂ U(N) decouples, so the third order transition agrees with the predictions of the present section.
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The analysis is carried out as for the corresponding unitary theory. The critical loci are

mcr,1(t, λ, ζ) =

{
t

λ(ζt−t+1) tλ < 0
t

λ(ζt−t−1) tλ > 0,
(4.14a)

mcr,2(t, λ, ζ) =

{
− t
λ−ζλt+λt tλ < 0
t

λ+(ζ−1)λt tλ > 0.
(4.14b)

The phase diagram is qualitatively analogous to that of the corresponding U(N) theory, but
the expressions for A and B, as well as the critical loci, are much simpler, as shown in (C.20).
The free energy is directly evaluated in each phase, giving

FS5 |m>mcr,1
=

ζλ3m3−ζλmt2(λm((ζ2+1)λm−3ζ)+3)+t2

3λ3(t2−1)
(4.15a)

FS5 |m<mcr,1
=

{
1

6(t+1)

(
3ζm2(ζt+t+1)

λ
− ζm

3(ζt+t+1)2

t
− 3ζmt

λ2 +
(ζ−2)t2

λ3((ζ−1)t+1)

)
tλ<0

3ζλ2m2t((ζ−1)t−1)(ζt+t−1)−ζλ3m3((ζ−1)t−1)(ζt+t−1)2+3ζλmt2(−ζt+t+1)+(ζ−2)t3

6λ3(t−1)t((ζ−1)t−1)
tλ>0

(4.15b)

FS5 |m<mcr,2
=

ζλ2m2(3−4ζλm)−(ζ−1)3t4((ζ−1)ζλ2m2(4ζλm−3)+1)+(ζ−1)t2(2(ζ−1)ζλ2m2(4ζλm−3)+5)
3λ3((ζ−1)2t2−1)2 . (4.15c)

Differentiating, a third order phase transition is found.

4.4 Wilson loops

From subsection 2.4, the vev of a half-BPS Wilson loop in the fundamental representation is

〈WF〉 = cAe
2πrA + cBe

2πrB +

F∑
α=1

cαe
−2πrmα (4.16)

and its continuity at the critical surfaces follows from the continuity of A and B and the asso-
ciated jump of cA or cB by ζ

2 .
When the gauge group is SU(N), we can exploit the additional constraint (4.2) to prove

that the derivative of 〈WF〉 is continuous, too. We show this for the phase with mα /∈ [A,B]
∀α = 1, . . . , F , being the extension to any other phase straightforward.

Differentiate equation (4.2) together with (2.26b) with respect to a given m on both sides
of the critical wall, and use the resulting expressions to get rid of the derivatives ∂A

∂m and ∂B
∂m in

the formula for the derivative of the Wilson loop vev. This gives

1

2πr

∂

∂m
〈WF〉

∣∣∣∣
m<mcr

=
ζ

4
s̃
(
e2πrB − e2πrA

)
(4.17a)

1

2πr

∂

∂m
〈WF〉

∣∣∣∣
m>mcr

=
ζ

4

(
e2πrB + e2πrA

)
− ζ

2
e−2πrm (4.17b)

where we have followed the notation of subsection 2.3 and introduced the auxiliary variable s̃,
which is −1 if −m > B and +1 if −m < A in the first phase. Sending m→ mcr, either m = A
or m = B at the critical point, whence the continuity of ∂

∂m 〈WF〉 follows.
We conclude that, in the SU(N) theory, the vevs of Wilson loops in the fundamental rep-

resentation are always differentiable. This is consistent with the explicit calculations, yielding
third order phase transitions.

A similar reasoning can be applied to the expectation value of Wilson loops in large antisym-
metric representations. The computations to determine 〈WAK 〉 follow closely those in section
3.6. The additional constraints on the partial derivatives of A and B in the SU(N) theory allow
to show that the first derivative of the vev with respect to the mass is a continuous function.
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4.5 Hypermultiplets in the symmetric representation

In this subsection we analyze the phase structure of SU(N) theories with hypermultiplets in the
symmetric representation.

4.5.1 Only symmetric hypermultiplet

Let us start with the simpler case of only a symmetric hypermultiplet of mass m, without
Chern–Simons term. The SPE of this model is:

2

λ
φ =−

∫ B

A
dψρ(ψ) (φ− ψ)2 sign (φ− ψ) (4.18)

+
1

4

∫ B

A
dψρ(ψ)

[
(φ+ ψ +m)2 sign (φ+ ψ +m) + (φ+ ψ −m)2 sign (φ− ψ −m)

]
.

We can take m ≥ 0 without loss of generality. The symmetric ansatz

ρ(φ) =
1

2
δ(φ+B) +

1

2
δ(φ−B) (4.19)

solves (4.18) with

B =

{
m
2 −

1
λ m ≥ − 2

λ

− 2
λ m ≤ − 2

λ .
(4.20)

As we are taking m ≥ 0, the phase transition takes place at negative values of the Yang–Mills ’t
Hooft coupling. The Wilson loop in the fundamental representation acquires a vev

〈WF〉 =

{
cosh

(
2πr

(
m
2 −

1
λ

))
m ≥ − 2

λ

cosh
(

4πr
λ

)
m ≤ − 2

λ .
(4.21)

We find a second order phase transition. As for the model with a single adjoint hypermultiplet
of subsection 2.5, at m = 0 we find a third order transition at the superconformal point 1

λ → 0,
mirroring a flop transition in the dual Calabi–Yau geometry (see appendix A.1).

We can easily obtain a solution for the theory analytically continued to any real nS < 2. In
that case the symmetric ansatz (4.19) solves the SPE with

B =

{
nS
2 m−

1
λ m ≥ − 2

λ(2−nS)

− 2
λ(2−nS) m ≤ − 2

λ(2−nS) .
(4.22)

The features of the phase diagram extend to this case.

4.5.2 Symmetric and fundamental hypermultiplets

We now consider SU(N) theory with a massless symmetric hypermultiplet and two families of
fundamental hypermultiplets with opposite masses ±m, with equal Veneziano parameters ζ1 =
ζ2 ≡ ζ. That is, we introduce a massless symmetric or rank-two antisymmetric hypermultiplet
in the model of subsection 4.3. In absence of a Chern–Simons term, the Veneziano parameter is
constrained by ζ ≤ 1

2 . The SPE is∫ B

A
dψρ(ψ)

[
− (φ− ψ)2 sign (φ− ψ) +

1

2
(φ+ ψ)2 sign (φ+ ψ)

]
=

2

λ
φ+ ξ̃ − ζ

2

[
(φ+m)2 sign (φ+m) + (φ−m)2 sign (φ−m)

]
. (4.23)
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It is solved by a simple extension of the method in subsection 2.3, with ξ̃ = 0. Let us begin with
the case λ < 0. Then, starting with the phase in which m /∈ suppρ, we find that the symmetric
ansatz (4.19) solves (4.23) with

B = 2ζm− 2

λ
, m > B. (4.24)

This phase holds for m > mcr, with

mcr (λ < 0, ζ) = − 2

λ(1− 2ζ)
, (4.25)

which is positive. Beyond the critical point we find the solution

ρ(φ) =
1− 2ζ

2
[δ(φ+B) + δ(φ−B)] + ζ [δ(φ+m) + δ(φ−m)] , B = − 2

λ(1− 2ζ)
. (4.26)

For λ > 0 the solution in the first phase is identical, but B becomes negative at m = 1
ζλ ,

thus we should rename B and −B. The phase transition then takes place at

mcr (λ > 0, ζ) =
2

λ(1 + 2ζ)
> 0, (4.27)

which also equals B(II) computed in the second phase. Note that, consistently with the derivation
for λ > 0,

1

ζλ
>

2

λ(1 + 2ζ)
. (4.28)

Computing the free energy, we find a third order phase transition.
The Wilson loop in the fundamental representation acquires a vev

〈WF〉 =

{
cosh

(
2πr

(
2ζm− 2

λ

))
m ≥ mcr (λ < 0, ζ)

(1− 2ζ) cosh
(

4πr
λ(1−2ζ)

)
+ 2ζ cosh(2πrm) m ≤ mcr (λ < 0, ζ) ,

(4.29)

whose derivative is a continuous but not differentiable function of m. This confirms that the
phase transition is third order. The case of positive λ is analogous.

4.5.3 Spontaneous one-form symmetry breaking

5d N = 1 gauge theories with simple gauge group have a one-form symmetry associated to the
centre of the group [68, 69]. It is ZN for SU(N) and Z2 for USp(2N). This symmetry is compat-
ible with matter in the adjoint or rank-two antisymmetric representation, whilst fundamental
hypermultiplets break it explicitly [70].

It is argued in [70] that, for theories with adjoint or antisymmetric matter, the one-form
symmetry is spontaneously broken. This expectation is confirmed by our results, in the regime
considered, as signalled by 〈WF〉 following a perimeter law. Moreover we observe that transitions
between two phases with spontaneously broken one-form symmetry are always second order (cf.
subsections 2.5.1 and 4.5.1). Instead, whenever the one-form symmetry is absent from the
beginning, the phase transitions are third order.

We note a subtlety concerning the pure SU(N) gauge theory at Chern–Simons level k of
subsection 4.1. The one-form symmetry should be restored at k = 0, however, directly taking
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the limit t→∞ in 〈WF〉 is problematic. Instead, we write the result for large but finite N and
tune k → 0 first. The Wilson loop vev is then damped as

〈WF〉 ≈ e−
4πr|h|
k

[
N − k

2N
e

2πr
λ (1+ k

N ) +
N + k

2N
e

2πr
λ

k
N

]
(4.30)

for one sign of h, and a similar expression for the other sign. The term in backet is finite in the
k → 0 limit with fixed N , thus we find agreement with [68, 69].

5 Phases of USp(2N), SO(2N) and SO(2N + 1) theories

In this section we study the large N phase structure of gauge theories with the other classical
gauge groups: USp(2N), SO(2N) and SO(2N + 1).6 In the large N setup of section 2, the
difference between SO(2N) or SO(2N+1) and USp(2N) is sub-leading, thus it suffices to study
the compact symplectic gauge group USp(2N). The eigenvalues of the usp(2N)-valued adjoint
scalar φ are

(φ1, . . . , φN ,−φ1, . . . ,−φN ), (5.1)

and we can take φa ≥ 0 for all a = 1, . . . , N without loss of generality. These groups do not
admit a Chern–Simons term but have a Z2-valued theta parameter [6], which we set to zero.

Repeating the argument of section 2 for USp(2N) we arrive at the SPE:

−
∫ B

A
dψρ(ψ)

[
(φ− ψ)2 sign (φ− ψ) + (φ+ ψ)2 sign (φ+ ψ)

]
=

4

λ
φ−

F∑
α=1

ζα
2

[
(φ+mα)2 sign (φ+mα) + (φ−mα)2 sign (φ−mα)

]
. (5.2)

The eigenvalue density is assumed to be supported on a single interval [A,B] on the positive real
axis. The contributions to the vector multiplet one-loop determinant from each pair of opposite
eigenvalues are sub-leading at large N and do not appear in the SPE.

Convergence of the localized partition function in the large N limit requires

F∑
α=1

ζα ≤ 2, (5.3)

which matches the condition for the gauge theory to sit in the IR of a SCFT [57]. Taking three
derivatives of (5.2) we find the solution

ρ(φ) = cAδ (φ−A) + cBδ (φ−B) +
F∑
α=1

[
c−α δ (φ+mα) + c+

α δ (φ−mα)
]
, (5.4)

where the coefficients c±α are

c±α =

{
ζα
4 ±mα ∈ [A,B]

0 otherwise
(5.5)

for all α = 1, . . . , F . Note that, as we are taking 0 < A < B, at most one between c−α and c+
α is

non-zero. The normalization condition (2.20) imposes

cA + cB +
F∑
α=1

(
c−α + c+

α

)
= 1. (5.6)

6For orthogonal groups the hypermultiplets are taken in the vector representation.
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To lighten the notation, let us define c̃α = c−α + c+
α and

s̃−α =


−1 −mα > B

0 A ≤ −mα ≤ B
+1 −mα < A,

s̃+
α =


−1 mα > B

0 A ≤ mα ≤ B
+1 mα < A.

(5.7)

Plugging (5.4) back into the SPE (5.2) we find the three additional conditions

2cA +
F∑
α=1

c̃α
(
s̃−α + s̃+

α

)
=

F∑
α=1

ζα
2

(
s̃−α + s̃+

α

)
(5.8a)

2cBB +
F∑
α=1

c̃α
(
s̃−α − s̃+

α

)
mα = − 2

λ
+

F∑
α=1

ζα
2

(
s̃−α − s̃+

α

)
mα (5.8b)

2cAA
2 +

F∑
α=1

c̃α
(
s̃−α + s̃+

α

)
m2
α =

F∑
α=1

ζα
2

(
s̃−α + s̃+

α

)
m2
α. (5.8c)

These three equations together with (5.6) determine cA, cB and the endpoints A and B. In-
spection of the possible values of s̃−α + s̃+

α shows that the assumption of a δ-function supported
at φ = A is pleonastic, because either cA = 0 or the point A is merged with the singularities at
φ = mα (or at φ = −mα, depending on the sign of the mass). We therefore obtain the solution

ρ(φ) = cBδ (φ−B) +
F∑
α=1

cαδ (φ− |mα|) , (5.9)

with coefficients

cB = 1−
F∑
α=1

cα, cα =

{
ζα
2 −B < mα < B

0 otherwise
(5.10)

and endpoint

B =

(
1−

F∑
α=1

cα

)−1 [
− 1

λ
+

F∑
α=1

(
ζα
2
− cα

)
mα

]
. (5.11)

In particular, B is independent of mα when −B < mα < B. The full eigenvalue density
ρUSp(2N)(φ), that accounts for all the 2N eigenvalues, is symmetric under φ 7→ −φ, and reads

ρUSp(2N)(φ) =
ρ(φ) + ρ(−φ)

2
. (5.12)

The free energy computed using the solution (5.9) is

FS5 =
4

3
c2
BB

3 +
cB
3

F∑
α=1

cα
(
|B −mα|3 + |B +mα|3

)
(5.13)

+
1

6

F∑
α=1

cα

F∑
α′=1

cα′
(
|mα −mα′ |3 + |mα +mα′ |3

)
+

2

λ

(
cBB

2 +
F∑
α=1

cαm
2
α

)

−
F∑
α=1

ζα
6

[
cB
(
|B −mα|3 + |B +mα|3

)
+

F∑
α′=1

cα′
(
|mα −mα′ |3 + |mα +mα′ |3

)]
.
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Let us study the phase structure. We focus for clarity on the first phase transition, assuming
that all masses are larger than B and a mass, which we take to be m1, is decreased until it
eventually crosses B. On one side of the wall we use cα = 0 for all α = 1, . . . , F and find

F (I)
S5 =

4

3

(
B(I)

)3
+

2

λ

(
B(I)

)2
−

F∑
α=1

ζα
6

(
|B(I) −mα|3 + |B(I) +mα|3

)
, (5.14)

while on the other side we use c1 = ζ1
2 and cα = 0 for α = 2, . . . , F and get

F (II)
S5 =

4

3

(
1− ζ1

2

)2 (
B(II)

)3
+

2

λ

((
1− ζ1

2

)(
B(II)

)2
+
ζ1

2
m2

1

)
(5.15)

− ζ2
1

24

(
|B(II) −m1|3 + |B(II) +m1|3

)
−

F∑
α=2

ζα
6

(
|B(II) −mα|3 + |B(II) +mα|3

)
,

where the superscripts (I) and (II) indicate the quantity evaluated in the corresponding phase.
At the critical point, B = m1 by definition, which guarantees the continuity of FS5 . Taking
derivatives and using

∂B(I)

∂m1
=
ζ1

2
,

∂B(II)

∂m1
= 0, (5.16)

we find that the first and second derivatives of the free energy are continuous, and the phase
transition is third order.

We notice that the calculations of the free energy are akin to those in [50]. On a compu-
tational level, this stems from the symmetric form of the eigenvalues together with the lack of
a Chern–Simons term. This is an incarnation of the fact that the SU(N) and USp(2N) gauge
theories are UV-completed into the same SCFT, up to a shift in Nf that is invisible in the
Veneziano limit.

The argument extends to theories with hypermultiplets in the adjoint or rank-two antisym-
metric representation. The phase diagram is easily recovered from subsections 2.5 and 4.5.7

6 Quiver theories

The aim of the present section is to analyze the large N limit of various 5d N = 1 quiver gauge
theories. Let the gauge group be

U (N1)× U (N2)× · · · × U (NL) , (6.1)

corresponding to a quiver with L nodes, that we label by j = 1, . . . , L. These models have been
recently constructed in [14].

6.1 Short quivers

6.1.1 Homogeneous U(N)× U(N) quiver

The first model we discuss is the U(N) × U(N) homogeneous quiver, with a bi-fundamental
hypermultiplet and N fundamental flavours at each gauge node, represented in figure 15. A
Chern–Simons term is forbidden by (2.12). For simplicity we assume that all the fundamental
hypermultiplets at each node have equal masses, that we denote m1 and m2.

7USp(2N) theories have been investigated from different angles in [35, 71–75].
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Figure 15. Homogeneous U(N)× U(N) quiver.

The large N SPE for the first node reads

−
∫

dψρ1(ψ) (φ− ψ)2 sign (φ− ψ) =
2

λ1
φ− 1

2
(φ+m1)2 sign (φ+m1) (6.2)

− 1

2

∫
dψρ2(ψ) (φ− ψ)2 sign (φ− ψ)

and the SPE for the second node has the labels 1 and 2 exchanged. Here ρ1(φ) and ρ2(φ) are the
eigenvalue densities corresponding to the first and second node respectively, and likewise for the
Yang–Mills couplings λ1 and λ2. In the SPE for the jth node φ ∈ suppρj is assumed, j ∈ {1, 2}.

When both |m1| and |m2| are large, the solution is

ρ1(φ) =
1

16
δ (φ−A2) +

7

16
δ (φ−B2) +

1

8
δ (φ−A1) +

3

8
δ (φ−B1) (6.3a)

ρ2(φ) =
1

8
δ (φ−A2) +

7

8
δ (φ−B2) (6.3b)

under the assumption that λ−1
1 , λ−1

2 and m1, m2 are such that B2 < B1, or with the roles of
first and second node swapped otherwise. We do not spell the details explicitly, because they
are exactly as in section 3, and only sketch the argument.

From phase (6.3) the system can access two other phases, by either decreasing |m2| keeping
|m1| large or the converse. In the first case, both ρ1(φ) and ρ2(φ) develop an additional δ-function
singularity at φ = −m2, m2 ∈ [A2, B2], and we get

ρ1(φ) =
1

8
δ (φ−A2) +

1

8
δ (φ−B2) +

1

8
δ (φ−A1) +

3

8
δ (φ−B1) +

1

4
δ (φ+m2) (6.4a)

ρ2(φ) =
1

4
δ (φ−A2) +

1

4
δ (φ−B2) +

1

2
δ (φ+m2) . (6.4b)

In the second case, we find a solution in the region B2 < −m1 < B1 or A1 < −m1 < A2, with

ρ1(φ) =
1

8
δ (φ−A2) +

1

8
δ (φ−B2) +

1

8
δ (φ−A1) +

3

8
δ (φ−B1) +

1

4
δ (φ+m1) (6.5a)

ρ2(φ) =
1

4
δ (φ−A2) +

3

4
δ (φ−B2) . (6.5b)

However, when −m1 ∈ [A2, B2], the eigenvalue density at the second node will develop a δ-
function singularity at φ = −m1 as well, and we obtain

ρ1(φ) =
3

32
δ (φ−A2) +

5

32
δ (φ−B2) +

1

8
δ (φ−A1) +

1

8
δ (φ−B1) +

1

2
δ (φ+m1) (6.6a)

ρ2(φ) =
3

16
δ (φ−A2) +

5

16
δ (φ−B2) +

1

2
δ (φ+m1) . (6.6b)

The rest of the phase structure is directly obtained from the cases discussed. The phase diagram
of homogeneous quivers with more nodes is likewise derived by iteration of the ideas presented.
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Figure 16. Circular U(N)× U(N) quiver.

6.1.2 Circular U(N)× U(N) quiver

The next example we consider is the U(N)× U(N) circular quiver [34], drawn in figure 16.
There are precisely Nf = 2N hypermultiplets in the fundamental representation of each

U(N), then by (2.12) the Chern–Simons levels must vanish. We assign masses ±m to the
hypermultiplets.

The SPEs for this quiver at large N and in the decompactification limit are:

−
∫

dψρ1(ψ) (φ− ψ)2 sign (φ− ψ) =− 1

2

∫
dψρ2(ψ) (φ− ψ +m)2 sign (φ− ψ +m) (6.7)

− 1

2

∫
dψρ2(ψ) (φ− ψ −m)2 sign (φ− ψ −m) +

2

λ1
φ

for the first node, and the same upon swapping the labels 1 and 2 for the second node. This
system of two equations is solved generalizing the procedure for the single node theory with an
adjoint hypermultiplet, studied in subsection 2.5.

In analogy with subsection 2.5, we get a solution

ρ1(φ) =
1

2
[δ (φ+B1) + δ (φ−B1)] (6.8a)

ρ2(φ) =
1

2
[δ (φ+B2) + δ (φ−B2)] (6.8b)

where we take m ≥ 0 without loss of generality, and with

Bj = − 1

λj
+m, j ∈ {1, 2} . (6.9)

This phase holds under the assumption m ≤ min
{

2
λ1
, 2
λ2

}
. Beyond this point, the system is

in a new phase, in which the eigenvalue density at one node sees the singularities from the
eigenvalues of the other node. For instance, let us assume 1

λ1
< 1

λ2
. Then, when m > 2

λ1
we find

ρ1(φ) =
1

4
[δ (φ+B1) + δ (φ−B1) + δ (φ+ m̃1) + δ (φ− m̃1)] (6.10a)

ρ2(φ) =
1

2
[δ (φ+B2) + δ (φ−B2)] (6.10b)

where

B1 =
1

λ1
, m̃1 = 2m− 3

λ1
, B2 = 2m− 2

λ1
− 1

λ2
. (6.11)

In obtaining the explicit value of B2 we have used m̃1 > 0. The next phase transition takes
place at m = 2B2, that is, this phase extends in the region

1

λ1
< m <

2

3λ1
+

4

3λ2
<

2

λ2
, (6.12)

with the last inequality showing the consistency with our previous assumption. When m crosses
the second critical value, the system enters in a third phase.
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6.2 Long quivers

The goal of the present subsection is to study the large N limit of unitary quiver gauge theories,
when the number L of nodes is large [32, 33, 76, 77]. Although here we follow the philosophy of
[32], there are a few major differences. The first is that we are interested in massive deformations
of the theory away from the superconformal point. The second aspect is that we work in the
decompactification limit.

We write the ranks {Nj} of the gauge nodes as Nj = Nνj and then take the limits N →∞
and 1

r → 0. We have not managed to obtain the most general solution for a long quiver, and we
limit ourselves to discuss various examples in this section.

We are interested in the large L limit, so that the discrete index j is replaced by the contin-
uous one

z =
j

L
, 0 ≤ z ≤ 1, (6.13)

and all the quantities that depend on j become functions of z. In particular the structure of the
gauge group is encoded in a rank density function ν(z), defined through

Nν(z) = NνzL = NzL. (6.14)

The eigenvalue densities ρj(φ) at each node j are collected into the function ρ(z, ϕ) of 0 ≤ z ≤ 1,

with ϕ = φ
L . Since every ρj(φ) must be normalized by Nj , the corresponding normalization

condition for ρ(z, ϕ) is ∫
ρ(z, ϕ)dϕ = ν(z), ∀ 0 ≤ z ≤ 1. (6.15)

Note that we have introduced the scaled variable ϕ = φ
L taking into account the scaling of the

eigenvalues φ with L [32]. The number of flavours at each node is

Nf,j = Nj+1 +Nj−1 + nj , ∀ j = 1, . . . , L (6.16)

with NL+1 = 0 = N0 by convention. In the multiple limit we are considering, this condition
becomes

Nf (z)

N
=

1

L2

∂2ν

∂z2
+ 2ν(z) + ζ(z). (6.17)

Assuming the rank density ν(z) is of class C2([0, 1]), this condition implies that no Chern–
Simons term nor fundamental matter is allowed in the interior of the quivers, thus

1

t(z)
=
δ(z)

t(0)
+
δ(z − 1)

t(1)
, ζ(z) = ζ(0)δ(z) + ζ(1)δ(z − 1). (6.18)

At this point, we adapt the discussion of section 2 to long quivers. We fix 0 < z < 1 and get
the saddle point equation away from the head and tail of the quiver. The contributions of the
vector and bi-fundamental hypermultiplets to the SPE, after simplifications that hold in the
limit L→∞, are respectively

L3

∫
dψρ(z, ϕ) (ϕ− ψ)2 sign (ϕ− ψ) , (6.19a)

−
∫

dψ

[
L3ρ(z, ψ) +

L

2

∂2

∂z2
ρ(z, ψ)

]
(ϕ− ψ)2 sign (ϕ− ψ) . (6.19b)
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In this multiple limit, the contribution from the vector multiplet is cancelled against part of
the contribution from the bi-fundamental hypermultiplets, at each 0 < z < 1. The only other
contribution in the interior of the long quiver comes from the Yang–Mills term. The SPE is

1

2

∫
dψ

∂2

∂z2
ρ(z, ψ) (ϕ− ψ)2 sign (ϕ− ψ) =

2

λ(z)
ϕ (6.20)

which must hold for every 0 < z < 1.
Let us remark that the non-trivial scaling of the eigenvalues φ with L is a consequence of

the vanishing mass of the bi-fundamental hypermultiplets. This point is explicitly addressed in
subsection 6.2.7.

We bring ∂2
z out of the integral and solve the differential equation in z first and then the

integral equation. We obtain

ρ(z, ϕ) =
ν(z)

2
[δ (ϕ+B(z)) + δ (ϕ−B(z))] , (6.21)

where the coefficients are fixed by the normalization (6.15), and B(z) is given by

B(z) =
2g(z)

ν(z)
, (6.22)

with g(z) a function satisfying
d2

dz2
g(z) =

1

λ(z)
. (6.23)

The two boundary data to integrate (6.23) are fixed by the boundary conditions for the quiver
at z = 0 and z = 1.

6.2.1 Circular quivers

If we consider an affine Â-type quiver, that is a circular quiver in which each node is connected
to two neighbours, the variable z becomes periodic and the absence of boundary terms implies
that the solution we have obtained holds for all 0 ≤ z < 1 with periodic identification {z = 1} ≡
{z = 0}. The boundary conditions to obtain g(z) from (6.23) are the consistency conditions

g(0) = g(1), dg|z=0 = −dg|z=1. (6.24)

So, for example, if all the gauge nodes have equal Yang–Mills ’t Hooft coupling λ, g(z) = z(z−1)
2λ .

For linear quivers, instead, we have to take into account the boundary conditions for ρ(z, ϕ)
obtained solving the theory at the edges of the quiver.

6.2.2 Homogeneous quivers

Consider a constant function ν(z) = 1. We take as main example the quiver with all nodes of
equal rank N , including two sets of N fundamental hypermultiplets attached at the first and
last node, as in figure 17. See [14] for the M-theory derivation of such quiver.

N· · ·NN NN

Figure 17. Homogeneous linear quiver.
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In the interior of the quiver, the solution found above holds, while the solution at the edges
is inherited from the discussion in section 3. If all the hypermultiplets are massless, we find
ρ(0, ϕ) = δ(ϕ) = ρ(1, ϕ). Imposing the continuity at z = 0 and z = 1 we obtain the pair of
conditions g(0) = 0 = g(1), which serve as boundary conditions to integrate (6.23).

We may also give two opposite mass scales to the hypermultiplets at the head and tail of
the quiver, so that isolating each one of these two nodes we reproduce the theory of section 3.3.
We find

ρ(z, ϕ) =

(
1

2
− δ(z)

4
− δ(z − 1)

4

)
[δ (ϕ+ 2g(z)) + δ (ϕ− 2g(z))] (6.25)

+

(
δ(z)

4
+
δ(z − 1)

4

)[
δ

(
ϕ+

m(z)

L

)
+ δ

(
ϕ− m(z)

L

)]
,

and g(z) is obtained integrating (6.23) with boundary conditions g(0) = m(0)
2L and g(1) = m(1)

2L .
We notice that the masses must be scaled linearly with L, as we have done with φ, to obtain a
non-trivial dependence. This scaling stems from the necessity of putting the gauge and flavour
part of the extended Coulomb branch C (X) = Cgauge × Cflavour on equal footing.

6.2.3 Linear quivers

The discussion for the homogeneous linear quiver is easily extended to more generic quivers
when ∂2

zν(z) is continuous and bounded, as represented in figure 18.

NL· · ·N2N1 nLn1

Figure 18. Admissible linear quiver when ν(z) is of class C2([0, 1]).

In this case we find the eigenvalue density

ρ(z, ϕ) =

(
ν(z)

2
− ζ(z)

4

)
[δ (ϕ+B(z)) + δ (ϕ−B(z))] +

ζ(z)

2
δ(ϕ), (6.26)

with ζ(z) as defined in (6.18) and supported at the head and tail of the quiver. The continuity
condition on g(z) again fixes the eigenvalue density.

6.2.4 T [SU(N)] quivers

Another class of examples is constituted by the so-called T [SU(N)] quivers [78, 13], represented
in figure 19. These quivers are other particular examples of the constriction in [14]. They have
L = N − 1 gauge nodes, with unitary groups U(j), j = 1, . . . , N − 1, and a set of Nf = N
fundamental hypermultiplets at the last node. Therefore the quiver is balanced, in the sense
that there are precisely 2j fields in the fundamental representation of U(j), for j = 1, . . . , N −1.
The large N limit of the 3d counterpart of this theory has been addressed in [76].

· · · N21 N−1

Figure 19. The T [SU(N)] ascending quiver.

In this example, L depends on N and therefore we cannot take the large N limit first and
the long quiver limit at the end. However, from the simple relation L = N − 1, we get ν(z) = z,
0 ≤ z ≤ 1, and the large N limit automatically enforces the long quiver limit.
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More generally, we can fix a positive integer ν and build the ascending quiver with gauge
group

U(ν)× U(2ν)× · · · × U((N − 1)ν) (6.27)

with νN fundamental hypermultiplets at the last node. The rank density function is again a
linear function, ν(z) = νz, on the interval z ∈ [0, 1], and ν = 1 gives back the T [SU(N)] theory.
The dependence of the rank of each node on j requires care: for a given massive deformation
hj leading to a Yang–Mills term for the jth node, the corresponding ’t Hooft parameter is

λ−1
j =

hj
zνN , which would be ill-defined in the näıve z → 0 limit. This is of course a consequence

of the rank not being large for the first nodes. This does not invalidate our procedure, but we
should keep in mind that as z → 0 from above, we must take λ−1(z)→∞.

We arrive at the eigenvalue density

ρ(z, ϕ) =

(
νz

2
− δ(z − 1)

4

)
[δ (ϕ+B(z)) + δ (ϕ−B(z))] +

δ(z − 1)

2
δ(ϕ) (6.28)

for massless hypermultiplets. Using this density to compute the free energy, FS5 is uniquely
determined by the profile of λ(z)−1 on z ∈ [0, 1].

6.2.5 Gluing

The solutions for the homogeneous and T [SU(N)] quivers of subsections 6.2.2 and 6.2.4 respec-
tively are manifestly compatible with the gluing operation. That is, we can construct a linear
quiver of length L = L1 +L2 by identifying and gauging the flavour nodes of two linear quivers
of length, respectively, L1 and L2. The assignment of equal real masses to the two flavour nodes
and the subsequent integration are translated into a continuity condition for the function g(z) at
the junction. For the homogeneous quiver, gluing the head and the tail is allowed and produces
the circular ÂL quiver.

6.2.6 Remarks on special unitary quivers

For balanced quivers we have found eigenvalue distributions ρ(z, ϕ) that are explicitly even in
the large N and decompactification limit. Therefore, if we replace the U(N) nodes by SU(N)
nodes, we would get the same answer, as the δ-function constraint on the eigenvalues would be
automatically fulfilled. We remark that the argument will hold on a S5 of finite radius, since
the saddle point equations will still be even in φ, yielding an eigenvalue density with symmetric
support.

Further comments on special unitary groups as seen by the matrix model, at finite N , are
collected in appendix A.2.

6.2.7 Massive matter

We now revisit the discussion of long quivers when the bi-fundamental hypermultiplets are
massive. Let us denote µj the mass of the bi-fundamental hypermultiplet between the jth and
the (j + 1)th node. In the large L limit, the masses are encoded in a function µ(z), that we
assume continuous on 0 < z < 1.

In the large N and large L limit, this theory does not require scaling the scalar φ with L,
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and we arrive at the SPE∫
dψρ(z, ψ) (φ− ψ)2 sign (φ− ψ) =

1

2

∫
dψρ(z, ψ) (φ− ψ + µ(z))2 sign (φ− ψ + µ(z)) (6.29)

+
1

2

∫
dψρ(z, ψ) (φ− ψ − µ(z))2 sign (φ− ψ − µ(z))− 2φ

λ(z)
.

The solution to this equation is similar to that in subsection 2.5, and a phase transition must
take place as the product µ(z)|λ(z)| is increased from 0 to ∞.

6.3 Codimension-two defects

This conclusive subsection is devoted to the study of the large N and decompactification limit
of a particular class of 5d theories with codimension-two defects [79–81]. These defects are
described by an S3 ⊂ S5 hosting a 3d Chern–Simons quiver preserving half of the supercharges.

We follow the construction in [80]. Given a SU(N) five-dimensional Chern–Simons theory,
the collection of integers

{nJ}J=1,...,L+1 , with

L+1∑
J=1

nJ = N (6.30)

specifies a defect. The 3d quiver has gauge group U(N1) × · · · × U(NL), with non-decreasing
ranks

Nj =

j∑
J=1

nJ , (6.31)

and the ambient space SU(N) is coupled to the last node as a flavour symmetry. The generic
3d Chern–Simons theory has four supercharges, but our methods are best suited for non-chiral
theories. Therefore, we focus presently on the special case of 5d N = 2 Yang–Mills, admitting
defects that preserve eight supercharges. We add Chern–Simons terms at each node, eventually
obtaining a 3d N = 3 quiver as in figure 20. The study of more general defects is left for future
work.

NL· · ·N2N1 N

(3d)(3d)(3d)

Figure 20. A 3d Chern–Simons theory on the defect, drawn with shaded nodes. The last node is the
five-dimensional gauge group, seen as a flavour symmetry from the 3d viewpoint.

6.3.1 Minimal partition

The first example is the defect with L = 1, that is, we choose n1 = νN , n2 = (1 − ν)N , for
0 ≤ ν ≤ 1

2 . The resulting system is a 3d U(νN)k Chern–Simons theory coupled to 5d SU(N)
Yang–Mills. In the N = 1 formalism, the latter corresponds to the theory with an adjoint
hypermultiplet of subsection 2.5.1, setting m = 0. Therefore, the 3d system sees two sets of N

2
massive hypermultiplets, of masses ± 1

λ5d
. The SPE is∫ B3d

A3d

dψρ3d(ψ) sign(φ− ψ) =
φ

t3d
+

1

4ν

[
sign

(
φ+

1

λ5d

)
+ sign

(
φ− 1

λ5d

)]
, (6.32)
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where t3d is the 3d Chern–Simons ’t Hooft coupling, normalized with the rank νN of the 3d
system. Note that we have defined it intrinsically as the five-dimensional lift of a 3d Chern–
Simons term, following [17]. The outcome agrees with the prescription in [80]. Equation (6.32)
has been solved in [44] (see also [49]), to which we refer for the detailed phase diagram. Varying
the 5d gauge coupling, the 3d system undergoes two third order phase transitions.

6.3.2 Long partition

The choice of codimension-two defect is encoded in the choice of a partition of N , up to shuffling.
Therefore, in the large N limit, a typical defect will be described by a typical partition of N ,
picked with uniform distribution. We thus expect L ∼

√
N and Nj ∼

√
N at large N . The

3d theory is then a long quiver, and can be analyzed adapting the procedure of [76, 77]. As
for 5d long quivers, the contribution from bi-fundamental hypermultiplets cancels part of the
contribution from the vector multiplet in the long quiver limit. The SPE is

− 1

2

∫
dψ

∂2

∂z2
ρ3d(z, ψ) sign (ϕ− ψ) =

ϕ

t3d(z)
+
δ(z − 1)

4

[
sign

(
ϕ+

1

λ̃5d

)
+ sign

(
ϕ− 1

λ̃5d

)]
.

(6.33)
In this expression we have scaled the scalar in the vector multiplet linearly with L, keeping ϕ
finite. This requires scaling the 5d ’t Hooft coupling λ5d with L, keeping λ̃5d finite. If we do not
enforce this scaling, the flavour node will reduce to massless hypermultiplets.

The solution to (6.33) is akin to subsection 6.2. We get

ρ3d(z, ϕ) = g3d(z), suppρ3d = [−B3d(z), B3d(z)], B3d(z) =
ν(z)

2g3d(z)
, (6.34)

where g3d(z) solves
d2

dz2
g3d(z) = − 1

t3d(z)
, g3d(1) = λ̃5d

ν(1)

2
. (6.35)

The solution is determined by the profile of 1
t3d(z) , with the 5d Yang–Mills ’t Hooft coupling

serving as a boundary condition.
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A Calabi–Yau varieties and localization

As presented in the introduction, the Coulomb branches of the 5d N = 1 gauge theories we are
interested in can be built from resolutions of a singular Calabi–Yau threefold X. If X is realized
as an elliptic fibration, the theory has special unitary gauge group [6, 82, 9, 10], while if X is
realized as a C∗-fibration the gauge group is unitary [14].

Appendix A.1 embeds the results of the main text in the geometric framework and explains
how to extract matrix models from Calabi–Yau geometries. Then, these facts are applied in
appendix A.2 to match the reduction from U(N) to SU(N) gauge theories between geometry
and partition function.
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A.1 Geometric description

A 5d N = 1 gauge theory TX on its Coulomb branch can be read off from the geometry of a
crepant resolution8 X̃ → X of a singular local Calabi–Yau threefold X. Likewise, a 3d N = 2
theory is obtained from crepant resolutions of singular local Calabi–Yau fourfolds. We focus on
a threefold X.

Most of the theories we consider correspond to X̃ containing compact divisors formed by N
intersecting P1s fibered over a single holomorphic genus zero curve, that we denote P1

0. Besides,

there are Nf divisors that are P1 fibrations over a non-compact curve inside X̃. In the models of
subsection 2.5 the fibrations are instead over a genus one curve, while for the quivers of section
6 the compact divisors are fibered over a collection of intersecting P1

0,j , j = 1, . . . , L.
Kähler moduli {φa} of holomorphic curves that are Poincaré dual to compact divisors {Sa}

give rise to dynamical fields, while Kähler moduli {mα} of curves Poincaré dual to non-compact
divisors {Dα} give rise to background fields. The identification of the extended Coulomb branch
with the extended Kähler cone C (X) of X stems from these relations.

The gauge theory is characterized by a Yang–Mills coupling 1
g2
YM

= vol
(
P1

0

)
, thus the ’t Hooft

limit (2.17) increases the volume of P1
0 linearly with the number of compact divisors fibered over

it. Besides, the Veneziano limit (2.18) corresponds to take the number of both compact and
non-compact exceptional divisors in X̃ large.

We have reviewed how to read off a gauge theory TX from a resolution X̃ → X. In turn,
supersymmetric localization provides an explicit dictionary between the field content of a super-
symmetric field theory and a matrix model representation of certain observables in such theory
on a compact manifold. Therefore, a two-step procedure yields a map

C (X) 3 X̃ ←→ C (X) 3 (φ,m) 7→ ZTX
S5 (φ,m), (A.1)

whose image is the measure in the matrix model on S5. The sphere partition function is the
average over Cgauge of this quantity:

ZTX
S5 (m) =

∫
Cgauge

dφ ZTX
S5 (φ,m). (A.2)

In the above setup, these last steps define a dictionary whose entries include

existence of Sa =⇒ integrate over φa

existence of Dα =⇒ hypermultiplet of mass mα

intersections =⇒ Zclass(φ)Zvec
1-loop(φ)Zhyp

1-loop(φ).

Varying a Kähler parameter mα, we have found a phase transition each time the corresponding
volume crosses a threshold determined by 1

N vol
(
P1

0

)
. Importantly, these transitions take place

at strictly infinite rank of the gauge group, and differ in nature from the flop transitions among
two birationally equivalent resolved geometries X̃. An exception to this statement is discussed
in subsection 3.5.1.

A.2 Stückelberg mechanism from localization

In this appendix we comment on the matrix model interpretation of the Stückelberg mechanism
presented in [14] to pass from unitary to special unitary quiver gauge theories. The argument
has been shown to hold for three-dimensional gauge theories [83].

8A resolution is crepant if it preserves the canonical bundle.
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The partition function on either S3 or S5 when Fayet–Iliopoulos parameters {ξj} are turned
on is written schematically as

ZTX
Sd (m) =

1∏
j Nj !

∫
Rrank(G)

dφ e
i4πr2

∑L
j=1 ξj

(∑Nj
a=1 φa,j

)
ZTX
Sd (φ,m), (A.3)

for gauge group G = U(N1) × · · · × U(NL). The parameters ξj are dual to the fibre of X.
Therefore, according to the dictionary in appendix A.1, compactifying the C∗-fibre we have to
integrate over the scalars ξj , producing a δ-constraint at each gauge node. In 3d, this corresponds
to gauging the U(1)j global symmetry at each node, in agreement with [83].

The situation is very similar in 5d, although we first have to address a subtlety with the
integration contour. In section 2 we have inserted ξ as a Lagrange multiplier, while now we
want to treat it as the lowest component of a full-fledged dynamical Abelian vector multiplet.
Hence, localization dictates to rotate its integration contour ξ 7→ iξ [17], eventually producing
the correct factor.

B Other vanishing curvature limits

In section 2.2 we have shown how to reproduce the prepotential of a 5d N = 1 theory [6] from
the localized partition function on S5 of radius r, taking the limit 1

r → 0. A slightly different
prepotential is obtained as follows [9, 84]: first compactify on S1 × R4 with circle of radius `,
take the 4d N = 2 prepotential and dress it with the full tower of KK modes, and eventually
take the limit `→∞.

The discrepancy between the two prepotentials is translated in the present context as the
ambiguity in first putting the theory on curved space, localize, and then take the vanishing
curvature limit. In the light of the universality result [85]

lim
N→∞

FS4×S1 ∝ lim
N→∞

FS5 , (B.1)

localizing on S1 × S4 and then taking the decompactification limit leads to a phase structure
identical to the one we have obtained.

C Eigenvalue densities

The eigenvalue densities we have found in the main text have the generic form

ρ(φ) = cAδ (φ−A) + cBδ (φ−B) +

F∑
α=1

cαδ (φ+mα) , suppρ = [A,B]. (C.1)

In this appendix we collect the explicit expressions of the parameters cA, cB, and the endpoints
A, B of the support. As explained in subsection 2.3, cα = ζα

2 if −mα ∈ [A,B] and cα = 0
otherwise. We do not report these coefficients below.

Recall that A and B are found solving quadratic equations. In all the subsequent expressions
the correct choice of sign in front of each square root has already been made. For instance,√
λ2(· · · ) = +|λ|

√
(· · · ) is understood.

C.1 Eigenvalue densities: U(N) theories

In this appendix we collect the coefficients cA, cB and the endpoints A, B determining the
eigenvalue density ρ(φ) in the various U(N) gauge theories studied in section 3.
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F = 1, |λ| → ∞

cA =

{
(2−ζ)t−2

4t m < 0
(2+ζ)t−2

4t m > 0,
cB =

{
(2+ζ)t+2

4t m < 0
(2−ζ)t+2

4t m > 0,
(C.2a)

A =


m
ζt+2

(√
2
√

ζt((ζ+2)t+2)
(ζ−2)t+2 − ζt

)
m < 0

ζmt−
√

2m
√
ζ(−t)((ζ2−4)t2−4ζt+4)

(ζ+2)t−2

2−ζt m > 0,

(C.2b)

B =


√

2m
√
ζt((ζ−2)t+2)((ζ+2)t+2)−ζmt((ζ+2)t+2)

(ζt+2)((ζ+2)t+2) m < 0

−
m
(
ζt((ζ−2)t−2)+

√
2
√
ζ(−t)((ζ−2)t−2)((ζ+2)t−2)

)
((ζ−2)t−2)(ζt−2) m > 0.

(C.2c)

F = 1, |λ| <∞

cA =


(2−ζ)t−2

4t m < mcr,1
(2−ζ)t−2

4t mcr,1 < m < mcr,2
(2+ζ)t−2

4t m > mcr,2,

cB =


(2+ζ)t+2

4t m < mcr,1
(2−ζ)t+2

4t mcr,1 < m < mcr,2
(2−ζ)t+2

4t m > mcr,2,

(C.3a)

A =


√

2
√
λ2(−t)((ζ−2)t+2)((ζ+2)t+2)(2t(ζλm+1)−ζλ2m2)−λt((ζ−2)t+2)(ζλm+2)

λ2((ζ−2)t+2)(ζt+2)
m<mcr,1√

λ2t2((ζ−2)2t2−4)
λ((ζ−2)t+2)

− t
λ

mcr,1<m<mcr,2
√

2
√
λ2t((ζ−2)t−2)((ζ+2)t−2)(2t(ζλm−1)−ζλ2m2)+λt((ζ+2)t−2)(2−ζλm)

λ2(ζt−2)((ζ+2)t−2)
m>mcr,2,

(C.3b)

B =


−
√

2
√
λ2(−t)((ζ−2)t+2)((ζ+2)t+2)(2t(ζλm+1)−ζλ2m2)+λt((ζ+2)t+2)(ζλm+2)

λ2(ζt+2)((ζ+2)t+2)
m<mcr,1√

λ2t2((ζ−2)2t2−4)
λ((ζ−2)t−2)

− t
λ

mcr,1<m<mcr,2

−
√

2
√
λ2t((ζ2−4)t2−4ζt+4)(2t(ζλm−1)−ζλ2m2)+λt((ζ−2)t−2)(ζλm−2)

λ2((ζ−2)t−2)(ζt−2)
m>mcr,2.

(C.3c)

F = 1, |t| → ∞

cA =


2−ζ

4 m < mcr,1
2−ζ

4 mcr,1 < m < mcr,2
2+ζ

4 m > mcr,2,

cB =


2+ζ

4 m < mcr,1
2−ζ

4 mcr,1 < m < mcr,2
2−ζ

4 m > mcr,2,

(C.4a)

A =


2

(
(2−ζ)λ+

√
(4−ζ2)λ2(ζλm+1)

)
(ζ−2)ζλ2 −m m<mcr,1

2
(2−ζ)λ mcr,1<m<mcr,2

−
2

(
(ζ+2)λ+

√
(4−ζ2)λ2(1−ζλm)

)
(−ζ−2)ζλ2 −m m>mcr,2,

(C.4b)

B =


−

2

(
(ζ+2)λ+

√
(4−ζ2)λ2(ζλm+1)

)
ζ(ζ+2)λ2 −m m<mcr,1

− 2
(2−ζ)λ mcr,1<m<mcr,2

2

(
(2−ζ)λ+

√
(4−ζ2)λ2(1−ζλm)

)
(2−ζ)ζλ2 −m m>mcr,2.

(C.4c)
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F = 2, |λ| → ∞. Symmetric case

If t > 1
1−ζ :

cA =
t− 1

2t
, cB =

t+ 1

2t
, (C.5a)

A =

ζmt
(

t+1√
t2−1
− 1
)

m < 0

−ζmt
(

t+1√
t2−1
− 1
)

m > 0,
B =

ζmt
(

t−1√
t2−1
− 1
)

m < 0

−ζmt
(

t−1√
t2−1
− 1
)

m > 0.
(C.5b)

If t < − 1
1−ζ :

cA =
t− 1

2t
, cB =

t+ 1

2t
, (C.6a)

A =

−
ζmt(

√
t2−1+t−1)
t−1 m < 0

ζmt(
√
t2−1+t−1)
t−1 m > 0,

B =

−
ζmt(

√
t2−1+t+1)
t+1 m < 0

ζmt(
√
t2−1+t+1)
t+1 m > 0.

(C.6b)

F = 2, |λ| <∞. Symmetric case

cA =


t−1
2t m>mcr,1

t(1−ζ)−1
2t mcr,2<m<mcr,1 and t>0

t−1
2t mcr,2<m<mcr,1 and t<0

t(1−ζ)−1
2t m<mcr,2,

cB =


t+1
2t m>mcr,1

t+1
2t mcr,2<m<mcr,1 and t>0

t(1−ζ)+1
2t mcr,2<m<mcr,1 and t<0

t(1−ζ)+1
2t m<mcr,2,

(C.7a)

A =



√
t2(t2−1)( 1

λ
−ζm)

2

1−t +ζmt− t
λ

m>mcr,1

√
2λ

√
t(t+1)((ζ−1)t+1)(ζλ2m2+2t(ζλm−1))

λ2 +(ζ−1)t2(ζλm−2)+t(ζλm−2)

λ((ζ−1)t+1)(ζt+2)
mcr,2<m<mcr,1and t>0

−
√

2
√

(t−1)t((ζ−1)t−1)(2t(ζλm−1)−ζλ2m2)+(t−1)t(ζλm−2)

λ(t−1)(ζt−2)
mcr,2<m<mcr,1and t<0√

t2((ζ−1)2t2−1)
λ2

(ζ−1)t+1
− t
λ

m<mcr,2,

(C.7b)

B =



−

√
t2(t2−1)( 1

λ
−ζm)

2

t+1
+ζmt− t

λ
m>mcr,1

√
2
√
t(t+1)((ζ−1)t+1)(ζλ2m2+2t(ζλm−1))+t(t+1)(ζλm−2)

λ(t+1)(ζt+2)
mcr,2<m<mcr,1and t>0

√
2
√

(t−1)t((ζ−1)t−1)(2t(ζλm−1)−ζλ2m2)−t((ζ−1)t−1)(ζλm−2)

λ((ζ−1)t−1)(ζt−2)
mcr,2<m<mcr,1and t<0

−

√
t2((ζ−1)2t2−1)

(ζ−1)t−1
+t

λ
m<mcr,2.

(C.7c)

F = 2, |λ| → ∞. Generic case

We impose m2 = m and m1 = − ζ2
ζ1
m.

cA =

{
t(2−ζ1+ζ2)−2

4t m < 0
t(2+ζ1−ζ2)−2

4t m > 0,
cB =

{
t(2+ζ1−ζ2)+2

4t m < 0
t(2−ζ1+ζ2)+2

4t m > 0,
(C.8a)

A =


m

(
2ζ1ζ2t((ζ1−ζ2−2)t+2)+

√
ζ1ζ2(−t)((ζ1−ζ2−2)t+2)((ζ1−ζ2+2)t+2)(ζ21 t+2ζ1(ζ2t+1)+ζ2(ζ2t−2))

)
ζ1((ζ1−ζ2−2)t+2)((ζ1−ζ2)t+2)

m<0

−
m

(
2ζ1ζ2t((−ζ1+ζ2−2)t+2)+

√
ζ1ζ2(−t)((−ζ1+ζ2−2)t+2)((−ζ1+ζ2+2)t+2)(ζ21 t+2ζ1(ζ2t−1)+ζ2(ζ2t+2))

)
ζ1(ζ1(−t)+ζ2t+2)((−ζ1+ζ2−2)t+2)

m>0,

(C.8b)
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B =


2ζ1ζ2mt((ζ1−ζ2+2)t+2)−m

√
ζ1ζ2(−t)((ζ1−ζ2−2)t+2)((ζ1−ζ2+2)t+2)(ζ21 t+2ζ1(ζ2t+1)+ζ2(ζ2t−2))

ζ1((ζ1−ζ2)t+2)((ζ1−ζ2+2)t+2)
m<0

m

−2ζ2t−

√
ζ1ζ2(−t)((−ζ1+ζ2−2)t+2)((−ζ1+ζ2+2)t+2)(ζ21 t+2ζ1(ζ2t−1)+ζ2(ζ2t+2))

ζ1(ζ1t−ζ2t−2(t+1))


ζ1(−t)+ζ2t+2

m>0.

(C.8c)

F = 2, |λ| → ∞. Generic case revisited

When −m1 > B,−m2 < A,

cA =
2− ζ1 + ζ2

4
− 1

2t
, cB =

2 + ζ1 − ζ2

4
+

1

2t
, (C.9a)

A =

√
−t((ζ1−ζ2−2)t+2)((ζ1−ζ2+2)t+2)(−2ζ1m

2
1+2ζ2m

2
2+ζ1ζ2(m1−m2)2t)−t(ζ1m1−ζ2m2)((ζ1−ζ2−2)t+2)

((ζ1−ζ2−2)t+2)((ζ1−ζ2)t+2)
, (C.9b)

B = −
t(ζ1m1−ζ2m2)((ζ1−ζ2+2)t+2)+

√
−t((ζ1−ζ2−2)t+2)((ζ1−ζ2+2)t+2)(−2ζ1m

2
1+2ζ2m

2
2+ζ1ζ2(m1−m2)2t)

((ζ1−ζ2)t+2)((ζ1−ζ2+2)t+2)
. (C.9c)

When −m2 < A < −m1 < B,

cA =
2− ζ1 + ζ2

4
− 1

2t
, cB =

2− ζ1 − ζ2

4
+

1

2t
, (C.10a)

A = ζ2m2t((−ζ1+ζ2+2)t−2)−
√

2m2
√
ζ2t((ζ1−ζ2−2)t+2)((ζ1+ζ2−2)t−2)

((ζ1−ζ2−2)t+2)(ζ2t−2)
, (C.10b)

B =
m2

(
ζ2(−t)−

√
2
√
ζ2t((ζ1−ζ2−2)t+2)((ζ1+ζ2−2)t−2)

(ζ1+ζ2−2)t−2

)
ζ2t−2

. (C.10c)

F = 2, −∞ < λ < 0. Generic case

When A < −m1,−m2 < B,

cA =
2− ζ1 − ζ2

4
− 1

2t
, cB =

2− ζ1 − ζ2

4
+

1

2t
, (C.11a)

A =
t

λ

(√
1− 4

(ζ1 + ζ2) t− 2t+ 2
− 1

)
, B =

t

λ

(√
4

(ζ1 + ζ2) t− 2(t+ 1)
+ 1− 1

)
.

(C.11b)
When −m2 < A and A < −m1 < B,

cA =
2− ζ1 + ζ2

4
− 1

2t
, cB =

2− ζ1 − ζ2

4
+

1

2t
, (C.12a)

A =
ζ2(−λ)m2t+

√
2
√
−t(ζ1t−ζ2t−2t+2)((ζ1+ζ2)t−2(t+1))(ζ2λm2(2t−λm2)−2t)

ζ1t−ζ2t−2t+2
+2t

λ(ζ2t−2)
, (C.12b)

B = t((ζ1+ζ2−2)t−2)(2−ζ2λm2)+
√

2
√
−t((ζ1−ζ2−2)t+2)((ζ1+ζ2−2)t−2)(ζ2λm2(2t−λm2)−2t)

λ(ζ2t−2)((ζ1+ζ2−2)t−2)
. (C.12c)

When −m1 > B and A < −m2 < B,

cA =
2− ζ1 − ζ2

4
− 1

2t
, cB =

2 + ζ1 − ζ2

4
+

1

2t
, (C.13a)
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A = 1
λ2(ζ1t+2)

[√
2
√
λ2t((ζ1−ζ2+2)t+2)((ζ1+ζ2−2)t+2)(ζ1λm1(λm1−2t)−2t)

(ζ1+ζ2−2)t+2
−λt(ζ1λm1+2)

]
, (C.13b)

B = − 1
λ2(ζ1t+2)

[√
2
√
λ2t((ζ1−ζ2+2)t+2)((ζ1+ζ2−2)t+2)(ζ1λm1(λm1−2t)−2t)

(ζ1−ζ2+2)t+2
+λt(ζ1λm1+2)

]
. (C.13c)

When −m1 > B and −m2 < A,

cA =
2− ζ1 − ζ2

4
− 1

2t
, cB =

2 + ζ1 + ζ2

4
+

1

2t
, (C.14a)

A = [
√
λ2(−t)((ζ1−ζ2−2)t+2)((ζ1−ζ2+2)t+2)(−2ζ1λm1(λm1−2t)+ζ2λ(ζ1λ(m1−m2)2t+2m2(λm2−2t))+4t)

−λt((ζ1−ζ2−2)t+2)(ζ1λm1−ζ2λm2+2)] 1
λ2((ζ1−ζ2−2)t+2)(ζ1t−ζ2t+2)

,

(C.14b)
B = − [

√
λ2(−t)((ζ1−ζ2−2)t+2)((ζ1−ζ2+2)t+2)(−2ζ1λm1(λm1−2t)+ζ2λ(ζ1λ(m1−m2)2t+2m2(λm2−2t))+4t)

+λt((ζ1−ζ2+2)t+2)(ζ1λm1−ζ2λm2+2)] 1
λ2((ζ1−ζ2+2)t+2)(ζ1t−ζ2t+2)

.

(C.14c)
When −m1 < A and −m2 > B,

cA =
2− ζ1 − ζ2

4
− 1

2t
, cB =

2 + ζ1 + ζ2

4
+

1

2t
, (C.15a)

A = [
√
λ2t((ζ1+ζ2−2)t−2)((ζ1+ζ2+2)t−2)(−2ζ1λm1(λm1−2t)+ζ2λ(ζ1λ(m1−m2)2t−2m2(λm2−2t))−4t)

−λt((ζ1+ζ2+2)t−2)(ζ1λm1+ζ2λm2−2)] 1
λ2((ζ1+ζ2)t−2)((ζ1+ζ2+2)t−2)

,
(C.15b)

B = [
√
t((ζ1+ζ2−2)t−2)((ζ1+ζ2+2)t−2)(−2ζ1λm1(λm1−2t)+ζ2λ(ζ1λ(m1−m2)2t−2m2(λm2−2t))−4t)

−t((ζ1+ζ2−2)t−2)(ζ1λm1+ζ2λm2−2)] 1
λ((ζ1+ζ2−2)t−2)((ζ1+ζ2)t−2)

.
(C.15c)

C.2 Eigenvalue densities: SU(N) theories

In this appendix we collect the endpoints A, B determining the eigenvalue density ρ(φ) in the
various SU(N) gauge theories studied in section 4. The coefficients cA and cB are equal to the
ones in the corresponding U(N) theory, and we do not report them as they already appear in
appendix C.1.

F = 1, |λ| → ∞

A =

{
− ζmt

(ζ−2)t+2 m < 0

− ζmt
(ζ+2)t−2 m > 0,

B =

{
− ζmt

(ζ+2)t+2 m < 0
ζmt

2−(ζ−2)t m > 0.
(C.16)

F = 1, |λ| <∞

A =


− t(ζλm+2)
λ((ζ−2)t+2) m < mcr,1

− t(ζλm+2)
λ((ζ−2)t+2) mcr,1 < m < mcr,2

t(2−ζλm)
λ((ζ+2)t−2) m > mcr,2,

B =


t(ζλm−2)
λ((ζ+2)t+2) m < mcr,1

t(ζλm−2)
λ((ζ−2)t+2) mcr,1 < m < mcr,2

t(2+ζλm)
λ((ζ−2)t−2) m > mcr,2.

(C.17)

F = 1, |t| → ∞

A =


mζλ+2
(2−ζ)λ m < λ−1

2+λmζ
λ(2−ζ) λ−1 < m < −λ−1

2−mζλ
(2+ζ)λ m > −λ−1,

B =


−mζλ+2

(2+ζ)λ m < λ−1

−2−λmζ
λ(2−ζ) λ−1 < m < −λ−1

mζλ−2
(2−ζ)λ m > −λ−1.

(C.18)
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F = 2, |λ| → ∞. Symmetric case

A =

{
2ζmt
t−1 m < 0

−2ζmt
t−1 m > 0.

B =

{
−2ζmt

t+1 m < 0
2ζmt
t+1 m > 0.

(C.19)

F = 2, |λ| <∞. Symmetric case

A =



t( 1
λ
−ζm)
t−1 m>mcr,1

− t
λ+(ζ−1)λt mcr,2<m<mcr,1 and tλ<0

t( 1
λ
−ζm)
t−1 mcr,2<m<mcr,1 and tλ>0

− t
λ+(ζ−1)λt m<mcr,2,

B =



t(ζλm−1)
λ(t+1) m>mcr,1

t(ζλm−1)
λ(t+1) mcr,2<m<mcr,1 and tλ<0

− t
λ(1+t(1−ζ)) mcr,2<m<mcr,1 and tλ>0

− t
λ−ζλt+λt m<mcr,2.

(C.20)
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