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Abstract

Poles of solutions to the Painlevé-I equations are intimately related
to the theory of the cubic anharmonic oscillator. In particular, poles of
intégrale tritronquée are in bijection with cubic oscillators that admit
the simultaneous solutions of two quantization conditions. We analyze
this pair of quantization conditions by means of a suitable version of
the complex WKB method.

1 Introduction

The aim of the present paper is to study the distribution of poles of the
solutions y = y(z) to the Painlevé first equation (P-I)

' =6y -z, 2€C

with particular attention to the poles of the intégrale tritronquée.

As it is well-known, any local solution of P-I extends to a global meromor-
phic function y(2),z € C, with an essential singularity at infinity [GLS00].
Global solutions of P-I are called Painlevé-1I transcendents, since they cannot
be expressed via elementary functions or classical special functions [Inch6].
The intégrale tritronquée is a special P-I transcendent, which was discov-
ered by Boutroux in his classical paper [Boul3| (see [JK88| and [Kit94] for
a modern review). Boutroux characterized the intégrale tritronquée as the
unique solution of P-I with the following asymptotic behaviour at infinity

4
y(z) ~ —\/g, if |argz| < % .

Nowadays Painlevé first equation is studied in many areas of mathemat-
ics and physics. Indeed, it is remarkable that special solutions of P-I describe
semiclassical asymptotics of a wealth of different problems (see [Kap04] and
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references therein). In particular, in [DGK09| it is discovered that the inté-
grale tritronquée provides the universal correction to the dispersionless limit
of solutions to the focusing nonlinear Schrodinger equation.

Theoretical and numerical evidences led the authors of [DGK09| to the
following inspiring
CONJECTURE. Ifa € C is a pole of the intégrale tritronquée then |argal >

4m

5

Following the isomonodromic approach to P-1 [Kap04], any solution y(z)
gives rise to an isomonodromic deformation of the following linear equation
with an irregular singularity

— B y'(2) 202 + 2)\y(2) — 2 + 2y%(2)
B\ 2) = (2(A ) B > B(N,2) .

The deformation of the equation is manifestly singular at every pole a € C
of y, however in Theorem [2] we show that at the singularity this equation
can be replaced with a simpler one, which has the same monodromy data
(cf. [IN8G| for Painlevé IT). This is the following Schrodinger equation with
cubic potential

*y(N)
d\?
Here a is the location of the pole of y and b is a complex number entering
into the Laurent expansion of y around a (see formula (7)) below).

The isomonodromy property implies that there exists a natural injective
map M from the space of solutions of P-I to the space of monodromy data
of the above equations (see Lemma (), while the Schrodinger equation de-
fines naturally a map 7 from the space of cubic potentials to the space of
monodromy data.

Our first main result is Theorem [3, which states that a € C is a pole of
y(2) if and only if there exists b € C such that M(y) = T(V(A;a,b)).

In particular, because of the special monodromy data related to the inté-
grale tritronquée (see Theorem[I] due to Kapaev), we will show that the poles
of the intégrale tritronquée are in bijection with the simultaneous solutions
of two different quantization conditions.

The above approach naturally embeds the study of poles of Painlevé-
I transcendents into the Nevanlinna’s theory of branched coverings of the
sphere and the complex WKB method.

The beautiful theory of R. Nevanlinna (see [Nev70] and [Elf34]) relates
bijectively the Schrodinger equations with a polynomial potential to the
branched coverings of the sphere with logarithmic branch points, considered
up to conformal equivalence. Using this theory we are able to prove the
surjectivity of the map M (see Theorem [0)).

=V(\a, b)), V(\a,b)=4\> —2a\ —28b.




Moreover Nevanlinna’s theory provides the poles of any solution of P-I
with an unexpected and remarkable rich structure. In particular, poles of the
tritronquée solution can be labelled by the monodromy of coverings of the
Riemann sphere with 3 logarithmic branch points. In a subsequent paper, we
are going to use this topological description to complete the WKB analysis
of the present paper.

The WKB analysis of P-I developed in [KT05] has never been applied to
the direct study of the distributions of poles. To achieve such a goal we fol-
low the Fedoryuk’s approach (see [Fed93]) to the complex WKB theory, and
in the Classification Theorem we give a complete topological classification of
the Stokes complexes of all cubic potentials. As a consequence of the Classi-
fication Theorem, we obtain our second main result: all polynomials whose
monodromy data, in the WKB approximation, are the monodromy data of
the intégrale tritronquée have the same topological type of Stokes complex
and satisfy a pair of Bohr-Sommerfeld quantization conditions, namely sys-
tem (25). In particular, in this way we reproduce the conditions obtained
by Boutroux, through a completely different approach, in his study of the
asymptotic distributions of the poles of the intégrale tritronquée.

A priori, the WKB method is expected to give an approximation of poles
z = a for a sufficiently large. Surprisingly our approach proves to be nu-
merically very efficient also for poles close to the origin, see Table 2 below.

The paper is organized as follows. In Section 2 we derive the Schrédinger
equation associate with P-I and study thoroughly its relations with poles of
P-I transcendents. Section 3 is devoted to the topological classification of
Stokes complexes. In Section 4 we calculate the monodromy data in the
WKB approximation, we derive the correct Bohr-Sommerfeld conditions for
the poles of tritronquée, and we introduce the "small parameter" of the
approximation. In Section 5 we obtain an asymptotic description of poles
of the integrale tritronquée. In Appendix A and Appendix B we prove some
theorems regarding the WKB functions that are used in section 2 and 3.
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the theory of nonlinear waves and their applications".

2 Poles and Cubic Oscillators

We review some well-known facts regarding the isomonodromic approach to
the P-I equation and analyze the isomonodromic deformation in a neighbor-
hood of the singularities.

2.1 P-I as an Isomonodromic Deformation

P-I is equivalent to the compatibility condition of the following system of
linear ODEs:

B = <2(Ayl(z)(z)) 2A2+2Ay(—zz}<;>z+2y2(2)> T

T.(0z) = —<(1’ 2y(z())+)\> Thz) . 2)

The precise meaning of the word compatibility is given by the following

Lemma 1. Fiz zp, Ao and the Cauchy data y(zo), y'(20), and 6}()\0,270).
Let U,, be any simply connected neighborhood of zy. Then y(z) satisfies the
Painlevé first equation in Uy, iff the system (DI2) has a solution Y(\,z) €
C x U,,. Moreover the solution is unique.

Proof. See |[Kap04]. O

In this subsection we suppose that we have fixed a solution y of P-I and
a simply connected region U such that y|y is holomorphic.

We are now going to define the important concepts of monodromy data
and isomonodromic deformation of equation ([Il). For this reason, we have to
introduce some particular solutions of system (D), to be uniquely defined
by the asymptotic behaviour for A — oo.

Fix k € Zs = {-2,...,2} and the branch of A% in such a way that
ReA? — 400 as |A| = oo,arg A = % Then (see [Kap04]) for any y
solution of P-I, there exists a unique solution qT/Z()\, z) of () such that

5 1 (1
lim eT5A2 =922z (A 0 >3k(>\) - <1> VzeeU, (3)

—00 0 AT
|arg)\f27%c |<3?7r7€

N

where AT is defined globally on the complex plane minus the negative real
axis, and is positive on the positive real axis. Notice that, depending on



2

k € Zs, (A%) may not be equal to A%. Here and in the following, if not

otherwise stated, € is an arbitrarily small positi_\;e number. N
From the asymptotics (@) it follows that ® (A, z) and ®prii(A, 2) are
linearly independent for any k € Zs and the following equality holds true

- - -
Pp1(N) = Prr1(N) +ox(2) Pr(N) (4)
where oy (z) is an analytic function of z, for any k € Zs.

Definition 1. Fized z, we call oy the k-th Stokes multiplier of equation (1)
and the set of all five Stokes multipliers the monodromy data of (). The
problem of calculating the monodromy data is called the direct monodromy
problem.

Stokes multipliers are very important for our analysis and we list their
main properties in the following
Lemma 2. Let oi(2),k € Zs be defined as above. Then
(i) equation (2) is an isomonodromic deformation of equation (1), i.e.
doy (2) =0

dz

(i) The numbers oy, k € Zs satisfy the following system of algebraic equa-
tions
1+ o0ropr1 = —t0opys, k€ Zs. (5)

Proof. See [Kap04].
]

Observe that only 3 of the algebraic equations (B]) are independent.

Definition 2. We denote V' the algebraic variety of quintuplets of complex
numbers satisfying (3) and call admissible monodromy data the elements of
V. Due to Lemmald, equations {{]) define the following map

M : {P-I transcendents} — V.

LEMMA. M is injective.

Proof. See [Kap04]. O

We end the section with a result of Kapaev, which completely character-
izes the intégrale tritronquée in term of Stokes multipliers.

Theorem 1. (Kapaev)
The image under M of the intégrale tritronquée are the monodromy data
uniquely characterized by the following equalities

Proof. See [Kap04]. O



2.2 Poles of y: cubic oscillator

So far we dealt with the system () in a region U which does not contain
any pole of y(z). Indeed, the situation at a pole is different, for equation ()
makes no sense. .

However, we show that any solution ® (A, z) of system (I ) is mero-
morphic in all the z — plane; moreover, a pole z = a of y(z) is also a pole
of ®(\,z) and the residue at the pole of its second component satisfies the
scalar equation of Schrodinger type ().

In order to be able to describe the local behavior of 3()\, z) near a pole
a of y(z), we have to know the local behavior of y(2) close to the same point
a.

Lemma 3 (Painlevé). Let a € C be a pole of y. Then in a neighborhood of
a, y has the following convergent Laurent expansion
1 a(z — a)? z—a)d
ez o)
z—a) 10 6

+b(z—a) + 3 ¢j(a,b)(z—a) (7)

J=5

y(z) = (

where b is some complex number and cj(a,b) are real polynomials in a and
b, not depending on the particular solution y.

Conversely, fixed arbitrary a,b € C, the above expansion has a non zero
radius of convergence and solves P-I.

Proof. See |[GLS00]. O

Definition 3. We define the map
L : C?* — {P-I transcendents) .

L(a,b) is the unique analytic continuation of the Laurent expansion ().

We have already collected all elements necessary to formulate the impor-
tant

Theorem 2. Fiz a solution y of P-I and let @,(Ci)()\, z), i=1,2 k €Zs be
%
the i-th component of ® (X, z). Then

%
(i) ®k(A, z) is a meromorphic function of z. All the singularities are
double poles. Moreover, a € C is a pole of 3k(A, z) iff it is a pole of y.

(i) If a € C is a pole of y then
1 _ (2)
V() = ;I_I}(Il (z—a) P, (N 2)
1s an entire function of A. It satisfies the following Schrodinger equation

with cubic potential

d>U(\)

o = (AN — 200 - 28) W) | (8)



where b € C is the coefficient entering into the Laurent expansion ()
of y around a.

(i) If A2 and AT are chosen as in asymptotics (3), then Ve > 0

. 3 1438 103 )
lim A1e 50T T2 () = 4. (9)
A—ro0,\—22k| <32 ¢

(iv) Equation ([8) possesses the same monodromy data as equation (), i.e.
\I’k—l()\) = \I]k—f—l()\) + Uk\I’k()\) .

Proof. (i) From the Laurent expansion (), it is easily seen that a pole a
of y is a fuchsian singularity with trivial monodromy of equation (2)). In

particular the following Laurent expansions of @,(ci)()\, z) are valid

(I)l(f)()\, z) = (Qﬁk_()g <1—%(z - a)2> +orN)(z — a)?+0((z — a)?) ,
o(\,2) = % <1+%(z - a)2> ~20,(N) (= — @)+ O((= — a)?)(10)

Expansions (I0) show that gk()\,z) is meromorphic in a neighborhood of
the point a and this point is a pole of order not greater than 2.

(i), (iii) The proof is in Appendix [Bl

(iv) Since the functions (z — a)@,(f) satisfy equations () for any z with
constant Stokes multipliers, then their limit, i.e. the functions W (), satisfy

the same equations.
O

Definition 4. We call any cubic polynomial of the form V(X\;a,b) = 4\3 —
2a\ — 28b a cubic potential. The above formula identifies the space of cubic
potentials with C? 5 (a,b).
We define the map
T:CP=V.

T (a,b) is the monodromy data of equation (8).
Theorem [2] has the following
COROLLARY. Mo L=T.
The above corollary implies

Theorem 3. Let y be any solution of P-1. Then a € C is a pole of y iff there
exists b € C such that M(y) = T (a,b).

We finish this section with a theorem from Nevanlinna’s theory [Nev7()],
which implies the surjectivity of the map M.



Theorem 4. The map T is surjective. The preimage of any admissible
monodromy data is a countable infinite subset of the space of cubic potentials.

Proof. See [EIf34]. O

As a consequence of the above theorem we have

Theorem 5 (stated in [KK93|). The map M is bijective: solutions of P-I
are in 1-to-1 correspondence with admissible monodromy data.

Theorem [3] shows that the distribution of poles of P-I transcendents is
a part of the theory of anharmonic oscillators, which has been object of

intense study since the seminal papers [BW68| and [Sim70].

REMARK. In the theory of anharmonic oscillators a special importance is
given to the vanishing of some Stokes multipliers. For a given k € Zs, the
problem is to find all (a,b) € C? such that the Stokes multiplier oy, of equation
(8) vanishes. This is called the k-th lateral connection problem. Since fized a,
there exists a discrete number of solutions to any lateral connection problem,
equation o = 0 1s referred to as a quantization condition.

As a consequence of Theorem [I] and Theorem [B] we have the following

COROLLARY. The point a € C is a pole of the intégrale tritronquée if and
only if there exists b € C such that the Schridinger equation with the cubic
potential V(A;a,b) admits the simultaneous solution of two different quanti-
zation conditions, namely oo = 0.

2.3 Asymptotic values

As it was previously observed, Stokes multipliers are defined by particular
normalized solutions of equations () and (§). Following Nevanlinna, we
define the monodromy data of equation (&) in a more invariant way.

Definition 5. Let {¢, x} be a basis of solution of (3).
We call

A
wi(p, X) = )\hgloo % cCUwco, kelZs. (11)

the k-th asymptotic value.
We collect the main properties of the asymptotic values in the following
Lemma 4. (i) Let ¢ =ap+bx and X' =co+dX', a,b,c,d € C. Then

awg(p,x) +b (12)

rooN
wk(@7X)_ka((p,X)+d.



(1) wr—1(p, x) = wrs1(@, X) ff ox =0 .
(i) wiy1(p, X) # Wi (P, X)
Proof. See |EIf34]. O

Making use of equation ([II), given the Stokes multipliers it is possible
to calculate the asymptotic values. The converse is also true. In particular,
the asymptotic values associated to the tritronquée intégrale can be chosen
to be

wo=0,w1 =w_9=1wy =w_1 = . (13)

3 Stokes Complexes

In the complex WKB method a prominent role is played by the Stokes and
anti-Stokes lines, and in particular by the topology of the Stokes complex,
which is the union of the Stokes lines.

The main result of this section is the Classification Theorem, where we
show that the topological classification of Stokes complexes divides the space
of cubic potentials into seven disjoint subsets.

Even though Stokes and anti-Stokes lines are well-known objects, there
is no standard convention about their definitions, so that some authors call
Stokes lines what others call anti-Stokes lines. We follow here the notation

of Fedoryuk [Fed93].

REMARK. To simplify the notation and avoid repetitions, we study the
Stokes lines only. Every single statement in the following section remains
true if the word Stokes is replaced with the word anti-Stokes, provided in
equation (1)) the angles @y are replaced with the angles ¢ + %.

Definition 6. A simple (resp. double, resp. triple) zero \; of V(\) =
V(A;a,b) is called a simple (resp. double, resp. triple) turning point. All
other points are called generic.

Fiz a generic point N\g and a choice of the sign of \/V (Xg). We call action

the analytic function
A
S(Ao, A) = VV(u)du
Ao

defined on the universal covering of A-plane minus the turning points.

Let ng be the level curve of the real part of the action passing through
a lift of Ag. Call its projection to the punctured plane 7),. Since iy, is a
one dimensional manifold, it is diffeomorphic to a circle or to a line. If 7y,
is diffeomorphic to the real line, we choose one diffeomorphism iy,(z),z € R
in such a way that the continuation along the curve of the imaginary part of
the action is a monotone increasing function of z € R.



Lemma 5. Let \g be a generic point. Then iy, is diffeomorphic to the real
line, the limit lim,_, ~ iy, (z) exists (as a point in C|Joo) and it satisfies
the following dichotomy:

(1) Either lim,_, 1 iy, (z) = 00 and the curve is asymptotic to one of the
following rays of the complex plane

(2k + 1)

5 ’p€R+ak€Z5, (14)

A= p6i¢ka Prk =

(11) orlimg_, o0 ir,(x) = Ni, where \; is a turning point.
Furthermore,

(1) iflimg_y4 o0 ix, () = 00 then the asymptotic ray in the positive direction
1s different from the asymptotic ray in the negative direction.

(iv) Let ¢p,k € Zs be defined as in equation (IJ)). Then Ve > 0,3K €
R such that if gp_1 + ¢ < arghg < @ — ¢ and D\ > K, then
lim, 10005, () = 00. Moreover the asymptotic rays of iy, are the
ones with arguments pi and pi_1.

Proof. See [Str&4].
U

Definition 7. We call Stokes line the trajectory of any curve iy, such that
there exists at least one turning point belonging to its boundary.

We call a Stokes line internal if oo does not belong to its boundary.

We call Stokes complex the union of all the Stokes lines together with the
turning points.

We state all important properties of the Stokes lines in the following
Theorem 6. The following statements hold true

(i) The Stokes complex is simply connected. In particular, the boundary
of any internal Stokes line is the union of two different turning points.

(ii) Any simple (resp. double, resp. triple) turning point belongs to the
boundary of 3 (resp. 4, resp 5) Stokes lines.

(iii) If a turning point belongs to the boundary of two different non-internal
Stokes lines then these lines have different asymptotic rays.

(iv) For any ray with the argument @y, as in equation (I7), there exists a
Stokes line asymptotic to it.

Proof. See [Str&4]. O

10



3.1 Topology of Stokes complexes

In what follows, we give a complete classification of the Stokes complexes,
with respect to the orientation preserving homeomorphisms of the plane.
We define the map L from the A-plane to the interior of the unit disc as

L : C— D1
. 2 .
L(pe'?) = =e'¥arctanp. (15)
T

The image under the map L of the Stokes complex is naturally a deco-
rated graph embedded in the closed unit disc. The vertices are the images of
the turning points and the five points on the boundary of the unit disc with
arguments ¢, with ¢y as in equation (I4)). The bonds are obviously the
images of the Stokes lines. We call the first set of vertices internal and the
second set of vertices external. External vertices are decorated with the num-
bers k € Z5. We denote S the decorated embedded graph just described.
Notice that due to Theorem [ (iii), there exists not more than one bond
connecting two vertices.

The combinatorial properties of S are described in the following

Lemma 6. S possesses the following properties
(i) the sub-graph spanned by the internal vertices has no cycles.

(i) Any simple (resp. double, resp. triple) turning point has valency 3
(resp. 4, resp. 5).

(iii) The valency of any external vertex is at least one.
Proof. (i) Theorem [@] part (i)
(ii) Theorem [6 part (ii)

(iii) Theorem [@ part (iv)
U

Definition 8. We call an admissible graph any decorated simple graph em-
bedded in the closure of the unit disc, with three internal vertices and five
decorated external vertices, such that (i) the cyclic-order inherited from the
decoration coincides with the one inherited from the counter-clockwise orien-
tation of the boundary, and (ii) it satisfies all the properties of Lemmaldl. We
call two admissible graphs equivalent if there exists an orientation-preserving
homeomorphism of the disk mapping one graph into the other.

Theorem 7. Classification Theorem
All equivalence classes of admissible maps are, modulo a shift k — k +
m,m € Zs of the decoration, the ones depicted in Figure [.

11



"Boutroux Graph

Figure 1: All the equivalence classes of admissible graphs.
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Proof. Let us start analyzing the admissible graphs with three internal ver-
tices and no internal edges.

Any internal vertex is adjacent to a triplet of external vertices. Due to
the Jordan curve theorem, there exists an internal vertex, say Ao, adjacent
to a triplet of non consecutive external vertices. Performing a shift, they
can be chosen to be the ones labelled by 0,2, —1. Call the respective edges
€p,€-1,€2.

The disk is cut in three disjoint domains by those three edges. No internal
vertices can belong to the domain cut by ey and ey, since it could be adjacent
only to two external vertices, namely the ones labelled with 0 and —1. By
similar reasoning it is easy to show that one and only one vertex belong to
each remaining domains.

Such embedded graph is equivalent to the graph (300).

Classifications for all other cases may proved by similar methods.

O

The equivalence classes are encoded by a triplet of numbers (a b ¢): a is
the number of simple turning points, b is the number of internal Stokes lines,
while ¢ is a progressive number, distinguishing non-equivalent graphs with
same a and b. Some additional information shown Figure [l will be explained
in the next section.

REMARK. For any admissible graph there exists a real polynomial with an
equivalent Stokes complex.

REMARK. Notice that the automorphism group of every graph in Figure [
1s trivial. Therefore the unlabelled vertices can be labelled. In the following
we will label the turning points as in figure [ We denote "Boutrouz graph”
the graph (320)

3.2 Stokes Sectors

In the A-plane the complement of the Stokes complex is the disjoint union of
a finite number of connected and simply-connected domains, each of them
called a sector.

Combining Theorem [6] and the Classification Theorem we obtain the
following

Lemma 7. All the curves iy,, with Ao belonging to a given sector, have the
same two asymptotic rays. Moreover, two different sectors have different
pairs of asymptotic rays.

For any k € Zs there is a sector, called the k-th Stokes sectors, whose
asymptotic rays have arguments pr_1 and @. This sector will be denoted
Y. The boundary 0%y of each Xy is connected.

13



Any other sector has asymptotic rays with arguments i1 and @ri1, for
some k. We call such a sector the k-th sector of band type, and we denote it
Bi.. The boundary 0By, of each By has two connected components.

Choose a sector and a point Ao belonging to it. The function S(\g, \) is
easily seen to be bi-holomorphic into the image of this sector. In particular,
with one choice of the sign of v/V it maps a Stokes sector into the half plane
ReS > ¢, for some —oco < ¢ < 0 while it maps a By sector in the vertical
strip ¢ < ReS < d, for some —oc0 < ¢ < 0 < d < +00.

Definition 9. We call a differentiable curve v : [0,1] — C an admissible
path provided ~y is injective on [0, 1], A; ¢ v([0,1]), for all turning points A;,
and ReS(v(0),~v(t)) is a monotone function of t € [0, 1].

We say that 3; <= Xy, if there exist p; € X;, uy € Xg and an admissible
path such that v(0) = pj, y(1) = pg.

The relation < is obviously reflexive and symmetric but it is not in

general transitive.
Notice that ¥; <= X if and only if for every point p; € X; and every
point up € X an admissible path exists.

Lemma 8. The relation < depends only on the equivalence class of the
Stokes complex S.

Proof. Consider an admissible path from ; to Xz, 7 # k. The path is
naturally associated to the sequence of Stokes lines that it crosses. We denote
the sequence l,,n = 0,..., N, for some N € N. We continue analytically
S(pj,-) to a covering of the union of the Stokes sectors crossed by the path
together with the Stokes lines belonging to the sequence. Since S(uj;,-) is
constant along each connected component of the boundary of every lift of a
sector crossed by the path, then each of such connected components cannot
be crossed twice by the path. Hence, due to the classification theorem no
admissible path is a loop. Therefore, the union of the Stokes sectors crossed
by the path together with the Stokes lines belonging to the sequence is simply
connected.

Conversely, given any injective sequence of Stokes lines [,, n =0..., N
such that for any 0 < n < N — 1, [, and [, belong to two different
connected components of the boundary of a same sector, there exists an
admissible path with that associated sequence. This last observation implies
that the relation < depends only on the topology of the graph S. Moreover,
if the sequence exists it is unique; indeed, if there existed two admissible
paths, joining the same p; and g but with different sequences, then there
would be an admissible loop. O

With the help of Lemma [§] and of the Classification Theorem, relation
£ can be easily computed, as it is shown in Table [l As it is evident from
Figure [ for any graph type we have that X = Ygyq, Vk € Zs.

14



Map | Pairs of non consecutive Sectors not satisfying the relation <=
300 None

310 (30, %2), (Xo0,%-2)

311 (X1,%-1)

320 (B1,21), (81,8-9), (8-1,%2)

100 (2172—1)7 (2072—2)7 (20722)

110 All but (21, 2_1)

000 All

Table 1: Computation of the relation =

4 Complex WKB Method and Asymptotic Values

In this section we introduce the WKB functions ji, k € Zs and use them to
evaluate the asymptotic values of equation (). The topology of the Stokes
complex will show all its importance in these computations.

On any Stokes sector ¥, we define the functions

1 V()
L) = =g | s, (17)
k() = e~ SkN)+Le(A) (18)

Here \* is an arbitrary point belonging to Y5 and the branch of V/V is
such that ReSg()\) is bounded from below.
We call ji the k-th WKB function.

4.1 Maximal Domains

In this subsection we construct the k-th mazimal domain, that we denote
Dy. This is the domain of the complex plane where the k-th WKB function
approximates a solution of equation (g]).

The construction is done for any k in a few steps (see Figure [ for the
example of the Stokes complex of type (300)):

(i) for every 3 such that ¥; = 3, denote Dy ; the union of the sectors

and of the Stokes lines crossed by any admissible path connecting 3
and .

(ii) Let ]_/)7C = |U; D1 Hence ]_/)7C is a connected and simply connected

subset of the complex plane whose boundary (9]_/)7C is the union of some
Stokes lines.
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(iii) Remove a d-tubular neighborhood of the boundary dDy, for an arbi-
trarily small § > 0, such that the resulting domain is still connected.

(iii) For all [ # k,l # k — 1, remove from l/)\k an angle A = pe'?, |p — | <
€,p > R, for € arbitrarily small and R arbitrarily big, in such a way
that the resulting domain is still connected. The remaining domain is
Dy,.

4.2 Main Theorem of WKB Approximation

We can now state the main theorem of the WKB approximation.

Theorem 8 (G.D. Birkhoff [Bir33], Olver [OIv74]). Continue the WKB func-
tion ji to Dy. Then there exists a solution Yp(\) of (8), such that for all
A€ Dy

Ur(d) _ 200

O 1‘ < g (e -1)

_ 4N V'(N) V(A 200 _
() VWH‘ wool| e Y

Here py is a bounded positive continuous function, called the error func-
tion, satisfying

A—00
Pr—1<argA<@pi1

and g(\) is a positive function such that g(A\) <1 and

1
li =_.
dm g(A) =5
AEDENY g 42

Proof. The proof is in the appendix [Al O

Notice that ji is sub-dominant (i.e. it decays exponentially) in ¥; and
dominant (i.e. it grows exponentially) in ¥, VI # k.

For the properties of the error function, v is subdominant in ¥, and
dominant in ¥j41. Therefore, in any Stokes sector X, there exists a sub-
dominant solution, which is defined uniquely up to multiplication by a non
zero constant.
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The shaded area is D_1 o The shaded area is D_2 o

~—x Admissible path from X_; to 3¢ ~—x Admissible path from X_5 to 2o

5
The shaded area is D10 The shaded area is D3 o

~—x Admissible path from ¥; to Xg ~—x Admissible path from X5 to 3o

300 B SN .

The shaded area is Do The shaded area is Do
anmnm Stokes’ line belonging to BE\O T— Boundary of Dy
n

Figure 2: In the drawings, the construction of Dy for a graph of type (300)
is depicted.
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4.3 Computations of Asymptotic Values in WKB Approxi-
mation

The aim of this paragraph is to compute the asymptotic values for the
Schrodinger equation (§) in WKB approximation. We explicitely work out
the example of the Stokes complex of type (320), relevant to the study of
poles of the intégrale tritronquée.

Definition 10. Define the relative errors

Jim o), if X5 g

ke —r 00O
Pl = AEXLND;

00, otherwise
and the asymptotic values

def

’U}k(l,m) ; wk(d’lﬂbm) (19)

We say that X5 ~ X provided ,of < 1053, The relation ~ is a sub-relation of
-
—.

Notice that pf“ =0 and p/" = pl, (see Appendix [A]).
In order to compute the asymptotic value wg (I, m), we have to know the
asymptotic behavior of 1; and 1, in X;. By Theorem [§]

1
lim 2O £0, if =(eXk
A—00 ]l()\) 2
AEXLND;

-1)<1.

Hence the asymptotic behavior of v; in ¥; can be related to the asymptotic
behavior of j; in ¥, if the relative error pf is so small that the above inequality
holds true, i.e. if X ~ ;.

REMARK. Depending on the type of the graph S, there may not exist two
indices k # | such that all the relative errors pi', pit,n € Zs are small. How-
ever it is often possible to compute an approximation of all the asymptotic
values wy, (1, k) using the strategy below.

(i) We select a pair of non consecutive Stokes sectors ¥, X9, with the
hypothesis that the functions v; and ;9 are linearly independent, so
that wy(l,1 + 2) = 0, w4 2(l,1 + 2) = co. Since pi™ = pfi% = 0 then

o)
wir (1,1 +2) = lim jﬁi(;) .

A—00
)\€21+10Dl ﬂDl+2

Therefore, we find three exact and distinct asymptotic values.
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(ii) For any k # 1,1+ 1,1+ 2 such that ¥; ~ X and ¥;;9 ~ 3, we define
the approximate asymptotic value

(=)

im (%)

Dp(lym) = lim
AESLNDND 4o 7

The spherical distance between wy (I, m) and wg(l, m) may be easily
estimated from above knowing the relative errors pfﬁ and /7?2'

If forany k # [,1+1,1+2, ¥; ~ ¥j and ;9 ~ Xy, then the calculation
is completed.

(iii) If not, we can use the fact that quintuplets of asymptotic values for
different choices of 1,112 are related by a Mobius transformation
(see formula ([I2)). If for some pair (I,] 4+ 2) the assumption ¥; ~
Yk, Xpr1 ~ Xy fails to be true for just one value of the index k = k¥,
and, for another pair (I’,;I’ 4+ 2) the assumption Xy ~ g/, Xpyo ~
Y, fails to be true for just one valued of the index k' = Ek'*, with
k'™* # k*, then there are three values of the index m € Zs such that an
approximation of wy,(l,1 + 2) and w,,(I’,I' + 2) is computable. Since
any Mobius transformation is fixed by the action on three values, then
we can compute an approximation of the transformation relating the
quintuplets wg (1,1 +2) and wy(I',1' 4+ 2) for any k € Zs. Hence, we can
calculate an approximation of the whole quintuplets wg(l,] + 2) and
wk/(l’, U+ 2).

REMARK. As shown in Table[, the relation = is uniquely characterized by
the graph type. For the sake of computing the asymptotic values the important
relation is ~ and not <. Indeed, the calculations for a given graph type, say
(a b c), are valid for (and only for) all the potentials whose relation ~ is
equivalent to the relation = characterizing the graph type (a b c).

Due to the above remark, in what follows we suppose that the relation
~ is equivalent to the relation <. We have the following

Lemma 9. Let V(\;a,b) such that the type of the Stokes complex is (300),
(310), (311); moreover, suppose that the ~ relation coincides with <. Then
all the asymptotic values of equation ([8) are pairwise distinct, but for at most
pair.

Proof. For a graph of type (300) or (311) the thesis is trivial. For a graph
of type (320), it may be that wy = we or wy = w_y. Since wy # w_s the
thesis follows. O

We completely work out the case of Stokes complex of type (320), while
for the other cases we present the results only. Due to Lemma [ we omit
the results for potentials whose graph type is (300), (310) and (311).
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Boutroux Graph = 320 We suppose that Y ~ > 45.

Let us consider first the pair ¥y and ¥X_5. In Figure [3] the maximal do-
mains Dy ans D_4 are depicted by colouring the Stokes lines not belonging to
them blue and red respecitvely. In particular Sy, Lo, jo (resp. S_o, L_2,j_2)
can be extended to all Dy (resp. D_g) along any curve that does not intersect
any blue (resp. red) Stokes line.

....... Stokes line not belonging to D_4
........ Stokes line not belonging to Dy

Figure 3: Calculation of w_(0, —2) and of w2(0,—2)

We fix a point \* € Xy such that Sp(A*) = S_2(A*) = Lo(\*) =
Ly(\*) =0
By definition

o Jo(A)
o0 = I T
—  lim e S0N)+5-2(A) gLo(A)—L-2(X)

)
A—00p

Here A — o0y, is a short-hand notation for A — oo, A € X N Do N D_5. We
calculate wy (0, —2) for k = —1, 2.
We first calculate limy_,, e~ S0(N)+S5-2(A)

Notice that % = agf in ;. Hence

lim —So(A) + S—2(A) = —So(uk) + S—2(px) . k= —1,2,
)\—)OOk
where py is any point belonging to ¥ (in Figure B the paths of integration
defining So(ux) and S_o(uy) are coloured blue and red respectively).

On the other hand, since % = —agf in ¥ JX_2, we have that

—So(pr) + S—a(pr) = —2S0(Xs), s =—1lifk=—-land s=0if k=2.
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We now compute limy_,0, eLloM)=L-2()  Since % = 85;2 in Dy () D—a,
we have that

lim Lo(A) — L_o(\) = Lo(ux) — L_a(u) »

A—00p
Lolw) — L) = —1 ¢ z((jj;w,k:—l,z.

Here ¢, is the blue path connecting \* with uj composed with the inverse
of the red path connecting \* with py, (see Figure [3)).
Therefore, we have

.
lim Lo(\) — L_s(\) = —0—— o= —1ithk=—lando=+1ifk=2.

)\*)OO]’c 4

Combining the above computations, we get

w-1(0,-2) = 16—250()\—1)7 W9(0, —2) = —i e—250(0)

We stress that w_1(0, —2) is exact while wy(0, —2) is an approximation.
Performing the same computations for the pair ¥y and Yo, we obtain

w1(0,2) = —ie 290N F_5(0,2) = ie 25000

Having calculated the triplet of asymptotic values wg,ws,w_o for two
different pairs of Stokes sectors, we can compute an approximation of the
Mobius transformation relating all the asymptotic values for the two pairs:

- _ — 7250()\0)
’U)k;(oa 2) (X @k(o, 2) - ,L'672SO(>\0)

, keZs

We eventually compute the last asymptotic value for the pair g, 3 _o,
that is

e—250(M)

w1 (0,-2) = —i1+672(so(xl)fso(ko))

Quantization Conditions The computations above provides us with
the following quantization conditions:

W] = w_o < e 250A1)=5%M) = 1 (20)
Wy = w_g < e 2E0A-1)=5%0) = 1 (21)
W] = w_q < e 250A)=50A-1)) = 1 4 =2(S0(A1)=50(M0)) (22)

We notice that equation (22)) is incompatible both with ([20) and I)).
Equations (20) and (2I) are Bohr-Sommerfeld quantizations.
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As was shown in equation (I3]), the poles of the integrale tritronquée
are related to the polynomials such that wy = w_9 and w_q = ws. Since
equations (20) and ([2I) can be simultaneously solved, solutions of system
@02T)) describe, in WKB approximation, polynomials related to the in-
tégrale tritronquée. System (202I) was found by Boutroux in [Boul3]
(through a completely different analysis), to characterize the asymptotic dis-
tribution of the poles of the integrale tritronquée. Therefore we call (202T])
the Bohr-Sommerfeld-Boutroux system.

Equation ([22]) will not be studied in this paper, even though is quite
remarkable. Indeed, it describes the breaking of the PT symmetry (see

[DT00] and [BBM*01]).

Case (100)

wo(l,—1) = —1
’&372(1’_1) = @2(1’_1):1

Since wy # Wio and wy # w_g, if the error pf2 or p?, is small enough,
then all the asymptotic values are pairwise distinct.

Case (110)

@1(1,-2) = 1
wo(1,-2) = —1

In this case, it is impossible to calculate wy with the WKB method that
has been here developed. Hence it may be that either wy = wy or wy = w_os.

Notice, however, that (110) is the graph only of a very restricted class of
potentials namely V(\) = (A + A\g)?(\ — 2)g), where ) is real and positive.
Since the potential is real then wy # w4s.

Case (000) In this case, no asymptotic values can be calculated. Notice,
however, that V(\) = A3 is the only potential with graph (000). For this
potential the asymptotic values can be computed exactly, simply using sym-
metry considerations. Indeed one can choose wy = e , keZs.

4.4 Small Parameter

The WKB method normally applies to problem with an external small pa-
rameter, usually denoted h or €. In the study of the distributions of poles of
a given solution y of P-I there is no external small parameter and we have
to explore the whole space of cubic potentials. The aim of this section is to
introduce an internal small parameter in the space of cubic potentials, that
greatly simplifies our study.
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On the linear space of cubic potentials in canonical form
V(X a,b) = 4X3 — 2a)\ — 28b,

we define the following action of the group R* x Zjs (similar to what is
called Symanzik rescaling in [Sim70])

=)

(z,m)[V(X\;a,b)] = V(N Q*z2a, B¥"23b), 2 € RT, m € Zs, Q = es . (23)

The induced action on the graph S, on the relative error p;*, and on the
difference S;(A\j) — Si(Ag) is described in the following

Lemma 10. Let the action of the group RT x Zs be defined as above. Then

(i) (x,m) leaves the graph S invariant, but for a shift of the labels k —
k 4+ m of the external vertices.

(i) (2,m)[Si(\) — Si(A)] = 22 (Si(A\y) — Si(M)) -
(iii) (w,m)[of] = a3 pf .

Proof. The proof of (i) and (ii) follows from the following equality

\/V()\; O2kg2q, Q3kx3b)d\ = 3 VV(Nia,b)dN , A=z,

The proof of point (iii) follows from a similar scaling law of the 1-form

a(A)d\ (see equation (BI)) in Appendix [A]). O

Due to Lemma [Q(iii), ¢ = {%‘ plays the role of the small parameter.
Indeed, along any orbit of the action of the group R x Zs, all the (finite)
relative errors go to zero uniformly as ‘%{ — 0.

Since all the relevant information is encoded in the quotient of the space
of cubic potentials with respect to the group action, we define the following
change of variable

b
V(aa b) - a ) ,u(a, b) - "3 - (24)
The induced action on these coordinates is simple, namely
(2, m)lja(a, )] = pa,b) and (z,m)[v(a,b)] = X" v(ab)

Moreover, the orbit of the set {(v, ) € C?*s.t. |v| =1, |argr| < E, p#0}
is a dense open subset of the space of cubic potentials.
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5 Poles of Integrale Tritronquée

From Lemma [0 and the results of the computations in Section 3], it follows
that equation (§) admits in WKB approximation the simultaneous solutions
of the two quantization conditions w41 = w2 only if the Stokes complex is
of type (320). In particular, after our calculations the poles of the intégrale
tritronquée are related, in WKB approximation, to the solutions of the Bohr-
Sommerfeld-Boutrouz system (20121).

We rewrite this system in the following equivalent form:

I
-~
A
3
|
|

j{ V'V (A a,b)dA ' !
1 (25)

]é N e —iﬂ'(m—%)

where m, n are positive natural numbers and the paths of integration are
shown in figure [l

branch cuts defining the
square root of the potential

Figure 4: Riemann surface p? = V(\;a, b)

System (23] is studied in detail in [KK93| where the following lemma is
proven.

Lemma 11. If a polynomial V() = 4\ — 2a)\ — 28b satisfies the system
(23) then |argal > 4.
The Lemma above should be compared to the conjecture, to which we

referred in the introduction.

Real Poles We compute all the real solutions of system (28] and compare
them with some numerical results from [JKO0I]. We note that the accuracy of
the WKB method is astonishing also for small a and b (see Table 2 below).
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For the subset of real potentials, we have

§ Ve = ¢ VIanan

where — stands for complex conjugation.
Therefore system (25) reduces to one equation and the real poles of
tritronquée are characterized, in WKB approximation, by one natural num-

ber.

Lemma 12. Let p and v be defined as in equation (24). Then the real
polynomials whose Stokes complex is of type (320) are the orbit of a single
point of the RT action, characterized by p* = —3158,92 and v > 0.

Moreover, if a real polynomial V (\;a,b) satisfies the Bohr-Sommerfeld-
Boutrouz conditions (24), then

b=b"(n—3)8 (26)
for some n € N* and a* =2 —4,0874, b* = —0,1470.

Proof. All real cubic potentials whose Stokes complex has type (320) have
one real turning point g and two complex conjugate turning points Ay;.
For the subset of real potentials with two complex conjugate turning points
the cycles ayi, as shown in Figure dl are unambiguously defined. From
the Classification Theorem, it follows that a Stokes complex has type (320)
if and only if Re fal VV(Aa,b)dh = O,Imfa1 VV (A a,b)d\ # 0. Since
these conditions are invariant under the R* action, if they are satisfied for
a point of the space of cubic potentials, then they are satisfied on all its
orbit. Moreover, it is easily seen that this orbit exists and is unique. With
the help of a software of numeric calculus, we characterized numerically the
orbit. Afterthat, using the scaling law in Lemma [I0[ii) we calculated all the
real solutions of the Bohr-Sommerfeld-Boutroux system. U

To the best of our knowledge, the asymptotic for the b coefficients has
never been given.

In the paper [JKOI], the authors showed that the intégrale tritronquée has
no poles on the real positive axis. The real poles are a decreasing sequence
of negative numbers a,, and some of them are evaluated numerically in the
same paper.

In Table 2, we compare the first two real solutions to system (25) with
the numerical evaluation of the first two poles of the intégrale tritronquée.

6 Concluding Remarks

We have studied the distribution of the poles of solutions to the Painlevé
first equation using the theory of the cubic anharmonic oscillator. We have
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WKB Numeric | Error %
@ | —2.34 | —2,38 | L5

by | —0,064 | —0,062 2

py1 | —3158 —3510 10

4y | =5.65 | =5.66 | 0.2

by | —0,23 | unknown | unknown

o | —3158 | unknown | unknown

Table 2: Comparison between numerical and WKB evaluation of the first
two real poles of the intégrale tritronquée.

applied a suitable version of the complex WKB method to analyze the dis-
tribution of poles of the intégrale tritronquée.

In subsequent publications we plan to pursue our study of poles of P-I
transcendents in different directions.

In particular, we want to use the Nevanllina theory of the branched
coverings of the sphere to complete the analysis of the poles of the intégrale
tritronquée, showing that the developed WKB method yields a complete
qualitative picture and efficient quantitative estimates of the distribution of
the poles.

Since the quantization condition gg = 0 characterizes the monodromy
data of a family of special solutions of P-I, called intégrale tronquée (see
[Kap04]), these solutions are strictly related to the spectral theory of PT sym-
metric anharmonic oscillators and to functional equations of Bethe Ansatz
type (for what concerns the PT symmetric anharmonic oscillators and the
Bethe Ansatz equations, see [DDTO0I] and references therein). We are going
to investigate the consequences of this relation in a subsequent publication.

REMARK. After the main computations of the present paper had been com-
pleted, the author learned from B. Dubrovin about the results of V. Novok-
shenov presented at the conference NEEDS09 (May 2009). Novokshenov
studied WKB solutions to the Schrédinger equation (8) with b =0 and their
connections to the distributions of poles of certain particular solutions to the
Painlevé-I equation, including intégrales tronquée and intégrale tritronquée.

REMARK. In the paper [MBI1(] written after this paper was published, the
author proves that eventually (for big enough n and m) around any solution
of the Bohr-Sommerfeld-Boutroux system (283) there is one and only one
pole of the intégrale tritronquée. Moreover the distance between a pole and
its approximation vanishes asymptotically.
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A Appendix

The aim of this appendix is to prove Theorem [§l Our approach is similar to
the approach of Fedoryuk [Fed93].

Notations are as in sections Bl and @ except for co,. In what follows,
we suppose to have fixed a certain cubic potential V' ();a,b) and a maximal
domain Dy. To simplify the notation we write V() instead of V(X;a,b).

A.1 Gauge Transform to an L-Diagonal System

The strategy is to find a suitable gauge transform of equation (&) such that
for large A it simplifies. We rewrite the Schrodinger equation

="\ + VYN =0, (27)
in first order form:
U'(N) = ENT(N),
o (5 3

Lemma 13 (Fedoryuk). In Dy,

(i) the gauge transform

1 1
A()‘) - jk()‘)< V(A)—%(()\)\)) _ V()\)_V‘;((i))>a (29)

s non singular and

(ii) the system (28) is transformed into the following one

U'(N) = FOUWN = (A'BA-ATTA)U,

FO) = 20VOY (3 8>+a(z) (_11 _11> (30)
o — 1 " _ 2
(M) 732m5(4‘/(>\)v (A) =5V=(N) - (31)

Proof. (i) Indeed det A(A) = 2j2(A\)\/V(A) # 0, VA € Dy, by construc-
tion of j, and Dy.

(ii) It is proven by a simple calculation.
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A.2 Some Technical Lemmas

Before we can begin the proof of Theorem [ we have to introduce the com-
pactification of Dy and the preparatory Lemmas [I4] and

Compactification of Dx Since Dy, is simply connected, it is conformally
equivalent to the interior of the unit disk D. We denote U the uniformisation
map, U : D — Dy.

By construction, the boundary of Dy, is the union of n free Jordan curves,
all intersecting at co. Here n is equal to the number of sectors ¥; such that
¥ S ¥ minus 2.

Due to an extension of Carathéodory’s Theorem ([Car|, §134-138), the
map U extends to a continuous map from the closure of the unit circle to
the closure of Dj. The map is injective on the closure of D minus the
n counterimages of co. Hence, the uniformisation map realizes a n point
compactification of Dy, that we call Dy,. In Dy, there are n point at co. We
denote ooy the point at co belonging to the closure of U (X1 U Xg U Xk y1).
Moreover, for A=k +2 or A =k — 2, if 3; & ¥ we denote oo; the point at
oo belonging to the closure of U(%;).

Definition 11. Let H be the space of function holomorphic in Dy and con-
tinuous in Dy,. H endowed with the sup norm is a Banach space (H, ||| g ).

Let T(\),\ € Dy — oo be the set of injective piecewise differentiable
curves 7 : [0,1] = Dy, such that

1. 4(0) = A, v(1) = oo,
2. ReSk(7(0),7(t)) is eventually non decreasing,

3. there is an € > 0 such that eventually ‘arg ~y(t) — %‘ <E-g

4. the length of the curve restricted to [0,T] is O (|v(T)]),as t — 1.
Let T'(X) be the subset of T'(\) of the paths along which ReSy((0),~(t))

18 mon decreasing.
Let K1 : H — H and Ko : H — H be defined (for the moment formally)

ey = _/ N () h(p)dp (32)
~el(N)
Kh](N) = / o) h(p)dp . (33)
~el(N)
Let p: Dy, — Dy:
p(A) = ,Y;‘f}(f”/o a(y(£) =g~ | dt, if A # oo



REMARK. Since along rays of fized argument ¢, with |cp — %| < 5 — ¢
ReSy is eventually increasing, there are paths satisfying point (1) through
(4) of the above definition. Moreover, by construction of Dy, T'(\) is non

empty for any .

Before beginning the proof of the theorem, we need two preparatory
lemmas.

Lemma 14. Fiz ¢ > 0, an angle ‘arggp — 2”l‘ < E—¢g andlet =3 N
{xeC - 2?”[‘ < I —¢}. Denote i(R) = igyir N, R €RT, and let L(R)
be the length with respect to the euclidean metric ofz'(R). Then L(R) = O(R)
and ian’Ei(R) |)\/| == O(R)

Let r be any level curve of S;(A*,-) asymptotic to the ray of argumen
Q(R) = {X € Q, ReSi(\, Re™¢) > 0}, and M(R) be the length of r N Q(R).
Then M(R) = O(R).

Proof. [Stx84], chapter 3. O

Lemma 15. (i) p is a continuous function.

2l
t55

(ii) K1 and Ko are well-defined bounded operator. In particular
(KGR < pM IRz, 0= 1,2 (34)
(Zﬁ) Kg[h](ook) =K [h](ook) = Kl(ookﬂ) = O,Vh cH

Proof. (i)Since a(A)d\ = O(|)\|7%), then a(A)d\ is integrable along any
curve y € T'(\). Therefore p is a continuous function on Dy,

(ii)We first prove that (a) K;[h](A) does not depend on the integration
path for any A € Dy, minus the points at infinity. A result that easily implies
that K;[h](-) is an analytic function on Dy, continuous on A € Dy minus the
points at co. We then prove (b) the estimates ([B4]) and (c) the existence of
the limits K [h](ool), [ = o0, O0kK+9.

To simplify the notation, we prove the theorem for the operator K7. The
proof for Ks is almost identical .

(a)Let 74,7 € T'(A). The curve iy, (), where T = 1 — ¢ for some
small e > 0 intersect v, at some 7,(7"). Therefore we can decompose
—Y © Ve into two different paths with the help of a segment of i, (1),
Sy, €N a(ub(w)dp = [+ [, BN a(u)h(u)dp. One path v
is the loop based at A and the other 5 is the loop based at ocg. Since
v1 C Dy, then fﬂﬂ 2SN a(p)h(p)dp = 0. Along s, 25002 < 1 there-
fore the integrand can be estimated just by |a(v2(t))]. Due to lemma [I4]

fw () h(p)dy = O(ho(T) ™ ) Since ¢ is arbitrary, then Kj[h|()\) does not
depend on the integration path.
(b)Clearly for any path v € T'(\), |K1[R](\)] < fo A)d\ dt. Since

K1[h](A) does not depend on ~, then estlmate B4) follows
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(c) Let A, be a sequence converging to oo;,l = k+2orl = k — 2;
without losing any generality we suppose that the sequence is ordered such
that ReSi(An) < ReSip(An+1). Fix a curve r, as defined in Lemma [[4]
By construction of Dy, it is always possible to connect two points A, and
Antm With a union of segments of the curves iy, ,iy,,, and of r. We de-
note by v the union of this three segment. By construction of Dy (see
Subsection ELT] (iii)), there exists € >0 such that farg A, — %’d‘ < F—&Vn.
Therefore, due to Lemma [I4], v has length of order |\,| + |Ap+m|. Hence
TR ) — K2 [H] O )] < IOVO()AA = O ™). Then Kif](0)
is a Cauchy sequence and the limit is well defined.

We now prove that this limit is zero by calculating it along a fixed ray
\ = xe' inside ¥j49. Let us fix a point 2* on this ray in such a way that the
function ReSy(x*, ) is monotone decreasing in the interval [z*, +-00[. Along
the ray we have

JE S ) a(y)h(y)dy + g(a*)
€25k (z*,z) ’

K\ [h() = —

where g(x*) is a constant, namely f’yEF(x*)GQSk(M7$*)a(M)h(M)dﬂ' Hence
a@bh(@) _

——= = 0.
\VV(x)

With similar methods the reader can prove that the limit Kj[h](ook)
exists and is zero.

lim, 00 K7 [h](2) = limy 00

O

We are now ready to prove Theorem [§

Theorem 9. FEatend the WKB function ji to Dy. There exists a unique
solution vy, of (8) such that for all X € Dy,

f:&) —1 < g — 1),
A VO VO |
() VWH' woor| T e

where g(\) is a positive function, g(A\) < 1 and g(cogs2) = 3.

Proof. We seek a particular solution to the linear system (30) via successive
approximation.

IfUN =UD @U®R € H® H satisfies the following integral equation
of Volterra type

UN) = Up+ KU, Up = <0> ,

K [UM + U@\
<K2 oW+ U (2)](A)> ’
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then U(\) restricted to Dy, satisfies (30)

We define the the Neumann series as follows
n+1
Upi1 = U+ K[U,)],Upy1 = ZKZ ). (36)
More explicitly,
S o0 0, _ .25(p1,z )a(ﬂl) %
Uol(A / dMl/ dpi2 / dpn
Wl ( A 11 fin—1 a(p1) X
25(“27“1 (Iu )(1 25(“”7“"—1))
co(pin ) (1 — €25 imotins ))

Here the integration path + belong to I'(A). For any v € I'(\) and any

i 1()£dulkwuq>0",

n>1
n i 1 R -
o<z [ [ TRt =2
A M1 Hn—1 ;1
where K™[Up]® is the i-th component of K™[U]. Hence
n 11
KUl < 55 (20(0)" (37)
Thus the sequence U™ converges in H and is a solution to ([33); call U
(1)(ooki2) =0.

its limit. Due to Lemma [I3] U

Let Wy be the solution to ([28) whose gauge transform is U restricted to
Dy; The first component vy, of Wy, satisfies equation (271).
From the gauge transform (29]), we obtain

V() _ _
W) 1 = Ui(A) +Uz(A)
G V)L V()
o T e T BRI
V(A

AV (\)?
The thesis follows from these formulas, inequality ([B7) and from the fact
O

that Ul(OOkig) =0.
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REMARK. The solution ¥ (\) of equation ([8) described in Theorem [8 may
be extended from Dy to the whole complex plane, since the equation is linear
with entire coefficients. The continuation is constructed in the following
Corollary.

Corollary 1. For any A\ € C, X not a turning point, we define T'(\) as in
Definition [I1l  Fized any v € T'(\) and h a continuous function on v, we
define the functionals K;[h]()\) as in equations (32) and (33). We define the
Neumann series as in equations (33) and (30), and we continue ji along .

Then then Neumann series converges and we call UM (N) and UP(X)
the first and second component of its limit.

Moreover, 1(\) = (UD(N) + UD(N)) ji(N) solves equation (&) and for
any € > 0

Tim (U<1>(A) + U<2>(A)) —1

N—o0, ‘arg)\— %‘ < 3?” —

The reader should notice that if A ¢ Dy, then T'(\) is empty and we

cannot estimate % ) )
k(AN

B Appendix

The aim of this Appendix is to prove Theorem [ (ii) and (iii). The notation
is, if not otherwise stated, as in the previous sections of the paper.

Next to a pole z = a of a solution y(z) of P-I, equation (II) becomes
meaningless. To get rid of this singularity we perform a gauge transform of
(I such that the gauge-transformed equation has full meaning in the limit.
In what follows, we suppose that z belongs to a punctured neighborhood of
a, where y(z) is holomorphic.

A gauge transform

Let z be a fixed regular value of y(z). Let 3()\, z) = G(\, Z)E’)()\, z),

AQRSveTe) 1
V2(2—y(2)) V20 —y(2))

G\ z) = (38)

2(A —y(2)) 0

Then g()\;z) satisfies () if and only if 3()\; z) satisfies the following
equation



where

Y (2) 3
X—y(z) A0y

— -
We denote v the first component of W. The equation for W is equivalent
to the following second order scalar equation for v

QN 2) = 4N3—2X 2+ 22y(2) — 4> (2) +y%(2) + (39)

¢)\>\(>"Z) = Q()‘a Z)¢(A’Z) (40)

We summarize some property of the perturbed potential, which can be
easily verified using the expansion ([7)).

Lemma 16. Let ¢? = y(lz) =(2—a)>+0((z — a)%) then

(i) Q(X;2) has a double pole at A = 6% It is an apparent fuchsian singu-
larity for equation {{0): the local monodromy around it is —1.

(ii) Q(A;z) has two simple zeros at X\ = 6% + O(e?)

(iii) Q(X;z) = 4X3 —2(a+e)A—28b+O(e) — fii__lg + 4(/\7‘2_2)2 , where O(¢)
does not depend on \.

Equation (40) is a perturbation of the cubic Schrédinger equation (8])
and the asymptotic behaviours of solutions to the two equations are very
similar. Indeed the local picture around the point at co depends only on the
terms 4\3 and —22\3.

More precisely, the equivalent of Corollary [lin Appendix [Alis valid also
for the perturbed Schrédinger equation.

Definition 12. For any z, define a cut from A\ = — to oo such that it

(2—a)?
eventually does not belong to the the angular sector ‘arg)\ — %‘ < 3%

Fiz X* in the cut plane. Sk(\;z) = f;‘* VQ(p; z)dp is well-defined for
'arg)\ — %Tﬂ < %’T and X\ >> 0. Here the branch of \/Q is chosen such that
ReSip(\) — +o0 as | — oo, arg A — @‘ < £ —e. We define ji(\;2) as
in equation ([I8) and a(X;z) as in equation [31), but replacing V(\) with
QA 2).

For any X in the cut plane, let T'(\) be the set of piecewise differentiable
curves 7y : [0,1] to the cut plane, v(0) = X, v(1) = oo, satisfying properties
(2)(3) and (4) of Definition I

For any v € T'(\), let H be the Banach space of continuous functions
on 7y that have a finite limit as t — 1. Formulae (33) and (33) define two
bounded functionals on H. We call such functionals K1(X;z) and Ka(X; z).

Following the proof of Theorem B the reader can prove the following
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Lemma 17. Let X\ belong to the cut plane, X\ not a zero of Q(-;z). Fized
any v € I'(N), we define the Neumann series as in equations (33) and (30),
and we continue ji along .

Then the Neumann series converges and (X)) = (Ur(A) + U2(N)) jr(N)
solves equation ([£0). Moreover, for any e >0

lim (U(l)()\) + U<2>(A)> —1

N—o0, |arg)\f %| < 3% —€

Definition 13. Let ka()\, z) be the unique solution of equation [{0}) such
that

A 2rk
L:)lél,as ]A]—)oo,arg)\:i. (41)
NS iatanz 5
Here the branch of A1 s fized as A\ — oo, arg\ = %, and there it

coincides with the branch chosen in equation [@). We define ¥y (), a) to be
the unique solution of equation (8) with asymptotic {{1]), where z = a.

We denote 1y (X; z) the unordered pair {1/;;6()\, 2), = (A, z)}

REMARK. We notice that if the cuts are continuous in z, then 1/;;6()\,2) =
c(2)Yr(N), where P (N) is the solution constructed in LemmalIl and c(z) is
a bounded holomorphic function.

Theorem 10. lim, ., Y% (A, 2) = Y(A, a), VA € C.

Proof. Let A be any point in the complex plane which is not a zero of
V(A;a,b). For any sequence &, converging to zero, we choose two fixed
rays r1 and ro of different argument ¢; and s, |<pz~ — %TW‘ < . We denote
Dp . a disk of radius R with center A = e% and we split the sequence g, into
two subsequences ¢!, such that 7; N D Rei, = () for any n big enough.

For i = 1,2, we choose the cuts defined in Definition in such a way
that there exists a differentiable curve ~; : [0,1] — C, 7;(0) = A, 7i(1) = o0
with the following properties: (i)7; avoids the zeroes of Q(\, €!,) and a fixed,
arbitrarily small, neighborhood of the zeroes of V(A;a,b), (ii)y; does not
intersect any cut, and (iv) ; eventually lies on ;.

The proof of the thesis relies on the following estimates:

SUP\eC-Dp . ‘)\—5‘ Q(\;a+¢) —V(\a,b)| = 0?73, (42)
SUP\xeC—-Dg . ‘)\*5‘ |Q>\()‘; a + 6) — V)\()\; a, b)| — 0(62573) ’
SUP\eC—Dp.. ‘A_S‘ 1Qaa(Nsa+¢) — Vaa(Xsa,b)| = O(e®73) .

Due the above estimates it is easily seen that v; € T'(\), Ve!,. Due to
Lemma [I7 and Corollary [l to prove the thesis it is sufficient to show that
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the functionals Kj(\;a+¢%) and Ko(\;a+¢!) converge in norm to Ki(A;a)
and Ks(A;a). Here K;(\;a), i = 1,2 are defined as in Corollary Il We notice
that the norm of the functionals are just the L!(v;) norm of their integral
kernels.

We first consider the functionals K3(A;a + ). Due to the above esti-
mates

)\%a(u,a,ﬁ) — )\%a(,u), uniformly on 7;([0,1]) as n — oo .

Hence the sequence a(u,e’) converges in norm L'(;) to a(u) and the
sequence Ks(\;e!) converges in operator norm to Ko(\;a).

We consider now the sequence K1 (\;a + &,).

To prove the convergence of the above sequence of operators, it is suffi-
cient to prove that

eSratel)=Skmaten) _y oSkN0)=S(0) yniformly on 7i([0,1]) as n — oo .

We first note that

eSkN0) =Sk (1:0)  _ o Sk(Naten)—Sk(mater) — oSk(X0)—Sk(1:0) <1 _ 69(M§6)) ,

ko Qv,e) —V(via,b)
9(p€) =
ai VQ(Ws€) + v/ P(vsa,b)
Using estimate ([@2)), it is easy to show that g(u;e) = f(€)O(u°), where

f(e) = 0ase - 0 and 0 < 6 << 1. Therefore the difference of the expo-
nential functions converges uniformly to 0.

O

We can prove Theorem [ (ii) and (iii).
Indeed from (29), it is easily seen that (choosing one of the two branches
of the gauge transform)

Vi) = GO ) Be(hiz) = % (ZZE“) ’

if Jarg A — %‘ < 3T and N >> 0.
Moreover from (29), it follows that

lim (2 — a)®P (A, 2) = ivV29) (A a) .

z—a

Hence Theorem B (ii) and (iii) follow from Theorem [0l
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