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Abstract. In the first part of this paper, we give a new analytical proof of a theorem
of C. Sabbah on integrable deformations of meromorphic connections on P1 with coalescing
irregular singularities of Poincaré rank 1, and generalizing a previous result of B.Malgrange.
In the second part of this paper, as an application, we prove that any semisimple formal
Frobenius manifold (over C), with unit and Euler field, is the completion of an analytic
pointed germ of a Dubrovin-Frobenius manifold. In other words, any formal power series,
which provides a quasi-homogenous solution of WDVV equations and defines a semisimple
Frobenius algebra at the origin, is actually convergent under no further tameness assump-
tions.
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1. Introduction

In this paper, we address the problem of convergence of formal solutions, in the ring of
formal power series, of the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) associativity equa-
tions. This is the overdetermined system of non-linear partial differential equations, in a
single scalar function F (t1, . . . , tn), given by∑

µ,ν

∂3F

∂tα∂tβ∂tµ
ηµν

∂3F

∂tν∂tγ∂tδ
=
∑
µ,ν

∂3F

∂tδ∂tβ∂tµ
ηµν

∂3F

∂tν∂tγ∂tα
, α, β, γ, δ = 1, . . . , n,

∂3F

∂t1∂tα∂tβ
= ηαβ = const., η = (ηαβ)α,β, η−1 = (ηαβ)α,β α, β = 1, . . . , n.

Introduced in the physics of topological field theories [Wit90, DVV91], the geometry of
solutions F of WDVV equations, satisfying a further quasi-homogeneity condition (w.r.t.
the variables t, and up to quadratic terms), was firstly axiomatized by B.Dubrovin, with
the notion of Frobenius manifolds [Dub92, Dub96, Dub98, Dub99].

It was soon realized that these quasi-homogeneous solutions of WDVV equations arise in
areas of mathematics which are very apart from each other (singularity theory, algebraic
and symplectic geometry, integrable systems, mirror symmetry, to name just a few), often
leading to new and non-trivial relations between them, see [Dub96, Man99, Her02, Sab07].

Typically, the corresponding solutions F (t) of WDVV equations are given as generating
functions of numerical sequences of geometrical interest (e.g. Gromov-Witten invariants).
Consequently, they can be handled just as formal power series in k[[t]], where k is a com-
mutative Q-algebra, defining a formal Frobenius manifold structure on the formal spectrum
Spf k[[t]], see [Man99, III.§1]. This defines a formal family of Frobenius algebras with struc-
ture constants given by cγαβ(t) := ηλγ∂3

αβλF (t).
The relevance of these formal structures is further highlighted by their deep relations with

the cohomology of the Deligne-Mumford moduli stacks Mg,n of n-pointed stable curves of
genus g, [KM94, Man99]. Remarkably enough, any formal Frobenius manifold is equivalent to
a tree level1 Cohomological Field Theory (CohFT), i.e. the datum of a family of Sn-covariant

1A richer notion of complete CohFT on a given (H, η) is also available, in which the datum is enriched
to a family (Ωg,n)g,n of k-linear tensors Ωg,n ∈ (H∗)⊗n ⊗k H

•(Mg,n; k), satisfying further compatibility
properties, for any pair (g, n) of non-negative integers in the stable range 2g − 2 + n > 0. The prototypical
example of a complete CohFT is provided by the Gromov-Witten theory of a smooth projective variety X.
The corresponding formal Frobenius manifold attached to its genus zero sector is called quantum cohomology
of X. See [KM94, Man99] and Section 6 of this paper.
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tensors Ω0,n ∈ (H∗)⊗n ⊗k H•(M0,n; k), on a given free metric k-module (H, η) of finite rank,
satisfying some compatibility conditions w.r.t. the natural forgetful morphisms M0,n →
M0,n−1, and gluing morphisms M0,n1 × M0,nn → M0,n1+n2 . The corresponding WDVV-
potential F (t) is a generating power series for integrals of the form

∫
M0,n

Ω0,n(
⊗n

j=1 ∆αj) for
a k-basis (∆j)j of H. See [KM94, Man99, Pan18] for more details.

One of the main point of the current paper is to find sufficient conditions ensuring the
convergence of quasi-homogeneous solutions F ∈ k[[t]] of WDVV equations, in the case k = C.
The convergence condition allows to jump from the formal category to the complex analytic
category: formal Frobenius manifolds can be promoted to analytic Frobenius manifolds, the
class of geometrical objects originally conceived by Dubrovin, and for this reason also called
Dubrovin-Frobenius manifolds.

The new main result of this paper, Theorem 5.1, claims that any formal semisimple
Frobenius manifold over k = C is actually the completion of a pointed germ of an ana-
lytic Dubrovin-Frobenius manifold. Alternatively stated, given a quasi-homogeneous formal
solution F ∈ C[[t]] of WDVV equations whose corresponding Frobenius C-algebra at the
origin t = 0 is semisimple, its domain of convergence is non-empty, and it thus carries
a Dubrovin-Frobenius manifold structure. This statement is a refinement of a seemingly
known result, referred to as a “general fact” in [Man99, III.§7.1, pag.135], and stated under
stronger unnecessary tameness assumptions2 (see below).

At the core of our proof there is the local identification of semisimple points t of a Dubrovin-
Frobenius manifold with the parameters of isomonodromic deformations of ordinary differ-
ential equations with rational coefficients, of the form

d

dz
Y (z, t) =

(
U(t) +

1

z
µ(t)

)
Y (z, t), (1.1)

where U , µ are (matrices representing) suitably defined tensors on the Dubrovin-Frobenius
manifold. This identification – one of the main point of the theory of Dubrovin– was originally
established in [Dub96, Dub98, Dub99] at tame semisimple points, i.e. points t at which
the leading term U(t) of the coefficient of (1.1) has simple spectrum. Subsequently, in
[CG17, CG18, CDG19, CDG20] the isomonodromic approach to the Frobenius geometry
was extended to all semisimple points, including points t at which some of the eigenvalues
of U(t) coalesce.

The proof of Theorem 5.1 consists of two parts. Firstly, given a formal Frobenius manifold
F ∈ C[[t]], it is constructed an analytic family (1.1) of ODEs specializing to the given one3

for t = 0, and defining a Dubrovin-Frobenius manifold. Secondly, it is proved that the
underlying analytic WDVV-potential F an ∈ C{t} coincides with the original formal one, i.e.
F = F an. Having said, it is thus clear that the first step of the proof of Theorem 5.1 relies on
the existence of solutions of families of Riemann-Hilbert-Birkhoff boundary value problems.

2I do not know any reference in literature where a complete proof is given. I thank Yu.I.Manin for a
friendly e-mail correspondence on this point. The current paper both recovers a proof of this known fact,
and it also removes the tameness assumption.

3Given a formal Frobenius manifold, the system (1.1) has coefficients in Mn(C[[t]]). Hence, for t = 0, we
have a well defined differential system with coefficients in Mn(C).
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In the case t = 0 is a tame semisimple point of the given formal Frobenius manifold, a
well-known result of B.Malgrange [Mal83a, Mal83b, Mal86], on the existence of universal
integrable deformations of meromorphic connections on P1 with irregular singularities, can
be applied. This leads to the already known result mentioned4 in [Man99, III.§7, pag.135].

In [Sab18], C. Sabbah obtained an extension of the theorem of Malgrange, in order to
include the case of meromorphic connections on P1 with coalescing irregular singularities. In
the geometrical case attached to Frobenius manifolds, the assumptions of [Sab18, Th. 4.9]
are satisfied. Sabbah Theorem can thus be applied in the first step of the proof of Theorem
5.1, in the case t = 0 is a coalescing semisimple point for the given formal Frobenius manifold.
Remarkably enough, the assumptions of [Sab18, Th. 4.9] exactly coincide with the sharp
conditions, found in [CG17, CDG19], under which the resulting analytic family (1.1) of ODEs
has a well-behaved deformation theory of both formal and genuine solutions.

The original proof of [Sab18, Th. 4.9] is actually only one of the outcomes of a more
general study, invoking a mix of techniques, including properties of good and very-good
formal decompositions of flat meromorphic bundles [Sab93, Sab00], and recent results on
meromorphic connections in dimension > 2 due to K.Kedlaya (in the complex analytic
case) and T.Mochizuki (in the algebraic case), see [Ked10, Ked11, Moc09, Moc11a, Moc11b,
Moc14]. In Section 3, we give an alternative proof of [Sab18, Th. 4.9], with a more analytical
perspective, closer to the one of [CG17, CDG19]. Our proof is uniquely based on properties of
Fredholm-operator-valued holomorphic functions. In particular, a result due to B.Gramsch
[Gra70] – an analytical Fredholm alternative w.r.t. several parameters– will be invoked to
prove that the solvability of a family of Riemann-Hilbert-Birkhoff boundary value problems
is an open property, in the same spirit of [Zho89]. This is a well-known strategy for proving
the Painlevé property of solutions of the isomonodromy deformations equations, see e.g.
[FZ92, FIKN06].

Many of the results of this paper can be extended to the case of flat F -manifolds [HM99,
Man05]. These are slightly weaker structures than the Frobenius one, but whose geome-
try encompasses even more areas of modern mathematics, such as special solutions of the
oriented associativity equations [LM04], quantum K-theory [Lee04], all Painlevé transcen-
dents [AL15], open WDVV equations [BB19], F -cohomological field theories [ABLR20], and
even information geometry [CM20]. We plan to give more analytical details in a future
publication.
Structure of the paper. In Section 2 we review necessary background material on the
Riemann-Hilbert-Birkhoff problems with a geometrical perspective. The main results of
B.Malgrange on the existence of universal integrable deformation of meromorphic connec-
tion, as well as their generalization to degenerate cases due to C. Sabbah, are presented and
summarized.

Section 3 is devoted to an analytical proof of Malgrange-Sabbah Theorem. After intro-
ducing the notion of admissible data, we formulate a Riemann-Hilbert-Birkhoff boundary
value problem P [u, τ,M], depending on parameters u ∈ Cn. We factorize its solutions via
two auxiliary RHB problems, and we analyze its solvability with respect to u.

4We warn the reader that in the exposition of [Man99], the isomonodromic system (1.1) is replaced by a
Fuchsian one obtained by applying a (formal) Laplace transform, see [Man99, Ch. II.§1-3].
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In Section 4 basic notions in the theory of both formal and analytic Frobenius manifolds
are given. We explain how to pass from the analytic to the formal category, and vice-versa
under convergence assumption of the WDVV potential.

In Section 5, we review necessary results on the extended deformed connection on both
formal and analytic Frobenius manifolds, properties of solutions of the Darboux-Egoroff
system of partial differential equations, and the reconstruction procedure of the Frobenius
potential. Consequently, we prove the main new result, Theorem 5.1.

In the last Section 6, reformulations and applications of Theorem 5.1 to cohomological
field theories and quantum cohomology are given.
Acknowledgements. The author is thankful to P.Belmans, M.Bertola, G.Bogo, G.Broc-
chi, G.M. Dall’Ara, I. Gayur, T.Grava, D.Guzzetti, C.Hertling, A.R. Its, P. Lorenzoni, Yu.I.
Manin, D.Masoero, M.Mazzocco, A.T.Ricolfi, P.Rossi, V.Roubtsov, A.Varchenko, C. Sab-
bah, M. Smirnov, D.Yang for several valuable discussions. The author is thankful to the
Hausdorff Research Institute for Mathematics (HIM) in Bonn, Germany, where this project
was completed, for providing excellent working conditions during the JTP “New Trends
in Representation Theory”. This research was supported by the EPSRC Research Grant
EP/P021913/2, by HIM (Bonn, Germany), and by the FCT Project PTDC/MAT-PUR/
30234/2017 “Irregular connections on algebraic curves and Quantum Field Theory”.

2. Degenerations of Riemann-Hilbert-Birkhoff inverse problems

2.1. Riemann-Hilbert-Birkhoff inverse problems. Let D be a disc centered at z =∞
in P1. Given a (trivial) vector bundle on D equipped with a meromorphic connection with
a pole at z =∞, the Riemann-Hilbert-Birkhoff (RHB) problem is the following:

Problem 2.1. Does it exist a trivial vector bundle Eo on P1 equipped with a meromorphic
connection ∇o, restricting to the given data on D, and with a further logarithmic pole only
at z = 0?

Assume that the pole at z =∞ is of order 2: in a basis of sections on D, the meromorphic
connection has connection matrix Ω = −A(z)dz, where A(z) is a n× n matrix of the form

A(z) =
∞∑
k=0

Akz
−k, A0 6= 0.

Denote by O{1
z
} the ring of convergent power series in 1

z
. The RHB problem 2.1 is then

equivalent to find a so-called Birkhoff normal form: does it exist a matrix G ∈ GLn(O{1
z
})

such that B(z) = G−1AG− zG−1 d
dz
G is of the form

B(z) = B0 +
B1

z
, B0, B1 ∈Mn(C)?

2.2. Universal integrable deformations of Birkhoff normal forms: Malgrange The-
orems. In this paper we consider families of RHB problems parametrized by a parameter
space X, see [Mal83a, Mal83b, Mal86][Sab07, Ch.VI].

Definition 2.2. Let (Eo,∇o) be a trivial vector bundle on a disc D equipped with a mero-
morphic connection with a pole of order 2 at z =∞. An integrable deformation of (Eo,∇o)
parametrized by X is the datum (E,∇) of
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• a trivial vector bundle E on D ×X,
• a flat connection ∇ on E with poles of order 2 along {∞} ×X,

such that (E,∇) restricts to (Eo,∇o) at a point xo ∈ X. The integrable deformation is
called versal if any other deformation with base space X ′ is induced by the previous one via
pull-back by a holomorphic map ϕ : (X ′, x′o) → (X, xo). It is universal if the germ at x′o of
the base-change ϕ is uniquely determined.

Let (Eo,∇o) be a solution of a RHB problem 2.1, i.e. a trivial vector bundle on P1 with
meromorphic connection with matrix (in a suitable basis of sections) of the form

Ω = −
(

Λo +
Bo

z

)
dz. (2.1)

Recall that a matrix A ∈Mn(C) is said to be regular if any (and hence all) of the following
equivalent conditions is satisfied:

(1) the characteristic polynomial of A equals its minimal polynomial,
(2) the commutator of A in Mn(C) is of minimal dimension (i.e. it equals n),
(3) the commutator of A in Mn(C) is C[M ].

Theorem 2.3 ([Mal83a, Mal86]). Assume that the matrix Λo is regular. The connection ∇o

matrix with connection (2.1) has a germ of universal deformation.

This results can be refined to a global statement, under the further semisimplicity assump-
tion on Λo. Let us then assume that Λo = diag(u1

o, . . . , u
n
o ) with uio 6= ujo for i 6= j.

Let ∆ be the big diagonal in Cn defined by the equations

∆ :=
⋃
i<j

{u ∈ Cn : ui = uj},

letXn be the complement Cn\∆, with base point uo := (u1
o, . . . , u

n
o ). Denote by π : (X̃n, ũo)→

(Xn,uo) the universal cover of Xn, equipped with fixed base points ũo and uo, respectively.
The space Xn is identified with the space of semisimple regular n× n matrices.

Theorem 2.4 ([JMU81, Mal83b]). There exists on P1 × X̃n a vector bundle (E,∇) such
that

(1) the meromorphic connection ∇ is flat with a pole of order 2 along {∞} × X̃n and a
logarithmic pole along {0} × X̃n,

(2) it restricts to (Eo,∇o) at ũo,
(3) for any ũ ∈ X̃n, the eigenvalues of the residue of ∇ at the point (∞, ũ) equal (up to

permutation) the n-tuple π(ũ).

Let Θ ⊆ X̃n be the hypersurface of points ũ ∈ X̃n such that E|P1×{ũ} is not trivial. The coeffi-
cients of ∇ have poles along Θ. Moreover, for any ũ ∈ X̃n \Θ, the bundle with meromorphic
connection (E,∇) induces a universal deformation of its restriction (E,∇)|P1×{ũ}.

It is possible to explicitly describe the connection matrix of the universal deformation of
Theorem 2.4.
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For u ∈ Cn, denote Λ(u) := diag(u1, . . . , un), so that Λ(uo) = Λo. Given a matrix A
denote by A′ its diagonal part, and by A′′ its off-diagonal part.

For uo /∈ ∆, there exists an off-diagonal matrix F ′′(u), holomorphic near uo, such that
the flat connection ∇ of Theorem 2.4 has connection matrix

− d (zΛ(u))− ([Λ(u), F ′′(u)] +B′o)
dz

z
− [dΛ(u), F ′′(u)], (2.2)

e.g. see [Sab07, VI.§3.f, eq. (3.12)]. Notice that the dz-component of (2.2) restricts to (2.1)
at u = uo. Moreover, there exists a z−1-formal base change which transforms (2.2) into

− d (zΛ(u))−B′o
dz

z
. (2.3)

2.3. Integrable deformations of degenerate Birkhoff normal forms: Sabbah The-
orem. In the notations of the previous section, assume uo ∈ ∆. Define the partition
{1, . . . , n} = ∪̇r∈RIr such that for any r ∈ R we have

{i, j} ⊆ Ir if and only if uio = ujo.

In [Sab18], C. Sabbah addressed the following problem.

Question: Is it possible to find an integrable deformation of the form (2.2) of the Birkhoff
normal form (2.1) with z−1-formal normal form (2.3)?

Remarkably, in [Sab18, Section 4] it is shown that the answer is positive, under (sharp)
sufficient conditions on the coefficient Bo of the normal form (2.1).

Theorem 2.5 ([Sab18, Th. 4.9]). Let uo ∈ ∆, and V a neighborhood of uo in Cn. Assume
that

(1) B′′o ∈ Im ad(Λ(uo)),
(2) B′o is partially non-resonant, i.e.

∀ r ∈ R, ∀ i, j ∈ Ir, (B′o)ii − (B′o)jj /∈ Z \ {0}.
If V is sufficiently small, there exists a holomorphic hypersurface Θ in V \ {uo} and a
holomorphic off-diagonal matrix F ′′(u) on V \Θ, such that the meromorphic connection, on
the trivial vector bundle on P1× (V \Θ), with matrix (2.2) is integrable, restricts to (2.1) at
uo, and it is formally equivalent at z =∞ to the matrix connection (2.3).

3. An analytical proof of Sabbah Theorem

In this section we provide an analytical proof of Sabbah Theorem 2.5, based on properties
of holomorphic Fredholm-operator-valued functions. General references for this section are
[AB94, Bot20, CG81, CG18, CDG19, DZ02a, DZ02b, FIKN06, Its03, Its11, MP80, TO16,
Vek67, Zho89].

3.1. Admissible data and Riemann-Hilbert-Birkhoff boundary value problem. De-
note by Arg(z) ∈] − π, π] the principal branch of the argument of the complex number z.
Let u ∈ Cn, and set

S (u) :=
{

Arg
(
−
√
−1(ui − uj

)
+ 2πk : k ∈ Z, i, j are s.t. ui 6= uj

}
.

Any element τ ∈ R \S (u) will be said to be admissible at u.
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Γ+∞

Γ1

Γ2

Π0 ΠR

ΠL

−
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+
+
+++
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T2

Figure 1. Contour Γ, paths Γ±∞,Γ1,Γ2, domains Π0,ΠL,ΠR, and ± sides of Γ.

Definition 3.1. Let u ∈ Cn and τ admissible at u. A (u, τ)-admissible datum is a 6-tuple
M := (B,D,L, S1, S2, C) of matrices in Mn(C) such that:

(1) the matrix B is diagonal, i.e. B = B′,
(2) D is a diagonal matrix of integers,
(3) we have

trB = trD + trL. (3.1)
(4) the matrices S1, S2, C are invertible, with detS1 = detS2 = 1,
(5) (S1)ii = (S2)ii = 1,
(6) if i 6= j, then (S−1

1 )ij = 0 if Re
(
e
√
−1(τ−π)(ui − uj)

)
> 0,

(7) if i 6= j, then (S2)ij = 0 if Re
(
e
√
−1τ (ui − uj)

)
> 0,

(8) we have
S−1

1 e2π
√
−1BS−1

2 = C−1e2π
√
−1LC. (3.2)

If u ∈ ∆, define the partition {1, . . . , n} = ∪̇r∈RIr such that for any r ∈ R we have
{i, j} ⊆ Ir if and only if ui = uj. We then require the further vanishing condition

(9) (S−1
1 )ij = (S2)ij = 0 if i, j ∈ Ir for some r ∈ R.

Lemma 3.2. Let uo ∈ Cn and τ admissible at uo. If M is (uo, τ)-admissible, then there
exists a sufficiently small neighborhood V of uo such

(1) τ is admissible at u, for all u ∈ V,
(2) M is (u, τ)-admissible for all u ∈ V. �

Let u ∈ Cn and τ admissible at u. Consider the complex z-plane with a branch cut from
0 to ∞:

τ − π < arg z < τ + π.

Let r > 0 and denote by Γ = Γ(τ, r) the union of the following oriented paths, see Figure 1:
(1) the half-line Γ−∞ defined by arg z = τ ± π, |z| > r, originating from ∞;
(2) the half-line Γ+∞ defined by arg z = τ , |z| > r, ending to ∞;
(3) the half-circle Γ1 defined by τ − π < arg z < τ , |z| = r, counterclockwise oriented;
(4) the half-circle Γ2 defined by τ < arg z < τ + π, |z| = r, counterclockwise oriented.

The orientations uniquely define the + and - side for each path Γ±∞,Γ1,Γ2. For z ∈ Γ−∞
we use the symbol z± if arg z = τ ± π. Set Π0,ΠL,ΠR to be the components of complement
C \ Γ, and T1, T2 to be the two nodes of Γ, as in Figure 1.
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Let M := (B,D,L, S1, S2, C) be a (u, τ)-admissible datum. Define two functions

Q(−;u), H(−;u) : Γ→ GL(n,C),

by
Q(z;u) := Λ(u)z +B log z, Λ(u) := diag(u1, . . . , un),

H(z;u):=


eQ(z−;u)S−1

1 e−Q(z−;u), along Γ−∞,

eQ(z;u)S2e
−Q(z;u), along Γ+∞,

eQ(z;u)C−1z−Lz−D, along Γ1,

eQ(z;u)S−1
1 C−1z−Lz−D, along Γ2.

We denote by H±∞, H1, H2 the restrictions of H at Γ±∞,Γ1,Γ2.

Problem 3.3 (Problem P [u, τ,M]). Find an analytic function G : C\Γ→Mn(C) such that
(1) G|Πν extends continuously to Πν for ν = 0, L,R;
(2) the non-tangential limits G± : Γ → Mn(C) of G from the - and + sides of Γ exist,

and are continuous;
(3) they are related by

G+(z) = G−(z)H(z;u);

(4) G(z) tends to the identity matrix I as z →∞.

Proposition 3.4. The following smooth conditions at points T1 and T2 hold true:

H−∞(z−;u)H2(z;u)H1(z−;u)−1 = I, at T1, (3.3)

H1(z;u)H2(z;u)−1H+∞(z;u)−1 = I, at T2. (3.4)

Proof. A simple computation shows that (3.3) follows from (3.2). Equation (3.4) is easily
checked. �

3.2. Factorization of solutions. We factorize solutions of the problem P [u, τ,M] via two
auxiliary RHB boundary value problems, P1[u, τ,M] and P2[u, τ,M]. Let us firstly describe
the contours for both problems.

Let P1 ∈ Γ−∞ preceding T1, and P2 ∈ Γ+∞ preceding T2. Set
• `1 ⊆ Γ−∞ to be the half-line contained from ∞ to P1,
• `2 ⊆ Γ+∞ to be the half-line contained from P2 to ∞.

Define
• Γ′ to be the union `1 ∪ `2,
• Γ′′ to be a circle of radius R > max{|P1|, |P2|}.

See Figure 2.

Problem 3.5 (Problem P1[u, τ,M]). Find an analytic function Ψ: C \ Γ′ → Mn(C) such
that

(1) the non-tangential limits Ψ± : Γ′ →Mn(C) of Ψ from the - and + sides of Γ′ exist,
(2) they are related by

Ψ+(z) = Ψ−(z)H(z;u), (3.5)
(3) Ψ(z) tends to the identity matrix I as z →∞.
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P2

P1

Γ′′
Γ′

P2

P1

Figure 2. Contours Γ′ and Γ′′.

Lemma 3.6. We have H(ζ;u)−I → 0 exponentially fast for ζ →∞ along Γ′. In particular,
H(−;u)− I ∈ L2(Γ′; |dζ|).

Proof. The (i, j)-entry of H(ζ;u)− I equals

cij exp{(ui − uj)ζ + (Bii −Bjj) log ζ} − δij, (3.6)

where

cij=

{
(S−1

1 )ij, along `1,

(S2)ij, along `2.

By conditions (5), (6), (7) (and (9) if u ∈ ∆) of Definition 3.1, we deduce that (3.6) goes to
zero exponentially fast for ζ →∞ along `1 and `2. �

Theorem 3.7. If min{|P1|, |P2|} is sufficiently big, then there exists a unique solution Ψ of
the problem P1[u, τ,M], holomorphically depending on u. Moreover, det Ψ ≡ 1.

Proof. If Ψ is a solution of P1[u, τ,M], then we have

Ψ(z;u) = I +

∫
Γ′

Ψ−(ζ) (H(ζ;u)− I)

ζ − z
dζ

2π
√
−1

,

by the jump condition (3.5) and Cauchy Theorem, see e.g. [FIKN06, Ch. 3][Its11, §5.1.3]
[TO16, Ch. 2]. Set δΨ := Ψ− I and δH := H − I. The previous equation can be written as

δΨ(z) =

∫
Γ′

δΨ−(ζ)δH(ζ;u)

ζ − z
dζ

2π
√
−1

+

∫
Γ′

δH(ζ;u)

ζ − z
dζ

2π
√
−1

. (3.7)

Given a function f defined on Γ′, introduce the functions C±Γ′ [f ] on Γ′ defined by the Cauchy
integrals

C±Γ′ [f ](p) := lim
z→p±

∫
Γ′

f(ζ)

ζ − z
dζ

2π
√
−1

, p ∈ Γ′,

whenever the integral is finite. General results ensure that if f ∈ Lp(Γ′; |dζ|), with 1 6 p <
∞, then C±Γ′ [f ] exists for p ∈ Γ′ a.e.. Moreover, the Cauchy operators C±Γ′ are bounded in
Lp(Γ′; |dζ|), with 1 < p <∞, i.e. there exists a constant kp > 0 such that

‖C±Γ′ [f ]‖Lp(Γ′) 6 kp‖f‖Lp(Γ′), if f ∈ Lp(Γ′; |dζ|).
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See [MP80, Zho89, DZ02a, DZ02b, TO16] for details and proofs. Taking the limit z → z−
in (3.7), we obtain the following integral equation for δΨ−:

C[δH; Γ′]δΨ− = C−Γ′ [δH], (3.8)

where
C[δH; Γ′]f := f − C−Γ′ [f · δH].

Notice that C−Γ′ [δH] ∈ L2(Γ′; |dζ|) by Lemma 3.6. Moreover, if f ∈ L2(Γ′; |dζ|), we have

‖C−Γ′ [f · δH]‖L2(Γ′) 6 k2‖f · δH‖L2(Γ′) 6 k2 · sup
ζ∈Γ′
‖δH(ζ;u)‖ · ‖f‖L2(Γ′).

By Lemma 3.6, we can assume that min{|P1|, |P2|} is so big that

sup
ζ∈Γ′
‖δH(ζ;u)‖ < 1

1 + k2

,

then the operator C[δH; Γ′] : L2(Γ′; |dζ|)→ L2(Γ′; |dζ|) is invertible with inverse

C[δH; Γ′]−1 =
∞∑
m=0

C−Γ′ [(−) · δH]m.

Equation (3.8) can be uniquely solved in δΨ−, and the formula (3.7) gives the unique solution
Ψ of the RHB boundary value problem. Notice that the Cauchy operator C−Γ′ [(−) · δH]
depends holomorphically on u, so that Ψ(z;u) is holomorphic in u. Finally, notice that the
jump condition (3.5) implies

det Ψ+ = det Ψ− detH = det Ψ−,

since detH(ζ;u) ≡ 1 along Γ′. Hence, det Ψ is an entire function, and from the asymptotic
condition Ψ→ I for z →∞, we deduce det Ψ ≡ 1 by Liouville Theorem. �

Define the function S(−;u) : C \ Γ→ GL(n,C) by

S(z;u):=


I, for z ∈ Π0,

H1(z;u)−1, for z ∈ Π1,

H1(z;u)−1H+∞(z;u), for z ∈ Π2.

Lemma 3.8. The function S(−;u) is naive solution of P [u, τ,M]: it satisfies conditions
(1),(2),(3), but not (4).

Proof. This is easily checked, by invoking the cyclic relations (3.3)-(3.4). �

Consider the function H̃(−;u) : C \ Γ→ GL(n,C) defined by

H̃(z;u) := Ψ(z,u)S(z;u)−1,

where Ψ is the unique piecewise analytic solution of P1[u, τ,M], as in Theorem 3.7.

Lemma 3.9.
(1) The function H̃(−;u) is continuous along Γ′′.
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(2) The function det H̃(−;u) has zero index across Γ′′, i.e.

indΓ′′ det H̃(−;u) :=
1

2π
√
−1

∮
Γ′′
d log det H̃(ζ;u) = 0.

Proof. Point (1) is obvious. For point (2) notice that, for ζ ∈ Γ′′, we have

log det H̃(ζ;u) = log detS(ζ;u)−1

= − trQ(ζ;u) + log detC + (trL+ trD) log ζ

= −ζ
n∑
i=1

ui + log detC + (− trB + trL+ trD)︸ ︷︷ ︸
0 by (3.1)

log ζ.

This completes the proof. �

We can now introduce a second auxiliary RHB boundary value problem, with continuous
coefficients on the simple closed contour Γ′′.

Problem 3.10 (Problem P2[u, τ,M]). Find an analytic function Υ: C \ Γ′′ →Mn(C) such
that

(1) the non-tangential limits Υ± : Γ′′ →Mn(C) of Ψ from the - and + sides of Γ′′ exist,
(2) they are related by

Υ+(z) = Υ−(z)H̃(z;u), (3.9)
(3) Υ(z) tends to the identity matrix I as z →∞.

Theorem 3.11. The solvability of P [u, τ,M] is equivalent to the solvability of P2[u, τ,M].

Proof. If G is the solution of P [u, τ,M], then

Υ(z;u):=

{
G(z;u)Ψ(z;u)−1, for z outside Γ′′,

G(z;u)S(z;u)−1, for z inside Γ′′,

is the solution of P2[u, τ,M]. Vice-versa, if Υ is the solution of P2[u, τ,M], then the solution
G of P [u, τ,M] is obtained by inverting the equations above. �

3.3. Solvability as an open property. If Υ is a solution of P2[u, τ,M], then we have

Υ(z) = I +

∫
Γ′′

Υ−(ζ)(H̃(ζ;u)− I)

ζ − z
dζ

2π
√
−1

. (3.10)

In the limit z 7→ z−, we obtain the integral equation

Υ− = I + C−Γ′′
[
Υ−δH̃

]
, δH̃ := H̃ − I, (3.11)

where C±Γ′′ denotes the Cauchy integrals w.r.t. the contour Γ′′. Conversely, if Υ− is a so-
lution of (3.11), then (3.10) gives the solution of P2[u, τ,M], see [FIKN06, Ch. 3][Its11,
§5.1.3][TO16, Ch. 2].

Theorem 3.12. The operator

T (u) : L2(Γ′′; |dζ|)→ L2(Γ′′; |dζ|), f 7→ f − C−Γ′′ [f · δH̃(u)]

is a Fredholm operator with index 0.
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Proof. Assume we are given a factorization H̃(ζ;u) = (I −W−(ζ;u))−1(I +W+(ζ;u)) with
(I ±W±(ζ;u))±1 − I ∈ L∞(Γ′′) ∩ L2(Γ′′). Define the Cauchy type operator

CW : L2(Γ′′)→ L2(Γ′′), f 7→ C+
Γ′′ [fW

−] + C−Γ′′ [fW
+].

Standard results imply that the operator f 7→ f − CW [f ] is Fredholm, and its index is given
by

ind(Id− CW ) = n indΓ′′ det H̃ = 0,

by Lemma 3.9 point (2), see [Zho89, TO16]. In our case, we can takeW− = 0 andW+ = δH̃
by Lemma 3.9 point (1). This completes the proof. �

Theorem 3.13. Let uo ∈ Cn. Assume that the pair (τ,M) is admissible at each point of
a sufficiently small open neighborhood V of uo. If P [uo, τ,M] is solvable, there exists an
analytic set Θ ⊆ V \ {uo} such that P [u, τ,M] is solvable for all u ∈ V \ Θ. Moreover, the
solution G(z;u) is holomorphic w.r.t. u ∈ V \Θ.

For the proof we firstly invoke the following Lemma.

Lemma 3.14 ([Gra70, Lemma 10]). Let X be a Banach space and F(X) be the set of its
Fredholm operators. Let Ω ⊆ Cn be a connected domain, and T : Ω → F(X) a holomorphic
function. If T (λo)

−1 exists for some λo ∈ Ω, then T (λ)−1 exists on the complement Ω \Θ of
an analytic set (zero locus of a scalar analytic function), and T−1 is meromorphic on Ω. �

Remark 3.15. Lemma 3.14 was originally due to I.Gohberg and E. Sigal in the case n = 1,
[GS70]. The general case was proved by B.Gramsch, though special cases were previously
obtained by several authors. For a sketch of a proof, based on arguments of [GS70] and
[GGK90, XI.8], see [Kab12, Sec. 2].

Proof of Theorem 3.13. By assumption, the P2[uo, τ,M] is solvable. We claim that the so-
lution Υ is unique. The function det Υ(z;uo) solves the scalar RH problem

det Υ+(z;uo) = det Υ−(z;uo) det H̃(z;uo).

Since the function det H̃(−;uo) has zero index along Γ′′, this scalar equation can be uniquely
solved: the solution is given by

det Υ(z;uo) = exp

∫
Γ′′

log det H̃(µ;uo)

µ− λ
dµ

2π
√
−1

,

see e.g. [TO16, §2.3.1]. In particular, Υ(z;uo) is invertible. Assume that Υ(z;uo), Υ̃(z;uo)
are two solutions of P2[uo, τ,M]. Put X(z) := Υ(z;uo)Υ̃(z;uo)

−1. For z ∈ Γ′′ we have

X+(z) = Υ+(z;uo)Υ̃+(z;uo) = Υ−(z;uo)H̃(µ;uo)H̃(µ;uo)
−1Υ̃−(z;uo) = X−(z).

Hence X(z) is analytic, and moreover X(z)→ I for z →∞. By Liouville Theorem we have
X(z) ≡ I, and Υ = Υ̃. It follows that the Fredholm operator T (uo) has both trivial kernel
and index zero. Hence T (uo)

−1 exists, Lemma 3.14 applies, and the problem P2[u, τ,M]
is solvable on the complement of an analytic set Θ ⊆ V \ {uo}. By Theorem 3.11 one
concludes. �
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3.4. Proof of Sabbah Theorem. Let (Eo,∇o) to be in Birkhoff normal form (2.1) with
Λo = diag(u1

o, . . . , u
n
o ) and uo ∈ ∆. Consider the differential system defining ∇o-flat sections

dY

dz
=

(
Λo +

1

z
Bo

)
Y, (3.12)

where Y is a matrix-valued function.

Proposition 3.16 ([AB94][CG18][CDG19, Section 16]). The differential system (3.12) has
a fundamental system of solutions in Birkhoff-Levelt normal form

Y0(z) = G0(z)zDzS+R, G0(z) = K

(
I +

∞∑
j=1

Ajz
j

)
,

where
• K puts Bo in Jordan form J = K−1BoK,
• D is a diagonal matrix of integers (called valuations),
• S is a Jordan matrix whose eigenvalues have real part in [0, 1[,
• R is a nilpotent matrix, with non-vanishing entries only if some of the eigenvalues
the matrix Bo differ by a non-zero integer.

Moreover, we have
J = D + S. �

Proposition 3.17 ([CDG19, Prop. 4.2]). Assume that
(1) B′′o ∈ Im ad(Λ(uo)),
(2) B′o is partially non-resonant.

Then, the differential system (3.12) has a unique formal solution of the form

YF (z) =

(
I +

∞∑
k=1

Fkz
−k

)
zB
′
oeΛoz.

If τ is admissible at uo, then there exists three unique fundamental systems of solutions
Y1, Y2, Y3 of (3.12) such that

Yh(z) ∼ YF (z), |z| → +∞, τ − (3− h)π < arg z < τ + (h− 2)π, h = 1, 2, 3. (3.13)

�

Remark 3.18. For h = 1, 2, 3, set

Gh(z) := Yh(z)e−Λozz−B
′
o ,

Vτ,h :=
{
z ∈ Ĉ∗ : τ − (3− h)π < arg z < τ + (h− 2)π

}
.

The precise meaning of the asymptotic relation (3.13) is the following:

∀h ∈ {1, 2, 3}, ∀` ∈ N, ∀V ( Vτ,h, ∃Ch,`,V > 0: if z ∈ V \ {0} then∥∥∥∥∥Gh(z)−

(
I +

`−1∑
m=1

Fm
zm

)∥∥∥∥∥ < Ch,`,V
|z|`

.

Here V denotes any unbounded closed sector of Ĉ∗ with vertex at 0.
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In the notations of Propositions 3.16, 3.17, consider the 6-tuples M = (B,D,L, S1, S2, C)
where

B := B′o, D := D, L := S +R,

and the matrices S1, S2, C are defined by

Y2(z) = Y1(z)S1, Y3(z) = Y2(z)S2, Y2(z) = Y0(z)C.

Proposition 3.19. The 6-tuple M is a (uo, τ)-admissible datum. The RHB boundary value
problem P [uo, τ,M] is solvable, with unique solution

G(z;uo)=


G0(z), z ∈ Π0,

G2(z), z ∈ Π1,

G3(z), z ∈ Π2.

Proof. Conditions (1),(2),(3) of Definition 3.1 are trivially satisfied. The proof of conditions
(4),(5),(6),(7) for the Stokes matrices S1, S2 are standard, see e.g. [CDG19, Section 6.3].
Notice that

Y3(ze2
√
−1π) = Y1(z)e2

√
−1πB′o , z ∈ Ĉ∗,

both sides having the same asymptotic expansion YF (ze2
√
−1π) for |z| → +∞, and τ − 2π <

arg z < τ − π. We deduce that

Y0(ze2
√
−1π)CS2 = Y0(z)CS−1

1 e2
√
−1πB′o ,

so that
e2
√
−1πL = CS−1

1 e2
√
−1πB′oS−1

2 C−1.

This proves condition (8) of Definition 3.1. Finally, condition (9) follows from [CG18, Th.
2.1], [CDG19, Prop. 6.1]. �

By Theorem 3.13, there exist an open neighborhood V of uo, an analytic set Θ ⊆ V \{uo}
on which the RHB problem P [u, τ,M] is solvable, with unique solution G(z;u) holomorphic
w.r.t. u ∈ V \Θ. Define the functions

YL/R(z;u) := G(z;u)zB
′
oeΛ(u)z, z ∈ ΠL/R,

Y0(z;u) := G(z;u)zDzL, z ∈ Π0.

We have G(z;u) = I + F1(u)
z

+O
(

1
z2

)
in z →∞ in ΠL/R, so that

∂YL/R
∂z

· Y −1
L/R = ∂zG ·G−1 +

1

z
GB′oG

−1 +GΛG−1

= Λ(u) +
1

z
([F1(u),Λ(u)] +B′o) +O

(
1

z2

)
, z →∞,

∂Y0

∂z
· Y −1

0 = ∂zG ·G−1 +
1

z

(
GDG−1 +GzDLz−DG−1

)
=

1

z
K (D + L)K−1 +O(1), z → 0.



16 GIORDANO COTTI

The matrices S,C are constant w.r.t. both u and z: we deduce that the r.h.s. of the two
equalities above are equal. This implies that YL/R and Y0 are solutions of the differential
equation

∂

∂z
Y =

[
Λ(u) +

1

z
V (u)

]
Y, V (u) := [F1(u),Λ(u)] +B′o. (3.14)

Similarly, we have
∂YL/R
∂ui

· Y −1
L/R =

∂G

∂ui
·G−1 + zGEiG

−1 = zEi + [F1, Ei] +O

(
1

z

)
,

∂Y0

∂ui
· Y −1

0 =
∂G

∂ui
·G−1 =

∂G0

∂ui
·G−1

0 +O(z),

where (Ei)ab = δaiδbi and G(z;u) = G0(u)+O(z) for z → 0 (and in particular G0(uo) = K).
The matrices S,C being constant, we deduce that the r.h.s. of the two equalities above are
equal. Hence YL/R and Y0 are solutions of the differential equation

∂

∂ui
Y = (zEi + Vi(u))Y, Vi(u) := [F1(u), Ei] =

∂G0

∂ui
·G−1

0 , i = 1, . . . , n. (3.15)

The datum of the compatible joint system of differential equations (3.14) and (3.15), for
u ∈ V \Θ, proves the statement of Sabbah Theorem 2.5.

Remark 3.20. Note that in equations (3.14) and (3.15) we can replace F1 with its off-
diagonal part F ′′1 , since both Λ(u) and Ei are diagonal.

Remark 3.21. Propositions 3.16 and 3.17 also hold true for uo ∈ Cn\∆, these are standard
results. All the subsequent arguments can be applied, giving an analytical proof of Theorem
2.4.

4. Formal Frobenius and Dubrovin-Frobenius manifolds

We briefly review basic notions of the theory of Frobenius manifolds, in both formal and
analytic frameworks. General references are [Dub96, Dub98, Dub99, Man99, Her02, Sab07].

4.1. Formal Frobenius manifolds. Let
• k be a commutative Q-algebra,
• H be a free k-module of finite rank,
• η : H⊗H → k be a symmetric pairing, inducing an isomorphism η′ : H → HT , where
HT is the dual module,
• K := k[[HT ]] be the completed symmetric algebra of HT .

Fix a basis (∆1, . . . ,∆n) of H, and denote by t = (t1, . . . , tn) the dual coordinates. The
algebra K is then identified with the algebra of formal power series k[[t]]. Denote by Derk(K)
the K-module of k-linear derivations of K. Put ∂α = ∂

∂tα
: K → K. It is well known that

Derk(K) is a free K-module with basis (∂1, . . . , ∂n). We will write Φα for ∂αΦ for Φ ∈ K.

Elements of HK := K ⊗k H will be identified with derivations on K, by ∆α 7→ ∂α.

For α, β = 1, . . . , n, set ηαβ := η(∆α,∆β). The matrix (ηαβ) will denote the inverse of the
Gram matrix (ηαβ) of η. Einstein summation rule will be used over repeated Greek indices.
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Definition 4.1. A formal Frobenius manifold structure on (H, η) is given by a formal power
series Φ ∈ K, called WDVV potential, such that

Φαβγη
γδΦδεϕ = Φϕβγη

γδΦδεα, α, β, ε, ϕ = 1, . . . , n. (4.1)

Define the K-linear multiplication ◦ on HK by

∆α ◦∆β := cγαβ∆γ, α, β = 1, . . . , n,

where cγαβ := Φαβδη
δγ. The WDVV equations (4.1) are equivalent to the associativity of ◦.

An element e ∈ HK is called identity if it is the identity for ◦. It is called flat identity if
e ∈ H. An element E ∈ HK is called Euler if

LEη = Dη, D ∈ k, (4.2)
LEc = c. (4.3)

Here η is bilinearly extended to HK . Here LE denotes the Lie derivative along E, and it is
extended to the whole tensor algebra of HK in the usual way (i.e. LEf = Ef for f ∈ K,
and commutation with contractions). In this paper we always consider Frobenius manifolds
equipped with a flat identity e = ∆1, and an Euler vector field.

4.2. Dubrovin-Frobenius manifolds. Given a complex analytic manifold M , we denote
by TM, T ∗M its holomorphic tangent and cotangent bundles.

A Dubrovin-Frobenius manifold structure on a complex manifold M of dimension n is
defined by giving
(FM1) a symmetric O(M)-bilinear metric tensor η ∈ Γ

(⊙2 T ∗M
)
, whose corresponding

Levi-Civita connection ∇ is flat;
(FM2) a (1, 2)-tensor c ∈ Γ

(
TM ⊗

⊙2 T ∗M
)
such that

(a) the induced multiplication of vector fields X ◦ Y := c(−, X, Y ), for X, Y ∈
Γ(TM), is associative,

(b) c[ ∈ Γ
(⊙3 T ∗M

)
,

(c) ∇c[ ∈ Γ
(⊙4 T ∗M

)
;

(FM3) a vector field e ∈ Γ(TM), called the unity vector field, such that
(a) the bundle morphism c(−, e,−) : TM → TM is the identity morphism,
(b) ∇e = 0;

(FM4) a vector field E ∈ Γ(TM), called the Euler vector field, such that
(a) LEc = c,
(b) LEη = (2− d) · η, where d ∈ C is called the charge of the Frobenius manifold.

Dubrovin-Frobenius manifolds will be also called analytic Frobenius manifolds.

By axiom (FM1), there exist system of flat coordinates t = (t1, . . . , tn), w.r.t. which
the Levi-Civita connection ∇ coincides with partial derivatives ∂α := ∂

∂tα
, for i = 1, . . . , n.

Without loss of generality, we assume that the coordinate t1 is such that ∂1 = e.

A pointed Dubrovin-Frobenius manifold is a pair (M, p), whereM is a Dubrovin-Frobenius
manifold, and p ∈M is a fixed base point. Given (M, p) we will always consider flat coordi-
nates t = (t1, . . . , tn) vanishing at p.
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4.3. From Dubrovin-Frobenius to formal Frobenius structures, and vice-versa.
Given a pointed Dubrovin-Frobenius manifold (M, p), we can associate to it a formal Frobe-
nius structure (H, η,Φ) over k = C. Choose flat coordinates t vanishing at p, and set
H := TpM equipped with the metric η|p. By axiom (FM2-c), the tensor ∂αcβγδ is completely
symmetric: hence we deduce the local existence of a function F such that ∂3

αβγF = cαβγ. By
axioms (FM2-a), (FM2-b), we deduce that F is a solution of WDVV equations, i.e.

∂3
αβγF ηγδ ∂3

δεϕF = ∂3
ϕβγF ηγδ ∂3

δεαF, α, β, ε, ϕ = 1, . . . , n.

Let OM,p be the local ring of germs at p, and m be its maximal ideal. The formal potential
Φ is given by the image of F in the completion ÔM,p := lim←−

(
OM,p/m

`
)
of the local ring

OM,p: this means that Φ is defined by the Taylor series expansion of F at p in coordinates
t. Moreover, the formal Frobenius structure (H, η,Φ) is also equipped with a flat unit e|p
and an Euler vector field E|p. We will say that the formal Frobenius structure constructed
in this way, starting from a pointed Dubrovin-Frobenius manifold, is convergent.

Vice-versa, let us assume that (H, η,Φ) is a formal Frobenius structure over k = C, with
Euler vector field E. If the domain of convergence Ω ⊆ H of the power series Φ ∈ k[[t]] is
non-empty, it is easily seen that Ω is equipped with a Dubrovin-Frobenius manifold structure.

4.4. Semisimplicity of Frobenius structures. In this Section we collect main results and
properties which hold true for a wide class of Frobenius structures (both formal and analytic),
namely semisimple Frobenius structures. We begin our exposition with the formal case.

Let (H, η,Φ) be a formal Frobenius manifold, and denote by ◦0 the product on H with
structure constants Φγ

α,β(0). We say that (H, η,Φ) is

• semisimple at the origin if the k-algebra (H, ◦0) is isomorphic to kn;
• formally semisimple if the K-algebra (HK , ◦) is isomorphic to Kn.

In the first (resp. second) case there exist an idempotent basis (π1, . . . , πn) of H (resp. HK)
such that

πi ◦ πj = πiδij, η(πi, πj) = 0, i 6= j. (4.4)

Notice that the idempotent vectors πi are uniquely defined up to re-ordering.

Lemma 4.2. A formal Frobenius manifold (H, η,Φ) is formally semisimple if and only if it
is semisimple at the origin.

Proof. Formal semisimplicity clearly implies semisimplicity at the origin. Let us prove the
converse. Denote by m := (t1, . . . , tn) the maximal ideal of K. We will denote by O(mp) an
arbitrary sum of elements of mp ·HK . For any fixed h ∈ N we call a h-order idempotent basis
of HK a basis (πh1 , . . . , π

h
n) such that

πhi ◦ πhi = πhi +O(mh+1), πhi ◦ πhj = O(mh+1),

for i, j = 1, . . . , n and i 6= j. Assume that (H, η,Φ) is semisimple at the origin. We claim
there exist a h-order idempotent basis of HK for any h ∈ N. We prove it by induction on h.
For h = 0, it is trivial: if (π0

1, . . . , π
0
n) is an idempotent basis of (H, ◦0), then it is a 0-order

idempotent basis of HK . Assume that (πh1 , . . . , π
h
n) is a h-order idempotent basis of HK : we



DEGENERATE RHB PROBLEMS, SEMISIMPLICITY, AND CONVERGENCE 19

have

πhi ◦ πhi = πhi +
∑
k

aikπ
h
k , aij ∈ mh+1, πhi ◦ πhj =

∑
k

bijkπ
h
k , bijk ∈ mh+1,

for i, j = 1, . . . , n and i 6= j. By commutativity and associativity, one deduces the following
constraints on aij, bijk:

bijk = bjik, i, j, k = 1, . . . , n, (4.5)
bijk = 0, i, j, k = 1, . . . , n, distinct, (4.6)
bijj + aij = 0, i, j = 1, . . . , n, i 6= j. (4.7)

Set
π′i := πhi +

∑
j

wijπ
h
j , i = 1, . . . , n,

with arbitrary coefficients wij ∈ mh+1. The n-tuple (π′1, . . . , π
′
n) is a (h+ 1)-oder idempotent

basis of HK if and only if
wii = −aii, wij = aij,

for i, j = 1, . . . , n and i 6= j. This easily follows from (4.5)-(4.7). �

In the analytic case, we will say that a Dubrovin-Frobenius manifold M is (generically)
semisimple if the set Mss := {p ∈ M : (TpM, ◦p) ∼= Cn} is non-empty. In such a case, it
can be proved that Mss is an open dense subset of M . At each point p ∈ Mss there exists
tangent vectors π1|p, . . . , πn|p satisfying the relations

πi|p ◦p πj|p = πi|pδij, ηp(πi|p, πj|p) = 0, i 6= j.

It can be proved that, on sufficiently small open subsets Mss, a coherent labeling of the
idempotent tangent vectors can be chosen so that the resulting local vector fields are holo-
morphic.

Remark 4.3. In both the formal and analytic case we have e =
∑

i πi.

Proposition 4.4 ([Dub92, Dub96, Man99]). For both formal and analytic semisimple Frobe-
nius manifolds, the idempotents vector fields π1, . . . , πn are pairwise commuting, i.e. [πi, πj] =
0. Equivalently, the dual differential forms π[i , defined by 〈π[i , πj〉 = δij, are closed. �

In both the formal and analytic cases, this result implies the existence of a local system
of coordinates u := (u1, . . . , un) such that

dui = π[i ,
∂

∂ui
= πi.

We will refer to u as the formal/analytic canonical coordinates. These functions are defined
up to re-ordering and shifts by constants. In the formal case, the functions ui’s are just
formal functions, i.e. elements of k[[t]].

Proposition 4.5 ([Dub92, Dub96, Man99]). The formal/analytic canonical coordinates can
be uniquely chosen (up to re-ordering) so that E =

∑n
i=1 ui

∂
∂ui
. �
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In all the subsequent part of the paper, we will reserve Latin indices for canonical coordi-
nates u1, . . . , nn and their vector fields ∂i := ∂

∂ui
. Einstein summation rule will be used only

for repeated Greek indices.

5. Convergence of semisimple formal Frobenius manifolds

In this Section we prove the main result of the second part of this paper.

Theorem 5.1. Let (H,Φ, η, e, E) be a semisimple formal Frobenius manifold over C. Then
the domain of convergence of Φ is non-empty.

For the proof, we require some preliminary material.

5.1. Extended deformed connection. We introduce one of the main object attached to
Frobenius structures, namely an integrable connection. It can be introduced in both formal
and analytic frameworks.

Formal case. Let k be a commutative Q-algebra and (H, η,Φ) a formal Frobenius manifold
as in Section 4.1. Denote by k((z)) the k-algebra of formal Laurent series in an auxiliary
indeterminate z. Set K((z)) := k[[t]]((z)) and HK((z)) := H ⊗k K((z)). In the following para-
graphs we will define two connections on the modules HK and HK((z)) respectively. We firstly
recall some basic notions.

5.1.1. Algebraic connections on modules. Let A be a commutative and unital k-algebra, and
P an A-module. Denote by Diff1(P, P ) the set of first order differential operators on P , i.e.
the k-linear morphisms D ∈ Homk(P, P ) such that

abD(p)− bD(ap)− aD(bp) + D(abp) = 0, a, b ∈ A, p ∈ P.
Both Derk(A) and Diff1(P, P ) are naturally equipped with an A-module structure. A con-
nection ∇ on P is defined by an A-linear morphism ∇ : Derk(A) → Diff1(P, P ), u 7→ ∇u

satisfying the Leibniz rule

∇u(ap) = u(a)p+ a∇up, a ∈ A, p ∈ P.
The curvature of∇ is the A-bilinear morphism R : Derk(A)×Derk(A)→ HomA(P, P ) defined
by

R(u, v) := [∇u,∇v]−∇[u,v], u, v ∈ Derk(A).

Given a connection on P we can induce connections on all the tensor products (over A)
P⊗p ⊗ HomA(P,A)⊗q by requiring that

(1) ∇ commutes with contractions,
(2) on A (i.e. p = q = 0) the morphism ∇ : Derk(A)→ Diff1(A,A) is just the inclusion.

5.1.2. Deformed connections on HK. Consider the case (A,P ) = (K,HK). Define a one-
parameter family of connections ∇z : Derk(K)→ Diff1(HK , HK), with z ∈ C, on the module
HK by the formula

∇z
XY := zX ◦ Y, X, Y ∈ Derk(K) ∼= HK .

Theorem 5.2 ([Dub92, Man99]). WDVV equations (4.1) are equivalent to the flatness of
∇z, for any z ∈ C. �
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Remark 5.3. The connection ∇ := ∇0 is the (formal) Levi-Civita connection for η, i.e.
the unique torsion-free connection satisfying ∇η = 0. If (e1, . . . , en) is a basis of HK , set
∇eiej =

∑
k Γkijek. One can show that

Γkij =
1

2

∑
`

η`k (eiηjk + ejηik − ekηij) .

The standard differential-geometrical proof works verbatim in this formal framework.

Remark 5.4. The Euler vector field is an affine vector field, i.e. ∇∇E = 0. This follows
from flatness of ∇ and the Killing conformal condition (4.2).

5.1.3. Extended deformed connection on HK((z)). We consider now the case (A,P ) = (K((z)),
HK((z))). In what follows we assume that the K-linear operator ∇0E : Derk(K) ∼= HK → HK

is (diagonalizable and) in diagonal form in the basis (∆1, . . . ,∆n). Define two new K-linear
operators U , µ by the formulae

U : HK → HK , X 7→ E ◦X,

µ : Derk(K) ∼= HK → HK , X 7→ D

2
−∇XE,

where D ∈ k is as in (4.2). All the tensors η, ◦,U , µ can be K((z))-linearly extended to
HK((z)). We will denote such an extension by the same symbols.

The extended deformed connection ∇̂ : Derk(K((z)))→ Diff1(HK((z)), HK((z))) is defined by
the formulae

∇̂ ∂
∂tα
X = ∇z

∂
∂tα
X, ∇̂ ∂

∂z
X =

∂

∂z
X + U(Y )− 1

z
µ(X),

where Y ∈ HK((z)).

Theorem 5.5 ([Dub96, Dub98, Dub99]). The connection ∇̂ is flat.

Proof. The flatness of ∇̂ is equivalent to the following conditions: ∂δΦαβγ is completely
symmetric in (α, β, γ, δ), the product ◦ is associative, ∇∇E = 0, and LEc = c. This can be
easily checked by a straightforward computation. �

Analytic case. Let M be a Dubrovin-Frobenius manifold. Introduce the (1, 1)-tensors
U , µ ∈ Γ(End(TM)) by the formulae

U(X) = E ◦X, µ(X) :=
2− d

2
X −∇XE, X ∈ Γ(TM),

where d is the charge of the Dubrovin-Frobenius structure, and ∇ is the Levi-Civita con-
nection of η. We assume that µ is (diagonalizable and) in diagonal form in the frame
(∂t1 , . . . , ∂tn).

Denote by π : M × C∗ → M the canonical projection on the first factor. If TM denotes
the tangent sheaf of M , then π∗TM is the sheaf of sections of π∗TM , and π−1TM is the
sheaf of sections of π∗TM constant along the fibers of π. All the tensors η, c, e, E,U , µ can
be lifted to the pulled-back bundle π∗TM , and we denote these lifts with the same symbols.
Consequently, also the Levi-Civita connection ∇ can be uniquely lifted on π∗TM in such a
way that ∇ ∂

∂z
Y = 0 for Y ∈ π−1TM .
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The extended deformed connection ∇̂ is the connection on π∗TM defined by the formulae

∇̂ ∂
∂tα
Y = ∇ ∂

∂tα
Y + z

∂

∂tα
◦ Y, ∇̂ ∂

∂z
Y = ∇ ∂

∂z
Y + U(Y )− 1

z
µ(Y ), (5.1)

where Y ∈ π∗TM .

Remark 5.6. If we consider a formal Frobenius manifold associated to a pointed Dubrovin-
Frobenius manifold (M, p) as in Section 4.3, the Christoffel symbols of the formal connection
∇̂ constructed in Section 5.1.3 are germs of the Christoffel symbols of (5.1) at the point p.

Theorem 5.5 and its proof hold verbatim for the connection ∇̂ defined by (5.1).

Remark 5.7. In both the formal and analytic case, the operator U is η-self-adjoint, and µ
is η-skew-symmetric: for arbitrary X, Y ∈ HK (resp. sections of TM), we have

η(U(X), Y ) = η(X,U(Y )), η(µ(X), Y ) = −η(X,µ(Y )). (5.2)

5.2. Darboux-Egoroff equations. Given a formal/analytic semisimple Frobenius mani-
fold with idempotent vectors π1, . . . , πn define the formal functions ηii, γij ∈ k[[u]] by

ηii(u) := η(πi(u), πi(u)), i = 1, . . . , n,

γij(u) :=
∂i
√
ηii(u)√
ηjj(u)

= 1
2

∂i∂jt1(u)√
∂it1(u)∂jt1(u)

, i, j = 1, . . . , n.

Notice that γij = γji.

Theorem 5.8. The flatness of η is equivalent to the following equations on γij(u):

∂kγij = γikγkj, i, j, k distinct, (5.3)∑n
k=1 ∂kγij = 0, i 6= j (5.4)∑n

k=1 uk∂kγij = −γij, i 6= j. (5.5)

Proof. The proofs of [Man99, Prop. 3.4.1, Th. 3.7.2] apply verbatim also to the formal
case. �

Corollary 5.9. For i 6= j, we have

(ui − uj)∂iγij =
∑
k 6=i,j

(uj − uk)γikγkj − γij. (5.6)

Proof. An easy consequence of (5.4) and (5.5). �

5.3. ∇̂-flatness in canonical coordinates. Given a formal (resp. analytic) semisimple
Frobenius manifold with idempotent vectors π1, . . . , πn define the vectors

fi(u) := ηii(u)−
1
2πi(u), i = 1, . . . , n,

for some choices of the square roots, and introduce the matrix Ψ ∈ GL(n, k[[u]]) (resp.
GL(n, k{u})) defined by

Ψ = (Ψiα)i,α,
∂

∂tα
=

n∑
i=1

Ψiαfi, i = 1, . . . , n.
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Lemma 5.10. We have

ΨTΨ = η, Ψi1 =
√
ηii, fi =

n∑
α,β=1

Ψi1Ψiβη
αβ∂α, cαβγ =

n∑
i=1

ΨiαΨiβΨiγ

Ψi1

. �

Lemma 5.11. We have µ(fi) =
∑

j 6=i(uj − ui)γijfj.

Proof. Set ∇πiπj =
∑

k Γkijπk. The only nonzero Christoffel symbols are

Γiii =
1

2
η−1
ii

∂ηii
∂ui

, Γjii = −1

2
η−1
jj

∂ηii
∂uj

, Γiij = Γiji =
1

2
η−1
ii

∂ηii
∂uj

, i 6= j,

see Remark 5.3. The claim follows by straightforward computations. �

The connection ∇̂ induces a dual connection5 ∇̂T on HT
K((z)) (resp. π

∗T ∗M). Consider the
equation ∇̂T ξ = 0: if ξ] is η-dual to ξ, then we have

∂

∂tα
ξ] = z

∂

∂tα
◦ ξ], ∂

∂z
ξ] =

(
U +

1

z
µ

)
ξ]. (5.7)

Set ξ](t, z) =
∑n

i=1 yi(u(t), z)fi for some formal (resp. analytic) functions yi of the formal
canonical coordinates u and z. Then, equations (5.7) are equivalent to

∂

∂ui
y = (zEi + Vi(u)) y, (5.8)

∂

∂z
y =

(
U(u) +

1

z
V (u)

)
y, (5.9)

where y = (y1, . . . , yn)T and

U = diag(u1, . . . , un), V := ΨµΨ−1, Vi :=
∂Ψ

∂ui
Ψ−1, (Ei)ab = δaiδbi.

The compatibility of the system (5.8),(5.9) is equivalent to the equations
∂V

∂ui
= [Vi, V ], (5.10)

[U, Vi] = [Ei, V ]. (5.11)

Lemma 5.12. Set Γ = (γab). We have

V T + V = 0, V = [Γ, U ], V T
i + Vi = 0, Vi = [Γ, Ei], i = 1, . . . , n,

Equation (5.10) follows from Darboux-Egoroff equations (5.3),(5.4),(5.5) on Γ.

Proof. The identity V = [Γ, U ] is Lemma 5.11. The identity Ψ(u)TΨ(u) = η implies ∂iΨTΨ+
ΨT∂iΨ = 0, so that V T

i +Vi = 0. We have [U, Vi] = [U, [Γ, Ei]], by (5.11) and Jacobi identity.
The nucleus of the operator [U,−] : Mn(k[[u]])→ Mn(k[[u]]) consists of diagonal matrices: if
A ∈Mn(k[[u]]) is such that [U,A] = 0, then (ua − ub)Aab(u) = 0 for any a, b = 1, . . . , n with
a 6= b. We deduce that Aab(u) = 0, with a 6= b, since k[[u]] is an integral domain. Hence
Vi = D+[Γ, Ei], where D is a diagonal matrix. The skew-symmetry of Vi implies that D = 0.
A simple computation shows that (5.3),(5.4),(5.5) and (5.6) imply (5.11). �

5In B.Dubrovin’s papers this is denoted by the same symbol ∇̂.
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5.4. Reconstruction of the Frobenius structure. By Theorem 5.2 we can look for formal
functions t̃ := (t̃1, . . . , t̃n) of the form

t̃α(t, z) :=
∞∑
p=0

hα,p(t)z
p ∈ k[[t, z]], hα,0(t) = tα ≡ tβηαβ,

such that ∇zdt̃α = 0 for α = 1, . . . , n.

Lemma 5.13. The functions hα,p satisfy the recursive equations

hα,0(t) = tα ≡ tβηαβ, ∂β∂γhα,p+1 = cεβγ∂εhα,p, p ∈ N. �

For f, g ∈ K write f ≈ g iff f − g is a (at most) quadratic polynomial in t.

Lemma 5.14. We have

hα,1 ≈ ∂αΦ, α = 1, . . . , n, (5.12)
h1,2 ≈ tα∂αΦ− 2Φ. (5.13)

Proof. We have ∂βhα,0 = ηαβ, so that ∂γ∂βhα,1 = cαβγ. Equation (5.12) follows.
We have ∂1Φ = 1

2
ηαβt

αtβ, so that ∂α∂βh1,2 = cγαβ∂γh1,1 = cγαβ∂γ∂1Φ = cγαβηγνt
ν . We also have

∂α∂β
(
tλ∂λΦ− 2Φ

)
= cαβλt

λ, and (5.13) follows. �

Given a function f ∈ K, we denote by grf ∈ HK the η-gradient of f , defined by grf :=∑
α η

αβ∂βf∆α. The following result allows to reconstruct the potential Φ (up to quadratic
terms) from the first coefficients hα,p, with p 6 3.

Theorem 5.15 ([Dub96, Dub99]). We have

Φ ≈ 1

2

[
η(grhα,1, grh1,1)ηαβη(grhβ,0, grh1,1)− η(grh1,1, grh1,2)− η(grh1,3, grh1,0)

]
. (5.14)

Proof. The expression in square brackets in the r.h.s. of (5.14) equals

ηνλ∂νhα,1∂λh1,1η
αβ∂βh1,1 − ητε∂τh1,1∂εh1,2 − ∂1h1,3

≈ ηνληαβ∂2
ναΦ ∂2

λ1Φ ∂2
β1Φ− ητε∂2

τ1Φ
(
tλ∂2

ελΦ− ∂εΦ
)
− ∂1h1,3. (5.15)

We have ∂2
ν1Φ = ηναt

α, and ∂α∂1h1,3 = cβ1α∂βh1,2 = ∂αh1,2 so that ∂1h1,3 ≈ h1,2. Hence (5.15)
equals 2Φ up to quadratic terms. �

5.5. Proof of Theorem 5.1. Let (H, η,Φ, e, E) be a formal Frobenius manifold. Fix one
ordering uo ∈ Cn of the eigenvalues of U(t) specialized at the origin t = 0. We have n × n
matrix-valued (a priori) formal power series in u

V (u) = Vo +
∞∑
k=1

n∑
`1,...,`k=1

1

k!
V (`)

k∏
j=1

u`j , Vi(u) = Vi,o +
∞∑
k=1

n∑
`1,...,`k=1

1

k!
V

(`)
i

k∏
j=1

u`j ,

Ψ(u) = Ψo +
∞∑
k=1

n∑
`1,...,`k=1

1

k!
Ψ(`)

k∏
j=1

u`j , Γ(u) = Γo +
∞∑
k=1

n∑
`1,...,`k=1

1

k!
Γ(`)

k∏
j=1

u`j ,

where ui := ui−uo,i for i = 1, . . . , n. These power series are well defined by the semisimplicity
assumption, and they satisfy properties described in Theorem 5.8, and Lemmata 5.10, 5.11
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and 5.12. We subdivide the proof in two parts. In the first part, we construct a pointed germ
(M, p) of a Dubrovin-Frobenius manifold M starting from the datum of uo, Vo,Ψo,Γo. In
the second part, we prove that the original formal structure (H, η,Φ, e, E) is the completion
of the pointed analytic germ (M, p).

Part I. The system (5.9) specialized at uo, namely ∂Y
∂z

= (Uo + 1
z
Vo)Y , can be identified

with equation (3.12) (in the special case B′o = 0). The arguments of Section 3.4 can be
applied, in both cases uo ∈ Cn \ ∆ and uo ∈ ∆. We can fix an admissible τ at uo, the
(uo, τ)-admissible datum M is well-defined, and we can set the RHB problem P [u, τ,M].
This problem is solvable w.r.t. u on an open neighborhood V \ Θ of uo, by Theorem 3.13.
The unique solution G(z;u) is holomorphic in u ∈ V \Θ, and with expansion

G(z;u) = I + 1
z
F an

1 (u) +O
(

1
z2

)
, z →∞, z ∈ ΠL/R,

G(z;u) = G0(u) +G1(u)z +G2(u)z2 +G3(u)z3 +O(z4), z → 0.

Here the superscript “an” stands for analytic. As output of Section 3.4, we also obtain a
compatible joint system of differential equations (with analytic coefficients in u, not just
formal) of the form

∂Y

∂ui
= (zEi + V an

i (u))Y,
∂Y

∂z
=

(
U +

1

z
V an(u)

)
Y, (5.16)

where V an(u) := [F an
1 (u), U ], and V an

i (u) := [F an
1 (u), Ei]. Moreover, we have

V an(uo) = Vo, G0(uo) = Ψo, ∂iG0 = V an
i G0, i = 1, . . . , n.

From the datum of Gi(u), with i = 0, 1, 2, 3, we can construct a Dubrovin-Frobenius manifold
as follows: set

tα(u) := ηαβ
n∑
i=1

G0,iβ(u)G1,i1(u), α = 1, . . . , n,

F (u) :=
1

2

[
tα(u)tβ(u)

n∑
i=1

G0,iα(u)G1,iβ(u)−
n∑
i=1

(G1,i1(u)G2,i1(u) +G0,i1(u)G3,i1(u))

]
.

Invert the first series expansions, to obtain u = u(t). The function F (u(t)) gives a solution
of WDVV equations, and defines an analytic Dubrovin-Frobenius manifold on an open subset
of H. The formulae above are, in their essence, re-writing of formulae of Lemma 5.10 and
formula (5.14). See [Dub99, Guz01].

Part II. We need to prove that the series expansion F (u(t)) obtained in Part I equals
(up to quadratic terms) the original potential Φ(t). For that, it is sufficient to prove that
F an

1 (u)′′ = Γ(u)′′.

Lemma 5.16. We have F an
1 (uo)

′′ = Γ′′o.

Proof. By Proposition 3.17, the system (5.9) specialized at uo, namely ∂Y
∂z

= (Uo + 1
z
Vo)Y ,

admits a unique formal solution YF (z) = (I + A1z
−1 + A2z

−2 +O(z−3)) ezU . Let us recall
how to compute A1. It is uniquely determined by the two equations

[A1, Uo] = Vo, [A2, Uo] = A1 + VoA1.
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The first equation uniquely determines all the entries (A1)ab for indices a 6= b such that
uo,a 6= uo,b:

(A1)ab =
Vo,ab

uo,b − uo,a
= Γo,ab,

by Lemma 5.11. All the remaining entries (A1)ab, with a 6= b such that uo,a = uo,b, are
uniquely determined by the second equation:

(A1)ab = −
∑
`

Vo,a`(A1)`b = −
∑
`

(uo,` − uo,a)Γo,a`Γ`b = Γo,ab.

The last equality follows by specializing equation (5.6) to u = uo. This prove that A′′1 = Γ′′o .
By uniqueness of the formal solution we clearly have F an

1 (uo) = A1. �

Lemma 5.17. The off-diagonal entries of F an
1 (u) satisfy the Darboux-Egoroff system (5.3),

(5.4), (5.5), (5.6).

Proof. From the compatibility conditions ∂i∂j = ∂j∂i of the system (5.16), we have

[Ej, ∂iF
an
1 ]− [Ei, ∂jF

an
1 ] + [[Ei, F

an
1 ], [Ej, F

an
1 ]] = 0.

This coincides with equations (5.3) and (5.4). Let κ ∈ C∗. The piecewise analytic function
G̃ : (Π0 ∪ ΠL ∪ ΠR)× (V \ κΘ)→ C defined by

G̃(z;u) := G(κz;κ−1u)κDzDκLz−D, z ∈ Π0,

G̃(z;u) := G(κz;κ−1u), z ∈ ΠL/R,

solves the same RHB problem P [u, τ,M] as G. By uniqueness of solution we have G̃ = G.
This implies that F an

1 (κ−1u) = κF an
1 (u), and (5.5) follows. �

Lemma 5.18. Let

F (u) = Fo +
∞∑
k=1

n∑
`1,...,`k=1

1

k!
F (`)

k∏
j=1

u`j , ui := ui − uo,i,

be a matrix-valued formal power series, with F (u)T = F (u), and whose off-diagonal entries
Fij are formal solutions of the Darboux-Egoroff system (5.3), (5.4), (5.5), (5.6). The off-
diagonal entries of the coefficients F (`) can be uniquely reconstructed from the off-diagonal
entries of Fo.

Proof. We have to show that the derivatives ∂i1 . . . ∂iNFij(uo) can be computed from the
only knowledge of the numbers Fij(uo). We proceed by induction on N . Let us start with
the case N = 1.
Step 1. For i, j, k distinct, by expanding both sides of ∂kFij = FikFkj in power series, and
equating the coefficients, one reconstructs the coefficients of ∂kFij(uo).
Step 2. From the identity (5.6) for Fij, one can compute ∂iFij(uo) provided that uo,i 6= uo,j.
Step 3. Assume that uo,i = uo,j. By taking the ∂i-derivative of both sides of (5.6) we obtain

2∂iFij(u) + (ui − uj)∂i∂iFij(u) =
∑
k 6=i,j

(uj − uk) [∂iFik(u)Fkj(u) + Fik(u)∂iFkj(u)] . (5.17)
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By evaluating (5.17) at u = uo we can compute all the numbers ∂iFij(uo), namely

∂iFij(uo) =
1

2

∑
k 6=i,j

(uo,j − uo,k)
[
∂iFik(uo)Fkj(uo) + Fik(uo)

2Fij(uo)
]
.

Notice that the only terms ∂iFik(uo) appearing in this sum are those computed in Step 2.
Step 4. By the symmetry condition F (u)T = F (u), we have ∂jFij(uo) = ∂jFji(uo), and
these numbers can be computed as in Steps 2 and 3.
This proves that all the first derivatives ∂kFij(uo) can be computed.

Inductive step. Assume to know all the N -th derivatives ∂i1 . . . ∂iNFij(uo). We show how
to compute the number ∂h1 . . . ∂hN+1

Fij(uo) for any (N + 1)-tuple (h1, . . . , hN+1).
Step 1. Assume that there exists ` ∈ {1, . . . , N + 1} such that h` 6= i, j. We have

∂h1 . . . ∂hN+1
Fij = ∂h1 . . . ∂h`−1

∂h`+1
. . . ∂hN+1

[∂h`Fij] = ∂h1 . . . ∂h`−1
∂h`+1

. . . ∂hN+1
[Fih`Fh`j].

By evaluation at u = uo, we can compute all the numbers ∂h1 . . . ∂hN+1
Fij(uo).

Step 2. Assume that (h1, . . . , hN+1) = (i, i, . . . , i). Take the ∂Ni -derivative of (5.6): by
evaluation at u = uo we can reconstruct the numbers ∂N+1

i Fij(uo) provided that uo,i 6= uo,j.
Step 3. Assume that uo,i = uo,j. Take the ∂Ni -derivative of both sides of (5.17), to obtain

(N + 2)∂N+1
i Fij + (ui − uj)∂N+2

i Fij =
∑
k 6=i,j

(uj − uk)∂Ni [∂iFikFkj + F 2
ikFij]. (5.18)

By evaluation u = uo, one can compute the number ∂N+1
i Fij(uo).

Step 4. Assume that (h1, . . . , hN+1) = (j, j, . . . , j). By symmetry of F (u), we have
∂N+1
j Fij(uo) = ∂N+1

j Fji(uo), and we can proceed as in Steps 2 and 3.
This proves that all the (N + 1)-th derivatives ∂h1 . . . ∂hN+1

Fij(u0) can be computed. �

This proves that F an
1 (u)′′ = Γ(u)′′. It follows that V an(u) = V (u), V an

i (u) = Vi(u) and
so that G0(u) = Ψ(u). Formula (5.14) then implies Theorem 5.1.

6. Application to CohFT’s and Gromov-Witten theory

6.1. Cohomological field theories. Let k and (H, η, e) be as in Section 4.1. For a pair of
nonnegative integers (g, n) in the stable range 2g − 2 + n > 0, denote byMg,n the Deligne-
Mumford moduli space of stable n-pointed curves of genus g. Denote by π : Mg,n+1 →Mg,n

the morphism forgetting the last puncture, by σ : Mg1,n1+1 ×Mg2,n2+1 → Mg1+g2,n1+n2 the
morphism which identifies the last markings, and by τ : Mg,n+2 → Mg+1,n the morphism
identifying the last two punctures of a same curve.

A Cohomological field theory (CohFT) on (H, η, e) is the datum of a system (Ωg,n)2g−2+n>0

of k-multilinear maps Ωg,n : H⊗n → H•(Mg,n, k) satisfying the following axioms:
(1) each tensor Ωg,n is Sn-covariant w.r.t. the natural actions of the symmetric group Sn

on both H⊗n and H•(Mg,n, k),
(2) Ω0,3(e⊗∆α ⊗∆β) = ηαβ,
(3) π∗Ωg,n(

⊗n
i=1vαi) = Ωg,n(

⊗n
i=1vαi ⊗ e),

(4) σ∗Ωg1+g2,n1+n2(
⊗n1+n2

i=1 vαi) = ηµνΩg1,n1+1(
⊗n1

i=1 vαi ⊗∆µ)Ωg2,n2+1(
⊗n2

i=1 vαi ⊗∆ν),
(5) τ ∗Ωg+1,n(

⊗n
i=1 vαi) = ηµνΩg,n+2(

⊗n
i=1 vαi ⊗∆µ ⊗∆ν).
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Given a CohFT, we may introduce generating functions, in infinitely many variables t•• =
(tαd )α=1,...,n

d∈N
of intersection numbers with psi-classes,

Fg(t••) :=
∑
n>0

2g−2+n>0

1

n!

∑
α1,...,αn=1,...,n
d1,...,dn>0

〈 n∏
i=1

τdi∆αi

〉
g

n∏
i=1

tαidi , (6.1)

〈 n∏
i=1

τdi∆αi

〉
g

:=

∫
Mg,n

Ωg,n

(
n⊗
i=1

∆αi

)
n∏
i=1

ψdii . (6.2)

In the genus zero sector and restricting to the small phase space, i.e. by setting tαd = 0 for
d > 0 and tα0 = tα for α = 1, . . . , n, the expression above simplifies to

F0(t) =
∑
n>2

n∑
α1,...,αn=1

tα1 . . . tαn

n!

∫
M0,n

Ω0,n (∆α1 ⊗ · · · ⊗∆αn) . (6.3)

The power series F0 ∈ k[[t]] is a solution of WDVV equations, and it defines a formal
Frobenius manifold (over k) on (H, η, e), see [KM94, Man99]. The CohFT will be said to be
semisimple if the corresponding formal Frobenius manifold is semisimple.

If E =
∑

α (wαt
α + yα) ∂α is a Killing-conformal vector field on H, i.e. LEη = (2 −

d)η for some d ∈ k, we have a natural action of E on the CohFT (Ωg,n)g,n. Denote by
deg : H•(Mg,n, k) → H•(Mg,n, k) the operator which acts on H2k by multiplication by k.
Then we set

(EΩ)g,n

(
n⊗
j=1

∆αj

)
:=

(
deg +

n∑
`=1

w`

)
Ωg,n

(
n⊗
j=1

∆αj

)
+ π∗Ωg,n+1

(
n⊗
j=1

∆αj ⊗
n∑
`=1

y`∆`

)
.

A CohFT is called homogeneous in genus g if (EΩ)g,n = [(g−1)d+n]Ωg,n for all n > 2−2g.
When a CohFT is homogeneous in genus zero, E is an Euler vector field for the underlying
formal Frobenius manifold.

Remark 6.1. Teleman Reconstruction Theorem [Tel12, Th. 1] asserts that a CohFT,
semisimple and homogeneous in all genera, can be uniquely reconstructed from the un-
derlying formal Frobenius manifold. The reconstruction is performed via the Givental group
action [Giv01].

The following result immediately follows from Theorem 5.1.

Theorem 6.2. For any semisimple and homogeneous (at least in genus 0) CohFT over
k = C, the potential F0(t) is convergent. In particular, there exist real positive constants
m, ρ1, . . . , ρn such that∣∣∣∣∣

∫
M0,|α|

Ω0,|α|
(
∆⊗α1

1 ⊗ · · · ⊗∆⊗αnn

)∣∣∣∣∣ 6 m
n∏
i=1

ραii , α ∈ Nn,

where we set |α| :=
∑

k αk. �



DEGENERATE RHB PROBLEMS, SEMISIMPLICITY, AND CONVERGENCE 29

6.2. Gromov-Witten theory. Let X be a smooth complex projective variety with vanish-
ing odd cohomology Hodd(X;C) = 0. Let (∆1, . . . ,∆n) be a homogeneous basis of H•(X;C),
with ∆1 = 1 and (∆2, . . . ,∆r+1) a NEF basis of H2(X;Z). Denote by η the Poincaré metric
η(α, β) :=

∫
X
α ∪ β. Introduce indeterminates Q := (Q1, . . . , Qr), and define the Novikov

ring Λ := Q[[Q]].

Gromov-Witten theory naturally provides a CohFT over the Λ-module H•(X; Λ) with
Λ-bilinearly extended Poincaré metric η. The maps Ωg,n are given by the counting of curves
on X,

Ωg,n

(
n⊗
i=1

∆αi

)
:=
∑
β

φ∗

(
[Mg,n(X, β)]vir ∩

n∏
i=1

ev∗i∆αi

)
Qβ ∈ H•(M0,n; Λ), (6.4)

where Qβ :=
∏r

i=1 Q
∫
β ∆i+1

i , Mg,n(X, β) is the Deligne-Mumford moduli space of n-pointed
stable maps with target X, genus g and degree β, evi : Mg,n(X, β) → X are the evaluation
morphisms and φ : Mg,n(X, β)→Mg,n is the morphism forgetting the map.

Equation (6.3) defines then a formal power series FX
0 ∈ Λ[[t]], called the genus 0 Gromov-

Witten potential of X. The corresponding formal Frobenius manifold over k = Λ is the
quantum cohomology of X. In order to work with formal Frobenius manifold over C we
make the following assumption.

Assumption A: There exist a point q ∈ Cr such that the series
∫
M0,n

Ω0,n (
⊗n

i=1 ∆αi)|Q=q

are convergent for any n > 3.

If Assumption A holds true, then the specialization FX
0 |Q=q is a formal power series in C[[t]].

We call big quantum cohomology of X (at Q = q) the corresponding formal Frobenius ma-
nifold over C. We call small quantum cohomology of X (at Q = q) the Frobenius C-algebra
structure defined on H•(X;C) with structure constants cγαβ := ηγµ

∫
M0,3

Ω0,3 (∆α∆β∆µ)|Q=q.

Remark 6.3. Assumption A holds true for all Fano varieties. This is because any sum
∑

β

in (6.4) reduces to a finite number of terms, so that Ω0,n (
⊗n

i=1 ∆αi) ∈ Q[Q]. See e.g. [CK99,
Prop. 8.1.3].

Remark 6.4. By the Divisor axiom of Gromov-Witten invariants, it follows that the po-
tential FX

0 can be seen as a formal power series in Q[[t1, Q1e
t2 , . . . , Qre

tr+1
, tr+2, . . . , tn]], see

[CK99, Man99]. If Assumption A holds true, without loss of generalities we can assume
that q = (1, 1, 1, . . . , 1): this correspond to a shift of coordinates ti+1 7→ ti+1 − log qi for
i = 1, . . . , r.

Remark 6.5. If X has generically semisimple quantum cohomology (as a formal Frobe-
nius manifold over Λ), then X is of Hodge-Tate type, i.e. the Hodge numbers hp,q(X) :=
dimCH

q(X,Ωp) vanish for p 6= q, see [HMT09].

Theorem 5.1 implies then the following result.

Theorem 6.6. Assume that Assumption A holds true. Then, if the small quantum coho-
mology of X at q is semisimple, then the function FX

0 (t)|Q=q has a non-empty domain of
convergence Mq ⊆ H•(X;C), which is equipped of a Dubrovin-Frobenius manifold struc-
ture. �
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Theorem 6.6 should be compared with other results in literature, differing in techniques. In
[Iri07], H. Iritani proved convergence of the big quantum cohomology of X under a different
assumption, namely that H•(X;C) is generated by H2(X;C), see [Iri07, Corollary 5.9].
Subsequently, in [CI15] T.Coates and H. Iritani proved the convergence (suitably defined) of
all potentials FXg given by (6.1), by assuming both convergence of FX

0 and semisimplicity.
Whenever the three-point Gromov-Witten correlators

∫
M0,3

Ω0,3 (∆α∆β∆µ) of X are ex-
plicitly known, and thus generators and relations for the small quantum cohomology ring
are given, it is a problem purely in computational commutative algebra to check generic
semisimplicity of the small quantum cohomology. Here, we limit ourselves to the following
claim6, which easily follows from [BM04, BM19, CMP10, Cio04, Cio05, Iri07, Per14].

Corollary 6.7. We have FX
0 ∈ Q{Q, t} in the following cases (not mutually excluding):

(1) X = G/P is a (co)minuscule homogeneous variety;
(2) X is a del Pezzo surface;
(3) X is a Fano toric variety;
(4) X is one of the following Fano threefolds:

• P3, a quadric Q3, V5, V22,
• M2

k with 21 6 k 6 36 and k 6= 23, 25, 28,
• M3

k with k = 10, 12, 15, 17, 18, 20, 24, 25, 27, 28, 30, 31,
• P1 × P2

k where P2
k is the blow-up of P2 at k points (1 6 k 6 8);

(5) X is a Fano general hyperplane section with index i(X) > 1
2
dimCX of a homogeneous

space in the following list:

Pn, the n-dimensional quadric Qn, LG(3, 6), F4/P1

Gr(2, 2n+ 1), OG(5, 10), OG(2, 2n+ 1), G2/P1;

(6) X is the Cayley Grassmannian parametrizing four dimensional subalgebras of the
complex octonions. �

Remark 6.8. It is known that there exist homogeneous spaces with non-semisimple small
quantum cohomology, [CMP10, CP11]. Isotropic Grassmannians IG(2, 2n) furnish an exam-
ple. It is also known, however, that their big quantum cohomology is generically semisimple
[GMS15, Per14, CMMPS19]. For these varieties, the results of the current paper do not allow
to infer the convergence of the genus zero Gromov–Witten potential, a working assumption
in [CMMPS19, Th. B].

There is an intriguing conjecture due to B.Dubrovin [Dub98, Conj. 4.2.2] stating the
equivalence of the semisimplicity of the (big) quantum cohomology of a variety X (originally
assumed to be Fano) and the existence of full exceptional collections in the derived category
of coherent sheaves Db(X). In its most updated formulation, under the assumption of
convergence of the genus zero Gromov-Witten potential FX

0 , Dubrovin’s conjecture also
predicts the monodromy data of the system (5.9) (in the terminology of the current paper,
the admissible data M) in terms of characteristic classes of the objects of these exceptional
collections, see [GGI16, CDG18, Cot20]. In [Dub98, §4.2, Problem 1] Dubrovin also briefly
addressed the problem of convergence of the genus zero Gromov-Witten potential FX

0 . In
6Surely enough, such a list does not cover all the known cases of semisimple small quantum cohomologies

available in literature.
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this regard, Dubrovin adds: «Hopefully, in the semisimple case the convergence can be proved
on the basis of the differential equations of n.3 ». Theorems 6.6 fulfills Dubrovin’s hope.
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