
Exact results and Schur expansions in quiver

Chern–Simons-matter theories

Leonardo Santillia and Miguel Tierzb,a
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Abstract: We study several quiver Chern–Simons-matter theories on the three-sphere, combining

the matrix model formulation with a systematic use of Mordell’s integral, computing partition

functions and checking dualities. We also consider Wilson loops in ABJ(M) theories, distinguishing

between typical (long) and atypical (short) representations and focusing on the former. Using the

Berele–Regev factorization of supersymmetric Schur polynomials, we express the expectation value

of the Wilson loops in terms of sums of observables of two factorized copies of U(N) pure Chern–

Simons theory on the sphere. Then, we use the Cauchy identity to study the partition functions

of a number of quiver Chern–Simons-matter models and the result is interpreted as a perturbative

expansion in the parameters tj = −e2πmj , where mj are the masses. Through the paper, we

incorporate different generalizations, such as deformations by real masses and/or Fayet–Iliopoulos

parameters, the consideration of a Romans mass in the gravity dual, and adjoint matter.
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1 Introduction

In the last decade, the combined use of random matrix techniques together with the application

of the supersymmetric localization method [1] has produced a wealth of analytical results in the

study of supersymmetric gauge theories on compact manifolds, in a number of dimensions [2].

Both finite N properties and large N phenomena such as phase transitions have been elucidated

by applying standard matrix model tools.

A very tractable set of theories in this area corresponds to Chern–Simons theories with su-

persymmetric matter in three dimensions [3] (see [4] for an overview on localization in three

dimensions and [5] for an early review of Chern–Simons-matter matrix models). While a large

number of results have already been uncovered for these models, we develop here further exact

analytical characterizations of such theories, using the matrix model formulation. For this, we will

be supplementing the matrix model approach with other analytical tools, such as the consideration

of the so-called Mordell integral [6] which, in spite of its deceptively simple appearance, unpacks

a wealth of analytical and physical information.

In Section 2 we will be presenting the necessary details, not only on Mordell’s integral but on

the other mathematical tools used. This Section will provide physics background as well and hence

can also be used as Introduction, while we sketch now below the results and methods followed in

a more qualitative and panoramic manner.

In contrast to previous works following a similar approach to the one in our first part of the

paper [7–9], our study will include quiver Chern–Simons-matter theories. In this way, in this first

part, contained in Section 3, we compute exactly the partition functions of various examples of

Chern–Simons-matter theories on the three-sphere, systematically exploiting and interpreting the

above mentioned result by Mordell [6]. The theories to be studied will be mostly Abelian quiver

models whose computation is nevertheless laborious, but made possible by Mordell’s result.

Some of these evaluations are actually duality checks. For example, we compute explicitly

the partition function of the U(1)3 theory, which, once particularized to Chern–Simons levels

(k1, k2, k3) = (1,−1, 1), becomes the so-called Model III of Jafferis and Yin [10], and we obtain,

as expected by duality, the equality with the simpler to compute, and known, partition function

of SQED with two fundamental hypermultiplets and no Chern–Simons coupling.

Non-Abelian quiver theories, with the U(1)k1×U(2)k2 theory as main example, are also briefly

discussed and moreover we present the setup and sufficient conditions to evaluate the partition

function of Abelian linear Chern–Simons quivers of arbitrary rank by iterative application of

Mordell integrals.

We shall also be studying ABJ theories [11], that are N = 6 U(N1)k × U(N2)−k Chern–

Simons theories with two bi-fundamental hypermultiplets. As it is well-known, they generalize

ABJM theory [12], which is recovered when N1 = N2 =: N . There are exact computations of

observables in ABJM theory when N = 2 in [13], and in [14] when mass and Fayet–Iliopoulos

deformations are turned on. Besides, the partition function of ABJ theory with arbitrary rank has

been evaluated in [15] using the continuation from Chern–Simons theory on the lens space L(2, 1)

as introduced in [16]. In [17], the result was confirmed through a direct integral transformation.

Thus, in Subsection 3.4, we complement these works by extending this type of analytical

evaluations. We will give mass to the bi-fundamental hypermultiplets and add a Fayet–Iliopoulos

parameter, and consider the deformed Abelian ABJM theory with Chern–Simons levels k1 and k2,

reflecting the presence of a Romans mass in the dual gravitational theory [18].
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Then, in Section 4, we will focus our attention on the vacuum expectation values of correlators

of Wilson loops in ABJ(M) theory on S3. Among the various order loop operators in ABJ(M)

theories [19], we will consider 1
2 -BPS Wilson loops [20], whose expectation value is captured by

a matrix model that corresponds to the insertion of supersymmetric Schur polynomials in the

ABJ(M) matrix model [16, 20].

As a novel consideration in the context of the study of such averages, we distinguish between

typical (long) and atypical (short) representations and focus on the former, using the so-called

Berele–Regev factorization of supersymmetric Schur polynomials [21] to give expressions in terms

of sums of observables of U(N) Chern–Simons theory on S3. The necessary background is given

in the introductory Subsections 4.1 and 4.2.

As a matter of fact, the case of correlators is often simpler, with this approach, than the

study of a single Wilson loop average. For example, by considering the case of two Wilson loops,

we shall show that a consequence of the Berele–Regev factorization [21], is that the interacting

term of the ABJ two-matrix model cancels out directly, and we immediately obtain the direct,

disentangled product of two correlators of pairs of Wilson loops in U(N) Chern–Simons on S3,

each one computed independently, giving quantum dimensions. Furthermore, we will show in

Subsection 4.5 how this formalism extends to quivers.

Then, in Section 5, we discuss a broad class of quiver Chern–Simons theories and our main

tool will be the Cauchy identity. Its use entails expanding the matter contribution in a basis of

symmetric functions, the Schur basis. As we shall show, these Schur expansions in the matrix model

are perturbative evaluations of the observables described by the matrix model representation.

The perturbative meaning of the results has its roots in the nature of the Cauchy identity,

reviewed in Subsection 2.4. Importantly, the results are not perturbative in the gauge couplings,

but in certain other variables playing the role of fugacities for the flavour symmetries. In Subsection

5.4 we will combine the Cauchy identity with the Berele–Regev factorization and the results of

Section 4 to study the expectation value of a single Wilson loop in ABJ theory.

In the Outlook Section, we conclude by discussing possible avenues for further research. Tech-

nical details, including non-trivial aspects of the solution by Mordell are presented in Appendix A,

in pedagogical manner. Additionally, we also present further discussion of aspects of Section 5. In

particular, in Appendix B, we provide commentary regarding eventual comparisons between the

expansions obtained and generating function of knot invariants, while also giving explicit Schur

expansions for selected quivers in Appendix C.

2 Physics background and mathematical setup

2.1 Chern–Simons theories on S3

We consider Chern–Simons-matter theories withN ≥ 3 supersymmetry in three dimensions. These

theories are obtained deforming the action of N = 4 theories of vector and hypermultiplets by

Chern–Simons (CS) couplings that preserve at least six of the eight supercharges. The resulting

theories have a SU(2)R R-symmetry, but when the microscopic, non-conformal theory is put on

S3, only a maximal torus U(1)R ⊂ SU(2)R is manifest. On a practical level, this amount of

supersymmetry guarantees that:

• the CS levels are not renormalized, and that
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• we can identify the R-charges in the UV, where our computations are performed, with the

R-charges in the IR, where the theory is strongly coupled.

There exists a vast literature describing the moduli spaces of vacua of these gauge theories,

the most directly relevant for the present work being [22–25]. All the theories we discuss can

be engineered in type IIB string theory using, beyond D3, D5 and NS5 branes, also (p, q)-branes

[26, 27].

We first recall how to write the partition function of a 3d N ≥ 3 theory on S3 [3], which also

serves as a presentation of our notation and conventions. The Chern–Simons theories we study

have unitary gauge groups of the form

U(N1)× U(N2)× · · · × U(Nr).

Besides, we mainly consider hypermultiplets in the fundamental representation of a gauge group

factor U(Np), as well as in the bi-fundamental representation of U(Np)× U(Np+1).

In quiver notation, the number of nodes is r, with the node p corresponding to a gauge

factor U(Np), for p = 1, . . . , r. Unoriented edges between two nodes represent the bi-fundamental

hypermultiplets.

The partition function receives the contributions [3]:

vector multiplet at node p:
∏

1≤a<b≤Np

(2 sinhπ(xp,a − xp,b))2 ,

CS term at node p:

Np∏
a=1

eiπkp(xp,a)2
,

bi-fund. hypers between p and p′:

Np∏
a=1

Np′∏
a′=1

(
2 coshπ(xp,a − xp′,a′)

)−1
.

The CS levels are kp, which are required to be integers when Np > 1 but can be rational for an

Abelian gauge factor, Np = 1. The isomorphism U(N) ' [U(1)×SU(N)]/ZN shows that each node

yields an Abelian factor, to which there corresponds a topological global U(1)top symmetry. Real

Fayet–Iliopoulos (FI) parameters ζp are introduced as background values of a twisted Abelian

vector multiplet for the U(1)top,1 × · · · × U(1)top,r symmetry. Furthermore, if we attach Nf,p

fundamental hypermultiplets to the node p, we can turn on real masses ~m = (mp,j)
p=1,...,r
j=1,...,Nf,p

as

background values of a vector multiplet for the global symmetry PS[U(Nf,1) × · · · × U(Nf,r)]

rotating the fundamentals. The tracelessness condition constrains the masses |~m| = 0. The

contributions of FI terms and massive hypermultiplets to the partition function are:

FI term at node p:

Np∏
a=1

ei2πζpxp,a ,

fund. hypers at node p:

Nf,p∏
j=1

Np∏
a=1

(2 coshπ(xp,a +mp,j))
−1 .

Eventually, we have to integrate over all the xp,a. These variables parametrize the Cartan subal-

gebra of the gauge group,

~x = (xp,a)
p=1,...,r
a=1,...,Np

∈ u(1)N1 × · · · × u(1)Nr ' RN1+···+Nr .
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If we let R be the radius of S3, these adimensional variables are ~x = Rσ|loc, where σ|loc is the

value of the real scalar σ in the vector multiplet at the localization locus. The parameters ~m are

adimensional as well, ~m = Rσb.g. for σb.g. the scalar in the background vector multiplet.

2.1.1 ABJ(M) theories and CS levels

ABJ(M) theories [11, 12] are U(N1)×U(N2) CS theories with N = 6 supersymmetry, which forces

the CS level to be (k1, k2) = (k,−k). In quiver notation, these are extended Â1 quiver theories.

They have their origin in string/M-theory, and have been conceived as the gauge theory dual to

the N = 6 gravity solution on AdS4 × CP3.

A natural question on the gauge theory side is whether there exists a theory with generic

levels (k1, k2). This point has been addressed in the early days of ABJM theory by Gaiotto and

Tomasiello in [18]. It is possible to deform ABJ(M) theories to arbitrary levels deforming the

gravity dual solution by a Romans mass, commonly denoted F0. There are different ways to do so

[18], and we will only consider the N = 3 supersymmetric solution. The resulting gauge theory has

the same field content of the ABJ(M) theory, but with CS levels (k1, k2) that obey k1 + k2 = F0.

For the deformation of other Chern–Simons-matter theories by a Romans mass in the gravity dual,

see for example [28, 29].

We remark that, by mass deformations, we will not refer to a Romans mass, and instead

always mean the procedure described above to give mass to the hypermultiplets promoting the

masses to background scalar fields.

2.1.2 1
2-BPS Wilson loops

In N ≥ 3 supersymmetric Chern–Simons theories, supersymmetry-preserving Wilson loops in a

representation R of the gauge group wrap a great circle in S3. Their vacuum expectation value

(vev) is computed by localization [3]:

〈WR〉 =
〈

TrRe
2πRσ|loc

〉
.

In the formula, 2πR is the length of the great circle, σ|loc is the value of the real scalar σ at

the localization locus as explained above, TrR is the normalized trace in the representation R
and 〈· · · 〉 means the average of the quantity in the ensemble obtained from localization, which of

course depends on the theory under study.

In quiver CS theories it is possible to construct Wilson loops charged under a U(N) factor of

the gauge group that preserve (at least) two supercharges. For the special case of ABJ theories,

however, it is possible to consider Wilson loops in a representation R of the supergroup U(N1|N2)

that preserve half of the N = 6 supersymmetry, that is 1
2 -BPS Wilson loops [20, 30].

2.1.3 Unknot invariant in pure Chern-Simons theory

The vev of a Wilson loop in bosonic pure Chern–Simons theory computes the unknot invariant

[31]. It was first evaluated with the CS matrix model in [32], giving:

〈Wµ〉CS(N) = (dimq µ) q−
1
2
C2;N (µ). (2.1)

In the computation in [32] it was shown that the integration of a Schur polynomial in a Stieltjes–

Wigert ensemble (and equivalently, in the CS matrix model [33]) gives the principal specialization

of the Schur polynomial, leading to the expression (2.1). This property has been discussed, later
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on, in a broader sense in [34, 35] (see also [36] for a general discussion of two Schur polynomial

insertions).

In (2.1) the q-parameter was taken to be real 0 < q = e−g < 1 and is related to the q-parameter

of CS theory at level k through the analytic continuation

g 7→ i2π

k
, (2.2)

dimq µ is the quantum dimension of the representation µ and C2;N (µ) is the quadratic Casimir of

U(N) in the representation µ. Knot and link invariants computed in Chern–Simons theory come

equipped with a framing [31], and we stress that (2.1) is computed not in canonical framing but

in the matrix model framing, which is a specific case of Seifert framing.

2.2 Mordell integrals

The two integrals we will exploit are [6]:

Ψ+(ξ, λ;κ, %) :=

∫ +∞

−∞
dx
e
iπ κ
%
x2−2πxξ

e2πx − ei2πλ

=
e
−iπλ

(
2+2ξ+κ

%
λ
)

e
iπ%
(

2ξ+2κ
%
λ−κ

)
− 1

−√ i%

κ

κ∑
α=1

e
iπ %
κ

(
ξ+κ

%
λ+α

)2

+ i

%∑
β=1

e
iπβ
(

2ξ+2κ
%
λ−κ

%
β
) (2.3)

and

Ψ−(ξ, λ;κ, %) :=

∫ +∞

−∞
dx
e
−iπ κ

%
x2−2πxξ

e2πx − ei2πλ

=
e
−iπλ

(
2+2ξ−κ

%
λ
)

e
iπ%
(

2ξ−2κ
%
λ−κ

)
− 1

√− i%
κ

κ−1∑
α=0

e
−iπ %

κ

(
ξ−κ

%
λ−α

)2

+ i

%∑
β=1

e
iπβ
(

2ξ−2κ
%
λ+κ

%
β
) , (2.4)

valid for κ, % ∈ Z>0 and 0 < <λ < 1. Note that the left-hand side only depends on the ratio κ/%.

Strictly speaking, these identities only appear in [6, Eq. (8.1)-(8.2)] for λ = 0, but can be easily

extended mimicking the manipulations that lead to [6, Eq. (3.8)]. Since, in doing so, there is a

subtlety in the choice of integration contour, we spell the details in Appendix A for completeness.

The building blocks of our solutions will be the integrals

Ik(y, ξ̌) :=

∫ +∞

−∞
dx
eiπkx

2+2πxξ̌

e2πx + e2πy
, (2.5)

for rational k. Comparing with (2.3) and (2.4), it is clear that

Ik(y, ξ̌) =

{
Ψ+(ξ = −ξ̌, λ = 1

2 − iy;κ, %) if k = +κ
% ;

Ψ−(ξ = −ξ̌, λ = 1
2 − iy;κ, %) if k = −κ

% ,
(2.6)

for κ, % ∈ Z>0.
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2.3 Moments of the log-normal

We introduce the moments of the log-normal distribution, which will appear in our computations.

Using a change of variables of the form Xa = e2πxa , it was shown in [33] that the partition function

of U(N) Chern–Simons theory on S3, analytically continued to q = e−g, g > 0, is proportional the

partition function of the Stieltjes–Wigert (SW) ensemble. Hence, pure Chern–Simons is solved by

polynomials orthogonal with respect to the measure

e
− 1

2g
(logX)2

dX,

on 0 < X <∞, after the continuation g 7→ i2π
k introduced in (2.2). The moments of the log-normal

measure are

µα(g) =

∫ +∞

0

dX

2πX
Xαe

− 1
2g

(logX)2

=

∫ ∞
−∞

dxe
− 4π

g
x2+2παx

,

defined for <g > 0 and α ∈ Z. We immediately find

µα(g) =

√
g

2π
eg

α2

2 =

√
g

2π
q−

α2

2 .

We can collect these moments into a formal generating series:

P (z; g) =
∑
α∈Z

zαµα(g). (2.7)

In the present work, as usual for CS theories, we are interested in the analytic continuation (2.2),

and we write

µ̃α(k) =

√
i

k
q−

α2

2 (2.8)

to denote the moment continued as prescribed in (2.2). When q is a κth root of unity, namely

|k| = κ
% , the generating series (2.7) only contains |κ| different terms, hence we can resum it:

P̃ (z; k) =
∑
n∈Z

κ∑
α=1

znκ+αµ̃α(k) =
κ∑

α=1

[ ∞∑
n=0

znκ+αµ̃α(k) +
∞∑
n=0

z−nκ+αµ̃α(k)

]

=
κ∑

α=1

zαµ̃α(k). (2.9)

This type of resummation is the reason [37] why only integrable U(N) representations con-

tribute to the partition function of Chern–Simons theory on S3 with q root of unity [31], while all

the unitary irreducible representations contribute when q is analytically continued to q = e−g.

Looking back at the Mordell integrals (2.3)-(2.4) we notice that the first of the two sums in

Ψ± when ξ ∈ Z gives precisely

eiπkλ
2
P̃
(
ei2πλsign(k); k

)
,

up to an irrelevant shift in the range of the variable α, now running on 1 + ξ, . . . , κ+ ξ in Ψ+ and

on −ξ, . . . , κ − ξ − 1 in Ψ−. The overall Gaussian coefficient is cancelled by a contribution from

the numerator of the overall term in (2.3)-(2.4). We will see that the fugacity ei2πλ will play a

central role, as further discussed in Sections 3.3 and 5.
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2.4 Cauchy identities, Gauss sums and notation

For later convenience, we state here relevant mathematical identities which we will exploit in the

text.

2.4.1 Cauchy identity

The Cauchy identity [38, 39]:

N1∏
a=1

N2∏
ȧ=1

1

1−XaYȧ
=
∑
ν

sν(X1, . . . , XN1)sν(Y1, . . . , YN2) (2.10)

where sν is the Schur polynomial [38, 39] labelled by the Young diagram ν satisfying

length(ν) ≤ min {N1, N2} .

This is a well-known identity, which has become increasingly familiar, and useful, in many

contexts, especially in random matrix theory [36, 40–42]. However, it is deceptively simple and

this becomes more manifest when approaching it from the point of view of representation theory.

We mention this as it gives some insight into some of the results in our paper, as we will find

expressions in terms of simple observables of U(N) Chern-Simons theory on S3.

The result can be proven by taking a trace of a representation of GLN (C) in two different

ways [39, 43]:

(i) as the sum of traces of irreducible sub-representations, and

(ii) as sum of weight spaces, which are irreducible sub-representations for a maximal torus.

This will be relevant in our setting because viewing the trace as (ii) leads to a determinantal

expression which is of the type the localization method gives for hypermultiplets. For the case of

ABJ(M) theories, the matrix model representation of the partition function is a two-matrix model

and the interaction term can also be cast in such determinant form. This observation holds more

generally for quiver theories.

First of all, the Schur polynomial sµ(X1, . . . , XN ) is the character Tr (πµ) of the holomorphic

irreducible representation πµ of GLN (C) with highest weight µ, evaluated on diagonal matrices

with entries X1, ..., XN . Let E be the collection of complex N -by-N matrices, and consider the

space C[E] of holomorphic polynomials on it. GLN (C) × GLN (C) has a well-known action on

C[E] and the representation πµ ⊗ πµ occurs only once, giving the decomposition of C[E] in terms

of irreducible GLN (C) representations as:

C[E] '
∑

µ:µN≥0

πµ ⊗ πµ.

Taking the trace of this expression leads to the right-hand side of (2.10). That is:

TrC[E] =
∑

µ:µN≥0

Tr (πµ ⊗ πµ) =
∑

µ:µN≥0

Trπµ · Trπµ =
∑

µ:µN≥0

sµ · sµ.

The other way to do this counting, is to consider that the monomials in C[E] are weight vectors

for the subgroup DN ×DN of diagonal matrices in GLN (C)×GLN (C). Thus, evaluating the trace
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on diagonal elements X × Y ∈ DN ×DN ,

TrC[E](X × Y ) =

N∏
a,ȧ=1

∑
naȧ≥0

(XaYȧ)
naȧ =

N∏
a,ȧ=1

1

1−XaYȧ
=

1

det (1−X ⊗ Y )
.

Note that the second equality holds analytically if |Xa| < 1 and |Yȧ| < 1, and algebraically

otherwise [40, 43]. This establishes the Cauchy identity for diagonal elements, but, with both sides

being conjugation-invariant, it actually holds for all diagonalizable elements of GLN (C)×GLN (C).

In turns, these are dense, therefore the Cauchy identity holds for any X,Y ∈ GLN (C) [43]:∑
µ:µN≥0

sµ(X) · sµ(Y) = TrC[E](X×Y) =
1

det (1−X⊗Y)
.

When N2 = 1, the Cauchy identity reduces to the generating function of the complete homo-

geneous symmetric polynomials hν [38]:

N∏
a=1

1

1−XaY
=

∞∑
ν=0

Y νhν(X1, . . . , XN ), (2.11)

where

hν(X1, . . . , XN ) =
∑

1≤a1≤2≤···≤aν≤N
Xa1 · · ·Xaν .

Equivalently,

hν(X1, . . . , XN ) =
∑

µ,|µ|=ν

mµ(x1, · · · , xN ), ∀ν ∈ Z≥0,

with mµ(x1, . . . , xN ) = xµ1
1 · · ·x

µN
N being the monomials [38] and the sum running over all partitions

µ of size |µ| = ν.

There exists a related identity, known as dual Cauchy identity [39]:

N1∏
a=1

N2∏
ȧ=1

(1 +XaYȧ) =
∑
ν

sν′(X1, . . . , XN1)sν(Y1, . . . , YN2) (2.12)

with ν ′ the conjugate partition, obtained transposing rows and columns of the Young diagram of

the partition ν. An important aspect of (2.12) is that, differently from (2.10), the sum contains a

finite number of terms, due to the restriction

length(ν ′) = ν1 ≤ N ≡ min {N1, N2} .

Therefore the sum in (2.12) only involves partitions whose Young diagrams fit in a N ×N square.

When N2 = 1, this latter Cauchy identity reduces to the generating function of the elementary

symmetric polynomials eν [38]:

N∏
a=1

(1 +XaY ) =
N∑
ν=0

Y νeν(X1, . . . , XN ), (2.13)

where

eν(X1, . . . , XN ) =
∑

1≤a1<2<···<aν≤N
Xa1 · · ·Xaν .
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2.4.2 Gauss sums

The Gauss sum identity [7]:

1√
iκ

κ−1∑
α=0

e
iπ
κ (α−`−κ2 )

2

= 1, (2.14)

valid for κ ∈ Z>0 and for every ` ∈ Z. This formula will be instrumental to obtain the massless

limit of all the computations in Section 3.

2.4.3 Remarks on notation

To avoid clutter, whenever possible we will change the notation xp,a for a more suitable one. For

example, for r = 2, we will write (xa, yȧ) instead of (x1,a, x2,a′). Similarly, we will mostly denote

the masses simply {mj}, when it is clear from the context to which node each one is attached.

Besides, throughout the work, we will sometimes switch to exponentiated variables, which we will

denote with upper case letters. So, for example, we will use Xa = e2πxa , Mj = e2πmj and so on.

Moreover, for a given CS level k, we define as usual

q = exp

(
− i2π

k

)
. (2.15)

The field content of the theories we study is conveniently encoded in A-type Dynkin diagrams

or in affine Â-type Dynkin diagrams. We will interchangeably call the first class A quivers or linear

quivers, and the second class Â quivers, extended quivers or necklace quivers.

We draw such quivers in the 3d N = 4 quiver notation, so the edges represent hypermultiplets

in the bi-fundamental representations and are not directed. The CS levels will not be explicit in

the quiver diagrams. Moreover, the Dynkin diagram notation will refer only to the gauged nodes,

or, stated more formally, we will always refer to the quiver and not to the framed quiver.

3 Evaluation of partition functions

3.1 U(1)k Chern–Simons theory with a fundamental hypermultiplet

We start our analysis revisiting the simplest Chern–Simons theory that includes matter: U(1)k
Chern–Simons theory with a fundamental hypermultiplet, represented in Figure 1.

1 1

Figure 1. U(1)k theory with Nf = 1 fundamental flavour. This is an Abelian A1 quiver.

The moduli space of vacua of the theory in flat space has been analyzed in [44], with a focus

on its S-duality properties. The CS term gives a topological mass to the vector multiplet, lifting

the Coulomb branch. The moduli space has a non-compact one-dimensional Higgs branch, which

is also lifted turning on a real mass deformation. In an Abelian CS theory, admitting rational k,

S-duality acts as the S-matrix of the SL(2,Z) group on the coupling while exchanging mass and

FI terms

k 7→ −1

k
, ζ 7→ m m 7→ −ζ. (3.1)

The theory with gauge group U(1) and Nf = 1 is self-dual under S-duality [44].
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The partition function at rational CS level k and with mass and FI parameters turned on is

ZU(1),1 (k,m, ζ) =

∫ +∞

−∞
dx

eiπx
2k+i2πζx

2 coshπ(x+m)
. (3.2)

We do not need to consider both deformations: shifting variables x′ = x+m we get

ZU(1),1 (k,m, ζ) = eiπkm
2+i2πmζZU(1),1 (k, 0, ζ − km) , (3.3)

while shifting variables x′ = x+ ζ/k we get

ZU(1),1 (k,m, ζ) = e−i
π
k
ζ2ZU(1),1

(
k,m− ζ

k
, 0

)
. (3.4)

Therefore, it is sufficient to take one of the two deformations, and the more general result fol-

lows immediately. Note how the prefactor suffers a change k 7→ − 1
k when the roles of m and ζ

are exchanged, as well as the presence of the additional phase ei2πζm in (3.3), coupling the FI

background twisted vector multiplet to the flavour background vector multiplet.1

From the integral representation (3.2) the self-duality is easily proven:

ZU(1),1 (k,m, ζ) =

∫ +∞

−∞
dx

∫ +∞

−∞
dy
eiπx

2k−i2πx(y−ζ)e−i2πym

2 cosh(πy)

=

√
i

k
e−i2πmζ

∫ +∞

−∞
dy

e−i
π
k
y2−i2πym

2 coshπ(y + ζ)
=

√
i

k
e−i2πmζZU(1),1

(
−k−1, ζ,−m

)
,

where we have used the fact that (coshπx)−1 is Fourier transformed into itself.

We now use Mordell’s formula to evaluate exactly the partition function. Starting with m 6= 0

and ζ = 0 in (3.2) we have

ZU(1),1 (k,m, 0) = e−πmIk
(
−m, 1

2

)
, (3.5)

given in terms of a Mordell integral. For rational k with |k| = κ
% , (2.6) gives

ZU(1),1 (k > 0,m, 0) =
1

1− (−1)κ%−κ+%e−2πκm

−eiπk(m− i
2)

2
%∑

β=1

(
−e−2πkm

)β
e−iπkβ(β−1)

+

√
i

k

κ∑
α=1

(
−e−2πm

)α− 1
2 ei

π
k (α− 1

2)
2

}
, (3.6)

ZU(1),1 (k < 0,m, 0) =
1

1− (−1)κ%−κ−%e2πκm

eiπk(m− i
2)

2
%∑

β=1

(
−e−2πkm

)β
e−iπkβ(β−1)

+

√
i

|k|

κ−1∑
α=0

(
−e2πm

)α− 1
2 ei

π
k (α− 1

2)
2

}
. (3.7)

1The minus sign m 7→ −ζ in (3.1) comes from our conventions, presented in Subsection 2.1. The necessity of that

sign can be checked applying S-duality to (3.3) and (3.4).
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The factor e−πm in (3.5) is cancelled against a contribution from the overall factor in the Mordell

integrals (2.3)-(2.4).

When k ∈ Z, hence % = 1, these latter two expressions reduce to

ZU(1),1 (k > 0,m, 0) =
eiπk(m

2− 1
4)+πm

2 cosh(πkm)
+

1

1 + e−2πkm

√
i

k

k∑
α=1

(
−e−2πm

)α− 1
2 q−

1
2(α− 1

2)
2

,

ZU(1),1 (k < 0,m, 0) = −e
iπk(m2− 1

4)+πm

2 cosh(πkm)
+

1

1 + e−2πkm

√
i

k

|k|−1∑
α=0

(
−e2πm

)α− 1
2 q−

1
2(α− 1

2)
2

.

The result is a real analytic function of m, and is holomorphic in the usual “physical” strip

−1
2 < =m < 1

2 . Note that, using the relation λ = 1
2 + im (see (2.6)) between the physical variable

m and the variable λ of [6], the result is holomorphic in 0 < <λ < 1, in agreement with the proof

in Appendix A, based on [6].

Setting instead m = 0, ζ 6= 0 in (3.2) we have

ZU(1),1 (k, 0, ζ) = Ik
(

0, ξ̌ =
1

2
+ iζ

)
.

The solution is read off from (2.6) for any rational k,

ZU(1),1 (k > 0, 0, ζ) =− e−i
π
4
k−πζ

1− (−1)κ−%−κ%e2π%ζ

%∑
β=1

(
−e2πζ

)β
e−iπkβ(β−1)

− ie−i
π
k
ζ2

1− (−1)κ−%−κ%e2π%ζ

√
i

k

κ∑
α=1

(
−e2π

k
ζ
)α− 1

2
ei
π
k (α− 1

2)
2

, (3.8)

ZU(1),1 (k < 0, 0, ζ) =− e−i
π
4
k−πζ

1− (−1)κ+%+κ%e2π%ζ

%∑
β=1

(
−e2πζ

)β
e−iπkβ(β−1)

− ie−i
π
k
ζ2

1− (−1)κ+%+κ%e2π%ζ

√
i

|k|

κ∑
α=1

(
−e−2π

k
ζ
)α− 1

2
ei
π
k (α− 1

2)
2

. (3.9)

When k ∈ Z it takes the simpler form:

ZU(1),1 (k > 0) =
e−iπ

k
4

2 cosh(πζ)
− 1

e2πζ + 1

√
i

k

k∑
α=1

(−1)αq−
1
2(α− 1

2
−iζ)

2

,

ZU(1),1 (k < 0) =
e−iπ

k
4

2 cosh(πζ)
− 1

e2πζ + 1

√
i

k

|k|∑
α=1

(−1)αq−
1
2(α− 1

2
+iζ)

2

,

where we recall that q = e−i2π/k from (2.15). The solution is real analytic in ζ ∈ R and holomorphic

in the strip −1
2 < =ζ <

1
2 .

We recognize the generating polynomial of the moments of the SW distribution when q is a

kth root of unity, P̃ (z; k), evaluated at z = −e−sign(k)2πm for the theory with only mass term and

at z = −qξ̌ for the theory with only FI term.

Direct inspection shows that

(3.6) =

√
i

k
× [(3.9) with −ζ = m and κ↔ %] ,
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and likewise for (3.7) and (3.8). This together with the relations (3.3)-(3.4) gives a full check of

the self S-duality of the solution.

We plot the result (3.6) of ZU(1),1 with positive rational k and ζ = 0 in Figure 2 and 3. Being

q a κth root of unity, at fixed κ and varying % the values of the partition function are placed along

rays in C. Increasing κ increases the number of rays.

Figure 2. Left: Plot of ZU(1),1 with k = κ
% , ζ = 0, m = 0.2 at fixed κ = 5 and varying % = 1, . . . , 104.

Right: Same plot, with points obtained from consecutive values of % joined by a segment.

Figure 3. Plot of ZU(1),1 with k = κ
% , ζ = 0, m = 0.02 at fixed κ and varying %. The points obtained

from consecutive values of % are joined by a segment. Left: κ = 8, % = 1, . . . , 2 × 104. Right: κ = 13,

% = 1, . . . , 104.

As the result holds upon complexification of the mass with |=m| < 1
2 , it is instructive as well

to plot the partition function at fixed κ and increasing % for complex values of m, as we do in

Figure 4 (for κ = 5) and Figure 5 (for κ = 8).
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Figure 4. Plot of ZU(1),1 with k = κ
% , at fixed κ = 5. Left: m =

√
0.03 + i0.1 and % = 1, . . . , 104. Right:

m = 0.1 + i
√

0.03 and % = 1, . . . , 2× 104.

Figure 5. Plot of ZU(1),1 with k = κ
% , at fixed κ = 8 and varying % = 1, . . . , 104. Left: m =

√
0.03 + i0.1.

Right: m = 0.1 + i
√

0.03.

3.2 Single node quivers

3.2.1 Abelian A1 theory with two flavours

We consider a U(1) CS theory with two massive hypermultiplets in the fundamental representation,

see Figure 6. The result we present for this theory has been first derived in [7], and we revisit it

here as a warm up.

1 2

Figure 6. Abelian A1 quiver with Nf = 2 fundamental flavours.

The theory has SU(2) flavour symmetry and the hypermultiplets have masses (+m,−m). The
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partition function is

ZU(1),2(k,m) =

∫ ∞
−∞

dx
eiπkx

2

4 coshπ (x−m) coshπ (x+m)

=
1

2 sinh(2πm)

∫ ∞
−∞

dxeiπkx
2+2πx

[
1

e2πx + e−2πm
− 1

e2πx + e2πm

]
=
Ik(−m, 1)− Ik(m, 1)

2 sinh(2πm)
,

where in the last line we have recognized (2.5). The solution in terms of the Mordell integrals

(2.3) (when k > 0) or (2.4) (when k < 0) holds for any non-zero rational CS level. However,

the expressions are clearer for k ∈ Z. Under such assumption, from equation (2.6) and simple

manipulations, we obtain

ZU(1),2(k,m) =
1

2 sinh(2πm)

[
− ie

iπk(m2− 1
4)

sinh(πkm)
− P̃ (−e−2πm; k)

e−2π|k|m − 1
+
P̃ (−e2πm; k)

e2π|k|m − 1

]
, (3.10)

with the polynomial P̃ (z; k) defined in (2.9). We also have shifted the summation range hidden in

P̃ (z; k), so that the sum runs over α = 0, . . . , k − 1 if k > 0 and α = 1, . . . , |k| if k < 0.

The masses of the hypermultiplets have played a central role in the derivation, but we can

take the massless limit of our final result [7]. Despite each term being divergent, a careful analysis

and the application of the Gauss sum identity (2.14) show that the result is finite and well defined,

and reads

ZU(1),2(k > 0,m→ 0+) =
e−iπ

k
4

(2πm)2k

[
−i+ i

1√
ik

k−1∑
α=0

e
iπ
k (α+ k

2 )
2
(

1 + 2π2m2

(
α2 +

k2

6
− αk

))]

=

√
i

k

k−1∑
α=0

(−1)αq−
α2

2

[
1

k

(
α− k

2

)2

− k

12

]
,

where to go from the first to the second line we have used (2.14). The analogous result when k < 0

is derived by the same steps.

The solution of the Mordell integrals Ψ± requires 0 < <λ < 1, and we have used λ = 1
2 ± im.

Therefore we can complexify the masses in the strip −1
2 < =m < 1

2 , which is the usual “physical”

region in which the integrals from localization do not develop singularities.

3.2.2 Abelian A1 theory with Nf flavours

1 Nf

Figure 7. Abelian A1 quiver with Nf fundamental flavours.

The analysis of the Abelian A1 theory with two flavours is easily generalized to the case of Nf

flavours, represented in Figure 7. We assume the hypermultiplets have distinct masses, ms 6= mj

for s 6= j, j = 1, . . . , Nf , and also turn on a FI parameter ζ ∈ R. Using the identity

Nf∏
j=1

1

1 +MjX
=

Nf∑
j=1

1

1 +MjX

∏
s 6=j

1

1− Ms
Mj

, (3.11)
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we can rewrite the partition function of the theory as

ZU(1),Nf (k, ~m, ζ) =

∫
dx

eiπkx
2+i2πζx∏Nf

j=1 2 coshπ(x+mj)

=

Nf∑
j=1

e2πmj(Nf−2)∏
s 6=j (e2πmj − e2πms)

Ik
(
−mj ,

Nf

2
+ iζ

)
,

where we have used
∑Nf

j=1mj = 0. From (2.6) we obtain an explicit solution in terms of a sum of

Mordell integrals for every rational value of the CS level k:

ZU(1),Nf (k > 0, ~m, ζ = 0) =

Nf∑
j=1

eπmj(Nf−2)+iπ
Nf
2∏

s 6=j (e2πmj − e2πms)

1

1− (−1)
%
(
Nf+1−κ+κ

%

)
e−2πkmj

×

ie−iπk( 1
2

+imj)
2

%∑
β=1

(−1)βNf e−iπkβ(β−1)−2πkmjβ

−
√
i

k

κ∑
α=1

(
−e−2πmj

)α+
Nf
2 q
− 1

2

(
α+

Nf
2

)2
]
,

and

ZU(1),Nf (k < 0, ~m, ζ = 0) =

Nf∑
j=1

eπmj(Nf−2)+iπ
Nf
2∏

s 6=j (e2πmj − e2πms)

1

1− (−1)
%
(
Nf+1−κ−κ

%

)
e−2πkmj

×

ie−iπk( 1
2

+imj)
2

%∑
β=1

(−1)βNf e−iπkβ(β−1)−2πkmjβ

+

√
i

k

κ−1∑
α=0

(
−e2πmj

)α−Nf
2 q
− 1

2

(
α−

Nf
2

)2
]
,

When the number of flavours is even the sums in the last line of each expression become (cfr.

(2.9))

P̃
(
−e−sign(k)2πmj ; k

)
,

but with the summation range shifted by −Nf
2 . As we have already pointed out in Subsection 2.3,

these are polynomials in the variable ei2πλsign(k), hence are holomorphic in C \ R≥0.

The effect of reintroducing the FI parameter ζ can be reabsorbed in a change of variable, and

the result is the same as above up to a shift of the masses, as in (3.4). Besides, the result holds

upon complexification of the masses and FI parameters, as long as
∣∣∣=mj − =ζk

∣∣∣ < 1
2 .

The solution relied on the assumption of generic masses, but the theory has a well defined

confluent limit when two masses become equal. One approach to this case is based on a direct

analysis of the cancellations in the formula above. An alternative and especially convenient ap-

proach is to interpret the partition function as the average of inverse characteristic polynomials in

the Stieltjes–Wigert ensemble, expressing it then as a Nf × Nf determinant, whose limit is well

known to give a Wronskian determinant [45]. We discuss this approach in Subsection 5.6.1. A

third approach, valid for all equal masses, was taken in [8].
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3.2.3 Wilson loops from Mordell integrals: Abelian A1 theory

We consider again the Abelian CS theory with Nf massive fundamental hypermultiplets and insert

a circular Wilson loop in a complex irreducible U(1) representation µ, identified with an integer

µ ∈ Z. Its expectation value is:

〈Wµ〉U(1),Nf =
1

ZU(1),Nf

∫ ∞
−∞

dx
eiπkx

2+2πµx∏Nf
j=1 2 coshπ(x+mj)

=
1

ZU(1),Nf

Nf∑
j=1

e2πmj(Nf−2)∏
s 6=j (e2πmj − e2πms)

Ik
(
−mj ,

Nf

2
+ µ

)
,

hence the result can be easily extracted from the above analysis or directly from (2.6). When

Nf = 2 we have the particularly simple relation

〈Wµ〉U(1),Nf =
ZU(1),2µ+2

ZU(1),2
.

3.2.4 Non-Abelian A1 theory with Nf flavours

The next example is the U(N) theory with Nf flavours, as in Figure 8. The partition function at

Nf = 2 and no FI term has been solved in [7], using a change of variables of the form Xa = e2π(xa−c)

and writing the resulting expression as a Hankel determinant [33]. The crucial difference from [7, 8]

is that we consider generic masses and also allow a FI term. In flat space, this choice lifts the

Higgs branch and reduces the moduli space to isolated vacua.

N Nf

Figure 8. Non-Abelian A1 quiver with Nf fundamental flavours.

We get [7]:

ZU(N),Nf (k, ~m) =

N∏
a=1

∫ ∞
−∞

dxa
eiπkx

2
a+i2πζxa

∏
b6=a 2 sinhπ(xb − xa)∏Nf

j=1 2 coshπ (xa +mj)

= eiπ
N
k [N(Nf−2N)−ζ2] det

1≤a,b≤N

e iπk (Nf−2N)(a+b−1)

∫ +∞

−∞
dx

eiπkx
2+2πx`ab∏Nf

j=1

(
1 + e2π(x−m′j)

)


where we defined for shortness `ab = a + b − 1 − N +
Nf
2 and m′j = mj − ζ

k . Using (3.11) each

entry of the determinant is written as a sum of Nf Mordell integrals:

ZU(N),Nf (k, ~m) = eiπ
N
k [N(Nf−2N)−ζ2] det

1≤a,b≤N

[
e
iπ
k (Nf−2N)(a+b−1)

×
Nf∑
j=1

e2πm′j(Nf−2)∏
s 6=j

(
e2πm′j − e2πm′s

)Ik (−m′j , `ab)
 . (3.12)

This results extends [7, 8] to generic deformations, using a different approach than [45]. The

massless limit can be taken, exploiting the identity (2.14) to see the cancellation of the singularities,

cfr. [7, Eq. 2.38], while the limit of coinciding masses is better understood in the formalism of

[45].
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3.3 Lessons so far

Before discussing quiver gauge theories, we pause to analyze the information that can be extracted

by the exact solutions in terms of Ik
(
−m, Nf2

)
, as defined in (2.5).

A first observation is that the sums appearing in the right-hand side of the Mordell integrals

are all of the form

∼
k∑

α=1

(
−e−2πm

)α
q
− 1

2

(
α−

Nf
2

)2

(k > 0),

∼
−k−1∑
α=0

(
−e2πm

)α
q
− 1

2

(
α+

Nf
2

)2

(k < 0).

Here we are considering ζ = 0 for clarity, but the argument goes through in exactly the same way

turning on a real FI parameter. The shift in the Gaussian factor in each summand accounts for

the shift k 7→ k − Nf
2 from integrating out massive hypermultiplets.

Another important aspect is that Mordell’s solution is a holomorphic function of λ = 1
2 + im

[6]. We notice that λ is precisely the variable t
2 + im identified by Jafferis [46] (see also the

exhaustive discussion in [47]), with respect to which the partition function on S3 is holomorphic.

Here t parametrizes the trial U(1)R R-charge of the hypermultiplet in the microscopic theory, and

in our case is fixed to t = 1 by the N = 3 extended supersymmetry.

Related to the just mentioned aspect, we stress the role of the numerator in the overall

multiplicative term in (2.3) and (2.4). This term always generates an overall factor e−iπkλ
2
, which

is a CS coupling for the background vector multiplet of the global symmetry, precisely given in

terms of the holomorphic variable λ = 1
2 +im. On the other hand, a pure U(1)k CS theory coupled

to a background vector multiplet generates an effective CS term ei
π
k
λ2

[47, 48], which emerges from

the integrals. We also know that, for Nf = 1, the theory must be self-dual under k 7→ − 1
k [44],

as we have extensively discussed in Subsection 3.1. Therefore, the overall factor derived in [6] is

essential to guarantee the invariance of the partition function under the S-duality when Nf = 1,

or more in general to reproduce the correct CS couplings for the background vector multiplets

[47, 48].2

3.3.1 U(1)k theory at rational k

As we have learned from the plots in Subsection 3.2.2 and the surrounding discussion, the study

of the partition function ZU(1),Nf ∈ C at fixed m as a function of k = κ
% uncovers a rich structure

when % is increased keeping κ fixed. This observation is compatible with the insight provided by the

theory of Gauss sums [49, 50]. Pushing the analogy further, it may be interesting to understand the

behaviour of ZU(1),Nf when k becomes irrational. This is not allowed in gauge theory for compact

gauge group. However, the iterative application of the elementary Fourier transform identity

∫ +∞

−∞
dx

∫ +∞

−∞
dy

eiπa1x2+iπa2y2+i2πxy∏Nf
j=1 2 coshπ(x+mj)

=

√
i

a2

∫ +∞

−∞
dx

e
iπ
(
a1− 1

a2

)
x2∏Nf

j=1 2 coshπ(x+mj)

2logZU(1),Nf
does not take a simple form, which prevents us from reading off the precise form of the mixed

flavour-R CS couplings.
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allows to interpret the partition function at rational k, with continued fraction expansion

k =
κ

%
= a1 −

1

a2 −
1

· · · −
1

an

as a chain of U(1)ap theories at integer CS levels ap, p = 1, . . . , n, with matter insertion only at

the first node. Notice that this theory would correspond to a completely disconnected quiver (no

bi-fundamentals), and the various nodes are coupled only through the mixed CS terms kp,p+1 = 1.

The CS level of the original theory attains an irrational value in the limit of infinitely many coupled

CS theories.

It would therefore be desirable to look further into the behaviour of ZU(1),Nf when the number

of integers ap in the continued fraction expansion of k is increased, and eventually understand the

n→∞ limit.

3.4 Abelian quivers

We consider now Chern–Simons theories classified by Dynkin diagram of type Ar, which correspond

to linear quivers. We consider Abelian theories with gauge group G = U(1)r.

3.4.1 Abelian A2 theory

The first example is a two node quiver with Abelian gauge group, see Figure 9. The matter content

consists only of the bi-fundamental hypermultiplet joining the nodes, to which we assign a mass

m. We set the FI parameters to zero, as they can be reintroduced at the end by the usual shift of

the masses and overall coefficient, as in (3.4).

11

Figure 9. Abelian A2 quiver.

The partition function is:

ZU(1)2(~k,m) =

∫ +∞

−∞
dx

∫ +∞

−∞
dy

eiπk1x2+iπk2y2

2 coshπ(x− y +m)

=

∫ +∞

−∞
dyeiπk2y2+π(y−m)Ik1

(
y −m, 1

2

)
.

We take for concreteness k1 = κ1
%1

> 0 with either κ1 even or %1 odd. This restriction is not

necessary, but simplifies the expressions as we do not need to carry factors (−1)κ1(%1−1). From

(2.3) and a rescaling of the integration variable, we get:

ZU(1)2(~k,m) =
1

κ1

eiπk1(m2− 1
4

%1∑
β=0

(−e−2πk1m)βeiπk1β(β−1)Ikeff
(0, ξ̌1(β))

+i

√
i%1

κ1

κ1∑
α=1

q
− 1

2(α− 1
2)

2

1 (−e−2πm)(α−
1
2)Ik′eff

(
0, ξ̌2(α)

)]
,
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where

keff =
k2%1 + κ1

κ2
1

, ξ̌1(β) =
1

%1

(
−im+ β − 1

2

)
,

k′eff =
k2

κ2
1

, ξ̌2(α) =
1

κ1

(
α− 1

2

)
.

The solution can be made explicit plugging (2.6). When k1 + k2 = 0, it takes a much simpler

form. We introduce both the mass and the FI parameter explicitly, assume k > 0 without loss of

generality, and write

ZU(1)2(~k,m, ζ) =

∫ +∞

−∞
dx

∫ +∞

−∞
dy
eiπk(x2−y)+i2πζ(x+y)

2 coshπ(x− y +m)

=

∫ +∞

−∞
dv

∫ +∞

−∞
dx
e−iπkv

2+i2πζv−i2πx(kv−ζ)

2 coshπ(v −m)

=
eiπ

ζ2

k

2k coshπ
(
m− ζ

k

) ,
where we have used the centre of mass variable v = y − x.

In Subsection 3.4.4 we present the computations of the lowest-rank non-Abelian A2 theory

extending the ideas presented here.

3.4.2 Abelian A3 theory

The Abelian A3 quiver is depicted in Figure 10. We turn on a real FI parameter ζ in the middle

node, and give masses m1 and m2 to the hypermultiplets.

11 1

Figure 10. Abelian A3 quiver.

The partition function is:

ZU(1)3(~k, ζ, ~m) =

∫ +∞

−∞
dv

∫ +∞

−∞
dx

∫ +∞

−∞
dy

eiπ(k1v2+k2x2+k3y2)+i2πζx

2 coshπ(v − x+m1)2 coshπ(x− y +m2)
.

Instead of directly applying (2.6), we first use the change of variables

v′ = v − x, y′ = y − x (3.13)

(henceforth we drop the prime). We work under the assumption [22]

3∑
p=1

kp = 0.

Integrating over x we get

ZU(1)3(~k, ζ, ~m) =
1

|k1|

∫ +∞

−∞
dv

eiπkeffv
2

2 coshπ(v −m2)2 coshπ
(
k3
k1
v −m2 + ζ

k1

)
)
,
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where we have defined the effective CS level

keff =
k3

k1
(k1 − k3).

At this point, from the denominator, we see that the tractable cases correspond to k3 = ±k1. The

first choice, k3 = k1, means that we restrict to the one-parameter family of theories with CS levels

(k1, k2, k3) = (k,−2k, k),

in which case we get

ZU(1)3((k,−2k, k), ζ, (m1,m2)) =
1

|k|
ZSQED
Nf=2

(
−m1 −

ζ

k
,−m2

)
,

where we have recognized the partition function of a single-node theory without CS term and two

fundamental flavour of mass −m1 − ζ
k and −m2, respectively. Note that the hypermultiplet is

off-shell, as it does not respect the SU(2) flavour symmetry, unless we tune ζ
k = −m1 −m2. We

can safely turn off the FI parameter ζ, as it only shifts m1, and it is convenient to introduce an

FI parameter ζ̃ in the third node. We get [51]

ZU(1)3((k,−2k, k), ζ, (m1,m2)) =
(ei2πm2ζ̃ − ei2πm1ζ̃)

4i|k| sinhπ(m2 −m1) sinh(πζ̃)
.

The other tractable case corresponds to the one-parameter family of CS theories with levels

(k1, k2, k3) = (k, 0,−k).

In this case keff = −2k, and the U(1)3 partition function is given by

ZU(1)3((k, 0,−k), ζ, (m1,m2)) =
1

2|k| sinhπ
(
m2 +m1 + ζ

k

) [Ikeff
(−m1, 1)− Ikeff

(−m2, 1)] ,

which, up to the factor |k|−1, is the partition function of the A1 Abelian theory with Nf = 2

studied in [7] and in Subsection 3.2.1, at level keff = −2k.

A third instance in which the Abelian U(1)3 theory is exactly solvable corresponds to the

so-called Model III of Jafferis and Yin [10], with CS levels ~k = (1,−1, 1). This theory is dual to

SQED with two fundamental hypermultiplets and no CS couplings [10]. The equality of the two

partition functions, up to a phase, is easily proved from their integral representation,

ZSQED
Nf=2 (m′, ζ ′) = ei2πm

′ζ′
∫ +∞

−∞
dx

ei2πζ
′x

[2 coshπ(x+ 2m′)][2 cosh(πx)]

=
1√
i

[
e−iπm1m2 ZU(1)3((1,−1, 1), ~ζ = ~0,m1,m2)

]
m1=ζ′,m2=2m′

(3.14)

with the last equality following from the change of variables (3.13). The proof extends straight-

forwardly to the vev of a Wilson loop charged under one of the three U(1)’s.

An exact evaluation of ZSQED
Nf=2 has been given in [51, 52]. In turn, we are able to evaluate the

partition function on the A3 side using (2.6):

ZU(1)3((1,−1, 1), ~m) = eπ(−m1+m2)

∫ +∞

−∞
dx e−iπx

2+2πxI+1

(
x−m1,

1

2

)
I+1

(
x+m2,

1

2

)
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which, using (3.21), becomes

ZU(1)3((1,−1, 1), ~m) =
1

2 sinhπ(m1 +m2)

[
ZJY

1 (m1,m2) + ZJY
2 (m1,m2) + ZJY

3 (m1,m2)
]
,

(3.15)

where we have defined

ZJY
1 (m1,m2) ≡ I+1(m1, 1− im1 + im2)− I+1(−m2, 1− im1 + im2)

ZJY
2 (m1,m2) ≡ ieiπ(m2

1+m2
2) [I+1(m1, 1− im1 + im2)− I+1(−m2, 1− im1 + im2)]

ZJY
3 (m1,m2) ≡ −

√
i

∫ +∞

−∞
dxe2πx

(
eiπm

2
1−i2πxm1 + eiπm

2
2+i2πxm2

)[ 1

e2πx + e2πm1
− 1

e2πx + e−2πm2

]
The first piece, which we have named ZJY

1 , is given in (3.22) and contributes

ZJY
1 (m1,m2) =

√
−i

[
1

1− e2πm1
− 1

1− e−2πm2
+

e−iπm
2
1

2 sinh(πm1)
− e−iπm

2
2

2 sinh(πm2)

]
.

The second piece is

ZJY
2 (m1,m2) =

√
−iei2πm1m2

[
1

e2πm2 − 1
− e−iπm

2
2

2 sinh(πm2)
− 1

e−2πm2 − 1
− eiπm

2
1

2 sinh(πm1)

]
.

The last contribution is

ZJY
3 (m1,m2) =

√
i

[
eiπm

2
1+i2πm1m2

2 sinh (πm1)
− e−iπm

2
1

2 sinh(πm1)

]
+
√
−i

[
eiπm

2
2+i2πm1m2

2 sinh (πm2)
− e−iπm

2
2

2 sinh(πm2)

]
.

Plugging these three expressions back in (3.15) and simplifying, we get

ZU(1)3((1,−1, 1), ~m) =
√
−i

(
e−i2πm1m2 − 1

)
[2 sinh(πm1)][2 sinh(πm2)]

. (3.16)

From (3.14), the result we find agrees with [51, 52].

3.4.3 Abelian ABJM

We consider mass-deformed Abelian ABJM theory. This is U(1)k ×U(1)−k Chern–Simons theory

with two massive bi-fundamental hypermultiplets, represented in Figure 11.

11

−m

+m

Figure 11. Mass deformed Abelian ABJM theory.

The partition function of the theory is:

ZABJ(1|1)(k,m) =

∫ +∞

−∞
dy

∫ +∞

−∞
dx

eiπk(x2−y2)

4 coshπ(x− y +m) coshπ(x− y −m)
(3.17)
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where the variables x and y parametrize the two u(1)’s. From (2.5) we rewrite it as:

ZABJ(1|1)(k,m) =
1

2 sinh(2πm)

∫ +∞

−∞
dye−iπky

2
[Ik(y −m, 1)− Ik(y +m, 1)] .

As one may expect, the contribution from a single node coincides with the partition function of

U(1)k theory with two massive hypermultiplets with masses y±m. Without loss of generality, we

take k > 0 and, from (2.6) together with (2.3) we get

ZABJ(1|1)(k,m) =
1

2 sinh(2πm)

{
ieiπk(m

2− 1
4)
[∫ +∞

−∞
dy

e−i2πkmy

2 sinh(πk(y −m))
−
∫ +∞

−∞
dy

ei2πkmy

2 sinh(πk(y +m))

]
+

√
i

k

k−1∑
α=0

(−1)αq−
α2

2

∫ +∞

−∞
dye−iπky

2

[
e2πα(y+m)

e2πk(y+m) − 1
− e2πα(y−m)

e2πk(y−m) − 1

]}
.

The two integrals in the first line are the Fourier transform of sinh(πx) and are immediately solved.

The two integrals in the second line, after a change of variables y′ = k(y ±m) are reduced again

to Mordell integrals:

ZABJ(1|1)(k,m) =
1

2k sinh(2πm)

{
e−iπk(m

2+ 1
4) tanh(πm)

+e−iπkm
2

√
i

k

k−1∑
α=0

(−1)αq−
α2

2

[
Ψ−

(
−α
k
− im, 0; 1, k

)
−Ψ−

(
−α
k

+ im, 0; 1, k
)]}

.

Plugging the solution (2.4) and after some simplification,

ZABJ(1|1)(k,m) =
e−iπkm

2

2k sinh(2πm)

{
e−iπ

k
4 tanh(πm)

+
k−1∑
α=0

(−1)α
[
eiπkm

2

(
e2πmα

(−1)ke2πkm − 1
− e−2πmα

(−1)ke−2πkm − 1

)

+i

√
i

k

k∑
β=1

q−
(α−β)2

2

(
e2πmβ

(−1)ke2πkm − 1
− e−2πmβ

(−1)ke−2πkm − 1

) .

The second line is a geometric sum, with a prefactor eiπkm
2
. Using the Gauss sum identity (2.14)

to sum over α in the third line, we find another geometric sum, over β this time, which cancels

the contribution of the first line. After these simplifications we get:

ZABJ(1|1)(k,m, ζ = 0) =
1

4k cosh(πm)2
.

In general, unitary Âr quivers have topological symmetry [
∏r
p=0 U(1)top,p]/U(1). This allows

us to introduce an FI parameter ζ turning on a background twisted vector multiplet for the U(1)top

topological symmetry of ABJM. This can be reabsorbed in a simple change of variables, and the

result is directly obtained from above replacing ±m 7→ 2ζ
k ±m. We get

ZABJ(1|1)(k,m, ζ) =
1

4k coshπ
(
m− 2ζ

k

)
coshπ

(
m+ 2ζ

k

) . (3.18)
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The partition function, as written in (3.17), is invariant under k ↔ −k but the final expression

(3.18) is not because, without loss of generality, we have assumed k > 0 in the intermediate steps.

The result agrees with [9], where the answer was obtained in a straightforward way using a change

of variables x′ = x−y in (3.17). Nevertheless, with our approach we can consider the more general

case with arbitrary rational k1 and k2, which corresponds to deform the gravity dual by a Romans

mass F0 = k1 + k2, cfr. Subsection 2.1.1. Letting k2 6= −k1 and also allowing generic masses

m1,m2 and a FI parameter ζ, the partition function is

ZABJ(1|1)(k1, k2, ~m, ζ) =

∫ +∞

−∞
dx

∫ +∞

−∞
dy

eiπk1x2+iπk2y2+i2πζ(x+y)

2 coshπ(x− y +m1)2 coshπ(y − x+m2)

= e
−iπ ζ2

keff

∫ +∞

−∞
dv

∫ +∞

−∞
dy

eiπk1v2+iπ(k1+k2)y2−i2πk1vy

2 coshπ(v +m+)2 coshπ(v +m−)

= e
−iπ ζ2

keff

√
i

k1 + k2

∫ +∞

−∞
dv

eiπkeffv
2

2 coshπ(v +m+)2 coshπ(v +m−)
.

To pass from the first to the second line we have used the change of variables [9]

v =

(
x+

ζ

k1

)
−
(
y +

ζ

k2

)
together with a redefinition of the parameters

m+ := m1 −
ζ

k1
+

ζ

k2
, m− := −m2 −

ζ

k1
+

ζ

k2
, keff =

(
1

k1
+

1

k2

)−1

.

In the last line, we recognize the partition function of the U(1) CS theory with two fundamentals

at level keff , studied in Subsection 3.2.1. For generic k1 and k2 6= k1 the effective CS level keff is

rational, and we assume keff = κ
% > 0. The partition function is

ZABJ(1|1)(k1, k2, ~m, ζ) =
e
−iπ ζ2

keff

2 sinhπ(m1 +m2)

{
1

(−1)κ(−1%)e−2πκm+ − 1

[
1√
κ

κ−1∑
α=0

(−e−2πm+)αeiπ
%
κ
α2

+
1√
i%

%∑
β=1

e
−iπ κ

%
β(β−1)−2π κ

%
m+β

 − ( replace m+ with m− )

 .

The theory has a well defined m → 0 limit. For k2 = −k1 equation (3.18) gives directly 1
4k ,

while the limit m→ 0 for generic k1 and k2 is given in Subsection (3.18) making use of the Gauss

sum identity (2.14), and follows straightforwardly from [7].

3.4.4 Non-Abelian A2 theory

This Subsection contains an example of the application of the ideas of this Section to a non-Abelian

quiver. We consider the simplest such theory, the A2 quiver with gauge group U(1)k1×U(2)k2 and

without any additional insertion, as in Figure 12. The bi-fundamental hypermultiplet has a real

mass m.

The partition function is

ZU(2)×U(1)(k1, k2,m) =
1

2!

∫
R2
dx1dx2

∫ +∞

−∞
dy

eiπk1(x2
1+x2

2)+iπk2y (2 sinhπ(x1 − x2))2

2 coshπ(x1 − y +m)2 coshπ(x2 − y +m)
.

– 24 –



21

Figure 12. The simplest non-Abelian A2 quiver.

A change of variables

u = x1 − y, v = x2 − y, y′ = y +
k1

2k1 + k2
(u+ v)

allows to directly integrate out y′, leaving

ZU(2)×U(1)(k1, k2,m) =

√
i

2k1 + k2

∫
R2

dudv

2

e
iπ

(
k1−

k2
1

2k1+k2

)
(u2+v2)−i2π k2

1
2k1+k2

uv
(2 sinhπ(x1 − x2))2

2 coshπ(u+m)2 coshπ(v +m)
.

We discuss the two cases k1 + k2 = 0 and k1 + k2 6= 0 separately.

When k1 = −k2 ≡ k, the CS coupling disappears after integrating over y′. Expanding

sinhπ(u− v)2 and integrating over v we get

ZU(2)×U(1)(k,−k,m) = −
√
i

k

∫ +∞

−∞
du

ei2πkmu(e2π(u+m) + 1)

2 coshπ(u+m)2 cosh(πku)

= −
√
i

k

eπm

2k
[
cosh(πm) cos

(
π
2k

)
+ i sinh(πm) sin

(
π
2k

)] .
When k = ±1 the partition function takes the specially simple form

ZU(2)×U(1)(±1,∓1,m) =

√
∓i

|k|(1− e−2πm)
.

When k1 6= −k2 we have to invoke the Mordell integrals. It is convenient to slightly deform

the denominator, replacing

2∏
a=1

2 coshπ(xa − y +m) 7→ 2 coshπ(x1 − y +m1)2 coshπ(x2 − y +m2),

and eventually take the limit m1,m2 → m in the final expression. Besides, it is also more efficient

to integrate first over x1 and x2 obtaining

ZU(2)×U(1)(~k, ~m) = 2e−π(m1+m2)

∫ +∞

−∞
dy eiπk2y2+2πy

[
Ik1

(
y −m1,

3

2

)
Ik1

(
y −m2,−

1

2

)
−Ik1

(
y −m1,

1

2

)
Ik1

(
y −m2,

1

2

)]
.

The Ik1 integrals give an overall denominator

1

[e2πk1(y−m1) + 1][e2πk1(y−m2) + 1]
,

whence we see that, thanks to the splitting of the masses, the last integral over y can be solved again

using the formula (2.6), this time with a rational effective CS level k2
k1

. The resulting expression

is a long multiple sum, which however admits a well-defined limit m1,m2 → m, despite an overall

factor [2 sinhπ(m2−m1)]−1, which can be dealt with in exactly the same manner as we have done

in Subsection 3.2.1. We conclude mentioning that the argument presented here is easily extended

to ABJ theory with ranks 1 and 2 and arbitrary, possibly rational CS levels k1, k2, although it

requires a convenient rewriting of the denominator and produces twice the number of terms than

the theory with a single bi-fundamental that we have just discussed.
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3.5 Abelian quivers at k = ±1

Beyond selected example that can be analyzed with the methods of this paper for a whole family

of CS levels ~k, the iterative application of Mordell’s formula gives the quiver partition function

when the CS levels are an alternating string of +1 and −1,

~k = (1,−1, 1, . . . ,−1). (3.19)

In particular, when the rank is even, say 2r, then ~k consists of alternating +1 and −1, with

exactly r of each sign. When the rank is odd, say 2r + 1, then we take the middle node without

CS couplings, in order to ensure
2r+1∑
p=1

kp = 0

for every rank. With such choice, the quiver is invariant under ~k ↔ −~k. This symmetry is the

diagonal action of the S-duality in the space of couplings. Let us stress that the restrictive choice

of ~k is a sufficient condition that ensures the solvability through iterative application of Mordell’s

formula, but not necessary, as proved explicitly in the previous Subsections.

With this condition, an example of theory solvable with the methods presented in the present

work is the linear Ar quiver, with gauge group U(1)r, represented in Figure 13.

11· · ·11

Figure 13. Abelian Ar quiver.

On one hand, inspection of formula (2.5) has led us to a sufficient condition for the partition

function of a linear quiver CS theory to be solved by iterative application of Mordell integrals. On

the other hand, these theories are simple enough to be studied from a different angle. Let us focus

on the even rank case. The partition function of the A2r quiver in Figure 13 with CS levels (3.19)

is

ZU(1)2r(~m) =

∫ +∞

−∞
dx1e

iπx2
1

2r∏
p=2

∫ +∞

−∞
dxp

eiπ(−1)p−1x2
p

2 coshπ(xp − xp−1 +mp−1)
.

We change variables

v1 = x1

v2 = x2 − v1

v3 = x3 − (v2 + v1)

...

v2r = x2r −
2r∑
p=1

vp

and get

ZU(1)2r(~m) =

∫ +∞

−∞
dv1e

−i2πv1(v2+v4+···+v2r)
2r∏
p=2

∫ +∞

−∞
dvp

( CS couplings )

2 coshπ(vp +mp−1)
,

– 26 –



with the bracket containing the CS couplings and mixed CS couplings in terms of the new variables

(v2, . . . , v2r). The denominator, which carries the matter dependence, is completely factorized. The

integral over the first variable yields a constraint on the variables at even nodes,

δ

 r∑
p′=1

v2p′

 . (3.20)

Besides, one can check that, thanks to the choice (3.19), there is no CS level at the odd nodes,

except for mixed CS couplings

exp

−i2πvp r∑
p′=(p−1)/2

v2p′

 , p odd.

Thus the integral over vp can be solved straightforwardly for all odd p, yielding∫ +∞

−∞
dvp

e
−i2πvp

∑r
p′=(p−1)/2 vp′

2 coshπ(vp +mp−1)
=

1

2 coshπ
(∑r

p′=(p−1)/2 v2p′ +mp−1

) , p odd.

We are left with the integral over the variables v2p′ , p
′ = 1, . . . , r, but we have the delta function

(3.20) to get rid of one of the variables, for example v2. The advantage is that all the CS couplings

are cancelled by (3.20), and we find:

ZU(1)2r(~m) =

∫
Rr−1

1

2 coshπ(
∑r

p′=1 v2p′ −m1)

r∏
p′=2

dv2p′

2 coshπ
(∑r

s=p′ v2s +m2p′−2

)
2 coshπ

(
v2p′ +m2p′−1

)
Therefore the CS interactions can be removed from the computations, which are now reduced to

r − 1 integrals. We change again variables

y1 = v2r

y2 = v2r−2 + y1

y3 = v2r−4 + y2

...

yr−1 = v4 + yr−2

and arrive at

ZU(1)2r(~m) =

∫
Rr−1

1

2 coshπ(y1 +m′′1)

r−1∏
p=1

dyp
2 coshπ(yp +m′p)2 coshπ(yp − yp+1 +m′′p)

where in the formula yr ≡ 0 and we have renamed the masses

m′p = m2r−2p, m′′p = m2r−2p+1.

In the latter form, we recognize the partition function of a linear quiver gauge theory of type Ar−1,

without CS term and with additional fundamental matter insertions, one at each node except for

the first and last node, that yield two fundamentals. This is represented in Figure 14. This last
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11· · ·11

2112

Figure 14. Abelian Ar−1 quiver with one fundamental at each interior node and two fundamentals at the

outermost nodes. In this picture the CS levels are all set to zero.

theory has manifest N = 4 theory, which was expected from the choice (3.19). The partition

function in this new form can be evaluated introducing FI terms ζp′ [51], which can either be

related to FI couplings in the original theory or we can take the limit ζp′ → 0 at the end. Note also

that both the iterative application of Mordell formula and the method of [51] require the masses

to be generic, but the limit of equal masses can be safely taken at the end of the calculations.

For the special case r = 2 our formula states the equality of the partition function of the A4

quiver with alternating CS levels +1 and −1 with that of SQED with three fundamental flavour

(Nf = 3 can be seen by direct computations, or starting with r = 2 and ungauging the second

node in the A2 quiver), which are known to be dual [10].

The particularly suitable choice of CS levels (3.19) allows us to study a much wider class

of quivers, such as extended Âr quivers with insertion of fundamental matter at any node, as in

Figure 15. Specializing to np = 0 for all p, the resulting theories are Abelian sub-cases of [23, 24].

The Abelian Âr quiver with CS levels (3.19) corresponds to the gauge theoretical realization of the

M-crystal model [53] derived in [54, 55]. Although a complete analytical solution seems hard to

find, it should be possible to obtain explicit solutions for every r through an algorithmic iteration

of formula (2.6).

The building blocks in the solution are the integrals Ik(y, ξ̌) defined in (2.5) at k = ±1 and

ξ̌ = 1, or ξ̌ = 1
2 for boundary nodes of a linear quiver without additional matter insertion. They

are evaluated as:

Ik
(
y,

1

2

)
=

ik

e2πy + 1

[
1− ekiπ(y2+ 1

4)
]
, k ∈ {±1} (3.21)

and

Ik (y, 1) =
e
iπ
4
k

e2πy − 1

[
−1 + ekiπy

2+πy
]
, k ∈ {±1} . (3.22)

1 n1

1 n2

· · ·

1nr−1

1nr

1 n0

Figure 15. Abelian Âr extended quiver.

– 28 –



4 Wilson loops in ABJ theory

This Section is dedicated to the study of vacuum expectation values of 1
2 -BPS Wilson loops in

ABJ(M) theories [20, 30], whenever the Wilson loop is in a type of representation of U(N1|N2)

called typical representation (also known as long representation in more physical settings). This

distinction between types of representations emerges when considering Lie supergroups and su-

peralgebras and has not been discussed in the context of Wilson loops of ABJ(M) theories before.

Hence, we explain this first.

4.1 On Lie superalgebras representations

While every finite-dimensional g-module of a semi-simple Lie algebra g is completely reducible

(that is, every representation decomposes into a direct sum of irreducible representations), this no

longer holds for Lie superalgebras. A consequence of the classical Djokovic–Hochschild theorem

[56] states that all simple Lie superalgebras, with the exception of the family {osp(1, 2n), n ≥ 1}
of ortho-symplectic Lie superalgebras, have indecomposable (that is, not completely reducible)

representations.

This leads to the definition of two types of irreducible representations for a Lie superalgebra

g. Let µ be a highest weight for a finite dimensional irreducible representation R (µ) of g. If

the representation cannot be extended to an indecomposable representation of g, then it is called

a typical representation. These are the ones that satisfy the usual properties of the irreducible

representations of a Lie algebra. More involved are the atypical representations, which can be

extended, with another g-module, in a manner that the new representation is an indecomposable

representation of g. Atypical representations appear, for example, in the decomposition of the

tensor product of two typical representations.

By focusing on Wilson loops with typical representations we will be able to exploit a powerful

mathematical factorization property for the characters of such representations [21].

4.2 Wilson loops in typical representations

1
2 -BPS Wilson loops in ABJ(M) theories can be constructed as the trace of the holonomy of a

u(N1|N2)-valued superconnection [20]. We therefore consider an irreducible representation R(µ)

of the supergroup U(N1|N2) with highest weight labelled by a partition µ. We henceforth identify

R(µ) ' µ, further identified with the Young diagram representing the partition µ.

The vev of the 1
2 -BPS Wilson loop in the representation µ is [16]:

〈Wµ〉N1,N2;k =
1

ZABJ(N1|N2)(k)

∫
RN1

dN1x

∫
RN2

dN2y sµ (e2πx|e2πy)e
iπk
(∑N1

a=1 x
2
a−
∑N2
ȧ=1 y

2
ȧ

)

×
∏

1≤a<b≤N1
(2 sinhπ(xb − xa))2∏

1≤ȧ<ḃ≤N2

(
2 sinhπ(yḃ − yȧ)

)2∏N1
a=1

∏N2
ȧ=1 (2 coshπ(xa − yȧ))2

.

ZABJ(N1|N2)(k) is the ABJ partition function, and we are denoting 〈· · · 〉N1,N2;k the vevs taken in

U(N1)k × U(N2)−k ABJ theory. Indices associated to the first node are labelled a, b, . . . while

indices corresponding to the second node are labelled by ȧ, ḃ, . . . , hence undotted indices are al-

ways meant to run from 1 to N1 and dotted indices run from 1 to N2. Moreover, sµ(·|·) is the

supersymmetric Schur polynomial [38, 40] (also known as hook Schur polynomial) associated to

the partition µ, and e2πx and e2πy stand for (e2πx1 , . . . , e2πxN1 ) and (e2πy1 , . . . , e2πyN2 ) respectively.
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Vevs of correlators of Wilson loops are taken inserting additional supersymmetric Schur polyno-

mials in the matrix model. Notice that if N1 = 0 or N2 = 0 the supersymmetric Schur polynomial

degenerates in the usual Schur polynomial, and the vev of a Wilson loop in U(N1)k or U(N2)−k
pure CS theory is recovered.

We now assume µ to be a typical representation of U(N1|N2), which implies that its associated

Young diagram fills the upper-left N1 ×N2 rectangle. These representations have the remarkable

factorization property [21, Thm. 6.20]

sµ(X|Y ) = sγ(X)sη′(Y )

N1∏
a=1

N2∏
ȧ=1

(Xa + Yȧ) , (4.1)

with µ = (κ+ γ) t η, with κ the N1 × N2 rectangular Young diagram, γ the Young diagram

consisting of the boxes of µ on the right of κ and η the Young diagram consisting of the boxes

below κ, as in Figure 16. The representation η′ appearing in the factorization formula (4.1) is the

conjugate representation of η, corresponding to the conjugate Young diagram.

Figure 16. Decomposition of a typical (i.e. long) representation µ. In this example, N1 = 4, N2 = 3, the

representation µ ' (7, 5, 4, 3, 2) is decomposed into κ ' (4, 4, 4) (white), γ ' (3, 1) (gray) and η ' (3, 2)

(yellow). Note that in the decomposition of sµ it appears η′ ' (2, 2, 1), and not η.

4.3 Two Wilson loops

One can foresee from (4.1) that part of the contribution from a long representation µ will cancel

against the contribution from a bi-fundamental hypermultiplet. When the correlator of two Wilson

loops is considered, one gets rid of the denominator in the two-matrix model, simplifying the

computations. Taking the vev 〈WµWµ̃〉N1,N2;k, with ~µ := (µ, µ̃) a pair of long representations, and

using (4.1) we obtain:

〈WµWµ̃〉N1,N2;k =
1

ZABJ

∫
RN1

sγ(e2πx)sγ̃(e2πx)
∏

1≤a<b≤N1

(2 sinhπ(xb − xa))2
N1∏
a=1

eiπkx
2
a+2πN2xa dxa

×
∫
RN2

sη′(e
2πy)sη̃′(e

2πy)
∏

1≤ȧ<ḃ≤N2

(
2 sinhπ(yḃ − yȧ)

)2 N2∏
ȧ=1

e−iπky
2
ȧ+2πN1yȧ dyȧ.

(4.2)

The correlator of two such Wilson loops in ABJ theory is therefore factorized into two pairs of

Wilson loops, one pair for each node. Shifting variables and using basic properties of the Schur

polynomials [38] we obtain:

〈WµWµ̃〉N1,N2;k = C~µN1,N2;k

ZN1;kZN2;−k
ZABJ(N1|N2)k

〈WγWγ̃〉N1;k〈Wη′Wη̃′〉N2;−k. (4.3)
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Here ZNp,k is the partition function of pure U(Np) bosonic Chern–Simons theory at renormalized

level k, and 〈· · · 〉Np,k is the average in the pure CS theory at node p = 1, 2. The shift of variables

moves the integration cycle away from the real axis, but it can be translated back without changing

the answer. The overall coefficient arising from the shift of variables is

C~µN1,N2;k = exp

[
iπ

k

(
N2 (N1N2 + 2|~γ|)−N1

(
N1N2 + 2|~η′|

))]
,

where |~γ| is a shorthand for |γ|+ |γ̃|, and the same for |~η′|. Recall that |γ| is the number of boxes

in the Young diagram γ. Closely related results have been obtained in [57], where the operator

formalism was used to prove the factorization of the Hopf link invariant.

The factorization property (4.3) is stable under deformation of the gravity dual theory by a

Romans mass, taking different levels k1, k2. The procedure goes identically as above and gives

〈WµWµ̃〉N1,N2;k1,k2 =
ZN1;k1ZN2;k2

ZABJ(N1|N2)k1,k2

C~µN1,N2;k1,k2
〈WγWγ̃〉N1;k1〈Wη′Wη̃′〉N2;k2 , (4.4)

with refined coefficient

C~µN1,N2;k1,k2
= exp

[
iπN2

k1
(N1N2 + 2|~γ|) +

iπN1

k2

(
N1N2 + 2|~η′|

)]
.

The expression (4.4) can be further reduced using a character expansion:

〈WγWγ̃〉N1;k1 =
∑
ν

Nγγ̃
ν〈Wν〉N1;k1 ,

with Nγγ̃
ν the Littlewood–Richardson coefficients, and analogously for 〈Wη′Wη̃′〉N2;k2 . The vev of

a Wilson loop in Chern–Simons theory along an unknot wrapping a great circle is known [32], see

(2.1), and the final form of (4.4) is:

〈WµWµ̃〉N1,N2;k1,k2 =
ZN1;k1ZN2;k2

ZABJ(N1|N2)k1,k2

C~µN1,N2;k1,k2

∑
ν,ν̃

Nγγ̃
νNηη̃

ν̃(dimq1 ν)(dimq2 ν̃)e
iπ

[
C2;N1

(ν)

k1
+

C2;N2
(ν̃)

k2

]
.

There exists an equivalent derivation, which consists in inverting the variables of one of the

two Schur polynomials in each integrals in (4.2), using the identity

sν(X−1
1 , . . . , X−1

N ) =

N∏
a=1

X−ν1
a sν∗(X1, . . . , XN ), (4.5)

with the starred partition defined as

ν∗ = (ν1 − νN , ν1 − νN−1, . . . , ν1 − ν2) . (4.6)

We work directly with generic k1, k2 as the computations are identical. Exploiting (4.5) we recog-

nize in each factorized integral the vev of a Wilson loop wrapping a Hopf link in pure CS theory

[57]:

〈WµWµ̃〉N1,N2;k1,k2 =
ZN1;k1ZN2;k2

ZABJ(N1|N2)k1,k2

e
−iπ

[
N1
k1
γ̃2

1+
N2
k2

(η̃′1)2
]
C~µN1,N2;k1,k2

〈Wγγ̃∗〉N1;k1〈Wη′(η̃′)∗〉N2;k2 .

(4.7)
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4.3.1 Inverting one of the two Wilson loops

A different correlator of two 1
2 -BPS Wilson loops than (4.2) was considered in [58], with one loop

carrying inverted variables, mimicking the Hopf link invariant of [57]. This correlator has the

integral representation

〈WµW µ̃〉 =
1

ZABJ

∫
RN1

∫
RN2

sµ(e2πx|e2πy)sµ̃(e−2πx|e−2πy)

N1∏
a=1

eiπk1x2
a dxa

N2∏
ȧ=1

eiπk2y2
ȧ dyȧ∏

1≤a<b≤N1
(2 sinhπ(xb − xa))2∏

1≤ȧ<ḃ≤N2

(
2 sinhπ(yḃ − yȧ)

)2∏N1
a=1

∏N2
ȧ=1 (2 coshπ(xa − yȧ))2

where in the left-hand side we have omitted the subscript, 〈WµW µ̃〉 ≡ 〈WµW µ̃〉N1,N2;k1,k2 , to avoid

clutter. We have also considered generic CS levels k1, k2 as we have seen that the argument holds

with no difference. Using (4.1) on both supersymmetric Schur polynomial, with

sµ̃(e−2πx|e−2πy) = sγ̃(e−2πx)sη̃′(e
−2πy)

N1∏
a=1

N2∏
ȧ=1

(2 coshπ(xa − yȧ)) e−πxa−πyȧ ,

we get

〈WµW µ̃〉 =
1

ZABJ

∫
RN1

sγ(e2πx)sγ̃(e−2πx)
∏

1≤a<b≤N1

(2 sinhπ(xb − xa))2
N1∏
a=1

eiπk1x2
a dxa

×
∫
RN2

sη′(e
2πy)sη̃′(e

−2πy)
∏

1≤ȧ<ḃ≤N2

(
2 sinhπ(yḃ − yȧ)

)2 N2∏
ȧ=1

eiπk2y2
ȧ dyȧ.

We find that the factorization persists, but the observables we get now are Hopf link invariants in

U(N1)k1 and U(N2)k2 pure CS theory, instead of the correlator of two unlinked unknots:

〈WµW µ̃〉N1,N2;k1,k2 =
ZN1;k1ZN2;k2

ZABJ(N1|N2)k1,k2

〈Wγγ̃〉N1;k1〈Wη′η̃′〉N2;k2 .

We could as well run the argument that led to (4.7) backwards. Inverting the variables in one

of the two (ordinary) Schur polynomials in each integral using (4.5) disentangles the Hopf link and

gives the correlator of two circular Wilson loops,

〈WµW µ̃〉 =
ZN1;k1ZN2;k2

ZABJ(N1|N2)k1,k2

e
iπ
[
N1
k1
γ̃2

1+
N2
k2

(η̃′1)2
]
〈WγWγ̃∗〉N1;k1〈Wη′W(η̃′)∗〉N2;k2 .

The upshot is that having the variables of one of the two supersymmetric Schur polynomials

inverted has the effect to switch the role of the partitions γ̃ and η̃′ with that of the starred ones

γ̃∗ and (η̃′)∗.

4.4 Three or more Wilson loops

Consider three long U(N1|N2) representations ~µ =
(
µ(1), µ(2), µ(3)

)
, and let

〈
W~µ

〉
≡

〈
3∏
j=1

Wµ(3)

〉
N1,N2;k1,k2

(4.8)
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denote the correlator of three 1
2 -BPS Wilson loops carrying the representations ~µ in ABJ theory

with ranks N1 and N2, and we have allowed generic CS levels k1 and k2. We also denote for

shortness s~γ(e2πx) =
∏3
j=1 sγ(j)(e2πx), and likewise for s~η′(e

2πy). The correlator of the three

Wilson loops, using (4.1), is

〈
W~µ

〉
=

1

ZABJ

∫
RN1

∫
RN2

∏
1≤a<b≤N1

(2 sinhπ(xb − xa))2
∏

1≤ȧ<ḃ≤N2

(
2 sinhπ(yḃ − yȧ)

)2
× s~γ(e2πx)s~η′(e

2πy)

[
N1∏
a=1

N2∏
ȧ=1

(
e2πxa + e2πyȧ

)
e2π(xa+yȧ)

]
N1∏
a=1

eiπkx
2
a dxa

N2∏
ȧ=1

e−iπky
2
ȧ dyȧ.

The term in square bracket on the second line is a symmetric polynomials both in the variables

e2πxa and e2πyȧ , and we can expand it in the Schur basis using the dual Cauchy identity (2.12):[
N1∏
a=1

N2∏
ȧ=1

(
e2πxa + e2πyȧ

)
e2π(xa+yȧ)

]
=

(
N1∏
a=1

e2πN2xa

)(
N2∏
ȧ=1

e3πN1yȧ

)∑
ν

sν′(e
2πx)sν(e−2πy), (4.9)

with the sum running over all partition of length at most min {N1, N2}. At this point, the correlator

is given by a finite sum of terms, each one completely factorized between the two nodes. We can

exploit (4.5) to invert the variables in the second Schur polynomial in (4.9), and get the partition

ν∗ instead of ν. We find〈
W~µ

〉
=
ZN1;k1ZN2;k2

ZABJ

∑
ν

C̃0(ν1)C̃1 (~γ, ν) C̃2

(
~η′, ν∗

) 〈
Wν′W~γ

〉
N1;k1

〈
Wν∗W~η′

〉
N2;k2

, (4.10)

where the coefficients are defined as

C̃0(ν1) = exp

[
iπ
N1N

2
2

k1
+ iπ

N2

k2

(
3

2
N1 − ν1

)2
]
,

C̃1 (~γ, ν) = exp

[
i2π

N2

k1
(|~γ|+ |ν|)

]
,

C̃2

(
~η′, ν∗

)
= exp

[
i2π

N1

k2
(|~η|+ |ν∗|)

]
.

We are using, as in (4.8), the shorthand notation W~γ ≡
∏
jWγ(j) , |~γ| =

∑
j |γ(j)| and so on. We

have also used |η′| = |η|, but note that |ν∗| 6= |ν|.
Formula (4.10) is factorized into two correlators of four ordinary Wilson loops is two pure CS

theories, disconnected and without matter. Each correlator can be further simplified expanding

pairwise the products of two Schur polynomials in the Schur basis, using the Littlewood–Richardson

rule. Repeating this step twice reduces completely the vev 〈W~µ〉 to a finite sum of products of two

ordinary Wilson loop vevs is two pure CS theories:

〈
W~µ

〉
=
ZN1;k1ZN2;k2

ZABJ

∑
ν

C̃0(ν1)C̃1 (~γ, ν)

∑
ν̃,ν̂,ν̌

Nν′γ(1)
ν̃Nγ(2)γ(3)

ν̂Nν̃ν̂
ν̌ 〈Wν̌〉N1;k1


× C̃2

(
~η′, ν∗

)∑
σ̃,σ̂,σ̌

Nν∗η(1)′
σ̃Nη(2)′η(3)′

σ̂Nσ̃σ̂
σ̌ 〈Wσ̌〉N2;k2

 .
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The Wilson loop vevs are known, cfr. (2.1), and the coefficients Nµν
ν̃ are the Littlewood–

Richardson coefficients, and recall that the sum over ν only includes a finite number of terms.

From the derivation, it is clear that the method applies to the correlator of any number of

Wilson loops greater than two. Consider ABJ theory with ranks N1 and N2 and CS levels k1 and

k2. Let ~µ be a set of nW ≥ 2 irreducible typical U(N1|N2) representations, and take the correlator

of the nW
1
2 -BPS Wilson loops in the representations ~µ. The recipe to compute the correlator is:

• apply the factorization (4.1) to all the nW supersymmetric Schur polynomials, and

• simplify two of the products arising from (4.1) with the denominator coming from the bi-

fundamental hypermultiplets.

• Apply nW − 2 times the dual Cauchy identity (2.12) to expand all the remaining products

in the numerator in the Schur basis.

• Use (4.5) to bring all the Schur polynomials with variables e−2πx or e−2πy into functions of

e2πx and e2πy.

• Expand the product of ordinary Schur polynomials pairwise using the Littlewood–Richardson

rule. Repeat this step until the products are completely reduced.

• The final result is a finite sum of Wilson loop vevs in pure CS theory, wrapping an unknotted

great circle in S3.

Besides, we notice that if some of the supersymmetric Schur polynomials have inverted variables

[58], the recipe does not change and they are taken care of in the fourth step.

As a sample application, consider the particular case of four rectangular N1 × N2 Young

diagrams, ~µ = (κ, κ, κ, κ). From (4.1) we obtain

〈(Wκ)4〉 =
1

ZABJ

∫
RN1

∫
RN2

∏
1≤a<b≤N1

(2 sinhπ(xb − xa))2
∏

1≤ȧ<ḃ≤N2

(
2 sinhπ(yḃ − yȧ)

)2
×

[
N1∏
a=1

N2∏
ȧ=1

2 coshπ(xa − yȧ)

]2 N1∏
a=1

eiπkx
2
a+4πN2xa dxa

N2∏
ȧ=1

e−iπky
2
ȧ+4πN1yȧ dyȧ,

which, except for the normalization by ZABJ, is the partition function of pure U(N1 + N2) CS

theory on the lens space L(2, 1) ' S3/Z2, evaluated in the background of a fixed, generic flat

connection that breaks the gauge symmetry

U(N1 +N2) −→ U(N1)× U(N2).

Following the steps listed above, we get

〈(Wκ)4〉 =
ZN1;k1ZN2;k2

ZABJ

∑
ν,ν̃

Ĉ(ν, ν̃)

[∑
ν̂

Nν′ν̃′
ν̂(dimq1 ν̂)q

− 1
2
C2;N1

(ν̂)

1

]

×

[∑
σ̂

Nν∗ν̃∗
σ̂(dimq1 σ̂)q

− 1
2
C2;N1

(σ̂)

1

]
,
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with coefficient

Ĉ(ν, ν̃) = exp

[
iπ
N1

k1

(
N2

2 + 2|ν|+ 2|ν̃|
)

+ iπ
N2

k2

(
(2N1 − ν1 − ν̃1)2 + |ν∗|+ |ν̃∗|

)]
.

The complete partition function of pure U(N) CS theory on L(2, 1) is obtained from this expression,

dropping the overall normalization and summing over all N1 and N2 with N1 +N2 = N fixed.

4.5 Necklace quivers

We now discuss the insertion of supersymmetric Schur polynomials in the matrix model describing

quiver CS theories

U(N0)k0 × U(N1)k1 × · · · × U(Nr)kr .

We focus for clarity on an extended Âr-type quiver, periodically identifying the nodes r + 1 ≡ 0,

being the discussion for linear quivers completely analogous. Let us fix p ∈ {0, . . . , r} and consider

a typical U(Np|Np+1) representation µ. The average of the supersymmetric Schur polynomial sµ
is

〈sµ〉 =

∫
Rr+1

sµ
(
e2πxp |e2πxp+1

) r∏
p=1

Np∏
a=1

eiπkpx
2
adxa∏

1≤a<b≤Np (2 sinhπ(xp,a − xp,b))2∏
1≤ȧ<ḃ≤Np+1

(2 sinhπ(xp+1,a − xp+1,b))
2∏Np

a=1

∏Np+1

ȧ=1 2 coshπ(xp,a − xp+1,ȧ)
.

The identity (4.1) has the net effect to cut the edge joining the pth node to the (p+ 1)th, leaving

behind the correlator of two Wilson loops, one in the U(Np) representation γ and the other in the

U(Np+1) representation η′, computed in a Ar+1 linear quiver gauge theory.

The correlator of more than one supersymmetric Schur polynomial, taken in typical represen-

tations of different supergroups U(Np|Np+1), cuts the edges joining each pair of nodes involved in

the definition of the supersymmetric Schur polynomials. The final expression is factorized into the

correlators of Wilson loops in disconnected linear quivers, with the loop operator inserted at the

first or last node of each sub-quiver.

Consider, for example, a necklace quiver with four nodes, and take a typical U(N0|N1) repre-

sentations µ and a typical U(N1|N2) representations µ̃, as in Figure 17. We find

〈sµsµ̃〉Â3
=
ZN1;k1ZA3

Z
Â3

〈WγWη̃′〉A3〈Wη′Wγ̃〉N1;k1 .

N0 N1

N2N3 N0

N1

N2N3

•
•

••

Figure 17. Left: Â3 quiver with two supersymmetric Schur polynomial insertions, represented as a blue

and a red line respectively. Right: the same quantity is factorized into two disjoint sub-quivers, with blue

and red dots denoting ordinary Schur polynomial insertions.
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The special case〈
r∏
p=0

sµ(p)

〉
with µ(p) a typical U(Np|Np+1) representation

is completely factorized into correlators of pairs of Wilson loops in ordinary, bosonic U(Np) CS

theory with renormalized CS level kp, for all p = 0, 1, . . . , r.

5 Schur expansion and its perturbative meaning

In this Section, we exploit the Cauchy identity (2.10) in different classes of Chern–Simons-matter

theories and uncover a relation between the partition function of such theories and formal power

series encoding topological invariants of simple links and (un)knots. As we will see, the series that

appear are coarse-grained versions of generating functions. The invariants we obtain on the right-

hand side are associated to either the unknot, a collection of unlinked unknots, or the Hopf link,

coloured by U(N) or SU(N) representations. If we denote by t the variable in the generating-like

series of such link invariants, we find that it is related to the physical quantities of the gauge theory

we started with through

t = −e2πm (5.1)

where m is a real mass parameter. If there are more mass parameters, associated to the Cartan

subalgebra of the flavour symmetry, we get a collection {tj} =
{
−e2πmj

}
.

The simple rewriting

t = e−i2π(
1
2

+im) ≡ e−i2πλ

shows that t is a fugacity for the variable λ = 1
2 + im, which is ubiquitous in the calculations

of Section 3. More accurately stated, in Sections 2.3 and 3 we have found that the results are

functions of the fugacity ei2πλ sign<k, but it is in fact a matter of conventions whether we choose

to expand in positive or negative powers of t, as will be clear from the examples below.

As we already pointed out in Subsection 3.3, the partition function is holomorphic in λ,

which is precisely the holomorphic variables of Jafferis [46], but further constrained by the N ≥
3 supersymmetry in all the theories considered in the present work. Besides, we have found

holomorphy in the vertical strip {0 < <λ < 1,−∞ < =λ < +∞} [6], thus the partition functions

are holomorphic functions of t ∈ C \R≥ 0.

The fact that turning off background values for the flavour symmetry corresponds to “take the

Euler characteristic”, t → −1, may point toward an interpretation in terms of categorification of

link invariants [59, 60], although not in the direction of the Khovanov–Rozansky homology. How-

ever, as we will see explicitly in the examples below, the quantities we obtain with our prescription

have a too simple structure to capture homological data. In conclusion, there are obstructions in

embedding the results presented in this Section into some homological theory of knots, as we spell

in more detail in Appendix B.

Before diving into the detailed analysis, a remark is in order. It is important to bear in mind

that the Cauchy identity (2.10) is algebraic, and is meant as an equality of the coefficients of the

book-keeping variables {tj} order by order in a (possibly formal) series expansion.3 We will use

the symbol “
pert.
= ” to signify that the equality between the left- and the right-hand side will be

3The dual Cauchy identity (2.12), instead, is a finite sum and this issue does not show up.
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understood as equating the coefficients of each variable tj order by order. Note that the distinction

between perturbative and non-perturbative in all the formulas in this Section is meant as functions

of the fugacities {tj} of the global symmetries, and not as functions of the gauge or CS couplings.

5.0.1 A toy example: Dawson’s integral

To set the ground for the Schur expansion of physically sensible theories in the forthcoming Sub-

sections, we firstly present our argument in a toy model. Consider the integral

FDawson(t−1) =

∫ +∞

−∞

dx√
π

e−x
2

x+ t−1
=
√
πe−i

π
2

sign(t)− 1
t2︸ ︷︷ ︸

non-pert.

+t+
1

2
t3 +

3

4
t5 +

15

8
t7 +

105

16
t9 + . . . (5.2)

known as Dawson’s integral [61]. The Gaussian damping term plays the role of the CS coupling

in this toy example, and moreover we ave chosen to write t−1 instead of t to mimic what we get

from massive hypermultiplets in the physical theories. In the right-hand side we have identified a

non-perturbative part in t and a formal power series in t. The customary expansion of a Stieltjes

transform such as (5.2) consists in considering the denominator as a geometric series, giving:

FDawson(t−1)
pert.
= t+

1

2
t3 +

3

4
t5 +

15

8
t7 +

105

16
t9 + . . .

The agreement of this solution with (5.2) can be checked to arbitrarily high order in t, once the

non-perturbative term is discarded.

5.1 Schur expansion of A1 theories with adjoint matter

5.1.1 Schur expansion: SU(2) Chern–Simons theory with one adjoint hypermultiplet

Let us consider the partition function of SU(2)k CS theory with one adjoint hypermultiplet. We

turn on a real mass m associated to the U(1) flavour symmetry rotating the adjoint, and define

the fugacity t = −e2πm, as in (5.1). The partition function is

ZSU(2),1adj
(m) =

∫ +∞

−∞
dx1

∫ +∞

−∞
dx2 δ(x1 + x2)

(2 sinhπ(x1 − x2))2 eiπk(x2
1+x2

2)

(2 coshπ(x1 − x2 +m))(2 coshπ(x2 − x1 +m))

=

∫ +∞

−∞
dx

4 sinh(2πx)2 ei2πkx
2

(2 coshπ(2x+m))(2 coshπ(2x−m))
.

Rewriting the denominator and using the Cauchy identity (2.10) we arrive at

ZSU(2)k,1adj
(m)

ZSU(2)k

pert.
=

∞∑
ν=0

tν+1〈Wνν〉SU(2), (5.3)

where we have used the definition (5.1). The sum runs over isomorphism classes of irreducible

SU(2) representations, in one-to-one correspondence with non-negative integers ν. We recognize

the generating function of the vevs of a Wilson loops running along a Hopf link in S3, computed

in SU(2) CS theory with renormalized coupling k = kbare + 2. These vevs in turn are given by

coloured Jones polynomials [31].

In the spirit of knot homology theory and its physical interpretation [59], we may try to

interpret (5.3) as the Poincaré polynomial of some knot homology, up to some simple overall factor.

The fugacity t corresponds on the physical side to a fugacity for the U(1) symmetry rotating the
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adjoint hypermultiplet, as occurs for example in [62], and turning off the mass parameters sends

t → −1, giving the Jones polynomials as the Euler characteristic of the would-be homological

theory. While this may be seen as a hint toward the interpretation of the result as a categorification

of the Hopf link invariant, a closer look at (5.3) suggests that such an interpretation is not correct,

at least in the present form. Further discussion on this point is presented in Appendix B.

5.1.2 Schur expansion: SU(N) Chern–Simons theory with one adjoint hypermultiplet

We now generalize the discussion above to higher rank, considering SU(N) theory. We may

consider U(N) theory as well, and the procedure goes through in precisely the same way.

The partition function of SU(N) Chern–Simons theory coupled to one adjoint is

ZSU(N)k,1adj
(m) =

∫
RN

dNx δ

(
N∑
a=1

xa

) ∏
1≤a6=b≤N 2 sinhπ(xa − xb)∏N
a,b=1 2 cosh(xa − xb +m)

eiπk
∑N
a=1 x

2
a .

The usual manipulations on the denominator, taking advantage of the δ function in the integrand

to simplify the expression, and the application of the Cauchy identity (2.10) lead us to

N∏
a=1

N∏
b=1

(
1 + e2πxae−2πxb+2πm

)−1
=
∑
ν

sν(e2πx)sν(−e−2πx+2πm),

where the sum is over irreducible representation of SU(N), which are equivalently represented by

Young diagrams with at most N − 1 rows. We also adopted a shorthand notation sν(e2πx) :=

sν(e2πx1 , e2πx2 , . . . , e2πxN ). We obtain the expansion of the partition function

ZSU(N)k,1adj
(m)

ZSU(N)k

pert.
= t

N(N−1)
2

∑
ν

t|ν| 〈Wνν〉SU(N) . (5.4)

We have used the definition (5.1) of the fugacity t, and |ν| is the number of boxes in the Young

diagram ν.

We find a (formal) polynomial in two variables (q, t), which as a function of the variable t, looks

similar to a generating function of HOMFLY-PT polynomials of the Hopf link coloured by SU(N)

representation. Note that the Hopf link is non-generic, since it is yields equal representations on

the two components. Note also that it is not truly a generating function, because each summand

is weighted by t|ν|, which does not distinguish between representation with the same value of |ν|.

5.1.3 Schur expansion: SU(N) Chern–Simons theory with Nadj adjoint hypermulti-

plets

The computations can be extended to an arbitrary number Nadj = n of adjoint hypermultiplets

with generic masses. The SU(N) partition function is

ZSU(N)k,1adj
(m) =

∫
RN

dNx δ

(
N∑
a=1

xa

) ∏
1≤a6=b≤N 2 sinhπ(xa − xb)∏Nadj

j=1

∏N
a,b=1 2 cosh(xa − xb +mj)

eiπk
∑N
a=1 x

2
a .

We mimic the steps above and apply the Cauchy identity n times, arriving at

ZSU(N)k,Nadj
(m)

ZSU(N)k

pert.
=

 n∏
j=1

t
N(N−1)

2
j

 ∑
ν(1)

t
|ν(1)|
1 · · ·

∑
ν(n)

t|ν
(n)|

n

〈
n∏
j=1

Wν(j)ν(j)

〉
SU(N)

.

The average computes the correlator of n = Nadj pairwise unlinked Hopf links, each one with

equally coloured components.
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5.2 Schur expansion of A1 theories with fundamental matter

5.2.1 Schur expansion: U(1) theory with Nf hypermultiplets

We now go back to the Abelian A1 CS theory with Nf massive hypermultiplets, discussed in

Subsection 3.2.2. We assume an even number of hypermultiplets Nf = 2n and write the partition

function in the form

ZU(1),2n(k, ~m) =

∫ +∞

−∞
dx

eiπkx
2+2πnx∏2n

j=1 (1− tje2πx)
,

where tj = −e2πmj , as defined in (5.1), and we used
∑Nf

j=1mj = 0 to drop an overall factor. We

now exploit the Cauchy identity (2.10). We thus write

2n∏
j=1

(
1− tje2πx

)−1
=
∞∑
ν=0

sν(e2πx)sν(t1, . . . , t2n) (5.5)

and obtain:
ZU(1),2n(k, ~m)

ZCS(1)k

pert.
=

∞∑
ν=0

sν(t1, . . . , t2n)〈Wν+n〉U(1)k

where 〈Wν+n〉U(1)k stands for the vev of the Wilson loop in the U(1) representation corresponding

to ν+n ∈ Z>0 computed in pure Chern–Simons theory on S3 at level k. Recall that the fugacities

tj are defined in (5.1) as minus the fugacities for the maximal torus of the flavour symmetry.

This Abelian case is particularly simple: recall from (2.11) that equation (5.5) gives in fact the

generating function of the homogeneous symmetric polynomials hν(t1, . . . , t2n) [38], and besides

the Wilson loop is captured by a simple Gaussian integral. We get:

ZU(1),2n(k, ~m)
pert.
=

√
i

k
e
iπ
k
n2
∞∑
ν=0

e
iπ
k

(ν2+2νn)hν(t1, . . . , t2n) (5.6)

=

√
i

k

{
e
iπ
k
n2 − e

iπ
k

(n+1)2
h1(t1, . . . , t2n) + e

iπ
k

(n+2)2
h2(t1, . . . , t2n) + . . .

}
,

where h1(t1, . . . , t2n) =
∑2n

j=1 tj , h2(t1, . . . , t2n) =
∑

1≤j≤l≤2n tjtl and so on, and recall that the

number of flavours is Nf = 2n. The result is a symmetric polynomial in the fugacities tj .

We can compare the result (5.6) with the exact one obtained in Section 3.2.2, but in doing so

we have to bear in mind a few caveats:

• While the physical parameters satisfy
∏2n
j=1 tj = 1, we should treat these as formal indeter-

minates, thus expanding for each tj independently.

• The formal expansion is in positive powers of tj , hence it will be compared with k < 0

in Subsection 3.2.2. We could as well have begun with the expansion in negative powers

of tj , to be compared with k > 0 in 3.2.2. In each case, the choice must be made at

the beginning, through the manipulations of the denominator before plugging the identity

(2.10). Nevertheless, the summation variable ν plays the role of a real irreducible U(1)

representation, and through the isomorphism with its conjugate representation we could

extract the expansion for k > 0.

• The Schur expansion will miss non-perturbative terms in tj , namely those ∝ e−iπk(
1
2

+imj)
2

.
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After elementary manipulations of the result in Subsection 3.2.2 and dropping non-perturbative

terms, the expansion relative to a single tj is

1

1− (−tj)|k|

|k|−1∑
α=0

tαj e
iπ
k

(α+n)2
∏
s 6=j

∞∑
βs=0

(
ts
tj

)βs
.

The prefactor should be expanded as a geometric series to compare with the Schur expansion. In

this way, the terms t
β|k|
j kick in extending the summation range beyond α = |k| − 1,

∞∑
β=0

|k|−1∑
α=0

(−1)β|k|e
iπ
k

(α+n)2
t
α+β|k|
j

∏
s6=j

∞∑
βs=0

(
ts
tj

)βs
. (5.7)

To check the agreement of the two expressions requires care in the power counting. So, for example,

tho compare at order t1j , one should take into account all the combinations, which in particular

include a term from all the homogeneous polynomials in the Schur expansion, which contribute

e
iπ
k

(n+1)2
tj +

∑
s 6=j

e
iπ
k

(n+2)2
tjts +

∑
s1,s2 6=j

e
iπ
k

(n+3)2
tjts1ts2 + . . .

For hν with ν > |k| − 1 write ν = α+ β|k| and use

e
iπ
k

(n+ν)2
= e

iπ
k

(n+α)2+iπβ2|k| = (−1)β|k|e
iπ
k

(n+α)2
.

On the side of the exact evaluation (5.7) in turn we see that all α and β contribute, as they

are partially cancelled by the t−βsj . Term by term comparison shows that the Schur expansion

correctly reproduces the exact answer, with the non-perturbative contributions already discarded.

Let us stress once again that the agreement is understood in an algebraic sense, reading off the

coefficients of the multiple expansion in {tj}.

To conclude the analysis of the present theory, we note that the same expressions have been

analyzed in [63], in the context of topological strings theory with non-compact branes. To make

contact with that setting we specialize the masses

mj = m

(
n− j +

1

2

)
(recall that Nf = 2n) and define t = −e2πm. The homogeneous polynomials become a q-binomial,

with q-parameter t:

hν

(
tn−

1
2 , . . . , t−n+ 1

2

)
=

[
n

ν

]
t

.

Then, our expressions differ from [63] only in the Gaussian term in the sum. This mismatch is

exactly the factor due to the difference in the framing, as the Wilson loop vev on S3 in [63] is

computed in the natural framing instead of the matrix model framing.

5.2.2 Schur expansion: U(N) and SU(N) theory with Nf hypermultiplets

The manipulations above have been presented in the Abelian theory for clarity, but are straight-

forwardly generalized to the non-Abelian setting. The partition function of U(N)k CS theory
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with Nf fundamental hypermultiplets, studied in Section 3.2.4, is more suitably written for our

purposes in the form

ZU(N),Nf =

∫
RN

∏
1≤a<b≤N (2 sinhπ(xb − xa))2∏N

a=1

∏Nf
j=1 (1− tje2πxa)

N∏
a=1

eiπkx
2
a+πNfxa dxa.

When the gauge group is SU(N) the partition function includes a δ-function δ
(∑N

a=1 xa

)
in the

measure.

Using the Cauchy identity (2.10), we identify the average of a Schur polynomial in the Chern–

Simons random matrix ensemble, which computes the vev of a Wilson loop. Note however that in

principle we cannot reabsorb the πNfxa in the exponential because it would move the integration

contour away from the real axis, and the integrand has poles in the complex plane. Equivalently,

the problem can be seen reabsorbing the shift into a redefinition of the masses, which would

acquire half-integer imaginary part, rendering the integrand singular. To handle this, we pass

from q = e−i2π/k to q = e−g, g > 0. Doing so, we can safely complete the square in the matrix

model, and the change of variables shifts 2πmj 7→ 2πmj + g
2Nf .

This problem does not arise in the SU(N) theory, since the δ-constraint on the eigenvalues

would cancel the linear shift, and we are allowed to work directly with q root of unity.

With this distinction in mind, we get for the U(N) case

ZU(N),Nf

ZCS(N)

pert.
= q−

N2
f

8

∑
ν

sν

(
q−

Nf
2 t1, . . . , q

−
Nf
2 tNf

)
〈Wν〉CS(N). (5.8)

The sum runs over Young diagrams associated to irreducible U(N) representations, and the basic

properties of the symmetric polynomials imply that all contributions with

length(ν) > min {N,Nf}

vanish. The average 〈· · · 〉CS(N) means the vev in U(N) CS theory with real q = e−g.

The overall factor in (5.8) is reminiscent of the effective CS coupling associated to a mixed

flavour-R contact term [48]. Besides, we again notice how the result is more naturally written

in terms of fugacities for the holomorphic variables λj = 1
2 + imj rather than for the masses mj

alone. The q-shift of the mass parameters seem likewise to originate from an effective coupling for

the background fields. This q-shift can be brought out of the Schur polynomials and contributes

a factor q−
Nf
2
|ν| to each summand.

The Wilson loop vev is known [32] and has been presented in equation (2.1), which we report

here for clarity:

〈Wν〉CS(N) = (dimq ν) q−
1
2
C2;N (ν).

In the SU(N) theory instead we obtain

ZSU(N),Nf

ZSU(N)k

pert.
=
∑
ν

sν
(
t1, . . . , tNf

)
〈Wν〉SU(N)k . (5.9)

The difference, besides the overall factor q−
N2
f

8 , is the specialization of the variables in the argument

of the Schur polynomial, which are not renormalized by a q-shift.
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We have therefore written the partition function of Chern–Simons theory with Nf fundamental

hypermultiplets as a generating-like function of unknot invariants. From (5.8) we can also obtain

the Schur expansion of the A2 quiver theory, simply dropping the constraint
∏Nf
j=1 tj = (−1)Nf

(this would introduce a factor
∏Nf
j=1(−tj)N in the matrix model, which we have set to 1) and

gauging the U(Nf ) symmetry. Adding a CS term to the newly gauge node and using (2.1) we find

for the A2 quiver U(N1)× U(N2) CS theory

ZA2

ZCS(N)1
ZCS(N2)

pert.
= q

−
N2
f

8
1

∑
ν

(
−q−

N2
2

1

)|ν|
(dimq1 ν)(dimq2 ν) q

− 1
2
C2;N1

(ν)

1 q
− 1

2
C2;N2

(ν)

2

where q1 and q2 are the q-parameters of the two pure CS theories obtained removing the edge

joining the two nodes of the A2 quiver.

5.2.3 Schur expansion: SU(N) theory with fundamental and adjoint hypermultiplets

We can consider a theory with both Nf fundamental and Nadj adjoint hypermultiplets. We will

limit ourselves to Nadj = 1, being the effect of adding more adjoint matter studied in Subsection

5.1.3. We work with gauge group SU(N) for concreteness, being the U(N) theory completely

analogous, up to a change of variables which generates a q-shift of the fugacities tj .

ZSU(N),Nf ,1adj
(~m,m0) =

∫
RN

δ

(
N∑
a=1

xa

) ∏
1≤a<b≤N (2 sinhπ(xb − xa))2∏N

a,b=1 (1− t0e2πxa−2πxb)

N∏
a=1

eiπkx
2
a dxa∏Nf

j=1 (1− tje2πxa)
.

Here the variables {tj} are as in (5.1), and we have denoted m0 the mass of the adjoint and

t0 = −e2πm0 the corresponding fugacity. Combining the manipulations of Subsection 5.1 with

those of 5.2.2 we arrive at

ZSU(N),Nf ,1adj
(~m,m0)

ZSU(N)k

pert.
=
∑
µ,ν

t
|µ|
0 sν(t1, . . . , tNf )〈WµWνµ〉SU(N)k .

From the matrix model description we see that, adding fundamental matter to the theory with

one adjoint, we have produced more interesting observables, which are correlators of two Wilson

loops, one along an unknot and one along a Hopf link, with the latter not necessarily coloured by

two equal representations.

5.2.4 Schur expansion: 4d N = 4 SYM with defects

We now apply the ideas presented in this Section to a special case of four-dimensional gauge theory,

namely N = 4 U(N) super-Yang–Mills (SYM) on S4 with co-dimension 1 matter defects placed at

the equatorial S3 ⊂ S4 [64]. The partition function of such theory, as obtained from localization,

is [64, 65]

Z4d+defect
U(N),Nf

=

∫
RN

∏
1≤a<b≤N

(xa − xb)2
N∏
a=1

e
− 8π2

g4d
x2
a dxa∏Nf

j=1 2 coshπ(xa +mj)
.

Applying identical manipulations as in Subsection 5.2.2, we arrive at a perturbative expansion

in the parameters tj , exactly as in the purely 3d framework, but now the summands are vevs of

Wilson loops computed in 4d,N = 4 SYM (with q4d = e−g4d/16π2
):

Z4d+defect
U(N),Nf

Z4d,N=4
U(N),Nf

pert.
= q

−
N2
f

8
4d

∑
ν

sν

(
q
−
Nf
2

4d t1, . . . , q
−
Nf
2

4d tNf

)
〈Wν〉4d,N=4

U(N) .
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5.3 Schur expansion of necklace quiver theories

The focus of this Subsection is on quiver gauge theories of type Âr.

5.3.1 Schur expansion: ABJ

We now consider the mass-deformed ABJ theory, whose partition function reads:

ZABJ(N1|N2)(k,m) =

∫
RN1

dN1~xeiπk
∑N1
a=1 x

2
a

∫
RN2

dN2~ye−iπk
∑N2
ȧ=1 y

2
ȧ

×
∏

1≤a<b≤N1
(2 sinhπ(xb − xa))2 ∏

1≤ȧ<ḃ≤N1

(
2 sinhπ(yḃ − yȧ)

)2∏N1
a=1

∏N2
ȧ=1 2 coshπ(xa − yȧ +m−) 2 coshπ(xa − yȧ +m+)

where the physical values of the masses are m± = ±m, but here we treat them as independent.

This can be achieved turning on a FI parameter which, upon changing variables, shifts the real

masses. The second line is more conveniently written as

eπ(N1+N2)(m+−m−)

[
N1∏
a=1

N2∏
ȧ=1

(
1 + e2πxae−2π(yȧ+m−)

) (
1 + e−2πxae2π(yȧ+m+)

)]−1

.

We now apply the Cauchy identity (2.10)[
N1∏
a=1

N2∏
ȧ=1

(
1 + e±2πxae∓2π(yȧ+m∓)

)]−1

=
∑
ν

sν(−e±2πx)sν(e∓2π(y+m∓)),

adopting the usual shorthand e2πx for (e2πx1 , . . . , e2πxN1 ) and likewise for e2πy, and the sum runs

over all partitions ν with

length(ν) ≤ min(N1, N2). (5.10)

Therefore, bringing the common factors e∓2πm∓ out of the Schur polynomials in e2πy we get

ZABJ(N1|N2)(k,m)
pert.
= eπ(N1+N2)(m+−m−)

∑
µ

∑
ν

(−e2πm+)|µ|(−e−2πm−)|ν|

×
∫
RN1

sµ(e2πx)sν(e−2πx)
∏

1≤a<b≤N1

(2 sinhπ(xb − xa))2
N1∏
a=1

eiπkx
2
adxa

×
∫
RN2

sµ(e−2πy)sν(e2πy)
∏

1≤ȧ<ḃ≤N2

(
2 sinhπ(yḃ − yȧ)

)2 N2∏
ȧ=1

e−iπky
2
ȧdyȧ.

We find that the integrals are factorized into vevs of Wilson loops in pure Chern–Simons theory

[57] at each node:

ZABJ(N1|N2)(k,m)
pert.
= eπ(N1+N2)(m+−m−)

∑
µ

∑
ν

(−e2πm+)|µ|(−e2πm−)−|ν|〈Wµν〉N1;k〈Wνµ〉N2;−k

where the equality is understood order by order in the Laurent expansion in the parameters

t± = −e2πm± , and the two vevs compute Hopf link invariants respectively in U(N1) and U(N2)

pure Chern–Simons theory on S3 with renormalized levels k and −k. Note also how the roles of

the two representations µ, ν are swapped between the two nodes. The restriction (5.10), which

arises here from an elementary property of the symmetric polynomials, matches with the analysis

of the quiver variety of Â1, which only includes U(N) representations for N = min {N1, N2}.
The result does not rely on the specific choice of CS levels and immediately extends to generic

(k1, k2).
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5.3.2 Schur expansion: necklace quivers

ABJ theory belongs to the class of extended Âr quivers. We now show how the Schur expansion

holds for the whole Âr family of theories, with mass deformation and without any additional matter

content beyond the bi-fundamental hypermultiplets linking the gauge nodes, as depicted in quiver

notation in Figure 18. These N = 3 CS theories have been constructed in [23, 24]. The result

we find is a series expansion in the parameters tp = −e2πmp , with the coefficients being vevs of a

Wilson loop in pure Chern–Simons theory with gauge group U(Np) and level kp.

N0

N1

N2

Nr

Nr−1

· · ·

m1

m2mr−2

mr−1

mr m0

Figure 18. Mass-deformed non-Abelian Âr extended quiver.

The partition function of the theory is:

Z
Âr

(~k, ~m) =

∫
RN0

dN0~x0

∫
RN1

dN1~x1 · · ·
∫
RNr

dNr~xr

r∏
p=0

eiπkp
∑Np
a=1 x

2
p,a

×
r∏
p=0

∏
1≤a<b≤Np (2 sinhπ(xp,b − xp,a))2∏Np

a=1

∏Np+1

ḃ=1
2 coshπ(xp+1,ḃ − xp,a +mp)

,

with periodic identification of the labels, r+1 ≡ 0. At the level of the matrix model, the eigenvalues

associated to each gauge node interact among themselves as in pure U(Np)kp Chern–Simons theory,

and also interact with the nearest neighbours through the denominator.

We apply the Cauchy identity (2.10) at each edge of the quiver in Figure 18, expanding in

the fugacities associated to the masses of the bi-fundamental hypermultiplets. We obtain the

expressions

1∏Np
a=1

∏Np+1

ḃ=1
2 coshπ(xp,a − xp+1,ḃ +mp)

=

Np∏
a=1

Np+1∏
ḃ=1

eπ(xp,a+mp)−πxp+1,ḃ

1 + e2π(xp,a+mp)e−2πxp+1,ḃ

= e
π(Np+1+Np)mp−πNp+1

∑Np
a=1 xp,a−πNp

∑Np+1

ḃ=1
xp+1,ḃ

×
∑
ν(p)

(−1)|ν
(p)|sν(p)(e2π(xp+mp))sν(p)(e−2πxp+1),

where the sum runs over partitions ν(p) satisfying

length(ν(p)) ≤ min(Np, Np+1). (5.11)

Each set of variables e2πxp appears with plus sign in the exponent in the Schur sν(p) and with

minus sign in sν(p−1) . Besides, as above, we have written sν(p)(e2πxp) as a shorthand for the Schur
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polynomial in the Np variables (e2πxp,1 , . . . , e2πxp,Np ). Putting all such contributions together we

get

Z
Âr

(~k, ~m)
pert.
=

∫
RN0

∫
RN1

· · ·
∫
RNr

r∏
p=0

Np∏
a=1

e[iπkpx
2
p,a+π(Np+1−Np−1)xp,a] dxp,a

×
r∏
p=0

∏
1≤a<b≤Np

(2 sinhπ(xp,b − xp,a))2

× eπ
∑r
p=0(−1)pmp(Np+1+Np)

∑
~ν

(−1)|~ν|
r∏
p=0

e(−1)p2πmp|ν(p)| sν(p−1)(e−2πxp)sν(p)(e2πxp),

with the sum running over (r + 1)-tuples of partitions

~ν = (ν(0), . . . , ν(r)),

with all partitions ν(p) constrained according to (5.11). The integrals are now suitably factorized

in each summand. Completing the squares in the Gaussian term at each node and comparing with

[57], we obtain

Z
Âr

(~k, ~m)∏r
p=0ZCS(Np);kp

pert.
= e

π
∑r
p=0

[
mp(Np+1+Np)+ i

2kp
Np(Np+1−Np−1)2

]
(5.12)

×
∑
~ν

r∏
p=0

tp|ν(p)| e
i

2kp
(Np+1−Np−1)(|ν(p)|−|ν(p−1)|) 〈Wν(p)ν(p−1)〉Np;kp ,

where the average in each summand is the vev of a Wilson loop in U(Np)kp Chern–Simons theory,

computing the Hopf link invariant in the representations (ν(p), ν(p−1)). As always, the two sides

of the equality are understood as formal series expansions in the parameters tp = −e2πmp . These

global symmetry fugacities serve as book-keeping variables in the expansion, while all other vari-

ables are integrated. Furthermore, if we think of each 〈W••〉Np;kp as a ring homomorphism from

the ring of U(Np) representations to C[qp, q
−1
p ], we notice the emergence of a trace of the product

of r + 1 such maps as a direct consequence of the quiver being necklace-shaped. This trace is

taken on the ring of U(Nmax) representations, with Nmax = maxpNp and 〈Wµν〉Np;kp understood

to vanish if either µ or ν is not a U(Np) representation. The trace structure appears more clearly

when Np = N and kp = ±k for all p = 0, 1, . . . , r.

From the properties of pure CS theory and its relation with the level k WZW model [31],

only integrable representations contribute to each Hopf link invariant. This introduces an effective

“mod kp” periodicity [37] of the coefficients of each tp.

5.3.3 Schur expansion: the M-crystal model

A simple yet interesting example of the above setting corresponds to the Abelian model with

alternating ±1 CS levels, ~k = (+1,−1, . . . ,−1). This quiver gauge theory describes the M-crystal

model [54, 55], see for example Figure 19. Specializing the computations above and after a few

simplifications we get

Z
Âr

(±1, ~m)∏r
p=0ZCS(1);(−1)p

pert.
= e2π|~m|

∑
~ν∈Zr+1

≥0

r∏
p=0

(
−e2πmpν(p)+i2π(−1)pν(p−1)ν(p)

)
.
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The series is clearly not convergent, but this was expected as the right-hand side has the meaning

of an algebraic expansion in multiple variables. In conclusion, a perturbative expansion of the

partition function of the M-crystal model has all the terms tν
(0)

0 · · · tν(r)

r with coefficient 1.

11

11

m0

m1

m2

m3

Figure 19. Mass-deformed Â3 extended quiver. For ~k = (1,−1, 1,−1) the associated Chern–Simons theory

is the gauge theoretical realization of the M-crystal model with four vertices.

A simple generalization of the above formula to the Abelian necklace quiver with arbitrary ~k

gives

Z
Âr

(~k, ~m)∏r
p=0ZCS(1);kp

pert.
= (−1)r

 r∏
p=0

tp

 ∑
~ν∈Zr+1

≥0

r∏
p=0

tν
(p)

p e
−iπν(p)

(
1
kp

+ 1
kp−1

)
+i 2π

kp
ν(p)ν(p−1)

. (5.13)

When r = 1 and k2 = −k1 we get the Abelian ABJM theory, exactly solved in Subsection 3.4.3.

As a consistency check, we expand the geometric series

k−1∑
α=0

tαj

tkj − 1
= −

k−1∑
α=0

∞∑
β=0

tα+βk
j = −

∞∑
α=0

tαj

in the answer from Subsection 3.4.3, and confirm that the Schur expansion reproduces the correct

coefficients to all orders in t1, t2, although, as expected, it misses all the terms proportional to

eiπm
2
j .

Explicit Schur expansions for higher rank quivers are given in Appendix C.

5.4 Schur expansion for Wilson loops

It is possible to combine the ideas used in this Section with those of Section 4 to study Wilson

loops.

We come back to the setting of Section 4 and consider the vev of a single 1
2 -BPS Wilson loop

in ABJ theory, with ranks N1 and N2. We assume the Wilson loop carries a typical representation

µ of the supergroup U(N1|N2) [20]. We write

sµ(e2πx|e2πy)∏N1
a=1

∏N2
ȧ=1 (2 coshπ(xa − yȧ))2

= sγ(e2πx)sη′(e
2πy)

N1∏
a=1

N2∏
ȧ=1

e2πxa+2πyȧ

e2πxa + e2πyȧ

= sγ(e2πx)sη′(e
2πy)

(
N1∏
a=1

e2πxa

)∑
ν

(−1)|ν|sν(e2πx)sν(e−2πy),

where the first equality follows from the factorization property (4.1), while to pass from the first

to the second line we have used the Cauchy identity (2.10) and brought out the factor (−1) from

sν(−e−2πy). The sum over ν runs over all partitions

{ν : length(ν) ≤ min(N1, N2)} .
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It is important to stress the difference between the results we present in this Subsection and the

ones we have found in Section 4. There, the correlator of two or more Wilson loops in ABJ has

been taken into account, and the factorization of the final result into vevs of Wilson loops in CS

theories without matter is exact. Here, instead, we consider a single Wilson loop in ABJ, and we

use the Cauchy identity to expand the interaction between the two nodes. In turn, the latter is

the Schur expansion of the A2 quiver of Subsection 5.2.2.

With the Schur expansion, the expectation value of the Wilson loop decomposes into a sum

of contributions, indexed by the partition ν, factorized into two multiple integrals, one for each

node:

〈Wµ〉N1,N2;k
pert.
=

1

ZABJ

∑
ν

(−1)|ν|W(1)
γνW

(2)
νη′ , (5.14)

W(1)
γν :=

∫
RN1

∏
1≤a<b≤N1

(2 sinhπ(xb − xa))2 sγ(e2πx)sν(e2πx)

N1∏
a=1

eiπkx
2
a+2πxa dxa,

W(2)
νη′ :=

∫
RN2

∏
1≤ȧ<ḃ≤N1

(
2 sinhπ(yḃ − yȧ)

)2
sν(e2πy)sη′(e

−2πy)

N2∏
ȧ=1

e−iπky
2
ȧ dyȧ.

The first function corresponds to integration over the Cartan subalgebra of u(N1) and the second

to integration over the Cartan subalgebra of u(N2). In the integral over the second node, we have

reflected variables yȧ 7→ −yȧ. The term
∏
a e

2πxa in W(1)
γν can be removed with a shift of variables

and translating back the integration cycle onto R, obtaining

W(1)
γν = e

iπ
k

(N1+2|γ|+2|ν|)
∫
RN1

sγ(e2πx)sν(e2πx)
∏

1≤a<b≤N1

(2 sinhπ(xb − xa))2
N1∏
a=1

eiπkx
2
adxa.

5.4.1 Rectangular partition

The simplest case is the expectation value of a Wilson loop in a rectangular representation µ = κ,

so γ = ∅ = η. We get:

W(1)
∅ν = e

iπ
k

(N1+2|ν|)
∫
RN1

sν(e2πx)
∏

1≤a<b≤N1

(2 sinhπ(xb − xa))2
N1∏
a=1

eiπkx
2
adxa

= ZN1;k q
−

C2;N1
(ν)

2
−N1

2
−|ν| dimq ν

and

W(2)
ν∅ =

∫
RN2

dN2y sν(e2πx) e−
∑N2
ȧ=1 iπky

2
ȧ

∏
1≤ȧ<ḃ≤N2

(
2 sinhπ(yḃ − yȧ)

)2
= ZN2;−k q

C2;N2
(ν)

2 dimq−1 ν

In both evaluations, the second line follows from the Wilson loop vev (2.1) and ZN1,k and ZN2,−k
are the corresponding normalizations. Noting that dimq−1 ν = dimq ν, the vev of the Wilson loop

in a rectangular representation κ of the supergroup U(N1|N2) is then

〈Wκ〉N1,N2;k
pert.
=
ZN1;kZN2;−k
ZABJ(N1|N2)k

q−
N
2

∑
ν

(−q)−|ν| (dimq ν)2 q
C2;N2

(ν)−C2;N1
(ν)

2 .
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In particular, for ABJM theory, N1 = N = N2, the quadratic Casimir cancels and we arrive to the

simpler formula

〈Wκ〉N,N ;k
pert.
=
ZN ;kZN ;−k
ZABJM(N)k

q−
N
2

∑
ν

(−q)−|ν| (dimq ν)2 .

5.4.2 Arbitrary typical representation

We now tackle the general case of a typical (long) but otherwise arbitrary representation µ, and

give two equivalent, and in fact related, evaluations of the vev of the Wilson loop in ABJ theory.

Both approaches require to invert the variables in a Schur polynomial, which can be done

using the identity (4.5).

The first procedure mimics [57], and extends the result to the unknot Wilson loop. Inverting

variables in W(1)
γν using (4.5) we identify W(1)

γν and W(2)
νη′ with Hopf link invariants computed in

U(N1)k and U(N2)−k Chern–Simons theory on S3, respectively. Explicitly:

〈Wµ〉N1,N2;k =
ZN1;kZN2;−k
ZABJ(N1|N2)k

∑
ν

Cγν(q) 〈Wγν∗〉N1;k〈Wνη′〉N2;−k, (5.15)

where the averages in the sum are the Hopf link invariants and the summands are weighted by

Cγν(q) = (−1)|ν|q
−(1+ν1)

(
|γ|+|ν|+ 1+ν1

2
N1

)
. (5.16)

The partition ν∗ has been defined in (4.6). In the operator formalism the expansion (5.15) takes

the form

〈0|TST |µ〉N1,N2;k =
ZN1;kZN2;−k
ZABJ(N1|N2)k

∑
ν

Cγν(q) 〈η|TST |ν〉N1,k〈ν∗|TST |γ〉N2,−k,

where T, S are the SL(2,Z) modular matrices. Note that the two ν’s are treated differently: one

is considered as a U(N1) representation and the other as a U(N2) representation, with the latter

twisted by the starred partition. The appearance of the operator TST rather than S is because the

matrix model presentation computes the observables in a special instance of the Seifert framing,

rather than in the natural S3 framing.

The alternative path consists in applying the inversion formula (4.5) to sν(e2πy). Similar

manipulations lead to:

〈Wµ〉N1,N2;k =
ZN1;kZN2;−k
ZABJ(N1|N2)k

q−
N1
2
−|γ|

∑
ν

C̃νη′(q)〈WγWν〉N1;k〈Wν∗Wη′〉N2;−k (5.17)

with coefficient

C̃νη′(q) = (−q)|ν|q−ν1(|η′|+|ν|− ν12 N2).

The expression (5.17) is expressed as a sum of correlators of two pairs of (unlinked) unknots, one

pair in each CS theory. These correlators can be further reduced with a character expansion in

the Schur basis:

〈Wµ〉N1,N2;k =
ZN1;kZN2;−k
ZABJ(N1|N2)k

q−
N1
2
−|γ|

∑
ν

C̃νη′(q)
∑
ν̃,ν̂

Nγν
ν̃〈Wν̃〉N1;kNη′ν∗

ν̂〈Wν̂〉N2;−k,

where, as above, Nγν
ν̃ are the Littlewood–Richardson coefficients.
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The solvability is again preserved if we turn on a Romans mass in the dual theory as prescribed

in [18]. The above computation is straightforwardly generalized to k2 6= −k1 and gives:

〈Wµ〉N1,N2;k1,k2 =
ZN1;k1ZN2;k2

ZABJ(N1|N2)k1,k2

∑
ν

Cγν(q1) 〈Wγν∗〉N1;k1〈Wνη′〉N2;k2

with summands weighted by (5.16) with q = q1 = e
− i2π
k1 , hence independent of k2.

Our derivation complements previous results [66, 67] extending the analysis to a broader class

of representations.

5.5 The Schur expansion does not probe dualities

The Schur expansions we developed are useful tools to read off the coefficients in a perturbative

expansion in the parameters tj , given in terms of simple topological invariants. Such expansions,

however, are of no use in an attempt to test gauge theory dualities. We discuss here the reasons.

First of all, although dual theories should have the same global symmetries, the flavour sym-

metry with respect to which we apply a Schur expansion in one theory, may not (and in general,

shall not) be mapped into a symmetry useful for a Schur expansion in the dual picture. Therefore,

the fugacities used for the Schur expansions in the dual theories, namely
{
telectric
j

}
and

{
tmagnetic
j

}
,

are not mapped into each other by the duality map in general.

A second crucial aspect is that nothing guarantees that, given a theory suitable for the Schur

expansion, its dual admits a meaningful expansion at all. When both theories have CS couplings,

we are able to give an expansion on both sides of the duality, although using different fugacities.

However, for theories whose dual is not a Chern–Simons theory, it is possible that the Schur

expansion would lead to ill-defined quantities.

To exemplify the problems, consider the duality between ABJM theory with k = 1 and

super-Yang–Mills with one adjoint and one fundamental hypermultiplet [12]. The former theory

is a particular case of Subsection 5.3.1, and can be in expanded in the fugacities associated to a

U(1) × U(1) symmetry rotating the bi-fundamentals. As in Subsection 5.3.1, we are identifying

the Cartan subalgebra u(1)flavour ⊕ u(1)top of the global symmetry with the Cartan subalgebra of

an enhanced u(2)flavour, through a simple change of variables that shifts the masses, (m,−m) 7→
(m − ζ,−m − ζ). If, on the other hand, we try to expand SYM for the fugacity t0 associated to

the U(1)adj flavour symmetry rotating the adjoint, we obtain vevs of Wilson loops in U(N) SYM

with only one fundamental. The latter is a bad theory, in the sense that the localized integral in

the UV does not capture the IR behaviour. Alternatively, we may attempt an expansion using the

flavour symmetry U(1)fund rotating the fundamentals. This procedure gives as coefficients of the

powers of the variable t the vevs of Wilson loops wrapping a great circle in S3 in SYM with one

adjoint, which give ill-defined answers if we naively try to compute them from the localized path

integral.

5.6 Comments on the U(N) theory with Nf fundamental hypermultiplets

As a final observation, and departing from the previous use of Schur expansions, we discuss further

the partition function ZU(N),Nf . The expression (5.8) appears in topological string theory [63] in

the study of non-compact branes on the resolved conifold. There, the fugacities tj correspond

to diagonal holonomies of the gauge fields along a circle S1, determined as the locus where a

non-compact brane intersects S3. Replacing a brane with an anti-brane in the framework of [63]
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corresponds here to exchange the Cauchy identity (2.10) with the dual Cauchy identity (2.12),

which describes the Schur expansion of the matrix model

Z ferm.
U(N),Nf

=

∫
RN

∏
1≤a<b≤N

(2 sinhπ(xb − xa))2
N∏
a=1

Nf∏
j=1

2 coshπ(xa +mj)

 e
− 1

2g
(2πxa)2

dxa.

The choice of notation “ferm.” for this matrix model will be justified in Subsection 5.6.2.

In the Abelian theory, in particular, replacing a brane with an anti-brane [63] switches from the

generating function of the complete homogeneous symmetric polynomials to that of the elementary

symmetric polynomials eα [38], cfr. equation (2.13).

We compare now ZU(N),Nf with Z ferm.
U(N),Nf

. The former is the partition function of U(N) CS

theory at level k on S3 coupled to Nf fundamental hypermultiplets. We have introduced the latter

to mimic the pair of identities (2.10)-(2.12) at the level of matrix integrals. Nevertheless, there

are several physical motivations to study both ZU(N),Nf and Z ferm.
U(N),Nf

.

As we have already mentioned, in topological string theory on the conifold it is important to

have both functions [63, 68]. Moreover, the matrix model Z ferm.
U(N),Nf

with all the masses vanishing,

has been studied in [69] in the context of fermionic quantum mechanics, and solved in [70] for

any {mj} ⊂ RNf . A third motivation for the introduction of the “fermionic” partition function

comes from looking at each summand in the Schur expansions. Consider a fixed ν in the sums over

representations which corresponds to a symmetric SU(N) representation. The associated reduced

coloured knot invariants have been categorified in [71, 72]. The corresponding homologies posses a

mirror symmetry which exchanges the symmetric representation ν with the totally antisymmetric

representation ν ′. Generalizing this operation to the present context, replacing one representation

by its conjugate, switches from the Cauchy identity (2.10), to the dual Cauchy identity (2.12).

A fourth, heuristic argument to consider the pair ZU(N),Nf Z
ferm.
U(N),Nf

is presented in Subsection

5.6.2.

5.6.1 Averages of characteristic polynomials

It has been shown in [45] that ZU(N),Nf computes the average of the inverse of the product of

characteristic polynomials in the Stieltjes–Wigert random matrix ensemble, which describes the

CS matrix model [33]. Explicitly:

ZU(N),Nf

ZCS(N)
∝

〈Nf∏
j=1

det
(
t̃∨j −X

)−1〉
SW(N)

,

with X a random Hermitian matrix whose eigenvalues are (x1, . . . , xN ). The spectral parameters

t̃∨j are related to the physical quantities through

t̃∨j = −q−N−
Nf
2 e−2πmj = q−N−

Nf
2 t−1

j ,

with q = e−g.

The average of the inverse product of characteristic polynomials in the Hermitian random

matrix ensemble with Stieltjes–Wigert weight is calculated exactly, and is a Nf ×Nf determinant:

ZU(N),Nf

ZCS(N)
=

cN,Nf∏
1≤j<l≤Nf

(
t̃∨j − t̃∨l

) det
1≤j,l≤Nf

[
p∨N+l−1

(
t̃∨j
)]
, (5.18)
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where p∨n(t̃∨) are the Cauchy transform of the Stieltjes–Wigert orthogonal polynomials, and the

constant cN,Nf in (5.18) does not depend on the spectral parameters t̃∨j . We refer to [45] for more

details, proofs and references.

We obtain the analogous expression for the other matrix integral considered, in terms of

averages of products of characteristic polynomials in the Stieltjes–Wigert ensemble [70]:

Z ferm.
U(N),Nf

ZCS(N)
∝

〈Nf∏
j=1

det
(
t̃j −X

)〉
SW(N)

,

Here, the spectral parameters t̃j are related to the parameters of the gauge theory as

t̃j = −q−N+
Nf
2 e−2πmj = q−N

(
q−

Nf
2 tj

)−1

.

The average of the product of characteristic polynomials is explicitly given by a Nf × Nf deter-

minant
Z ferm.
U(N),Nf

ZCS(N)
=

cferm.
N,Nf∏

1≤j<l≤Nf (t̃j − t̃l)
det

1≤j,l≤Nf

[
pN+l−1

(
t̃j
)]
,

where pn(t̃) are the Stieltjes–Wigert polynomials, and cferm.
N,Nf

is a numerical constant. We refer

to [70] for details and a detailed list of references. We remark that a closely related result was

obtained in [68], in the context of topological string theory on the conifold.

5.6.2 Bosonic versus fermionic matrix models

We can recast the two expressions in a unified formalism, integrating over auxiliary variables:

ZεU(N),Nf
=

∫
dX e

− 1
2g

Tr(logX)2
Nf∏
j=1

∫
e−ψ̄

j(X−t̃εj)ψj
N∏
a=1

dψ̄jadψ
j
a

2π
. (5.19)

In this expression, ε ∈ {±1}, with ε = −1 giving ZU(N),Nf and ε = +1 giving Z ferm.
U(N),Nf

. The

spectral parameters are respectively t̃∨j and t̃j for ε = −1,+1. The integration is over Nf N -

component vectors ψj = (ψja)a=1,...,N , for j = 1, . . . , Nf , and their conjugates ψ̄j = (ψ̄ja)a=1,...,N .

These vectors have Grassmann-even entries when ε = −1 and Grassmann-odd entries when ε = +1.

We recall that t̃∨j , t̃j < 0 from their definition in terms of the physical variables, which guarantees

that the inner integral in (5.19) is well posed. Besides, we have dropped an overall constant.

Written in the form (5.19), we see that switching from the Cauchy identity (2.10) to the dual

Cauchy identity (2.12) passes from the Schur expansion of the matrix model (5.19) with bosonic

fields to the Schur expansion of (5.19) with fermionic fields.4

The ideas of the present Subsection can be applied to 4d N = 4 SYM with co-dimension 1

matter defects sitting on a great S3 inside S4. The analogue of (5.19) is

Z4d+defect,ε
U(N),Nf

=

∫
dX

∫
dψ̄dψ

(2π)N
e
−Tr

[
8π2

g4d
X2+

∑
j=1 ψ̄

j(eX−t̃εj)ψj
]
. (5.20)

4The suggestive form (5.19) does not seem to allow a unified treatment of fermionic and bosonic versions of the

quantum mechanical model of [69], because the matrix model representation Z ferm.
U(N),Nf

has been originally derived

using a Wick rotation that is forbidden in the bosonic counterpart.
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Here ε = −1 corresponds to the physical 4d N = 4 theory and ε = +1 is its counterpart using

a fermionic matrix representation. Compared to the purely three-dimensional theory, we have

removed the log2-interaction, at the cost of an exponential term in the action. Rescaling Xab →√
g4d/16π2Xab we can expand the interaction term in (5.20) in a power series in

geff =

√
g4d

4π
.

The resulting effective action includes infinitely many vertices:

ψ̄j
(
eX − t̃εj

)
ψj = ψ̄ja

(
1− t̃εj

)
δabψ

j
b + geffψ̄

j
aXabψ

j
b +

g2
eff

2
ψ̄jaXacXcbψ

j
b + . . .

and can be analyzed by standard perturbative techniques in random matrix theory [73].

The upshot of this digression is that we may as well describe four-dimensional N = 4 SYM

with defects using random matrix theory, and equivalently represent it as a theory of massive

scalars ψ̄j , ψj in the vector representation of U(N) which interact with a (zero-dimensional) gluon

X in the adjoint representation of U(N). We also naturally get an associated theory in which the

bosons are replaced by zero-dimensional fermions.

6 Outlook

The explicit evaluation of the Mordell integral has been a valuable analytical tool, giving explicit

results, containing both perturbative and non-perturbative information. It naturally comes split

in two terms, the first of which is a Gauss sum, refined by powers of ei2πλ.

The Gauss sum in itself may be worth of further consideration, taking into account its intricate

behavior, especially when the parameter is irrational, and known “renormalization” features ap-

pear, leading for example to spiral patterns when plotting the function on the complex plane, while

moving the value of the parameter, which in our case would be the Chern–Simons level [49, 50].

Scaling theories of such patterns were studied in these, and posterior works, precisely using what

can be considered as a real-space renormalization procedure, based on grouping the terms in the

sum into blocks. The first consideration of a renormalization equation can be considered to be the

functional equation given for Gauss sums by Hardy and Littlewood [74].

Even for rational values of the parameter we have non-trivial behavior [49, 50], and that case

would be relevant to, say, Abelian Chern–Simons-matter theories.5 The partition functions we

studied are expressed in terms of such Gauss sums. However, the dependence on the mass and

the second term in Mordell’s solution introduce a new behaviour, cfr. the plots in Subsection 3.1.

Therefore, a further look into deeper mathematical features, in particular interpretations of such

sums from the point of view of dynamical systems and ergodic theory [75] may be worthwhile. It

has already been argued that localization results may be a useful playground to further understand

renormalization behavior in a broader sense [76].

We have considered generic long representations when discussing Wilson loops in the ABJ and

ABJM matrix models. This leads to the possibility of applying the Berele–Regev factorization

(4.1). As usual in the representation theory of Lie superalgebras, everything is more involved

and less well-known if one wants to consider atypical representations. It would be interesting

to consider the rather newer result, quoted in [77, Sec. 5.7], for atypical representations, where

5Its relation with the irrational k case has been commented in Subsection 3.3.1.
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seemingly the supersymmetric Schur can be expressed as a sum of factorized terms, and try to

carry out the same type of computations with it.

There are further possible Schur expansions that we have not discussed. For example, we may

consider ABJ(M) theories with orthogonal and symplectic gauge group, that describes orientifolds,

or more general ortho-symplectic quiver theories, with gauge group the alternating product of

orthogonal and unitary symplectic groups. It turns out that the different Haar measures involved

in the resulting matrix model admit an expression in terms of the U(N) Haar measure times a sum

of Schur polynomials. This expressions can be found for example in Macdonald’s book [38, Ch.

5 Ex. 9] and they have been applied to matrix models in [36], but have not been considered for

orientifold ABJ(M) matrix models. Combining this property with the Cauchy identity to deal with

the contribution from the bi-fundamental hypermultiplets, would lead again to Schur expansions

given by sums of Wilson loop vevs in U(N) Chern–Simons theory on the three-sphere.
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A Mordell integrals at λ 6= 0

In this Appendix we explain some subtlety related to the integrals (2.3)-(2.4). We mainly review

results from [6] and comment on how to properly combine them.

In his original paper [6], Mordell gave the formulas [6, Eq. (8.1)-(8.2)]

Ψ+(ξ) :=

∫ +∞

−∞
dx
e
iπ κ
%
x2−2πxξ

e2πx − 1
=

1

eiπ%(2ξ−κ) − 1

−√ i%

κ

κ∑
α=1

eiπ
%
κ

(ξ+α)2

+ i

%∑
β=1

e
iπβ
(

2ξ−κ
%
β
) ,

(A.1)

Ψ−(ξ) :=

∫ +∞

−∞
dx
e
−iπ κ

%
x2−2πxξ

e2πx − 1
=

1

eiπ%(2ξ−κ) − 1

√− i%
κ

κ−1∑
α=0

e−iπ
%
κ

(ξ−α)2

+ i

%∑
β=1

e
iπβ
(

2ξ+κ
%
β
) ,
(A.2)

valid for κ, % ∈ Z>0. The integration contour can be taken either along the real axis avoiding x = 0

by a small semicircle, or on a straight line inclined with respect to the real axis and intersecting

the imaginary axis between 0 and −i. The inclination should be a negative angle for Ψ+ and

a positive angle for Ψ−. We follow this latter choice, and represent the inclined straight line in

Figure 20. The final result is independent of the angle θ between the integration axis and the real

axis.

Figure 20. Choice of integration contour for the Mordell integrals, shifted and rotated by a small angle

with respect to the real axis. Left: contour for Ψ+, rotated by a negative angle −θ < 0. Right: contour for

Ψ−, rotated by a positive angle θ > 0.

On the other hand, the integral

Ψ̃(λ, ξ) :=

∫
R−iλ

dx
eiπκ̃x

2−2πx(ξ+k̃λ)

e2πx − 1

with

=(κ̃) > 0, 0 < <λ < 1

is equivalent to [6, Eq. (3.8)]

Ψ̃(λ, ξ) = eiπλ(2+2ξ+κ̃λ)

∫ +∞

−∞
dx

eiπκ̃x
2−2πxξ

e2πx − ei2πλ

now with the integration cycle along the real axis. The proof of this formula [6] makes explicit

that one can move the original integration contour in the region 0 < <λ < 1 without changing the
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result. The same is true for the contour of Ψ±, where we are free to chose where to intersect the

imaginary axis. We can therefore introduce the parameter λ also in Ψ±, obtaining the integrals

defined in (2.3)-(2.4). However, in order not to get out of the proper region, we must impose

θ-dependent restrictions on λ, as can be seen from Figure 21. So the formula (2.3) for Ψ+ hold for

r sin θ < <λ < 1 + r sin θ, −r cos θ < =λ < r cos θ

where r ≥ 0 is arbitrary, and similarly for Ψ−. Rotating θ → 0+ we recover the constraints

0 < <λ < 1 and =λ arbitrary for Ψ̃ defined above. In particular we can fix 0 < <λ < 1 and

0 < θ � π
2 , so that we are free to chose =λ arbitrarily large. With this choice, we change variables

in (A.1) and recover (2.3), and likewise in (A.2) to recover (2.4), with the integration contour now

arbitrarily close to the real axis.

Figure 21. Choice of integration contour for the Mordell integral Ψ+. The angle 0 < θ < π
2 is arbitrary,

and −iλ must lie in the shaded region.

Another subtle aspect is that the denominators in the right-hand side of (2.3)-(2.4) seem to

have a sign ambiguity when κ is a multiple of % and |<ξ| = 1
2 and <λ = 1

2 . This happens because

the result for <
(
ξ − κ

%λ
)
∈ Z is obtained by analytic continuation, and this should be performed at

the end of the computations. The result is unique and unambiguous if we move slightly away from

such points, for example by a shift ξ 7→ ξ + ε for a small ε, and take the limit at the end. Stated

differently, the apparent sign ambiguity would only be an artefact of the intermediate steps and

will disappear after simplifications in the final answer. We have also checked it for the solutions

in Section 3.

B Cauchy identities, symmetries and knot homologies

In this Appendix we discuss further similarities and differences between the expansions presented

in Section 5 and generating functions of knot invariants.

B.0.1 SU(N) Chern–Simons theory with one adjoint and the Hopf link

We first look back at one of the simplest yet suggestive expressions we have found in Subsection 5.1,

which is the Schur expansion of the SU(2) Chern–Simons theory with one adjoint hypermultiplet.

The Schur expansion of the partition function is given in (5.3), which we report here for clarity:

ZSU(2)k,1adj
(m)

ZSU(2)k

pert.
=

∞∑
ν=0

tν+1〈Wνν〉SU(2),
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with t = −e2πm and m the mass of the adjoint.

As we have already commented in Subsection 5.1, one may think of (5.3) as categorifying

the Hopf link invariant when the two components are coloured by two equal representations, and

t→ −1 gives the associated Jones polynomial as the Euler characteristic of the putative homology.

There are, however, several obstructions for such an interpretation to hold, as we now discuss.

Firstly, we must underline that, in contrast to Khovanov homology, the refinement parameter

t here is graded by the representation (i.e. by the color), while the realization of coloured knot and

link homologies (see [60, 71, 72] and references therein) is usually in terms of a given representation.

That is, typically the color is not a grading, but rather some fixed data.

A more serious problem is the fact that knot and link homologies are constructed from the

reduced knot invariants, normalized by the unknot invariant, so that the coefficients are integers

and can be interpreted as the dimensions of certain vector spaces. In the present context, there

is no natural way to normalize each term in the sum by the corresponding unknot invariant.

Furthermore, even if we implemented such ad hoc normalization, the simple structure of the link

invariants we obtain does not seem to lead to a rich homological theory.

Going to higher rank, an additional problem shows up: the Schur expansion of the SU(N)

theory with one adjoint, given in (5.4), is a function of the single variable t, and Hopf link invariants

coloured by a SU(N) representation ν are weighted by t|ν|. This quantity does not distinguish

between different invariants with same |ν|, and could at most be interpreted as an unrefined version

of a generating function.

B.0.2 Higher rank theories

Expressions (5.8)-(5.9) assemble together coloured (unreduced) HOMFLY-PT polynomials for the

unknot, with additional gradings related to the color ν. Turning off the mass deformations asso-

ciated to the torus U(1)Nf gives the “Euler characteristic”, tj → −1.

On a purely mathematical ground, the existence of a pair of Cauchy identities (2.10)-(2.12)

invokes the definition of a new partition function Z ferm.(~m) for a given Z(~m). Such a definition

may not seem justified from the perspective of the original Chern–Simons-matter theory. Looking

at the partition functions ZSU(N) and Z ferm.
SU(N) through the lenses of topological strings, though, it

is in fact important to include Z ferm.
SU(N), see for example [63, 68]. Further aspects of the existence

of such a pair of matrix models have been discussed in Subsection 5.6.2.

The transposition map switching from one Cauchy identity to the other is lifted to the mirror

map for knot homologies discussed in [71, 72], with the two models being the generating functions

of the mirror dual homologies. Note that the mirror symmetry under replacement ν 7→ ν ′ holds

for reduced knot invariants [71], while for a Hopf link the transposition map is not lifted to any

symmetry. Moreover, the relation holds for knot invariants normalized by the unknot, hence such

relations will not be grasped by a Schur expansion, in which only unknots and Hopf links appear.

More concretely, the mirror symmetry discussed in [71] categorifies the identity

Pν [knot](a, q)

Pν [unknot](a, q)
=

Pν′ [knot](a, q−1)

Pν′ [unknot](a, q−1)

satisfied by the reduced HOMFLY-PT polynomials. Here we have denoted Pν [knot](a, q) the

(unreduced) HOMFLY-PT polynomial for a knot coloured by the representation ν. The corre-

sponding knot invariant is obtained setting a = qN . Since this identity holds upon normalization

by the unknot invariant, and in our description we can only obtain (products of) unknots or Hopf
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links, the picture provided by the Schur expansion does not retain any footprint of the mirror

symmetry discovered in [71]. That the map ν 7→ ν ′ is not a symmetry was already clear from

Subsection 5.6.2, because it switches from a theory of (zero-dimensional) bosons to a theory of

(zero-dimensional) fermions.

A simple example with interesting features is the non-Abelian theory with a single flavour,

Nf = 1. In that case, the expansion would be

Z(q, t)

ZCS(q)

pert.
=

∑
ν∈SN

t|ν| 〈Wν〉CS , (B.1)

where the sum runs over symmetric representations. We have not specified whether the theory

has gauge group U(N) or SU(N) since the result is analogous, up to the minor modifications

mentioned in Subsection 5.2.2 above. We have also slightly changed the notation, compared to

Subsection 5.2.2, to stress the dependence on the two parameters (q, t). Trading the Cauchy

identity (2.10) for the dual one (2.12) replaces

〈Wν〉CS 7→ 〈Wν′〉CS .

We change the summation domain in (B.1) from SN , the symmetric representations, to ΛN , the

antisymmetric representations, and use that ν ∈ SN implies ν ′ ∈ ΛN to write

Z ferm.(q, t)

ZCS(q)
=
∑
ν∈ΛN

t|ν| 〈Wν〉CS .

The breakdown of the mirror symmetry for the unreduced unknot invariants can be seen explicitly

at this level, since we obtain Z ferm.(q, t) 6= Z(q, t). The difference is that Z ferm.(q, t) generates

averages of elementary symmetric polynomials eν in the CS matrix model, cfr. (2.13), whilst

Z(q, t) generates averages of homogeneous symmetric polynomials hν , cfr. (2.11).

Keeping the discussion on general grounds, consider fugacities {tj} for the torus U(1)Nglobal

of a global symmetry and dynamical variables {Xa} as fugacities of a U(1)Ngauge gauge symmetry,

parametrizing the holonomy of the gauge connection along a knot K embedded in S3. The sum∑
ν

sν(t1, . . . , tNglobal
)sν(X1, . . . , XNgauge) (B.2)

inserted into the path integral of Chern–Simons theory gives a generating-like function of Wilson

loops for the knot K , coloured by representations ν. This holds in general, although arbitrary

knots do not admit a simple matrix model description. Therefore, a transposition map sending

(B.2) to ∑
ν

sν(t1, . . . , tNglobal
)sν′(X1, . . . , XNgauge) (B.3)

switches from one Cauchy identity to the other, and is a remnant of the mirror map of [71, 72].

Since it maps Schur polynomials into Schur polynomials, this is a map of unreduced knot invariants,

and is not a duality symmetry.
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C Explicit Schur expansions for selected quivers

In this Appendix we collect explicit Schur expansions for Abelian necklace quivers with r+1 nodes,

described in Subsection 5.3.2. We adopt, as usual, the definition (2.15) q = e−i
2π
k .

When r = 3, as in Figure 19, and for ~k = (k,−k, k,−k) formula (5.13) gives

−
ZÂ3

(~k, ~m)(
ZCS(1);k

)2 (ZCS(1);−k
)2 pert.
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The same example, but with all equal CS levels ~k = (k, k, k, k) reads
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Going to one rank higher, the Abelian Â4 theory with all equal CS levels has the Schur

expansion
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For arbitrary r the Schur expansion of Abelian necklace quivers is easily obtained to very high

order with a computer algebra.
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