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Abstract. We explain and exploit the random matrix formulation of the Loschmidt

echo for the XX spin chain, valid for multiple domain wall initial states and also for a

XX spin chain generalized with additional interactions to more neighbours. For models

with interactions decaying as e−α|l−j|/ |l − j|p+1
, with p integer or natural number and

α ≥ 0, we show that there are third order phase transitions in a scaling limit of the

complex-time Loschmidt echo amplitudes. For the long-range version of the chain, we

use an exact result for Toeplitz determinants with a pure Fisher-Hartwig singularity,

to obtain exactly the Loschmidt echo for complex times and discuss the associated

Stokes phenomena. We also study the case of a finite chain for one of the generalized

XX models.
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1. Introduction

A central theme in modern physics is the study of out of equilibrium properties,

especially in systems of many-body physics. Remarkable progress has been made,

especially in recent years, in part due to the realization that many out of equilibrium

properties actually admit descriptions analogous to the much better established case of

equilibrium physics. This analogy holds in some settings closer than initially expected.

Chief among this family of developments is the study of dynamical quantum phase

transitions (DQPT) [1,2], which qualitatively can be thought of as phase transitions in

time.

A simple but yet very relevant protocol to study DQPT’s is that of quantum

quenches, in which a system is prepared in some well-defined state and it is left to evolve,

unitarily, with some Hamiltonian Ĥ. This provides a fruitful setting for the exploration

of many-body physics out of equilibrium. This procedure can be encapsulated in the

analysis of the Loschmidt echo, which is a global quantity, and is defined as the squared

absolute value of the overlap between evolved and initial quantum states. It is a simple

and natural quantity to evaluate after a quantum quench. Given the initial state, the

Loschmidt amplitude is

G(t) = 〈ψ0|ψ0(t)〉 = 〈ψ0|e−iĤt|ψ0〉 , (1.1)

and, correspondingly, the Loschmidt echo is

L(t) = |G(t)|2 . (1.2)

A relevant and complete approach to the understanding of the real time dynamics

encoded in (1.1) involves considering the time extended into the complex plane,

it 7→ w = β + it ∈ C, and to study the resulting partition function [1, 2]

Z(w) = 〈ψ0|e−wĤ |ψ0〉, (1.3)

which leads to many possibilities, involving analytical continuations and the

consideration of Fisher and/or Yang-Lee zeroes [1,2]. In general, when considering (1.3),

the problem of validity of analytical continuations will emerge, since a possible starting

point is to consider real values of w, which corresponds to imaginary time evolution,

where analytical results are sometimes more feasible and then analytic continuation

is used to obtain the real-time evolution of the Loschmidt echo. The validity of this

procedure is then a relevant problem in itself. For example, in [3], this procedure was

shown, for the case of the gapped regime of the XXZ spin chain model, to provide the

correct result only up to a finite time t∗. In general, a Wick rotation will miss Stokes

phenomena [4] and indeed, we will give an example of a model where the analytical

evaluation of (1.3) holds for w ∈ C and where this consideration of Stokes phenomena

is made completely explicit.

We will study Loschmidt amplitudes of spin chain models, a subject with already

many analytical results [3–12]. Our approach here will be based on the fact that

the Loschmidt amplitude of XX spin chains, defined below, admits a random matrix
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description, following the discussion in [13], although this specific result was originally

worked out in [14–17], but not in the context of Loschmidt echo. These works then

are in a slightly different setting and no discussion of Loschmidt echo is made there.

Thus, this random matrix formulation is not discussed in the now large literature on

these quantum amplitudes, with the exception of particular cases involving very specific

states with one domain wall [11]. The mathematically equivalent formulation in terms

of Toeplitz (for periodic boundary conditions) and Toeplitz+Hankel determinants (for

open boundary conditions) is known [10], as it is the equivalent descriptions in terms of

Fredholm determinants [12].

The determinantal representation describes a very specific family of the amplitudes

studied in [14–17] and [13]. Determinants, as explained in [13] and as we shall see below,

describe the situation where the initial state is of the type

|ψ0〉 = |↓, ↓, ..., ↓︸ ︷︷ ︸
N

, ↑, ...〉, (1.4)

which we shall refer to as single-domain wall configuration (even though, for example for

periodic boundary conditions there are two domain walls), whereas the generalization

of Toeplitz minors [14–17] and [13] describes initial states with an arbitrarily complex

pattern of spin flips, such as, say

|ψ0〉 = | ↓, ↑, ↑, ↓, ↑, ↓, ↑, ...〉, (1.5)

named multi-domain wall configuration. Notice that we write down these examples

denoting an infinite spin chain, but at the end of work we will describe, as was done

in [13], the finite chain case.

These multi-domain wall configurations are described by minors of the same

Toeplitz or Toeplitz+Hankel matrices, as explained in [13]. From the random matrix

theory point of view, which provides an integral representation of such minors [18],

this generic multi-domain wall configuration leads to random matrix ensembles with

insertions of Schur polynomials, a family of symmetric polynomials which are also

characters of the unitary group [19] (see section 3). Interestingly, the same identity

that establishes the equivalence between Toeplitz determinants and unitary matrix

model ensembles, namely Andreief identity [11,19], also leads to the equivalence between

Toeplitz minors and unitary matrix models with Schur polynomial insertions [18]. In

addition, the valuable Szegő theorem for the behavior of large determinants is extended

to the case of minors as well [18].

It is worth mentioning that the determinantal and random matrix formulation

given for quantum return probabilities, using free fermions, of [11] coincides with that

for the XX chain, obtained by N. M. Bogoliubov and collaborators, including the study

of asymptotic limits (leading to a Gaussian random matrix ensemble) and different

boundary conditions, studied in both [11] and [17]. The latter analysis includes in

addition the above mentioned description of multiple spin flips in the initial states.

It is also noteworthy that, while the random matrix description is in principle rather

specific to the XX model, it turns out that the case where additional interactions are
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added to the XX chain can be studied in the same fashion [20]. An analogous statement

is briefly made also in [10, Appendix D], for their equivalent study of the free fermionic

chain, with single-domain wall initial configuration.

To have a random matrix description of a physical quantity is useful in many ways.

One of them is precisely to establish the existence of a phase transition, normally in the

context of a double-scaling limit, where the size of the matrix model is taken to infinity

at the same time as the physical parameter, keeping their product (or ratio) constant.

This was the case of the celebrated Gross-Witten-Wadia phase transition [21,22], which

has later on reemerged in many other areas and is still subject of attention. The double

scaling limit of such model is sophisticated, involving Tracy-Widom law and solutions of

Painlevé equations, and became central in mathematics through the seminal work [23]

and the universality of the model and its scaling [24].

In the present work, we generalize the XX chain in different ways, and prove that

the resulting systems undergo phase transitions exploiting the matrix model description.

We first consider a spin chain with only nearest neighbour interaction, but now we allow

the strength of the interaction to be different on the left and on the right. After that, we

study the case in which each spin interacts with all the others, with interaction between

two spins placed n sites apart on the chain decaying either exponentially or as 1/n (or

more generally as 1/n1+p).

Before proceeding, it is important to emphasize the differences between these

matrix model phase transitions (which are ubiquitous and central in establishing phase

transitions in gauge theories, see [21, 22, 25, 26] for example) and the DQPT’s. While

the DQPTs occur when the time-evolved state |ψ(t)〉 becomes orthogonal to the initial

state vector |ψ(0)〉, which can be studied by analyzing Fisher zeroes of (1.3), the matrix

model phase transitions imply that a rescaled version of Z(w) will have discontinuous

derivatives of some order (typically, third) in such a way that this complex-time rescaled

Loschmidt echo will posses at least two different phases, according to the rescaled value

of the parameter.

The material is organized as follows. In the next section we review the matrix

model description of transition amplitudes on infinitely long spin chains, with possibly

multi-domain wall initial configuration. Then, in section 3 we provide exact results for

the multi-domain wall, as well as formulae for the asymptotic behaviour. Section 4

is devoted to calculations in the asymptotic regime, using random matrix theory, and

contains the proofs of the phase transitions discussed in sections 5 and 6. Section 5

contains the analysis of the modified XX chain, in which the interaction is different on

the left and on the right. We call it the XX chain with asymmetric hopping. We study

the representation as Toeplitz determinants, and the corresponding asymptotics, both

for imaginary and real time. In section 6 we consider more general spin interactions,

both short and long range. Through the matrix model representation, we prove the

presence of phase transitions in the regime when the size of the matrix becomes large.

The generalized interactions considered are: exponentially decaying (subsection 6.1),

decaying as 1/n (subsection 6.2), being n the distance between the two spins, and
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eventually the case of more general decay (subsection 6.3). In subsection 6.2, we also

provide exact formulae for the evaluation of the amplitudes for long-range interaction.

Finally, in section 7 we discuss the case of a finite chain and explain how the arguments

presented in previous sections are modified.

2. Spin chains and matrix models

The S = 1/2 Heisenberg XX spin chain is a very well-known integrable magnetic

chain [27]. This infinite chain (which we consider with periodic boundary conditions) is

characterized by the Hamiltonian

ĤXX = −1

2

∞∑
i=0

(
σ−i σ

+
i+1 + σ−i σ

+
i−1
)

+
h

2

∞∑
i=0

(σzi − 1), (2.1)

where the summation is over all lattice sites and h > 0. As usual, σ±i = (σxi ± iσ
y
i ) /2,

where σxi and σyi together with σzi denote the Pauli spin operators, acting on the ith spin,

and h represents the strength of an external magnetic field. The commutation relations

are

[σ+
i , σ

−
k ] = σzi δik, [σzi , σ

±
k ] = ±2σ±i δik. (2.2)

These operators are nilpotent (σ±i )2 = 0, a property that will lead to a determinantal

form for the correlation functions that we shall focus on. The other operator satisfies

(σzi )
2 = 1.

We do not restrict ourselves to the Hamiltonian ĤXX, and introduce additional

interactions in the hopping term. The resulting Hamiltonian is

ĤGen = −
∞∑
i=0

∑
n∈Z

an
(
σ−i σ

+
i+n

)
+
h

2

∞∑
i=0

(σzi − 1), (2.3)

where the an denote arbitrary real coefficients which decay at least as an ∼ n−1−ε with

ε > 0. It has been introduced in [20], and we will analyze it further in sections 4 and 6.

Henceforth we work with the Hamiltonian (2.3).

Let | ⇑〉 denote a ferromagnetic state, which is characterized by having all the spins

up

| ⇑〉 = | ↑, ↑, . . . , ↑〉, (2.4)

satisfying σ+
k | ⇑〉 = 0 for all k, and the state is normalized 〈⇑|⇑〉 = 1. Note that this

state is annihilated by the Hamiltonian, ĤGen| ⇑ 〉 = 0. Then, under the name thermal

correlation functions, defined by :

Fj1,...,jN ;l1,...,lN (β) = 〈 ⇑ |σ+
j1
· · ·σ+

jN
e−βĤGen σ−l1 · · ·σ

−
lN
| ⇑ 〉, (2.5)

the result obtained in [14–17] (see also [13]), is the following matrix model representation:

Fj1,...,jN ;l1,...,lN (f, β) =
1

(2π)NN !

∫
[−π,π]N

dNϕ
∏

1≤j<k≤N

∣∣eiϕk − eiϕj
∣∣2( N∏

j=1

fβ(eiϕj)

)

× ŝα
(
eiϕ1 , . . . , eiϕN

)
ŝγ
(
e−iϕ1 , . . . , e−iϕN

)
, (2.6)
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where ŝα
(
eiϕ1 , . . . , eiϕN

)
is a Schur polynomial, a symmetric polynomial [28] whose

explicit form is determined by the partition α (which can be conveniently written down

in terms of a Young tableaux) and the weight function f(eiϕ) in the matrix model (2.6)

is the generating function of the one-spin flip process (N = 1 in (2.5)). Therefore, it is

given in general by †

fβ
(
eiϕ
)
≡ eβV (ϕ) =

∞∑
j=−∞

Fjl(β)eijϕ, (2.7)

which, in the case of the XX spin chain reads

fβ
(
eiϕ
)

= eβ(h+cosϕ). (2.8)

In random matrix theory, the weight function is also written fβ(eiϕ) = exp (βV (ϕ)) and

V is named the matrix model potential. The relationship between the partitions α and

γ in the r.h.s. of (2.6) and the j and l that index the pattern of flipped spins in the

amplitude (2.5), is [17]

αr = jr −N + r,

γr = lr −N + r (2.9)

It is clear that (2.5) is a Loschmidt echo amplitude in imaginary time. The case of

a single-domain wall in the initial state follows by considering the specific pattern of

flipped spins: jr = N−r and lr = N−r, in which case we get in (2.6) the void partitions

α = (0, . . . , 0) and γ = (0, . . . , 0), which naturally implies [28] that ŝα
(
eiϕ1 , . . . , eiϕN

)
and ŝγ

(
e−iϕ1 , . . . , e−iϕN

)
are both equal to 1. This clearly corresponds to

〈..., ↑, ↓, ..., ↓, ↓︸ ︷︷ ︸
N

|e−βĤGen|↓, ↓, ..., ↓︸ ︷︷ ︸
N

, ↑, ...〉, (2.10)

and the unitary matrix model description in (2.6) is without Schur polynomials. This

quantity corresponds to the known Toeplitz determinant representation of Loschmidt

echo in imaginary-time where the initial state is [10,11]

| ↓, ↓, ..., ↓︸ ︷︷ ︸
N

, ↑, ...〉. (2.11)

Notice that, if one shifts the block of flipped spins by a finite quantity ν, namely

considers a state

〈..., ↑, ↓, ..., ↓︸ ︷︷ ︸
N

, ↑, ..., ↑︸ ︷︷ ︸
ν

| (2.12)

instead of the ones in (2.10), then one simply has a modification in the weight function

of the matrix model, because in that case, the pattern of flipped spins is jr = ν +N − r
and the corresponding partition is γ = (ν, . . . , ν), a rectangle of ν columns and N rows,

and then ŝγ
(
eiϕ1 , . . . , eiϕN

)
=
∏N

j=1 e
iνϕj . This is a linear shift in the potential of the

† Notice that, while there are two indices j and l, one is fixed in the difference equation [14–17]

and there is another identical equation with the role of the indices reversed. Both equations satisfy

Fjl(0) = δjl. Hence, it is like a one index (random walk) equation, as in [29], for example.
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matrix model fβ(eiϕ) = exp(βV (ϕ))‡. Note also that, the variables of the two Schur

polynomials in (2.6) are conjugate and therefore only relative shifts will appear in the

matrix model, with a term
∏N

j=1 e
i(νb−νk)ϕj and therefore:

〈..., ↑, ↓, ..., ↓︸ ︷︷ ︸
N

, ↑, ..., ↑︸ ︷︷ ︸
νb

|e−βĤGen|↑, ..., ↑︸ ︷︷ ︸
νk

, ↓, ↓, ..., ↓︸ ︷︷ ︸
N

, ↑, ...〉

= 〈..., ↑, ↓, ..., ↓, ↓︸ ︷︷ ︸
N

|e−βĤGen|↑, ..., ↑︸ ︷︷ ︸
νb−νk

, ↓, ↓, ..., ↓︸ ︷︷ ︸
N

, ↑, ...〉, (2.13)

and, as expected from translational invariance, two equal shifts on the two states is

equivalent to (2.10). See figure 1. In the physical interpretation of [13], the linear

shift was related to a topological term in gauge theory, along the lines of the notion of

momentum polarization [30].

º

j e¡¯ĤGen jh i

Figure 1. Relative shift in the block of flipped spins. Blue is spin up, red is spin

down. In this example, N = 4 and ν = 2.

The derivation of the matrix model is not dependent on β being real and thus can

be extended to a complex time w = β + it. Expression (2.5) can thus be defined for

complex time w ∈ C as

Fj1,...,jN ;l1,...,lN (w) = 〈 ⇑ |σ+
j1
· · ·σ+

jN
e−wĤGen σ−l1 · · ·σ

−
lN
| ⇑ 〉, (2.14)

for multi-domain wall, and

Z(w) = 〈..., ↑, ↓, ..., ↓, ↓︸ ︷︷ ︸
N

|e−wĤGen|↓, ↓, ..., ↓︸ ︷︷ ︸
N

, ↑, ...〉, (2.15)

for single-domain wall, and the derivation of the matrix model representation continues

to hold.

Regarding the equivalent well-known determinantal representation, the Toeplitz

and Toeplitz+Hankel description [10] corresponds to the unitary matrix model above

and to Sp(2n) matrix integration (see [13, 31] and section 3), respectively. Thus, the

choice of the boundary condition determines the symmetry of the ensemble and the

interactions in the chain determine the specific weight function of the corresponding

matrix model. This latter aspect will be discussed below in more detail.

It is also worth mentioning that the analysis above for the case of one flipped spin

N = 1 leads to the same equation as in Glauber dynamics [29]. In particular, (2.5) for

N = 1 behaves like the expectation of a single spin in an infinite ring in [29], with the

‡ Notice that, despite the translational invariance of the problem, there is a term in the matrix model

due to the relative shift of the block of flipped spins in the bra with respect to the ket.
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time variable there identified with β. For this reason, the problem above is also related to

the problems of perfect transfer of information in spin chains [32,33]. Generalizations, for

example to non-homogeneous magnetic fields [34] (leading for example to the Wannier-

Stark problem; in this case and other generalizations, the corresponding generating

function (2.8), is then the solution of a birth-and-death process) could be considered here

as well and lifted to the N > 1 setting, described by the matrix models presented here,

which then characterizes the case of more elusive problem of multi-defect transmissions.

Before turning to the detailed analysis of the matrix model, let us clarify how the

present setting is related to a quatum quench. We prepare the initial state |ψ0〉 = | ⇑〉 in

an eigenstate of the Hamiltonian of the XX model. Afterwards, we suddenly turn on an

additional interaction Hamiltonian (in particular, in Section 6, we will turn on infinitely

many interactions), and calculate the Loschmidt amplitude (2.5). This protocol is indeed

a quantum quench, see [2] for a review.

3. Exact results and asymptotics for multi-domain wall configurations

One of the interests of the formulation presented above, is the possibility of studying

amplitudes with initial states which contain several different domain wall configurations,

instead of just one (one single block of flipped spins on a otherwise completely

polarized state). As explained, this extends the well-known result on Toeplitz and

Toeplitz+Hankel determinant representations [10] to the setting of minors of such

matrices. Fortunately, the Szegő and Fisher-Hartwig asymptotics for the determinants

is extended to the case of minors [18,31].

Subsection 3.1 serves to present useful definitions and properties, as well as to set

up the notation, while subsection 3.2 contains exact results for a general class of chains.

3.1. Partitions, Schur and skew-Schur polynomials and minors

First, we write down basic definitions involving symmetric functions [28]. A partition

λ = (λ1, . . . , λl) is a finite and non-increasing sequence of positive integers. The

number of non-zero entries is named the length of the partition l(λ), and the sum

|λ| = λ1 + . . .+λl(λ) is named the weight of the partition. The entry λj is considered to

be zero whenever the index j is greater than the length of the partition. The notation

(ab) represents the partition with b nonzero entries, all equal to a. A partition can be

represented as a Young diagram, by placing λj left-justified boxes in the j-th row of the

diagram. The conjugate partition λ′ is obtained as the partition which diagram has as

rows the columns of the diagram of λ.

Let f be a function on the unit circle,

f(eiϕ) =
∑
k∈Z

dke
ikϕ, (3.1)

and denote by TN(f) the N ×N Toeplitz matrix with symbol f . This means:

TN(f) = (dj−k)
N
j,k=1. (3.2)
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We will also use the standard notation DN(f) to denote the determinant of the Toeplitz

matrix TN(f):

DN(f) = detTN(f) = det(dj−k)
N
j,k=1. (3.3)

Besides, Dλ,µ
N (f) will denote the minor of the Toeplitz matrix TN(f) determined by the

two partitions λ, µ (as explained below). When the symbol f is such that the function

log f admits Fourier expansion on the circle, we will write

log f(eiϕ) =
∑
k∈Z

cke
ikϕ. (3.4)

Notice that, for real-valued log f , the Fourier coefficients satisfy c−k = c∗k. We now state

the celebrated strong Szegő limit theorem [35].

Theorem (Szegő [35]). Let f : S1 → C be positive and L1(S
1), with derivative Holder

continuous of positive order. Then

lim
N→∞

DN(f)

exp(Nc0)
= exp

(
∞∑
k=1

kckc−k

)
, (3.5)

where ck, for k = 0,±1,±2, . . ., is the kth Fourier coefficient of log f .

If x = (x1, x2, ...) is a set of variables, the elementary symmetric polynomials ek(x)

and the complete homogeneous polynomials hk(x) are
∞∑
k=0

hk(x)zk =
∞∏
j=1

1

1− xjz
= H(x; z), (3.6)

∞∑
k=0

ek(x)zk =
∞∏
j=1

(1 + xjz) = E(x; z). (3.7)

The families {hk}k≥0 and {ek}k≥0 consist of algebraically independent functions. There

are several equivalent ways to define Schur polynomials. The Jacobi-Trudi identities

express Schur polynomials precisely as a Toeplitz minor, generated by the above

functions

sµ(x) = det
(
h(j−k+µk)(x)

)N
j,k=1

= D∅,µ
N (H(x; z)) , (3.8)

sµ′(x) = det
(
e(j−k+µk)(x)

)N
j,k=1

= D∅,µ
N (E(x; z)) , (3.9)

where l(µ), l(µ′) ≤ N , respectively, and ∅ denotes the empty partition. The skew-Schur

polynomials are

sµ/λ(x) = Dλ,µ
N (H(x; z)), s(µ/λ)′(x) = Dλ,µ

N (E(x; z)), (3.10)

where l(µ), l(µ′) ≤ N respectively. These polynomials vanish if λ * µ. In the expressions

above,

Dλ,µ
N (f) = detT λ,µN (f), (3.11)

where

T λ,µN (f) = (dj−λj−k+µk))
N
j,k=1, (3.12)
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and λ and µ are integer partitions that can be shown to describe a specific striking of

rows and columns of a larger Toeplitz matrix, see [18] for details.

The Andreief identity, which establishes for example the equivalence between the

Toeplitz determinant and a unitary matrix model [19] (a relationship also applicable to

Toeplitz+Hankel determinants and matrix integration over other classical Lie groups

[31]), also comprises an analogous identity for the more general setting of minors

discussed here. In particular, it holds that [18]

Dλ,µ
N (f) =

∫
U(N)

sλ(M)sµ(M)f(M)dM (3.13)

=
1

N !

∫
[0,2π]N

dNϕ

(2π)N
sλ(e

−iϕ1 , ..., e−iϕN )sµ(eiϕ1 , ..., eiϕN )
N∏
j=1

f(eiϕj)
∏

1≤j<k≤N

|eiϕj − eiϕk |2,

where sλ, sµ are Schur polynomials.

3.2. Asymptotics of Toeplitz minors and spin chain interpretations

For the case of large N , the determinant contribution and the combinatorial one,

depending on the partitions λ and µ appear in a completely factorized way and can be

treated independently [18, 31]. Let us denote (2.6) by Dλ,µ
N (f) and, the corresponding

determinant, which is the same matrix model but without partitions, which describes

the amplitude (2.10), by DN (f). Then, it holds, for symbols f(eiθ) in the Szegő class

and also with FH singularities. Then, as N →∞,

Dλ,µ
N (f) ∼ DN(f)

∑
ν

sλ/ν(y)sµ/ν(x), (3.14)

where the variables y, x are such that f(z) = H(y; z−1)H(x; z), and the sum runs over

all partitions ν contained in λ and µ. In [18], Bump and Diaconis originally obtained

other explicit expressions for (3.14), involving Laguerre polynomials and simplifying

considerably in the case of only one non-trivial partition. Let us simply present an

explicit example. Again, for a generic symbol

f
(
eiϕ
)

=
∑
k∈Z

dke
ikϕ = exp

(∑
k∈Z

cke
ikϕ

)
, (3.15)

corresponding to a choice of Hamiltonian as in (2.3), and for example two partitions in

the antisymmetric representation λ = µ = (12)

Dλ,µ
N (f)

DN (f)
∼ 1

4
c21c

2
−1 + c1c−1 −

1

2
c−2c

2
1 −

1

2
c2−1c2 + c2c−2 + 1. (3.16)

Notice that the asymptotics of the determinant in the denominator is DN (f) ∼
exp (

∑∞
k=1 kckc−k) . This translates to the following explicit Loschmidt echo amplitude

as follows:

〈..., ↑, ↑, ↓, ↓, ↑, ↓, ..., ↓, ↓︸ ︷︷ ︸
N−2

|e−βĤGen|↓, ↓, ..., ↓︸ ︷︷ ︸
N−2

, ↑, ↓, ↓, ↑, ↑, ...〉

∼ P (c±1, c±2)〈..., ↑, ↓, ..., ↓, ↓︸ ︷︷ ︸
N

|e−βĤGen|↓, ↓, ..., ↓︸ ︷︷ ︸
N

, ↑, ...〉, (3.17)
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where P (c±1, c±2) is the polynomial on the right hand side of (3.16). Taking c1 = c−1 =

w while ck = c−k = 0 for k > 1 then gives the corresponding amplitude for the XX spin

chain

Dλ,µ
N (f) ∼

(
1

4
w4 + w2 + 1

)
exp

(
w2
)
. (3.18)

4. Phase transitions with saddle-point method

The present section is dedicated to the analysis of the Loschmidt amplitudes at large N ,

through the study of large N asymptotics of the equivalent matrix model description, in

a scaling limit. The content of this section is presented in a general formalism, recovering

the cases of interest for the rest of the paper as special instances.

Consider the generic spin Hamiltonian (2.3). We use the result of [20], and write

the Loschmidt amplitude at imaginary time

Z(β) = 〈..., ↑, ↓, ..., ↓, ↓︸ ︷︷ ︸
N

|e−βĤGen|↓, ↓, ..., ↓︸ ︷︷ ︸
N

, ↑, ...〉, (4.1)

as the partition function of the matrix model

Z(β) =
1

N !

∫ π

−π

dϕ1

2π
· · ·
∫ π

−π

dϕN
2π

∏
1≤j<k≤N

∣∣eiϕj − eiϕk∣∣2 eβ∑N
j=1 V (ϕj), (4.2)

with potential

V (ϕ) = h+ 2
∞∑
n=1

[
gn
n

cos(nϕ) +
g̃n
n

sin(nϕ)

]
. (4.3)

The coefficients of V (ϕ) and these of the Hamiltonian ĤGen in (2.3) are related through

[20]

gn = n(an + a−n), g̃n = in(an − a−n). (4.4)

Setting gn = e−nα and g̃n = 0 we recover the matrix model (6.4), studied later in section

6.1, as a particular case. Choosing instead g1 = 1, g̃1 = −iv and all the other vanishing,

gn = 0 = g̃n for n > 1, corresponds to the Hamiltonian (5.2) considered in section 5.

In subsection 4.1 we discuss properties of the Hamiltonian ĤGen defined in (2.3),

and in the rest of the section we present the study of large N phase transition in the

matrix ensemble (4.2).

4.1. Spin Hamiltonian with interaction beyond nearest neighbour

To analyze the properties of the Hamiltonian (2.3) and the dispersion relation, we take

a finite chain with L + 1 sites§, with periodic boundary conditions, L + 1 ∼ 0. For

§ Eventually, we take the limit L→∞. Chains of finite length will be analyzed in section 7.
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simplicity we assume L+ 1 is odd, so that each spin has L/2 neighbours on its left and

the same amount on its right. The finite length version of the Hamiltonian (2.3) reads:

ĤGen = −
L∑
i=0

L/2∑
n=1

(
anσ

−
i σ

+
i+n + a−nσ

−
i σ

+
i−n
)

+
h′

2

L∑
i=0

(σzi − 1), (4.5)

where we reabsorbed a0 into h′ = h+ a0 (we henceforth drop the ′). We note that[
ĤGen, Ŝ

z
]

= 0, where Ŝz =
L∑
i=0

σzi , (4.6)

meaning that the total number of spins down is a conserved quantity. Denoting H the

Hilbert space of the theory, we can conveniently separate H into

H =
L⊕
r=0

Hr, (4.7)

where Hr denotes the space of states with exactly r spins down, all the other spins up.

The commutation relation (4.6) guarantees that different sectors Hr do not mix under

the action of ĤGen. The space H0 is spanned by the vacuum | ⇑〉, and H1 is spanned by

states with a single spin down, which throughout this subsection we denote by

| ↓k〉 ≡ | ↑, ↑, . . . , ↓
kth
, ↑, . . .〉, k = 0, . . . , L. (4.8)

The action of the Hamiltonian (4.5) on such states is

ĤGen| ↓k〉 = −
L∑
i=0

L/2∑
n=1

(
anσ

−
i σ

+
i+n + a−nσ

−
i σ

+
i−n
)
− h

2
(σzi − 1)

 | ↓k〉
= −

L/2∑
n=1

(an| ↓k−n〉+ a−n| ↓k+n〉)− h| ↓k〉. (4.9)

The effect of the magnetic field h on states in Hr is a contribution −rh, for every r.

We let s = 0, . . . , L be a discrete variable running on the dual lattice and introduce

ϕs =
2π

L+ 1

(
s− L

2

)
. (4.10)

For the eigenstates of ĤGen in H1 we use the standard ansatz

|s〉 =
1√
L+ 1

L∑
k=0

eiϕsk| ↓k〉, (4.11)

compatible with translation invariance, and obtain

ĤGen|s〉 =
1√
L+ 1

L∑
k=0

eiϕsk

− L/2∑
n=1

(an| ↓k−n〉+ a−n| ↓k+n〉)− h| ↓k〉


=

1√
L+ 1

L∑
k′=0

eiϕsk
′

− L/2∑
n=1

(
ane

iϕsn + a−ne
−iϕsn

)
− h

 | ↓k′〉. (4.12)
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Hence the states |s〉 satisfy the eigenvalue equation ĤGen|s〉 = εs|s〉 with energy

εs = −h−
L/2∑
n=1

[(an + a−n) cos(ϕsn) + i(an − a−n) sin(ϕsn)] . (4.13)

Setting a1 = a−1 = 1
2

and an = a−n = 0 for n 6= 1 we recover the well known dispersion

relation of the XX chain.

The presence of additional interactions, compared to the XX chain, does not allow

to reconstruct the full spectrum knowing the eigenstates in H1. At this point, it is

worthwhile to compare the present setting with that discussed in [10, Appendix D],

where a Hamiltonian with general dispersion relation (gdr) was introduced. In our

notation it reads

Ĥgdr = −
L∑
i=0

L/2∑
n=1

(
anĉ
†
j ĉj+n + a−nĉ

†
j ĉj−n

)
, (4.14)

with ĉ†j, ĉj fermionic creation and annihilation operators. This Hamiltonian describes

by construction a system of free fermions. Under the action of the Hamiltonian Ĥgdr

the Hilbert space H of the theory is separated as in (4.7), but now r counts the

number of fermionic excitations. The dispersion relation of the Hamiltonian (4.14)

is again given by (4.13) [10], because the two Hamiltonians ĤGen and Ĥgdr have the

same eigenfunctions with the same corresponding eigenvalues in the subspace H1 ⊂ H.

However, this statement is not true in Hr≥2. Indeed, the Hamiltonian (4.14) restricted

on Hr describes r free fermions, and its eigenfunctions in Hr are totally anti-symmetric

products of r single-particle eigenfunctions. These functions are not eigenfunctions

of the Hamiltonian (4.5), as can be easily checked already at r = 2. Moreover, the

eigenfunctions of the generic Hamiltonian (4.5) onH2 are not found by direct application

of the coordinate Bethe ansatz (see for example [36] for an introduction to the subject)

unless a±n = 0 for all n > 1, suggesting that interactions beyond nearest neighbour

might spoil integrability.

With these considerations in mind, we conclude that the Loschmidt amplitudes

Z(β) associated to the Hamiltonian (4.14) of [10, Appendix D] are equal to the ones

studied in the present work, defined in (4.1) using the Hamiltonian (4.5). This is because

the matrix model representation of the amplitude Z(β) arises as a Toeplitz determinant

of amplitudes computed inH1, which is the subspace of the Hilbert spaceH on which the

restrictions of the two Hamiltonians (4.5) and (4.14) coincide. In other words, although

the two Hamiltonians are different, they lead to the same Loschmidt amplitudes (4.1)-

(4.2), as these observables only depend on the H1 subsector of the Hilbert space of the

theory. We also remark that the matrix model representation is obtained in [20] with a

procedure that does not rely on the free fermion formalism.

4.2. Set up: large N limit and eigenvalue density

We are interested in the scaling limit N →∞ with

β/N ≡ γ fixed. (4.15)
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of the Loschmidt amplitude Z(β) of (4.1)-(4.2). As a first step, we rewrite the partition

function (4.2) as:

Z(β) =
eβhN

N !

∫ π

−π

dϕ1

2π
· · ·
∫ π

−π

dϕN
2π

eN
2S(ϕ), (4.16)

with action

S(ϕ) =
2β

N2

N∑
j=1

∞∑
n=1

[
gn
n

cos(nϕj) +
g̃n
n

sin(nϕj)

]

+
1

N2

∑
1≤j<k≤N

log

(
2 sin

(
ϕj − ϕj

2

))2

. (4.17)

Taking the large N limit, the leading contribution to the partition function (4.2) comes

from the saddle points of the action S(ϕ). In this limit, we define x = j/N and replace

the sums by integrals, so that the action becomes

lim
N→∞

S(ϕ) = 2γ
∞∑
n=1

∫ 1

0

dx

[
gn
n

cos(nϕ(x)) +
g̃n
n

sin(nϕ(x))

]
(4.18)

+

∫ 1

0

dx

∫ 1

0

dx′ log

∣∣∣∣2 sin

(
ϕ(x)− ϕ(x′)

2

)∣∣∣∣ ,
and its saddle points are determined by the functional equation δS

δϕ
= 0. Thus we pursue

a function ϕ : [0, 1]→ [−π, π] which solves the saddle point equation

2γ
∞∑
n=1

[−gn sin(nϕ(x)) + g̃n cos(nϕ(x))] + P

∫ 1

0

dx′ cot

(
ϕ(x)− ϕ(x′)

2

)
= 0, (4.19)

for all x ∈ [0, 1]. We can restate the problem as follows. Consider the eigenvalue density

ρ(ϕ) =
dx

dϕ
, (4.20)

which is normalized:∫
ρ(ϕ)dϕ = 1. (4.21)

Then the saddle point equation is rewritten as a singular integral equation:

2γ
∞∑
n=1

[−gn sin(nϕ) + g̃n cos(nϕ)] + P

∫
dϑρ(ϑ) cot

(
ϕ− ϑ

2

)
= 0, (4.22)

for all ϕ ∈ suppρ, where P
∫

means the principal value of the integral. Therefore, we

look for a function ρ, with suppρ ⊆ [−π, π], which solves the saddle point equation

(4.22) and the normalization condition (4.21).

4.3. Solution at small γ

We start looking for an eigenvalue density supported on the whole circle, suppρ =

[−π, π]. To solve Eq. (4.22) we use the identity

P

∫ π

−π
dϑρ(ϑ) cot

(
ϕ− ϑ

2

)
= 2

∞∑
n=1

∫ π

−π
dϑρ(ϑ) [sin(nϕ) cos(nϑ)− cos(nϕ) sin(nϑ)] , (4.23)



Phase transition in complex-time Loschmidt echo 15

and expand ρ(ϑ) in Fourier series:

ρ(ϑ) = a0 +
∞∑
n=1

[an cos(nϑ) + bn sin(nϑ)] , (4.24)

with

an =
1

π

∫ π

−π
dϑρ(ϑ) cos(nϑ), bn =

1

π

∫ π

−π
dϑρ(ϑ) sin(nϑ), (4.25)

for all n = 0, 1, . . .. Eq (4.22) can then be rewritten as:

2γ
∞∑
n=1

[gn sin(nϕ)− g̃n cos(nϕ)] = 2π
∞∑
n=1

[an sin(nϕ)− bn cos(nϕ)] , (4.26)

and from the orthogonality of the Fourier basis it immediately follows that:

an =
γ

π
gn, bn =

γ

π
g̃n, (4.27)

for all n = 1, 2, . . .. Besides, the normalization condition (4.21) fixes a0 = 1
2π

. Therefore,

under the requirement suppρ = [−π, π], we obtained the eigenvalue density

ρ(ϕ) =
1

2π

[
1 + 2γ

∞∑
n=1

(gn cos(nϕ) + g̃n sin(nϕ))

]
, (4.28)

which is a valid solution as long as it defines a probability measure. In particular,

from the fact that, on the circle, |ϕj − ϕk| ≤ 2π, it follows that ρ(ϕ) = dx
dϕ

must be

non-negative defined:

ρ(ϕ) ≥ 0, −π < ϕ ≤ π. (4.29)

If

min
−π<ϕ≤π

∞∑
n=1

(gn cos(nϕ) + g̃n sin(nϕ)) < 0, (4.30)

the non-negativity condition imposes an upper bound to the parameter γ, hence the

solution (4.28) is valid until γ ≤ γc, with critical value:

γc =

[
−2 min

−π<ϕ≤π

∞∑
n=1

(gn cos(nϕ) + g̃n sin(nϕ))

]−1
> 0. (4.31)

We now use the the solution (4.28) in the weak coupling phase to prove the following

statement.

Proposition. Consider a unitary matrix model as in (4.2). Then, in the limit N →∞
with β/N ≡ γ fixed, for all 0 ≤ γ ≤ γc the free energy F = logZ(β)/N2 coincides with

the result of Szegő’s theorem.
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Proof. It follows from direct calculation of the derivative of F . In the large N limit:

dF
dγ

(γ ≤ γc) =

∫ π

−π
dϕρ(ϕ)V (ϕ)

=

∫ π

−π

dϕ

2π

[
1 + 2γ

∞∑
n=1

(gn cos(nϕ) + g̃n sin(nϕ))

]

×

[
h+ 2

∞∑
m=1

(
gm
m

cos(mϕ) +
g̃m
m

sin(mϕ)

)]

= h+
2γ

π

∞∑
n=1

∞∑
m=1

∫ π

−π
dϕ

[
gngm
m

cos(nϕ) cos(mϕ) +
g̃ng̃m
m

sin(nϕ) sin(mϕ)

]
= h+ 2γ

∞∑
n=1

g2n + g̃2n
n

,

where in the last two equalities we have used the orthogonality relations. The integration

with boundary condition Z(0) = 1 ‖ immediately gives:

F(γ ≤ γc) = γh+ γ2
∞∑
n=1

g2n + g̃2n
n

, (4.32)

matching the result of direct application of Szegő’s theorem, up to trivially scaling

β/N = γ.

4.4. Specializations at small γ

We now specialize the result (4.28) to some fundamental examples, which will be of

interest in sections 5 and 6.

As a first case, we consider the original XX spin chain, with only nearest-neighbour

interaction. We set g1 = 1 and all the other coefficients to zero: gn>1 = g̃n≥1 = 0.

This choice gives the Gross-Witten-Wadia matrix model [21, 22]. Then, the eigenvalue

density at small γ is given by

ρGW(ϕ) =
1

2π
[1 + 2γ cos(ϕ)] , (4.33)

with critical value γc = 1
2
. From (4.32), we have that the free energy takes the simple

expression F(γ ≤ γc) = γh+ γ2.

Another case of relevance is the spin chain with exponentially decaying interaction,

corresponding to the choice gn = e−nα and g̃n = 0, leading to the model (6.4). In this

case the potential is logarithmic:

V (ϕ) = h− log(1− e−αeiϕ)(1− e−αe−iϕ), (4.34)

and the eigenvalue density in the small γ phase, 0 ≤ γ ≤ γc, is:

ρB(ϕ) =
1

2π

[
1 + 2γ

∞∑
n=1

e−nα cos(nϕ)

]
. (4.35)

‖ This follows directly from Z(0) =
∫
U(N)

dU , where dU is the normalized Haar measure on U(N).
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The series in latter expression can be computed explicitly, so that the eigenvalue density

takes the form:

ρB(ϕ) =
1

2π

[
1 + γe−α

(
cos(ϕ)− e−α

1 + e−2α − 2e−α cos(ϕ)

)]
. (4.36)

There are (at least) two ways to see this. One could expand 2 cos(nϕ) = (eiϕ)n+(e−iϕ)n

and obtain the geometric series with argument e−α±iϕ. Otherwise, one could use the

relation cos(nϕ) = Tn(cos(ϕ)), where Tn in the n-th Chebyshev polynomial of first kind,

and recognize the generating function of the Chebyshev polynomials with argument e−α.

The minimum of expression (4.36) is located at ϕ = ±π, whence the critical value is:

γc =
1 + e−α

2e−α
. (4.37)

The same result was obtained by Baik in [37] adopting different and more powerful

techniques. We can also get the free energy from formula (4.32):

FB(γ ≤ γc) = γh+ γ2
∞∑
n=1

e−2α

n
= γh− γ2 log(1− e−2α). (4.38)

As a third example, we consider the potential:

V (ϕ) = h+ 2
∞∑
n=1

e−nα

n1+p
cos(nϕ) = h+ Li1+p(e

−α+iϕ) + Li1+p(e
−α−iϕ), (4.39)

with p ∈ Z and α > 0 if p ≤ 0 and α ≥ 0 if p > 0. For α > 0 this is a modification of

the spin chain with exponentially decaying interaction, however, for p ∈ Z>0 we can set

α = 0 and obtain a spin chain with long range interaction ∼ 1/n1+p. The eigenvalue

density at small γ is obtained plugging gn = e−nα/np and g̃n = 0 in the general solution

(4.28). The result is:

ρ(ϕ) =
1

2π

[
1 + 2γ

(
Lip(e

−α+iϕ) + Lip(e
−α−iϕ)

)]
, (4.40)

whose minimum is located at ϕ = ±π, thus the critical value is given by:

γc = −
(
2Lip(−e−α)

)−1
. (4.41)

The solution (4.36) is recovered as a special case when p = 0. Furthermore, for the long

range interaction p ∈ Z>0 and α = 0, the critical value is

γc =
1

2(1− 21−p)ζ(p)
, (4.42)

where ζ(p) is the Riemann zeta function, and we have used the relation between the

polylogarithm of order p at −1 and ζ(p). From (4.32), we have that the free energy is:

F(γ ≤ γc) = γh+ γ2
∞∑
n=1

e−2α

n2p+1
= γh+ γ2Li2p+1(e

−2α). (4.43)

Again, for p = 0 we recover the previous result (4.38). For the long range interaction

α = 0 instead we have:

F(γ ≤ γc) = γh+ γ2ζ(2p+ 1). (4.44)
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4.5. Solution at large γ

When the coupling γ exceeds the value for which the eigenvalue density obtained in

Eq. (4.28) is non-negative definite, namely γ > γc, the previous solution ceases to be

valid, since the inequality ρ(ϕ) ≥ 0 is broken at certain values of ϕ. Therefore we have

to come back to the saddle point equation (4.22) and find a new solution dropping the

assumption suppρ = [−π, π]. Instead of such condition, we assume that the eigenvalue

density ρ is supported on ` disconnected arcs of the unit circle:

suppρ =
`−1⋃
k=0

[
φ−k , φ

+
k

]
. (4.45)

Solutions of that type are called `-cut solution, the arcs
[
φ−k , φ

+
k

]
on which ρ is supported

are called “cuts”, while the complementary arcs ]φ+
k , φ

−
k+1[ on which the ρ identically

vanishes are called “gaps”. Here we briefly review the general strategy to solve the

singular integral equation (4.22) when the support of the eigenvalue density does not

cover the whole circle, mainly following [25, Appendix B].

The first step is to use the standard change of variables z = eiϕ, u = eiϑ and name

the boundaries of the cuts Ak = eiφ
−
k , Bk = eiφ

+
k , k = 0, . . . , ` − 1, so that the saddle

point equation (4.22) is rewritten as:

−γV ′(z, z−1) = i
`−1∑
k=0

P

∫ Bk

Ak

du

iu
ψ(u)

z + u

z − u
, (4.46)

where ψ(eiu) ≡ ρ(ϑ) and V ′(z, z−1) is the derivative of the potential (4.3) written in

terms of the new variable. We now introduce the function of complex variable z ∈ C:

Ψ(z) =
`−1∑
k=0

∫ Bk

Ak

du

iu
ψ(u)

z + u

z − u
, (4.47)

with integrals taken along the cuts on the unit circle in C. When z belongs to the unit

circle, that is eiϕ for some ϕ ∈ suppρ, from the very definition we have

lim
z↓eiϕ

Ψ(z)− lim
z↑eiϕ

Ψ(z) ≡ Ψ+(eiϕ)−Ψ−(eiϕ) = 4πψ(eiϕ), (4.48)

where Ψ+(z) (respectively Ψ−(z)) denotes the limit from outside (respectively inside)

the unit circle. We also define the auxiliary complex function

h(z) =

√√√√`−1∏
k=0

(Ak − z)(Bk − z), (4.49)

which has branch cuts exactly along the arcs on which ρ(ϕ) is supported (i.e., the cuts).

Consider also the function Φ(z) such that

Ψ(z) = h(z)Φ(z), z ∈ C. (4.50)

Standard calculations based on the application of the residue theorem and simple

contour manipulations provide the identity

Φ(z) =
1

2π

∮
C

−γV ′(u, u−1)
h(u)(u− z)

du, (4.51)
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where the integration contour C encloses the ` cuts but not the point z, and we have

taken into account the relation between Ψ(z) and Φ(z) and the fact that Ψ(z) satisfies

the saddle point equation (4.46) along the ` cuts.

At this point we have all the ingredients to obtain the function ψ(eiϕ) = ρ(ϕ), but

more information about the potential V (z, z−1) is required in order to fix the number

` of cuts and to evaluate the integral (4.51). Under the hypothesis that V ′(z, z−1) has

poles but not branch cuts in the complex plane, the integral expression (4.51) can be

manipulated [25] to obtain:

Φ(z) = I1(z) + I2(z) + I3(z), (4.52)

where I1(z) computes the residue in z, I2(z) computes the residues at the poles of V ′

and I3(z) is the residual contour integration along a very large circle, used to avoid the

branch cuts of h(u). Explicitly:

I1(z) = −γV
′(z, z−1)

ih(z)
, (4.53)

I2(z) = −γ
∑
zr

Resu=zr
V ′(u, u−1)

ih(u)(z − u)
, (4.54)

I3(z) = lim
R→∞

1

2π

∮
CR

−γV ′(u, u−1)
h(u)(u− z)

du, (4.55)

where the sum in I2 runs over the poles of V ′(z, z−1) and the contour CR in the definition

of I3 is a large circle of radius R. The number ` of cuts must be consistent with I3 to

be finite or vanish. Notice that, if V (z, z−1) is smooth in the unit circle, I1 is irrelevant

for the calculation of ψ(z), since in that case h(z)I1(z) yields no jump.

4.6. Specializations at large γ

We now provide explicit formulae in the cases relevant for the forthcoming sections.

For a spin chain with interaction only to the closest neighbour, g1 = 1 and all other

coefficients set to zero, we get the Gross-Witten-Wadia model, with

V ′(z, z−1) = i(z − z−1) (4.56)

Looking for a symmetric one-cut solution, supported in [−φ0, φ0], we can directly obtain

Φ(z) from the formula (4.52). Since V ′ has only a pole in z = 0 and no branch cuts,

thus I1 is irrelevant for the evaluation of ψ(z). The other two contributions are:

I2(z) = − γ

h(0)z
= γz−1, (4.57)

I3(z) = lim
R→∞

∮
CR

−iγdu

2πu
= γ, (4.58)

where for the second equality in the evaluation of I2(z) we used the fact that h(z)

approaches the real axes with positive sign if |z| > 1 but with negative sign if |z| < 1,

so in particular h(0) = −1. We therefore obtain

Ψ+(eiϕ)−Ψ−(eiϕ) = γ(1+e−iϕ)
(
h+(eiϕ)− h−(e−iϕ)

)
= 2γ(1+e−iϕ)h+(eiϕ).(4.59)



Phase transition in complex-time Loschmidt echo 20

Therefore we obtain the Gross-Witten eigenvalue density at strong coupling [21]:

ρGW(ϕ) =
γ

π
cos

ϕ

2

√(
sin

φ0

2

)2

−
(

sin
ϕ

2

)2
, (4.60)

with (
sin

φ0

2

)2

=
1

2γ
(4.61)

fixed by normalization. The Gross-Witten eigenvalue density at different values of γ is

plotted in figure 2.

-3 -2 -1 0 1 2 3
ϕ

0.2

0.4

0.6

0.8

1.0
ρ(ϕ)

Gross-Witten model

Figure 2. Eigenvalue density in the Gross-Witten model, for different values of the

control parameter γ = 0.2 (green), 0.48 (blue), 0.52 (purple), 2 (red). The critical

value is γc = 0.5.

The next example corresponds to a spin chain with exponentially decaying

interaction, as in (4.34). In this case we have:

−γV ′(z, z−1) = −iγe−α
[

z

1− e−αz
− z−1

1− e−αz−1

]
(4.62)

Again V ′(z, z−1) has poles but no branch cuts, so we can apply formula (4.52). Again

I1 is irrelevant for the calculation of ρ(ϕ), while I3 = 0. Thus the unique contribution

comes from the poles of V ′ at e∓α:

I2(z) = −γ
[

e−α

h(e−α)(z − e−α)
− 1

h(eα)(1− e−αz)

]
=

γ

h(e−α)

[
e−α

e−α − z
− 1

eα − z

]
,(4.63)

where for the second equality we used:

h(t−1) =
√

1 + t−2 − 2t−1 cosφ0 = −t−1h(t). (4.64)
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We then get:

ρ(ϕ) =
1

4π
I2(eiϕ)(h+(eiϕ)− h−(eiϕ)) =

h+(eiϕ)

2π
I2(eiϕ)

=
γeiϕ/2

πh(e−α)

√(
sin

φ0

2

)2

−
(

sin
ϕ

2

)2 [ e−α

e−α − eiϕ
− 1

eα − eiϕ

]
, (4.65)

with boundary of the support fixed by normalization:(
sin

φ0

2

)2

=
(2γ − 1)(1− e−α)2

4e−α(γ − 1)2
. (4.66)

As a consistency check, we see that when γ → γc from above, φ0 → π, meaning that

the solution at small γ is approached by removing the hard wall at φ0. Inserting this

expression into (4.65) allows to write γ/h(e−α) in a simpler form, and we finally get:

ρ(ϕ) =
(γ − 1)(1 + eiϕ)h+(eiϕ)

2π(eiϕ − e−α)(eiϕ − eα)
. (4.67)

This provides an alternative derivation of the result of Baik also at large γ [37]. We plot

the eigenvalue density for different values of γ in figure 3, and also show how it changes

when γ is continuously varied, in figure 4.

-3 -2 -1 0 1 2 3
ϕ

0.2

0.4

0.6

0.8

1.0
ρ(ϕ)

Exponential decay exp(-α)=0.5

Figure 3. Eigenvalue density for exponentially decaying interaction, at e−α = 0.5, for

different values of the control parameter γ = 0.5 (green), 1.4 (blue), 1.6 (purple), 2.5

(red). The critical value for this choice of α is γc = 1.5.

We can thus use this expression to obtain the large N limit of the free energy of

the system in the strong coupling phase, γ > γc. We replace e−α → t, where t is now a
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Figure 4. Eigenvalue density for exponentially decaying interaction, at e−α = 0.5, as

a function of γ. The phase transition is signalled by the shrinkage of the support.

variable, and take the derivative of F with respect to t. This gives:

dF
dt

(γ > γc) = γ

∫ φ0

−φ0
dϕρ(ϕ)

[
eiϕ

1− teiϕ
+

e−iϕ

1− te−iϕ

]

= 2γ(γ − 1)t

∫ φ0

−φ0

dϕ

π

cos ϕ
2

√(
sin φ0

2

)2 − (sin ϕ
2

)2
(1− t)2 + 4t

(
sin ϕ

2

)2 [
2 cosϕ− 2t

1 + t2 − 2t cosϕ

]
=

8γ(γ − 1)t

π

∫ x0

−x0
dx

√
x20 − x2(1− t− 2x2)

[(1− t)2 + 4tx2]2

=
γ(γ − 1)

πt

∫ 1

−1
dy

√
1− y2

[
2t(γ−1)2

(1−t)(2γ−1) − y
2
]

[
(γ−1)2
2γ−1 + y2

]2
=

1 + t− 4γt

2t(1− t)
, (4.68)

where we first changed variables x = sin ϕ
2
, with x0 = sin φ0

2
, and then scaled again

the variables y = x/x0 and used the explicit form of x20 to simplify the expression.
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Integrating this up to t = e−α we get:

F(γ > γc) = γh+ (2γ − 1) log(1− e−α)− α

2
+ C(γ), (4.69)

where C(γ) is some α-independent constant.

The last case we solve explicitly is the case of polylogarithmic potential (4.39),

hence

V ′(z, z−1) = Lip(e
−αz)− Lip(e

−αz−1). (4.70)

The case p = 0 reduces to the case above, and for all p ∈ Z≤0 the derivation goes

through in the exactly same way, the unique difference being that the residue in eα

has positive (respectively negative) sign when p is even (resp. odd). Therefore the

eigenvalue density ρ(ϕ) for all p ≤ 0 is given by the formula (4.65), up to a factor (−1)p

in the last summand in square bracket.

The case p ∈ Z>0 however is more involved, since in that case the polylogarithm

has a branch cut but no poles. The eigenvalue density in that case, for α = 0, has been

obtained in [26], although in a rather different context. Turning on the exponential

decay α ≥ 0 their procedure works identically, leading to:

ρ(ϕ) =
γ

π

(
γ

γc

)p−1 [
Lip(e

−αeiϕ) + Lip(e
−αe−iϕ)− Lip(e

−αeiφ0)− Lip(e
−αe−iφ0)

]
, (4.71)

with φ0 implicitly determined by normalization condition. We can use this expression

to evaluate the derivative of the free energy with respect to the variable t = e−α:

dF
dt

(γ > γc) = 2γ

∫ φ0

−φ0
dϕρ(ϕ)

∞∑
m=1

tm

mp
[cos(mϕ)− cos(mφ0)]

=
4γp+1

πγp−1c

∞∑
m=1

∞∑
n=1

tm+n

(mn)p

∫ φ0

−φ0
dϕ cos(nϕ) [cos(mϕ)− cos(mφ0)]

=
4γp+1

πγp−1c

∞∑
m=1

∞∑
n=1

tm+n

(mn)p

×
[

sin(φ0(m+ n))

n+m
+

sin(φ0(m− n))

n−m
− 2 cos(mφ0) sin(nφ0)

n

]
. (4.72)

5. XX model with asymmetric hopping

We consider a generalization of the XX model case discussed in [13], which corresponds

to the Gross-Witten matrix model, whose potential is¶ V (ϕ) = h + 2 cos(ϕ) [13], and

consider the matrix model potential

V (ϕ) = h+ 2 (cos(ϕ)− iv sin(ϕ)) . (5.1)

More specifically, this modifies the hopping term in (2.1) in the following way

Ĥhop = −1

2

∞∑
i=0

(
(1− v)σ−i σ

+
i+1 + (1 + v)σ−i σ

+
i−1
)
, (5.2)

¶ We follow the matrix model convention, which may differ by a factor 2 from the literature discussing

the XX spin chain.
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where the parameter v measures the asymmetry between interaction on the right and on

the left. We remark that, in the definition of the Hamiltonian Ĥhop in (5.2), we use the

Pauli matrices σ±, and therefore the model is different from the XY spin chain, whose

Hamiltonian has similar form but the matrices σx, σy are used.

In [38, 39] for example, this model was considered for the particular case of a

single spin flip (Glauber dynamics). Already at the one spin flip level, two different

behaviours were observed depending on whether 0 ≤ v ≤ 1 or v > 1. This is due to

the representation of correlation functions as modified Bessel functions of first kind,

In(z), whose argument is real for 0 ≤ v ≤ 1, but it becomes imaginary when v > 1.

Through the relation inIn(−ix) = Jn(x) [40], one can write a modified Bessel function

with pure imaginary argument as an ordinary Bessel function of real argument. The

modified Bessel functions In(x) are monotone, while the ordinary Bessel functions Jn(x)

are damped oscillating functions. This effect was responsible for the presence of two

regimes in [39].

On the other hand, at the matrix model level, the Gross-Witten model (which

describes the amplitude (2.15) with nearest-neighbour interaction) shows a large N

phase transition for imaginary time w = β, while there is a unique phase for real time

w = it. Such aspect is tightly related to the Fourier coefficients of the symbol being

modified Bessel functions In(2w), hence passing from imaginary- to real-time dynamics

changes the behaviour of the partition function (see subsection 5.1). This motivates us to

investigate the case of a N -spin flip process in the present formalism, for potential (5.1),

to establish a relation between imaginary-time dynamics at 0 ≤ v ≤ 1 and real-time

dynamics at v > 1.

5.1. Determinants of Bessel functions

We briefly review the representation of the XX model and generalizations thereof in

terms of a determinant of modified Bessel functions of first kind, denoted by In(z). The

complex-time partition function Z(w) associated to the XX model is:

Z(w) =
ewhN

N !

∫ π

−π

dϕ1

2π
· · ·
∫ π

−π

dϕN
2π

∏
1≤j<k≤N

∣∣eiϕj − eiϕk∣∣ e2w∑N
j=1 cos(ϕj), (5.3)

which, for purely real parameter w = β (imaginary time) reduces to the celebrated

Gross-Witten-Wadia model [21,22]. From the identity

exp

{
w

(
z + z−1

2

)}
=
∑
n∈Z

In(w)zn (5.4)

and the relation between unitary matrix model and Toeplitz determinant, we get:

Z(w) = ewhN det [Ij−k(2w)]Nj,k=1 (5.5)

For imaginary-time dynamics w = β, the partition function (5.5) shows a third order

phase transition at large N , with β/N ≡ γ fixed [21]. In particular, the free energy
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F = logZ(β)/N2 is given by:

FGW(γ) =

 γ2, γ ≤ 1
2
,

2γ − 1

2
log 2γ − 3

4
, γ > 1

2
.

(5.6)

Such result, obtained using saddle point techniques, is a particular case studied above

in section 4. The same result may also be proved through a more powerful procedure,

namely solving a Riemann-Hilbert problem [23]. The convergence of the logarithm of

the determinant (5.5) to the theoretical large N formula (5.6) as N increases is showed

in figure 5.
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Figure 5. Comparison between the matrix model free energy FGW of the Gross-

Witten model computed through the determinant of modified Bessel functions of first

kind (5.5) (black) and the theoretical large N formula (5.6) (red, dotted) as a function

of γ, for N = 1 (up left), N = 3 (up right) and N = 12 (center).

For imaginary argument w = it, however, the determinant (5.5) has a different

behaviour, following from the identity [40]

In(2it) = i−nJn(−2t), (5.7)

where Jn is the ordinary Bessel function of first kind. In case of complex argument

w = β + it, the free energy F shows a Gross-Witten behaviour for each slice at fixed t,

while it is smooth for large even N along its β = 0 section. At large N with β/N fixed

but unscaled t, F can be evaluated from the extension of Szegő theorem described in the

Proposition. This is plotted in figure 6. Therefore, the presence of a phase transition
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at large N relies on the real part of the argument being nonzero. In the formalism

of saddle point approximation at large N , described in detail in section 4, this can be

restated as follows: only the real part of the action admits nontrivial saddle points. As

a consequence, the change of solution of the saddle point equation after a critical point

in parameter space is necessarily controlled by γ.

Figure 6. Logarithm of the Loschmidt amplitude (2.15) for XX spin chain at complex

time. Two views of the same plot, from above (left) and below (right). The blue surface

shows the direct calculation of F from the determinantal representation at N = 10,

and the solid green region is the volume contained in the theoretical prediction, with

unscaled t.

5.2. Determinants in the case of asymmetric hopping

We now focus on a generalization of the model above, introducing asymmetry between

the interaction on the left and on the right, see (5.2). Interactions of that type have been

studied in [38,39], for the case of a single spin flip in the Ising chain. This corresponds

to the potential described in (5.1), which leads to the matrix model for the amplitude

(2.15) :

Z(w) =
ewhN

N !

∫ π

−π

dϕ1

2π
· · ·
∫ π

−π

dϕN
2π

∏
1≤j<k≤N

∣∣eiϕj − eiϕk∣∣ e2w∑N
j=1[cos(ϕj)−iv sin(ϕj)], (5.8)

where the asymmetry is controlled by the parameter v, and at v = 0 we recover the

matrix model (5.3). For 0 ≤ v ≤ 1, we can rewrite

2 (cos(ϕ)− iv sin(ϕ)) =
√

1− v2
(
eiϕ−φv + e−(iϕ−φv)

)
, (5.9)

where the angle φv is defined through

cosh(φv) =
1√

1− v2
, sinh(φv) =

v√
1− v2

. (5.10)

We can then apply identity (5.4) to obtain the Fourier coefficients of the symbol of the

matrix model, which are e−nφvIn(2w
√

1− v2). From the equivalence between unitary
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matrix models and Toeplitz determinants, we can write down the partition function

Z(w) as

Z(w) = ewhN det
1≤j,k≤N

[
e(k−j)φvIj−k

(
2(β + it)

√
1− v2

)]
. (5.11)

We see that the entries of the matrix are related to those of expression (5.5), with a

rescaling of the argument by a factor
√

1− v2 and the powers of eφv as a prefactor, which

does not affect the behaviour of the determinant, since it does not introduce oscillating

behaviour. We have seen above in section 5.1 that the scaling limit with both β/N and

t/N fixed is controlled only by γ = β/N , and therefore the conclusions for (5.5) hold

also for the present model, in the regime 0 ≤ v ≤ 1.

Conversely, when v > 1, we use:

2 (cos(ϕ)− iv sin(ϕ)) = −i
√
v2 − 1

(
eiϕ−i

π
2
−φ̂v + e−(iϕ−i

π
2
−φ̂v)

)
, (5.12)

where the angle φ̂v is defined through

cosh(φ̂v) =
v√

v2 − 1
, sinh(φ̂v) =

1√
v2 − 1

. (5.13)

We again exploit identity (5.4) and get:

exp {2w (cos(ϕ)− iv sin(ϕ))} =
∑
n∈Z

In(−i2w
√
v2 − 1)i−ne−nφ̂veinϕ, (5.14)

so we see that, when v > 1, the argument of the modified Bessel function acquires an

extra i factor, an we are led to:

Z(w) = ewhN det
1≤j,k≤N

[
(ieφ̂v)(k−j)Ij−k

(
2(t− iβ)

√
v2 − 1

)]
, (5.15)

with φ̂v defined in (5.13). We have that, at v > 1, the roles of t and β are exchanged:

in this case, the phase in the multiple-scaling large N limit (taken forcing N to be even,

for simplicity) is controlled by the parameter t/N . Therefore, in this regime, the phase

transition is triggered by real time dynamics.

6. Extended XX model: short and long range interactions

In [20], it was showed that one can consider the generic long-range 1d spin Hamiltonian

ĤGen introduced in (2.3), and which we rewrite here for clarity:

ĤGen = −
∞∑
i=0

∑
n∈Z

an
(
σ−i σ

+
i+n

)
+
h

2

∞∑
i=0

(σzi − 1). (6.1)

Then, the matrix model description of the amplitude is again given by (2.6) but where

the weight function fw(eiϕ) of the random matrix ensemble is now

fw
(
eiϕ
)

= f0
(
eiϕ
)

exp

(
w
∑
n∈Z

ane
inϕ

)
, (6.2)

where we have changed the parameter β ∈ R for the more general w ∈ C. Therefore

the additional interactions in the Hamiltonian appear in the potential of the matrix



Phase transition in complex-time Loschmidt echo 28

model as the coefficients an of the TrU±n terms, where the integer value n denotes

nearest neighbour interaction for n = 1, next-to near for n = 2, and so on. The

extension to this case was straightforward and can not be considered rigorous for the

case of infinitely many interactions, although the decay condition on the coefficients

guarantees convergence of the integrals and hence existence of the amplitudes. See also

the discussion in [10, Appendix D]. The convergence condition above however is not

always necessary, and we will discuss below how results on Toeplitz determinants with

a symbol with a pure Fisher-Hartwig singularity appear.

If an 6= 0 for only finitely many n ∈ Z, meaning spins interact with only finitely

many neighbours, one obtains a unitary matrix model with polynomial potential. The

large N limit of such models has been thoroughly studied in [41], and will not consider

this case here. Instead, we will focus on the case an 6= 0 for all n ∈ Z.

6.1. Exponentially decaying interactions

We first focus on the Loschmidt echo for interactions in (6.1) given by an = exp (−nα) /n

with α ≥ 0, for both cases of a long-range chain α = 0 and a short-range one with

exponentially decaying interactions α > 0, studying their free energies and phase

transitions. The matrix model expression (2.6) for these interactions and with initial

state in a single-domain wall configuration

|ψ0〉 = |↓, ↓, ..., ↓︸ ︷︷ ︸
N

, ↑, ...〉, (6.3)

is

Z(w) =
ewhN

(2π)NN !

∫
[−π,π]N

∏
1≤j<k≤N

∣∣eiϕk − eiϕj ∣∣2 N∏
j=1

dϕj
[(1− e−α+iϕj) (1− e−α−iϕj)]w

. (6.4)

From the point of view of Toeplitz determinants, the corresponding symbol then is

σ(z) = [(1− e−αz) (1− e−α/z)]
−w

, which has been studied in different contexts, see [24]

for a textbook discussion. A few properties for Z(w) follow: we show that for imaginary-

time dynamics, where w → β ∈ R there is a third order phase transition in the double

scaling limit N → ∞, β/N fixed. In separate work [42], we explain that this phase

transition is the same one that appears in the study of domino tilings [43].

As happens with the case of the XX chain, the phase transition does not occur for

real-time dynamics, where w → it ∈ iR. The present model has one parameter more

than the Gross-Witten/XX model, corresponding to the strength of the exponentially

decaying interaction, namely α. The Gross-Witten picture is recovered in the limit

α→∞, with βGW ≡ βe−α fixed.

The matrix model (6.4) has a weak-coupling phase for 0 ≤ γ ≤ 1+e−α

2e−α
and a strong-

coupling phase for γ > 1+e−α

2e−α
[37], and the phase transition is third order. The derivation

of this result is a particular case of the general setting solved in section 4.

We are interested in the large N free energy in each phase, defined by F =

limN→∞Z(β)/N2, which is related to the so-called rate function g(t) of the Loschmidt
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echo (1.2) L(t) = exp (−Ng(t)) for imaginary time it → β. In fact, we obtain it as a

special case of the following result (see Proposition in section 4): for a general class of

symbols, free energy F in the weak-coupling phase coincides with the result obtained

from direct application of Szegő strong limit theorem. In other words, for all 0 ≤ γ ≤ γc,

the free energy can be obtained from the unscaled limit. This result for eigenvalues on

the circle is consistent with the general phase transitions analysis of [44] on the real line.

For the present case of exponentially decaying interaction we obtain:

F =

 γh+−γ2 log(1− e−2α), γ ≤ 1+e−α

2e−α
,

γh+ (2γ − 1) log(1− e−α)− α

2
+ C(γ), γ > 1+e−α

2e−α
,

(6.5)

in the weak- and strong-coupling phase respectively, where C(γ) is α-independent.

6.2. Long-range chain: Fisher-Hartwig asymptotics and Stokes lines

Systems of trapped ions have been synthesized to describe the dynamics of transverse-

field Ising models of the form [45]

Ĥ = −
∑

0≤m<l≤L

Jlmσ
z
l σ

z
m − h

L∑
l=0

σxl . (6.6)

Here, L + 1 is the total number of spins. The coupling Jlm is approximately of long-

ranged form [45]

Jlm ≈
1

|l −m|λ
, for |l −m| � 1 , (6.7)

with a tunable interaction exponent λ from λ = 0 up to λ = 3. We will particularize the

setting above to the case α = 0 and hence describe a XX chain (which can be roughly

seen as two copies of the Ising model above), corresponding to a interaction exponent

of λ = 1. This is then a a long-range spin chain with interactions J|l−m| = 1/ |l −m|
between spins in positions l and m.

The Loschmidt echo then for a single-domain wall configuration, has then the

random matrix representation, in the general case of a complex time parameter

Z(w) =
ewhN

(2π)NN !

∫
[−π,π]N

dNϕ
∏

1≤j<k≤N

∣∣eiϕj − eiϕk∣∣2 N∏
j=1

[(
1− eiϕj

) (
1− e−iϕj

)]w
. (6.8)

This matrix model, through its equivalent Toeplitz determinant formulation,

corresponds to the case of a pure Fisher-Hartwig (FH) singularity [46]. The transition

between the exponentially decaying case above and the long-range here could be itself

studied through suitable double scaling limits involving α (taking it α → 0) and N .

This transition involves going from Szegő asymptotics to FH asymptotics, with control

over the transition through the solution of an integrable system [47].

We focus here on the fact that (6.8) admits a remarkable exact evaluation for

arbitrary finite N , given by [46]

Z(w) = ewhN
G(N + 1)G(2w +N + 1)G(w + 1)2

G(2w + 1)G(N + w + 1)2
, (6.9)
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with G denoting a Barnes G-function, which is a double Gamma function. It is defined

as G(n) =
∏n−2

m=0m! for n = 1, 2, ... (for the extension to the whole complex plane, one

may use G(z + 1) = Γ (z)G (z) with G(1) = 1). As an open problem, it would be

interesting to study if the known zeroes and poles of (6.9) could be interpreted as a

signal of a DQPT in the sense of [1, 2].

Because the Barnes G-function has Stokes lines on its imaginary axis, its asymptotic

expansion involves Stokes phenomena and the appearance of exponentially small

contributions in the asymptotic expansion [48,49].

The exponentially improved asymptotic expansion of the Barnes G-function reads

[48]

logG (z + 1) ∼ 1

4
z2 + z log Γ (z + 1)−

(
1

2
z (z + 1) +

1

12

)
log z − logA

+
∞∑
k=1

Sk (θ) e±2πikz +
∞∑
n=1

B2n+2

2n (2n+ 1) (2n+ 2) z2n
, (6.10)

where

Sk (θ) =


0, |θ| < π

2

∓ 1

4πik2
, θ = ±π

2

∓ 1

2πik2
, π

2
< |θ| < π,

(6.11)

and θ = arg z. The upper or lower sign depends on whether z is in the upper or

lower half-plane. The term with Sk (θ) are the Stokes multipliers. The remaining terms

constitute the usual asymptotic expansion of the Barnes G-function. The Stokes lines

are located at θ = ±π
2

in the complex plane. Thus, this asymptotic expansion of the

Barnes G-function on the whole complex plane shows the existence of Stokes lines on

the axis corresponding to real-time dynamics. Either expansions along the real-time

line or crossings it, leads to the appearance of exponentially small contributions in the

expansion. The fact that these crossings and the appearance of the ensuing exponentially

small extra terms in the asymptotic expansion are not actually a discontinuous behaviour

is now understood and known as Berry smoothing since in [49], zooming in the crossing

regions, was shown that the process is actually smooth, controlled by expressions

characterized by error functions, instead of sharp transitions.

Notice also that there is a Gamma function term in (6.10), therefore, we also have

to consider the asymptotics of the Gamma function, which also has Stokes lines in the

same location, but with different Stokes multipliers. More precisely: for the Gamma

function the following asymptotic expansion holds as z →∞

log Γ∗(z) ∼
∞∑
n=1

B2n

2n(2n− 1)z2n−1
−


0, |θ| < π

2

1

2
log(1− e±2πiz), θ = ±π

2

log(1− e±2πiz), π
2
< |θ| < π.

(6.12)
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The expansion of the logarithm brings the asymptotics in the same form as above

log Γ∗(z) ∼
∞∑
n=1

B2n

2n(2n− 1)z2n−1
+
∞∑
k=1

S̃k (θ) e±2πikz, (6.13)

in the sector |arg z| ≤ π − δ < π for any 0 < δ ≤ π with
+

S̃k (θ) =


0, |θ| < π

2

1

2k
, θ = ±π

2

1

k
, π

2
< |θ| < π,

(6.14)

where the usual definition

Γ∗(z) =
Γ(z)√

πzz−1/2e−z
. (6.15)

Notice that for real-time dynamics, while three Barnes G-function are on the first

quadrant of the complex plane and no exponentially small contribution appears from

those, the two terms G(it + 1)2 and G(2it + 1) are on the very Stokes line (for t > 0,

for t < 0 it would be the anti-Stokes line).

We can have actual crossings of the Stokes line in the case of complex time

w = β+it ∈ C and allowing β < 0. On the other hand, for imaginary time asymptotics,

when w = β ∈ R the phenomena does not occur, as all the asymptotics of (6.9) is that

of the Barnes G-function on the real axis. This then is an explicit example where, under

analytical continuation from imaginary-time to real-time dynamics, we have additional

subdominant exponentials, that would be missed in a direct Wick rotation from the

asymptotics valid at the real axis (imaginary-time).

6.3. A more general long and short range interaction. Phase transitions.

We consider a modification of the exponentially decaying interaction, corresponding to

a potential

V (z) = h+ Lip+1(e
−αz) = h+

∞∑
n=1

e−nαzn

n1+p
, (6.16)

for p ∈ Z and α > 0 when p ≤ 0 and α ≥ 0 when p > 0. At p = 0 we recover (6.4).

According to the general solution described in section 4, this model has two phases, and

the transition takes place at the critical value:

γc = −
(
2Lip(−e−α)

)−1 ≥ 0. (6.17)

The free energy in the weak coupling phase is:

F(γ ≤ γc) = γh+ γ2Li2p+1(e
−2α). (6.18)

+

Note that, with regards to the location of Stokes lines, that the asymptotics of the Gamma function

is with variable z whereas of the Barnes G-function is z + 1.
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At p = 0 we recover formula (6.5). On the other hand, for p > 0 we can set α = 0,

obtaining a long-range interaction which decays as 1/n(1+p), corresponding to (6.7) with

exponent λ > 1. In this case F is proportional to the Riemann zeta function:

F(γ ≤ γc) = γh+ γ2ζ(2p+ 1). (6.19)

Li3t
2

-log1 - t2

ζ(3)

0.0 0.2 0.4 0.6 0.8 1.0
t0.0

0.5
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F/γ^2

F/γ^2 at short and long range

Figure 7. Ratio between F and γ2 as a function of t = e−α for decays e−nα/n (red)

e−nα/n2 (dark red) and 1/n2 (black). Plot at h = 0. The case p = 0 is singular at

t = 1.

Li2 p+1(0.5)

Li2 p+1(0.9)

ζ(2 p+1)

0.5 1.0 1.5 2.0
p

0.5

1.0

1.5

2.0

2.5

3.0

F/γ^2
F/γ^2 at short and long range

Figure 8. Ratio between F and γ2 as a function of p for decays e−α = 0.5 (red)

e−α = 0.9 (dark red) and e−α = 1 (black). Plot at h = 0. For any value of p, F
increases as α is decreased.

At γ > γc the solution (6.18) ceases to be valid, and we ought to pursue a new one.

For all p ≤ 0 the F is given by a simple modification of formula (6.5). For long-range

interaction, p > 0 and α = 0, we take advantage of a result in [26]. The formula for

F , however, is more involved and given by a double sum, presented in section 4, Eq.

(4.72).
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7. Finite chain

To conclude our analysis, we now consider the case of a finite spin chain with L + 1

sites, and focus on the extended model with exponentially decaying interaction discussed

above. The partition function (6.4) is replaced by its discrete version:

Zd(β) =
1

(L+ 1)2

∑
0≤s1<...<sN≤L

∏
1≤j<k≤N

|e iϕsj − e iϕsk |2

×
N∏
j=1

[
(1− e−αeiϕsj )(1− e−αe−iϕsj )

]−β
, (7.1)

with discrete angular variables already introduced in (4.10) and defined as:

ϕs =
2π

L+ 1

(
s− L

2

)
. (7.2)

Mathematically this corresponds to discrete Toeplitz determinants [50]. We take the

large N limit, with β
N

= γ ≥ 0 and L
N

= r ≥ 1 fixed. The leading contribution to the

partition function in this limit is obtained from the same equation as for the continuous

matrix model. Nevertheless, the discrete matrix model at large N is subject to an

additional constraint: the eigenvalues are distributed among the L + 1 sites on the

circle, thus the distance between two of them is at least 2π
L+1

[25, 50]. This follows from

the ordering

0 ≤ s1 < s2 < . . . < sN ≤ L, (7.3)

together with the definition (7.2), and hence we infer that the discrete eigenvalue density

is further constrained by

0 ≤ ρd ≤
r

2π
. (7.4)

Therefore the solution at weak coupling obtained in section 4, Eq. (4.36) holds only as

long as both the upper and lower bound are satisfied. As a consequence, the discrete

model presents two critical values of γ:

γc,0 =
1 + e−α

2e−α
, γc,r =

(1− e−α)(r − 1)

2e−α
. (7.5)

The first is the same as in the continuous model, whilst the second arises from the

discreteness. For a long chain

r ≥ 2

1− e−α
, (7.6)

it holds γc,0 ≤ γc,r and the first phase transition is induced by the same effect as for the

infinite chain model. The free energy F when γ ≤ γc,r is the same as in Eq. (6.5). As a

check, we notice that in the limit r →∞ we consistently recover the infinite spin chain

picture.

On the contrary, for a short chain, that is when r < 2/(1 − e−α), the finite size

effects appear earlier, the small coupling phase extends only up to γc,r and the first

phase transition is induced by discreteness effect.
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In the context of the XX chain, a result from J. Baik and Z. Liu [50] was used

in [13] to show how, when the chain is longer than a threshold, L > L0(β,N), the

continuous matrix model (infinite chain) approximates the discrete one (finite chain)

with exponentially small error. We now apply that method and show that the same

holds for this other model.

7.1. Comparison between finite and infinite chain

We are interested in the ratio

RL,N(β) =
Zd(β)

Z(β)
, (7.7)

which provides a measure of the accuracy of the infinite chain approximation for a finite

chain of length L + 1. In the definition, Z and Zd are the partiton functions of the

continuous (6.4) and discrete matrix model (7.1), respectively.

In the unscaled limit, Baik and Liu [50] proved that the ratio RL,N(β) goes as:

RL,N(β) = 1 +O(e−cN), (7.8)

for some c > 0, when the length of the chain is greater than a treshold, namely

L > L0(β,N). (7.9)

This means that, when the spin chain is long enough, the continuous model (infinite

chain) approximates the discrete one (finite chain) with exponentially small error.

Furthermore, in [13] it was showed that the same result holds in the scaling limit.

There, following [50] and a personal communication by J. Baik, the explicit expression

of L0(β,N) for the XX model in both phases was given. We apply the same calculations

here: imposing ρd ≤ r/(2π) in both phases we obtain

L0(β,N) =


N +

e−α

1− e−α
β, γ ≤ γc,0,

2

1− e−α
√
e−αN (2β −N), γ > γc,0.

(7.10)

Let us remark that such estimates are obtained for the Hamiltonian with

exponentially decaying interaction, α > 0, thanks to the result of [50] on the asymptotic

behaviour of discrete Toeplitz determinants with analytic symbol. Sending α → 0, the

symbol develops a Fisher-Hartwig (FH) singularity. An interesting open problem would

be to obtain the analogue of formula (7.8) when the symbol has FH singularities.
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[20] D. Pérez-Garćıa and M. Tierz, “Chern-Simons theory encoded on a spin-chain”, J. Stat. Mech.

(2016) 013103, [arXiv:1403.6780 [cond-mat.str-el]].

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.135704
https://arxiv.org/abs/1206.2505
http://arxiv.org/abs/1206.2505
https://arxiv.org/abs/1206.2505
https://iopscience.iop.org/article/10.1088/1361-6633/aaaf9a/meta
https://arxiv.org/abs/1709.07461
http://arxiv.org/abs/1709.07461
https://doi.org/10.1088/1742-5468/aa5d1e
https://arxiv.org/abs/1611.06126
http://arxiv.org/abs/1611.06126
https://iopscience.iop.org/article/10.1088/1742-5468/aa8c19
https://arxiv.org/abs/1707.06625
http://arxiv.org/abs/1707.06625
https://iopscience.iop.org/article/10.1088/1742-5468/2016/05/053107
https://arxiv.org/abs/1602.03065
http://arxiv.org/abs/1602.03065
https://arxiv.org/abs/1602.03065
https://www.sciencedirect.com/science/article/pii/S055032131830172X
https://arxiv.org/abs/1803.04380
http://arxiv.org/abs/1803.04380
https://www.sciencedirect.com/science/article/pii/S0550321317303413
https://arxiv.org/abs/1709.04796
http://arxiv.org/abs/1709.04796
https://iopscience.iop.org/article/10.1088/1742-5468/2013/10/P10028
https://arxiv.org/abs/1308.3087
http://arxiv.org/abs/1308.3087
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.125120
https://arxiv.org/abs/1312.4165
http://arxiv.org/abs/1312.4165
https://iopscience.iop.org/article/10.1209/0295-5075/115/40011
https://arxiv.org/abs/1507.08132
http://arxiv.org/abs/1507.08132
https://arxiv.org/abs/1507.08132
https://iopscience.iop.org/article/10.1088/1742-5468/aaa79a
https://arxiv.org/abs/1710.08178
http://arxiv.org/abs/1710.08178
https://arxiv.org/abs/1710.08178
https://iopscience.iop.org/article/10.1088/1742-5468/ab1dd6
https://arxiv.org/abs/1901.07228
http://arxiv.org/abs/1901.07228
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.4.021050
http://arxiv.org/pdf/1305.3877.pdf
http://arxiv.org/abs/1305.3877
https://doi.org/10.1007/s10958-006-0332-2
https://doi.org/10.1007/s10958-007-0160-z
https://doi.org/10.1090/S1061-0022-2011-01146-X 
https://doi.org/10.1090/S1061-0022-2011-01146-X 
https://arxiv.org/abs/0912.1138
http://arxiv.org/abs/0912.1138
https://doi.org/10.1007/s10958-013-1256-2
https://arxiv.org/abs/1102.5639
http://arxiv.org/abs/1102.5639
https://arxiv.org/abs/1102.5639
http://www.sciencedirect.com/science/article/pii/S0097316501932145
https://iopscience.iop.org/article/10.1088/1742-5468/2016/01/013103
https://arxiv.org/abs/1403.6780
http://arxiv.org/abs/1403.6780


Phase transition in complex-time Loschmidt echo 36

[21] D. J. Gross and E. Witten, “Possible Third Order Phase Transition in the Large N Lattice Gauge

Theory,” Phys. Rev. D 21, 446 (1980).

[22] S. R. Wadia, “N = Infinity Phase Transition in a Class of Exactly Soluble Model Lattice Gauge

Theories,” Phys. Lett. 93B, 403 (1980).

[23] J. Baik, P. Deift and K. Johansson, “On the distribution of the length of the longest

increasing subsequence of random permutations ,” J. Amer. Math. Soc. 12, 1119 (1999),

[arXiv:math/9810105 [math.CO]].

[24] J. Baik, P. Deift and T. Suidan, Combinatorics and Random Matrix Theory, American

Mathematical Society (2016).

[25] S. Jain, S. Minwalla, T. Sharma, T. Takimi, S. R. Wadia and S. Yokoyama, “Phases of large N

vector Chern-Simons theories on S2 × S1,” JHEP 1309, 009 (2013), [arXiv:1301.6169 [hep-th]].

[26] I. Amado, B. Sundborg, L. Thorlacius and N. Wintergerst, “Probing emergent geometry through

phase transitions in free vector and matrix models,” JHEP 1702, 005 (2017) [arXiv:1612.03009

[hep-th]].

[27] E. Lieb, T. Schultz, and D. Mattis, “Two soluble models of an antiferromagnetic chain,” Ann.

Phys. 16, 407 (1961).

[28] R.P. Stanley, Enumerative Combinatorics, Vol 2. Cambridge University Press (2001).

[29] R. J. Glauber, “Time-Dependent Statistics of the Ising Model,” J. Math. Phys. 4, 294 (1963).

[30] H.-H. Tu, Y. Zhang and X.-L. Qi, “Momentum polarization: an entanglement measure of

topological spin and chiral central charge ” Phys. Rev. B 88, 195412 (2013), [arXiv:1212.6951

[cond-mat.str-el]].
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