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Abstract

We study the invariants (in particular, the central invariants) of suitable Poisson pencils
from the point of view of the theory of bi-Hamiltonian reduction, paying a particular
attention to the case where the Poisson pencil is exact. We show that the exactness
is preserved by the reduction. In the Drinfeld-Sokolov case, the same is true for the
characteristic polynomial of the pencil, which plays a crucial role in the definition of
the central invariants. We also discuss the bi-Hamiltonian structures of a generalized
Drinfeld-Sokolov hierarchy and of the Camassa-Holm equation.

Keywords: Drinfeld-Sokolov reduction; Poisson pencils of hydrodynamic type; central
invariants; integrable PDEs; exact bi-Hamiltonian manifolds.

1 Introduction

Deformations of Poisson pencils P2 − λP1 of hydrodynamic type

P ij
a = gija (w)∂x + Γij

k,a(w)wk
x , i, j = 1, ..., n, a = 1, 2 (1)

(see next section for more detailed definitions), play a crucial role in the study of integrable

hierarchies of PDEs [19, 28, 15]. In the semisimple case, this important class of Poisson

pencils is parametrized by n2 arbitrary functions of one variable. Part of these functions

(namely, n2 − n) label semisimple Poisson pencils of hydrodynamic type [21] (see also [35]).

The remaining n functions, called central invariants, label Miura equivalent deformations of

the same Poisson pencil of hydrodynamic type.

The most important examples are those for which the dispersionless limit is an exact

Poisson pencil and the central invariants are constant [17]. They include the Poisson pencils

of the Drinfeld-Sokolov (DS) hierarchies [12] corresponding to (the loop algebra of) a simple

finite-dimensional Lie algebra g. In this case, it has been shown in [16] that the dispersionless

limit coincides with the Poisson pencil of hydrodynamic type associated with the flat pencil
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of metrics defined on the orbit space of the corresponding Weyl group (obtained using the

Dubrovin-Saito construction [14, 38, 39] for Coxeter groups), the central invariants are con-

stant and their values coincide with the square of the lengths of the roots of g. For instance,

in the simply laced case all the roots have equal lengths and, consequently, the associated

integrable hierarchies are of topological type [19].

The aim of this paper is twofold. On one hand, we want to study the central invariants from

the point of view of the theory of bi-Hamiltonian reduction (that includes the DS case). We

will focus on the class of Poisson pencils which, after reduction, get the form of a deformation

of a Poisson pencil of hydrodynamic type. In particular, in the DS case we will show that

it is possible to define a set of invariants of the unreduced pencil that, once restricted on

the reduced manifold, define a set of functions which are equivalent to Dubrovin-Liu-Zhang

central invariants of the reduced pencil.

On the other hand, we will focus on the case of exact Poisson pencils, showing that

the reduction process preserves the exactness of the pencil. Combining this result with the

main result of [20], relating the constancy of the central invariants with the exactness of the

Poisson pencil, we have that the central invariants for the DS Poisson pencils are constant,

in agreement with the Dubrovin-Liu-Zhang result.

The paper is organized as follows. In Section 2 we recall various definitions concerning

Poisson pencils of hydrodynamic type and their deformations. Section 3 is devoted to the

bi-Hamiltonian reduction. In Section 4 we show that the exactness of a pencil is preserved by

reduction. In Section 5 we collect some basic facts about the DS reduction, while in Section

6 we show that in this case the characteristic polynomial of the reduced pencil coincides with

the one of the unreduced pencil. In the final section we consider two examples going beyond

the DS framework.

2 Invariants of Poisson pencils

We briefly summarize some basic notions about pencils of N -component infinite-dimensional

Poisson brackets. Consider [19, Section 2] (see also [26]) the following class of local Poisson

brackets on the manifold of RN -valued functions w(x) = (w1(x), . . . , wN (x)) over the unit

circle S1,

{wi(x), wj(y)} =
∑

k≥−1

ǫk
k+1∑

l=0

Aij
k,l(w,wx, . . . ,w(l))δ

(k−l+1)(x− y), (2)

where Aij
k,l are differential polynomials of degree l (i.e., they are polynomials in the derivatives,

whose coefficients are functions of w), and deg f(w) = 0, deg(w(l)) = l. One can associate to
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(2) the differential operator

Πij =
∑

k≥−1

ǫk
k+1∑

l=0

Aij
k,l(w,wx, . . . ,w(l))∂

k−l+1
x ,

uniquely characterized by the relation {wi(x), wj(y)} = Πijδ(x−y). The most general group of

transformations preserving the form of the bracket (2) is the group of Miura transformations.

An element of this group is a transformation w 7→ w̃ = (w̃1, . . . , w̃N ), where

w̃i = F i
0(w) +

∑

k≥1

ǫkF i
k(w,wx, . . . ,w(k)), det

(
∂F i

0

∂wj

)
6= 0, degF i

k = k. (3)

The Miura group can be described [27] as the semi-direct product of the subgroup of diffeo-

morphisms Diff(RN) and the subgroup of Miura transformations starting from the identity:

w̃i = wi +
∑

k≥1

ǫkF i
k(w,wx, . . . ,w(k)), degF i

k = k. (4)

The latter subgroup plays an important role in the classification theory of Poisson brackets:

to prove that two brackets of type (2) are equivalent under a Miura transformation of type (3)

one first looks for a (local, in general) diffeomorphism mapping the leading term (k = −1) of

the first bracket to the second, and then applies a transformation of type (4) — which leaves

the leading term invariant — to obtain the second bracket.

After a transformation of type (3), the form of the Poisson bracket will be given by the

operator

Π̃ij = (L∗)ikΠ
ksLj

s, (5)

where L and its adjoint L∗ are defined as

Li
k =

∑

s

(−∂x)
s ∂w̃i

∂wk
(s)

, (L∗)ik =
∑

s

∂w̃i

∂wk
(s)

∂s
x.

A pair of Poisson brackets of the form (2),

{wi(x), wj(x)}a =
∑

k≥−1

ǫk
k+1∑

l=0

Aij
k,l;a(w,wx, . . . ,w(l))δ

(k−l+1)(x− y), a = 1, 2, (6)

is said to be compatible if the pencil {·, ·}(λ) = {·, ·}2 − λ{·, ·}1 is a Poisson bracket for any

value of λ. In this case the bracket {·, ·}(λ) is said to be a Poisson pencil. Given a pair of

Poisson brackets (6) one can consider the action of the Miura group (3) on the pencil and

define a set of invariants by means of the following recipe [16, 9]. Introducing the differential

operators

Πij
a =

∑

k≥−1

ǫk
k+1∑

l=0

Aij
k,l,a(w,wx, . . . ,w(l))∂

k−l+1
x , a = 1, 2, (7)
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then one defines the following power series1 in the parameter p:

πij
a (p;w) =

∑

k≥−1

Aij
k,0,a(w)pk+1, a = 1, 2. (8)

Note that (8) is strictly related (but it is not equal) to the symbol of (7), and that the

coefficients of (8) do not depend on the derivatives of w. The rule (5) induces the following

transformation on the pencil πij
λ = πij

2 − λπij
1 under Miura transformations (3):

π̃ij
λ = lih(p)π

hk
λ ljk(−p), (9)

where

lij(p) =
∑

k

∂F i
k

∂wj

(k)

pk.

Since by definition (3) we have that degF i
k = k, then the quantities lij(p) may depend on w

but not on the derivatives. Consider now the characteristic polynomial of the Poisson pencil,

R(p, λ;w) = det
(
πij
2 − λπij

1

)
= det



∑

k≥−1

(
Aij

k,0;2(w)− λAij
k,0;1(w)

)
pk+1


 , (10)

which is a polynomial, of degree say M , with respect to λ. In general, M does not need to be

equal to the dimensionN . Due to the above construction, the functions λi(w, p), i = 1, . . . ,M ,

which are defined to be the λ−roots of the equation R(p, λ;w) = 0, are invariant under Miura

transformations of type (4), while they behave as scalars (0−tensors) with respect to the whole

Miura group (3).

Example 1 Consider the Poisson pencil



0 −2ǫ−1(w1 − λ) ǫ−1w2 − ∂x

2ǫ−1(w1 − λ) −2∂x −2ǫ−1w3

−ǫ−1w2 − ∂x 2ǫ−1w3 0




(11)

in the variables (w1, w2, w3). (We will see in Section 5 that it is the particular case of (45)

corresponding to sl(2)). The power series associated to this pencil is




0 −2(w1 − λ) w2 − p

2(w1 − λ) −2p −2w3

−w2 − p 2w3 0




, (12)

so that the characteristic polynomial (10), restricted at the points with w3 = 1, is

R(p, λ;w1, w2) = 2p3 − 8

(
w1 +

1

4

(
w2
)2

− λ

)
p. (13)

1Note that our definition of (8) differs from the one given in [16] by a multiplicative factor p.
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We will see in Example 3 that it projects (up to a multiplicative constant) to the characteristic

polynomial (24) of the KdV Poisson pencil.

In the remaining part of this section we will recall some important facts about Poisson

pencils of the form (2) admitting semisimple dispersionless limit. Some preliminary results of

[9] suggest that part of this theory might be generalized in the non-semisimple setting.

Dispersionless limit. We now consider a special class of Poisson brackets (2), namely the

class

{wi(x), wj(y)} =
∑

k≥0

ǫk
k+1∑

l=0

Aij
k,l(w,wx, . . . ,w(l))δ

(k−l+1)(x − y), (14)

where for consistency with the rest of the paper the number of components is now denoted

by n rather than N , so that w = (w1, . . . , wn). The class of brackets (14) admits the limit as

ǫ → 0, known as dispersionless limit, and the leading term of the bracket,

Aij
0,0(w)δ′(x− y) +Aij

0,1(w,wx)δ(x − y) = gij(w)δ′(x − y) + Γij
k (w)wk

xδ(x− y), (15)

is called Poisson bracket of hydrodynamic type. Thus the dispersionless limit of a bracket of

type (14) is a bracket of hydrodynamic type (15). In the case where the matrix gij is invertible,

it defines a contravariant (pseudo)metric on Rn, which is flat and has Γij
k as contravariant

Christoffel symbols [18].

For Poisson brackets of the form (14) an analogue of the classical Darboux theorem holds

true, as these brackets can be reduced to the constant form ηijδ′(x − y) by means of Miura

transformations (3). For Poisson brackets of hydrodynamic type, the Darboux coordinates

are flat coordinates of the metric g. In the case of general Poisson brackets (14), in order

to reduce the bracket to constant form one needs to reduce the bracket to its dispersionless

limit. The existence of this reducing transformation — which is of type (4) — was proved in

[22, 8, 19].

In analogy to the general case, we also consider compatible Poisson brackets of the form

{wi(x), wj(y)}a =
∑

k≥0

ǫk
k+1∑

l=0

Aij
k,l,a(w,wx, . . . ,w(l))δ

(k−l+1)(x− y), a = 1, 2, (16)

with

Aij
0,0,a(w)δ′(x− y) + Aij

0,1,a(w,wx)δ(x− y) = gija (w)δ′(x− y) + Γij
k,a(w)wk

xδ(x− y), (17)

and the corresponding pencil {·, ·}(λ) = {·, ·}2−λ{·, ·}1. The dispersionless limit of this pencil

is known as Poisson pencil of hydrodynamic type. The compatibility of the Poisson brackets

implies that the pencil of contravariant metrics

gij(λ) = gij2 − λgij1 (18)
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is flat for any λ and that the contravariant Christoffel symbols of gij(λ) are given by the pencil

Γij
k;2 − λΓij

k;1 of the contravariant Christoffel symbols. A pencil of contravariant flat metrics

satisfying these conditions is called a flat pencil of metrics [13]. In general, it is not possible

to reduce a Poisson pencil (16) to its dispersionless limit by means of Miura transformations.

If this happens, the pencil is said to be trivial.

Example 2 Let us consider the second order deformations of the scalar Poisson pencil of

hydrodynamic type

2(u− λ)δ′(x− y) + uxδ(x− y).

Using Miura transformations they can be reduced to the following form,

2(u−λ)δ′(x−y)+uxδ(x−y)+ǫ2 (2c(u)δ′′′(x− y) + 3cxδ
′′(x− y) + cxxδ

′(x− y))+O(ǫ4), (19)

where c(u) is an arbitrary function. It turns out that any non vanishing function c(u) defines

a non trivial deformation [28].

Semisimplicity and central invariants. A flat pencil of metrics (18) and the corre-

sponding Poisson pencil of hydrodynamic type are said to be semisimple if the λ-roots

u1(w), . . . , un(w) of

det
(
gij2 (w)− λgij1 (w)

)

are pairwise distinct and nonconstant. In this case, they form a set of coordinates u =

(u1, . . . , un), known as canonical coordinates, in which the two metrics are diagonal:

gij1 (u) = f i(u)δij , gij2 (u) = uif i(u)δij , (20)

for some functions f i(u). Note that by construction the functions f i(u) are invariant under

Miura transformations of type (4). In the semisimple n-component case the triviality of the

pencil (16) is controlled by n functions of a single variable, called central invariants and

defined in the following way [16]. Due to (14) and (15), the determinant R(p, λ;w) defined

in (10) reads

R(p, λ;w) = det
(
πij
2 − λπij

1

)
= det



∑

k≥0

(
Aij

k,0;2(w) − λAij
k,0;1(w)

)
pk+1




= pn det
(
gij2 (w)− λgij1 (w)

)
+O(pn+1).

As in the general case, the roots λ = λi(p;w) of the equation R(p, λ;w) = 0 are invariant

with respect to Miura transformations of type (4). Under the semisimplicity assumption, it

can be shown [16] that the formal power series obtained expanding λi(p;w) at p = 0 contain
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only even powers of p (this is not true anymore in the non-semisimple case [9]), and that the

leading terms ui of the above series are the canonical coordinates:

λi(p;w) = ui(w) + λi
2(w)p2 +O(p4), i = 1, ..., n. (21)

All coefficients appearing in the series above are invariant under Miura maps of type (4).

Recall that the functions f i, i = 1, . . . , n, appearing in (20) are also unaffected by Miura

transformations. The central invariants of the Poisson pencil are defined as [15, 16]

ci =
λi
2(w)

3f i(w)

∣∣∣∣
w=w(u)

, (22)

and are thus an equivalent set of invariants. Once written in terms of the canonical coordi-

nates, the function ci turns out to depend only on the coordinate ui. Trivial Poisson pencils

are characterized by the vanishing of all central invariants. More generally, it turns out that

in the semisimple case two Poisson pencils are related by a Miura transformation if and only

if they have the same dispersionless part (in canonical coordinates) and the same central

invariants [15] (see also [4] for an alternative proof).

Example 3 Let us consider the well known Poisson pencil of the KdV hierarchy:

{u(x), u(y)}1 = −2δ′(x− y), {u(x), u(y)}2 = −uxδ(x− y)− 2uδ′(x− y) +
1

2
ǫ2δ′′′(x− y).

(23)

We have that

R(p, λ;u) = π11
2 − λπ11

1 = −2up+
1

2
p3 + 2λp, (24)

so that (21) takes the form λ = u − 1
4p

2. Since f1(u) = −2 and λi
2(u) = − 1

4 , the central

invariant is given by c1(u) =
1
24 . In the scalar case (see Example 2), up to a constant factor,

the central invariant coincides with the function c(u) appearing in formula (19).

Notice that (24) is 1/4 of the characteristic polynomial (13) obtained in Example 1, if

u = w1 + 1
4

(
w2
)2
. As we will show in Section 6 (in the general context of the Drinfeld-

Sokolov reduction), the reason is that the Poisson pencil in Example 3 is the reduction of the

one in Example 1.

3 Some facts about bi-Hamiltonian reduction

In this section we recall a general reduction theorem for bi-Hamiltonian manifolds (see [7, 30,

36] for details and proofs), and we prove a crucial result in order to show the equality between

the characteristic polynomials (10) of the reduced and unreduced bi-Hamiltonian structures

of the form (6).
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Let (M, {·, ·}1, {·, ·}2) be a bi-Hamiltonian manifold. The first step is to consider the

(generalized) integrable distribution D = P2(KerP1), where Pa is the Poisson tensor asso-

ciated with {·, ·}a by means of {F,G}a = 〈dG, PadF 〉. Then we choose a symplectic leaf S

of P1 and we introduce the distribution on S given by E = D ∩ TS. If the quotient space

N = S/E (whose points are the integral leaves of the distribution E) is regular, then it is a

bi-Hamiltonian manifold. We call (P ′
1, P

′
2) the reduced Poisson pair, and ({·, ·}′1, {·, ·}

′
2) the

corresponding Poisson brackets. They are given by

{f, g}′a(π(w)) = {F,G}a(w), a = 1, 2, w ∈ S, (25)

where π : S → N is the projection on the quotient manifold and F,G are extensions of

f ◦ π, g ◦ π on M such that (dF )w, (dG)w vanish on the tangent vectors in Dw for all w ∈ S.

If an explicit description of the quotient manifold is not available, the following technique

can be very useful. SupposeQ to be a submanifold of S which is transversal to the distribution

E, in the sense that

TwQ⊕ Ew = TwS for all w ∈ Q. (26)

Then Q also inherits a bi-Hamiltonian structure from M. The reduced Poisson brackets on

Q are given by

{f, g}′a(w) = {F,G}a(w), a = 1, 2, w ∈ Q, (27)

where F,G are extensions of f, g on M such that (dF )w, (dG)w vanish on the tangent vectors

in Dw for all w ∈ Q. If the quotient N is a manifold, then there is a local diffeomorphism

from Q to (an open subset of) N , connecting the Poisson pairs of the two manifolds. Notice

however that we can define a reduced Poisson pair directly on Q, even in the case where the

quotient N is not a manifold.

In terms of the pencil of Poisson tensors P(λ) = P2 −λP1, the construction of the reduced

Poisson structure on Q goes as follows. Given w ∈ Q and v ∈ T ∗
w
Q, we look for an extension

v̂ ∈ T ∗
w
M of v such that

(
P(λ)

)
w
v̂ ∈ TwQ. The existence of such a v̂ has been shown in [7].

The proof of its uniqueness can be found in [6], under the assumption that kerP1 ∩ kerP2

is trivial at the points of Q, which is true if there is no common Casimir (this situation is

sometimes referred to as the non-resonant case). Independently of the uniqueness of v̂, the

reduced Poisson pencil is given by
(
P ′
(λ)

)
w

v =
(
P(λ)

)
w
v̂.

Now let us introduce coordinates on M adapted to the transversal submanifold Q. More

precisely, the first part of the coordinates can be seen as coordinates on Q, which is found by

setting to zero the second part of them. Correspondingly, the matrix representing P(λ) can

be decomposed as 

A(λ) B(λ)

C(λ) D(λ)


 .
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For simplicity, we will sometimes use the same notations for geometric objects and matri-

ces/vectors representing them in the chosen coordinate system.

Proposition 4 Suppose that (kerP1)w ∩ (kerP2)w = {0} for all w ∈ Q. Then

a) The matrix D(λ) is invertible.

b) The matrix representing the reduced Poisson pencil P ′
(λ) is given by A(λ)−B(λ)D

−1
(λ)C(λ).

c) The identity

P(λ) =



P ′
(λ) B(λ)

0 D(λ)







Id 0

D−1
(λ)C(λ) Id


 (28)

holds true, where Id is the identity matrix of the appropriate order.

Proof. a) As we wrote above, it was shown in [6] that there is a unique extension v̂ ∈ T ∗
w
M

of a given v ∈ T ∗
w
Q such that

(
P(λ)

)
w
v̂ ∈ TwQ, under the assumption that (kerP1)w ∩

(kerP2)w = {0}. In [10] it is shown that the uniqueness of the extension is equivalent to the

invertibility of D(λ). For the ease of the reader, we report here the proof.

Given v ∈ T ∗
w
Q, let v be its components and ( v

V ) be the components of an extension v̂ ∈ T ∗
w
M

such that
(
P(λ)

)
w

v̂ ∈ TwQ. Then



P ′
(λ)v

0


 = P(λ)




v

V


 =



A(λ) B(λ)

C(λ) D(λ)







v

V


 =



A(λ)v +B(λ)V

C(λ)v +D(λ)V


 ,

so that P ′
(λ)v = A(λ)v + B(λ)V and 0 = C(λ)v +D(λ)V . This shows that V is unique if and

only if D(λ) is invertible.

b) follows from the previous equations.

c) follows from b). �

Remark 5 As we wrote in the previous proof, in [10] it was shown that the uniqueness

of the extension is equivalent to the invertibility of D(λ). Moreover, in the same paper it

was proved that these conditions are equivalent to item b), and that its meaning is that

the bi-Hamiltonian reduction amounts to a Dirac reduction. In the particular case of the

Drinfeld-Sokolov reduction, this is related to the paper [1], where the DS reduction is shown

to be a Dirac reduction. For the purposes of our paper, it is more convenient to start with

the hypothesis that the kernels of the Poisson tensors have trivial intersection, and the most

important result in Proposition 4 is the identity (28). We will use it in Section 6 to show that,

in the DS case, the λ-roots of the characteristic polynomials of the reduced and unreduced

bi-Hamiltonian structures coincide.
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We end this section by noticing that (28) entails a general result in linear algebra, known

as Schur determinant identity:

det



A(λ) B(λ)

C(λ) D(λ)


 = det

(
A(λ) −B(λ)D

−1
(λ)C(λ)

)
detD(λ). (29)

In our setting, it means that the determinants of (the matrices representing) P(λ) and P ′
(λ)

are related by

detP(λ) = (detD(λ))(detP
′
(λ)). (30)

4 Reduction of exact bi-Hamiltonian manifolds

A bi-Hamiltonian manifold (M, P1, P2) is said to be exact if there exists a vector field Z on

M such that LZP1 = 0 and LZP2 = P1. In terms of the corresponding Poisson brackets, this

means that

Z{F,G}1−{ZF,G}1−{F,ZG}1 = 0, Z{F,G}2−{ZF,G}2−{F,ZG}2 = {F,G}1 (31)

for all functions F , G on M. The vector field Z is called the Liouville vector field of the exact

bi-Hamiltonian manifold. Exact bi-Hamiltonian manifolds have been studied in, e.g., [11, 40].

We now show that under a mild assumption on Z, the reduced bi-Hamiltonian manifold is

exact too. Combining this with a result of [20], stating that the central invariants of an exact

semisimple Poisson pencil are constant, we obtain a criterion for proving the constancy of the

central invariants of the reduced pencil, provided that it admits a semisimple dispersionless

limit. This in particular applies to the case of Drinfeld-Sokolov considered in [16], for which

we obtain an alternative proof of the constancy of the central invariants (relying on the fact,

proved in [16], that the reduced DS pencil has a semisimple dispersionless limit — see next

section).

Proposition 6 Suppose (M, P1, P2) to be an exact bi-Hamiltonian manifold, and the Liou-

ville vector field Z to be tangent to the symplectic leaf S. Then

a) The restriction of Z to S projects onto a vector field Z ′ on the quotient manifold N .

b) The reduced bi-Hamiltonian manifold (N , P ′
1, P

′
2) is exact, with Liouville vector field Z ′.

Proof. a) We denote with Z(S) the restriction of Z to S, and we recall that Z(S) can be

projected along the (integral leaves of the) distribution E if and only if LZ(S)(E) ⊂ E. This

inclusion is a consequence of the fact that Z is tangent to S and that LZ(D) ⊂ D. The last

assertion can be checked as follows. If F is a Casimir of P1, then

LZ(P2dF ) = (LZP2) dF + P2d (LZF ) = P1dF + P2d (LZF ) = P2d (LZF ) ∈ D, (32)
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since it is easily seen that LZF is also a Casimir of P1. Indeed, P1d (LZF ) = P1 (LZdF ) =

LZ (P1dF )− (LZP1) dF = 0. Hence there exists a vector field Z ′ on N such that (Z ′f) ◦ π =

Z(S)(f ◦ π) for all functions f on N .

b) Let f, g be functions on N , and let F,G be extensions on M as explained in Section 3.

First, we notice that ZF is an extension of (Z ′f) ◦ π and that its differential vanishes on the

tangent vectors in Dw, for all w ∈ S. Indeed, (Z ′f)(π(w)) =
(
Z(S)(f ◦ π)

)
(w) = (ZF )(w)

for all w ∈ S, meaning that ZF extends (Z ′f) ◦ π. Moreover, if Y is a vector field in D, then

LY (ZF ) = (LY Z)F + Z(LY F ) = 0 since LY Z = −LZY is also in D.

Hence, for a = 1, 2, we have that

(Z ′{f, g}′a) (π(w)) − {Z ′f, g}′a(π(w)) − {f, Z ′g}′a(π(w))

=
(
Z(S)({f, g}′a ◦ π)

)
(w)− {ZF,G}a(w)− {F,ZG}a(w)

= (Z{F,G}a) (w) − {ZF,G}a(w) − {F,ZG}a(w),

(33)

so that

Z ′{f, g}′1 − {Z ′f, g}′1 − {f, Z ′g}′1 = 0, Z ′{f, g}′2 − {Z ′f, g}′2 − {f, Z ′g}′2 = {f, g}′1. (34)

�

As we will see in the next section, an important case where this result can be applied is

the Drinfeld-Sokolov (DS) reduction.

5 Drinfeld-Sokolov structures

In this section we recall the bi-Hamiltonian structure related to the (untwisted) Drinfeld-

Sokolov (DS) hierarchies [12], and the corresponding result about its central invariants [16].

We will not use the original DS reduction, but an alternative (although equivalent) procedure

based on the general reduction theorem for bi-Hamiltonian manifolds discussed in Section 3.

We refer to [24] for the basic facts concerning simple Lie algebras (see also the Appendix).

To obtain the (reduced) DS Poisson pair, the starting point is the loop algebra M of

functions w(x) from the unit circle S1 to a simple finite-dimensional Lie algebra g. We choose

a Cartan subalgebra h of g, we consider the corresponding principal gradation, and we select

Chevalley (sometimes also called Weyl) generators {Xi, Hi, Yi}i=1,...,n (where n is the rank

of g) with degrees 1,0, and -1, respectively. One can identify the cotangent spaces and the

tangent spaces at every point w ∈ M with M itself, by means of the ad-invariant bilinear

form (w1, w2) =
∫
S1〈w1(x), w2(x)〉g dx, where 〈·, ·〉g is the normalized Killing form. Then one

introduces the Poisson pair

(P1)w v = ǫ−1[v,A], (P2)w v = ǫ−1[v, w] + vx, (35)
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where A ∈ g is an element of maximal degree. It is easily checked, see (45), that the Poisson

pair (35) has the form (6). Moreover, the symplectic leaves of P1 are affine subspaces over

the vector space of maps from S1 to ker(adA)⊥, where ker(adA) is the isotropy algebra of

A and the orthogonal is taken with respect to 〈·, ·〉g. An explicit description of ker(adA)⊥ is

provided in the Appendix.

We choose the symplectic leaf S containing the element I =
∑n

i=1 Yi. Then the reduced

bi-Hamiltonian manifold N turns out to be parametrized by n scalar-valued functions, and

the reduced Poisson pair coincides [7, 37] with the DS one. We refer to [10] for an extension of

this result to the so-called generalized DS structures (an example will be discussed in Section

7).

Example 7 Let us consider the simplest case, g = sl(2), leading to the bi-Hamiltonian struc-

ture of the KdV hierarchy. The normalized Killing form is simply the trace of the product,

and we choose the Chevalley generators

X =




0 1

0 0


 , H =



1 0

0 −1


 , Y =



0 0

1 0


 . (36)

Hence

w =




1
2w

2 w1

w3 − 1
2w

2


 , A =




0 1

0 0


 , I =



0 0

1 0


 , (37)

so that the generic element w of the symplectic leaf S and the vectors of the distribution D

(at w) are given by

w =




1
2w

2 w1

1 − 1
2w

2


 ,



ǫ−1k kx − ǫ−1w2k

0 −ǫ−1k


 , (38)

where k : S1 → R is any function. In this particular case, D ⊂ TS and so E = D. Then it is

easily shown that the projection π : S → N is given by u = π(w1, w2) = w1+ 1
4

(
w2
)2

− 1
2ǫw

2
x

and that the reduced Poisson pair turns out to be

(P ′
1)u = 2∂x, (P ′

2)u = ux + 2u∂x −
1

2
ǫ2∂xxx, (39)

that is, the one associated to the Poisson brackets (23).

In the DS case, the choice of a transversal submanifold Q corresponds to the choice of a

“canonical form” of the matrix Lax operator [12]. For example, in the KdV case, we can take

Q =







0 u

1 0


 | u ∈ C∞(S1,R)





. (40)
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Example 8 To illustrate the use of a transversal submanifold in a more complicated example,

we recall the case of so(5), already treated in [7]. Notice however that the choice of the

Chevalley generators is different here — it is the same as in [12]. In particular, so(5) is the

Lie algebra of 5× 5 matrices such that wS = −SwT , where S = diag(1,−1,−1,−1, 1). A set

of Chevalley generators is given by

X1 = e21 + e54, Y1 = XT
1 , H1 = −e11 + e22 − e44 + e55,

X2 = e32 + e43, Y2 = 2XT
2 , H2 = 2(e44 − e22),

(41)

where eij is the matrix whose unique nonzero entry is (i, j), which is 1. The principal gradation

is completed by the 1-dimensional subspaces with degrees 2,-2,3,-3, generated respectively by

X3 = −e31 + e53, Y3 = −2XT
3 , X4 = e41 + e52, Y4 = 4XT

4 .

The normalized Killing form is 〈w1, w2〉so(5) =
1
2 Tr(w1w2). To define the Poisson pair (35),

we can choose A = X4. Its isotropy algebra is spanned by X1, X2, X3, X4, H1, Y1, so that

the symplectic leaf S is the space of maps

x 7→ w1(x)X4 + w2(x)X2 + w3(x)X3 + w4(x)(H1 +H2) + Y1 + Y2.

A possible choice for the transversal submanifold is the subset Q ⊂ S of the maps with w3(x) =

w4(x) = 0. Then the reduced structures turn out to be given by

P ′
1 =




1
2ǫ

2∂3
x − 2w2∂x − w2

x 2∂x

2∂x 0


 , P ′

2 =



(P ′

2)11 (P ′
2)12

(P ′
2)21 (P ′

2)22


 , (42)

with

(P ′
2)11 = − 1

16ǫ
6∂7

x + 1
2ǫ

4w2∂5
x + 5

4ǫ
4w2

x∂
4
x + ǫ2

(
1
2w

1 − (w2)2 + 2ǫ2w2
xx

)
∂3
x

+ǫ2
(
3
4w

1
x − 3w2w2

x + 7
4ǫ

2w2
xxx

)
∂2
x +

(
−2w1w2 + ǫ2(− 3

4 (w
2
x)

2 + 3
4w

1
xx − 2w2w2

xx) +
3
4ǫ

4w2
xxxx

)
∂x

−w1
xw

2 − w1w2
x + ǫ2(− 1

4w
2
xw

2
xx + 1

4w
1
xxx − 1

2w
2w2

xxx) +
1
8ǫ

4w2
xxxxx

(P ′
2)12 = − 1

4ǫ
4∂5

x + ǫ2w2∂3
x + 1

2ǫ
2w2

x∂
2
x + 2w1∂x + 1

2w
1
x

(P ′
2)21 = − 1

4ǫ
4∂5

x + ǫ2w2∂3
x + 5

2ǫ
2w2

x∂
2
x +

(
2w1 + 2ǫ2w2

xx

)
∂x + 3

2w
1
x + 1

2ǫ
2w2

xxx

(P ′
2)22 = − 5

4ǫ
2∂3

x + w2∂x + 1
2w

2
x

The following important results on the DS structures were shown in [16]:

1. the (reduced) DS Poisson pair has the form (14), and its dispersionless part is given

by a semisimple flat pencil of metrics (described in [38]) on the orbit space h/W of the

Weyl group W of the Lie algebra g;
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2. its central invariants are constant; more precisely, they are given by

ci =
1

48
〈Hi, Hi〉g. (43)

From our point of view, the constancy of the central invariants can be proved with the

help of the results of Section 4 and item 1 above. Indeed, it is easily seen that the Poisson

pair (35) is exact, with the Liouville vector field simply given by Zw = A. This vector field is

tangent to every symplectic leaf of P1, since A = [h,A] for a suitable element h ∈ h. (Notice

that this property is true for every root vector in g). Hence we can conclude that the reduced

bi-Hamiltonian manifold is exact too. Thanks to the results of [20], the corresponding central

invariants are constant.

Example 9 Using the same notations as in Example 7, the Liouville vector field Z on the

(unreduced) manifold M is Zw = ( 0 1
0 0 ). It is immediate to verify that it is tangent to S, can

be projected to N , and its projection is Z ′
u = 1. It is also easily checked that Z ′ is a Liouville

vector field for the (reduced) manifold N .

6 Invariants of DS structures

In this section we use the same notations as in the previous one, and we show the equality of

the characteristic polynomials (10) of the reduced and unreduced DS bi-Hamiltonian struc-

tures. In Section 7 we will discuss the examples of a generalized DS hierarchy and of the

Camassa-Holm equation, showing that the equality holds in more general contexts than the

DS reduction.

Let us introduce a basis {el} of the Lie algebra g, with l = 1, . . . , N . If

[ei, ej ] =

N∑

l=1

cijl e
l, gij = 〈ei, ej〉g, (44)

then we can write the Poisson pencil (35) in the form, analogous to (6),

{wi(x), wj(y)}(λ) = −ǫ−1
N∑

l=1

cijl (w
l − λAl)δ(x− y)− gijδ′(x− y), (45)

where vl = 〈v, el〉g for any v ∈ g. According to (8) and (10), we associate to the DS (unre-

duced) Poisson pencil (45) on M the λ-polynomial

RM(p, λ;w) = det

(
−

N∑

l=1

cijl (w
l − λAl)− gijp

)
. (46)

Note that the above polynomial is explicitly written in terms of Lie algebra objects; this is in

general not so for the characteristic polynomial of the reduced pencil. However, we have:

14



Theorem 10 The λ-roots of the characteristic polynomial are preserved by the bi-Hamiltonian

reduction. More precisely, if w ∈ S, then

RN (p, λ;π0(w)) = F RM(p, λ;w), (47)

where π0 : S → N is the ǫ-independent part of the projection π : S → N on the reduced

bi-Hamiltonian manifold, RN is the characteristic polynomial of the (reduced) DS Poisson

pair on N , and F is a non vanishing function, independent of λ.

In terms of the reduced Poisson pair on a transversal manifold Q, Theorem 10 admits the

following equivalent form:

Theorem 11 Let Q be a transversal submanifold of the DS symplectic leaf S, and RQ the

characteristic polynomial associated with the reduced Poisson pair on Q. Then, for all w ∈ Q,

RQ(p, λ;w) = FQ RM(p, λ;w), (48)

where FQ is a non vanishing function, independent of λ.

In the examples we considered, F and FQ do not even depend on p and on w, i.e., they

are constant depending only the choice of the basis {el}. We guess that this is a general fact.

Proof of Theorem 11. Proposition 4 can be applied in our case, since the condition

(kerP1)w ∩ (kerP2)w = {0} for all w ∈ Q is satisfied. This was shown in [6, Proposition

3.2]. (In that paper, the case g = sl(n) was considered, but the proof is the same for every

simple Lie algebra. For the reader’s convenience, we explicitly provide such general proof in

Appendix A.2). Then formula (28) holds, and for the corresponding power series in p, see

(8), we obtain

π(λ) =



π′
(λ) β(λ)

0 δ(λ)







Id 0

δ−1
(λ)γ(λ) Id


 . (49)

Indeed, let P and R be N ×N matrices of differential operators with entries

P ij =
∑

k≥−1

ǫk
k+1∑

l=0

Aij
k,l∂

k−l+1
x , Rij =

∑

k≥−1

ǫk
k+1∑

l=0

Bij
k,l∂

k−l+1
x ,

where Aij
k,l(w,wx, . . . ,w(l)) and Bij

k,l(w,wx, . . . ,w(l)) are differential polynomials of degree l,

as in (2). If π and ρ are the corresponding matrices with entries

πij =
∑

k≥−1

Aij
k,0(w)pk+1, ρij =

∑

k≥−1

Bij
k,0(w)pk+1,

then it is easily shown that the matrix associated to PR is πρ. This implies that if P is

invertible (as a matrix differential operator), then also π is invertible (as a matrix), and the

matrix associated to P−1 is π−1.
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Therefore, from (49) it follows that

detπ(λ) = (det δ(λ))(det π
′
(λ)), (50)

where det δ(λ) never vanishes. Hence

RM(p, λ;w) = (det δ(λ))RQ(p, λ;w) (51)

for all w ∈ Q, and we are left with showing that det δ(λ) does not depend on λ. This follows

from the fact that the degree in λ of both RM(p, λ;w) and RQ(p, λ;w) is equal to the rank

n of the Lie algebra g. As far as RQ(p, λ;w) is concerned, it is a general property of n-

field semisimple flat pencils of metrics. The result concerning RM(p, λ;w) is proved in the

Appendix and makes use of Lemma 15, which in turn follows from [32] (see also [33]).

�

Example 12 Consider once more the case g = sl(2), as in Example 7. In the coordinates

(w1, w2, w3) (that is, using the basis e1 = Y , e2 = H, e3 = X) the matrix polynomial (8)

associated to the Poisson pencil (45) is given by (12), see Example 1, so that the corresponding

characteristic polynomial, evaluated at the points of the symplectic leaf S, is

RM(p, λ;w1, w2) = 2p3 − 8

(
w1 +

1

4

(
w2
)2

− λ

)
p. (52)

Since π0 : (w1, w2) 7→ u = w1 + 1
4

(
w2
)2

and RN (p, λ;u) is given by (24), we see that (47) is

satisfied with F = 1
4 .

Example 13 In the case of so(5), see Example 8, we have that the characteristic polynomial

RM, evaluated at the points of the transversal manifolds Q, is

256RQ(p, λ;w
1, w2) = 4p2

(
−32λ+ p4 − 8p2w2 + 32w1 + 16

(
w2
)2) (

8λ+ p4 − 4p2w2 − 8w1
)
.

(53)

7 Beyond DS structures

In this final section we discuss two examples, in order to support the claim that Theorem 11

holds in more general contexts than the DS reduction. The first one is related to the W
(2)
3

conformal algebra of [34], i.e., to the so called fractional KdV hierarchy sl
(2)
3 discussed in [2].

It has been already treated from the bi-Hamiltonian point of view in [5], and belongs to the

class of generalized DS bi-Hamiltonian structures (see [2, 10]). The second example is the

Poisson pair of the Camassa-Holm (CH) equation [3].
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We consider again the Poisson tensors (35), with g = sl3 and

A =




0 1 0

0 0 1

0 0 0




. (54)

We choose the symplectic leaf S of P1 containing the point

I =




0 0 0

0 0 0

1 0 0




. (55)

It can be checked that its elements are



p0 u1 u3

p1 u0 − p0 u2

1 −p1 −u0




, (56)

and that a transversal submanifold Q is given by p0 = p1 = 0. The reduced Poisson pencil

is2

P ′
(λ) =




2
3∂x ǫ−1(u1 − λ) ǫ−1(−u2 + λ) − 1

3

(
ǫ∂2

x + u0∂x + u0x

)

∗ 0 (P ′
(λ))23 2(u1 − λ)∂x + u1x + 2ǫ−1u0(u1 − λ)

∗ ∗ 0 (u2 − λ)∂x + u2x − 2ǫ−1u0(u2 − λ)

∗ ∗ ∗ (P ′
(λ))44




, (57)

where

(P ′
(λ))23 = ǫ∂2

x + 3u0∂x + 2u0x + ǫ−1
(
2u0

2 − u3

)

(P ′
(λ))44 = − 2

3ǫ
2∂3

x − 4
3ǫu0x∂x + 2

(
u3 +

1
3u0

2
)
∂x − 2

3ǫu0xx + 2
3u0u0x + u3x.

(58)

Notice that the reduced Poisson pair, like the unreduced one, is exact but it does not admit a

dispersionless limit. However, one can check that the characteristic polynomial (46), computed

at the points of Q, coincides with −3RQ(p, λ;u0, u1, u2, u3), so that Theorem 11 holds in this

case with FQ = − 1
3 .

Now we pass to the CH case. First of all, we need a brief summary of the fact [29] that

the CH Poisson pair can also be obtained by reduction from a Poisson pair on loop algebras,

very similar to (35).

2The formulae written in [5] contain a misprint. Those given in the present paper are correct.
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Consider again the loop algebra M of functions w(x) from S1 to sl(2), endowed now with

the Poisson pair

(P1)w v = ǫ−1[v, w], (P2)w v = ǫ−1[v,A] + vx, (59)

where A = X + Y = ( 0 1
1 0 ). Also in this case, the Poisson pair has the form (6). We choose

the symplectic leaf of P1 given by S = {w ∈ M | detw = 0}. Since the quotient N is not

easy to parametrize, we introduce the transversal submanifold

Q =







0 u

0 0


 | u ∈ C∞(S1,R), u(x) 6= 0 ∀x ∈ S1





. (60)

The reduced Poisson brackets turn out to be the ones of the Camassa-Holm hierarchy, that

is,

{u(x), u(y)}1 = −uxδ(x− y)− 2uδ′(x− y), {u(x), u(y)}2 = −2δ′(x− y) +
1

2
ǫ2δ′′′(x− y),

(61)

to be compared with (23). The corresponding characteristic polynomial is thus

RQ(p, λ;u) = −2p+
1

2
p3 + 2λup. (62)

Let us compute now the characteristic polynomial of the (unreduced) CH structure. In the

same coordinates (w1, w2, w3) used in Example 7, the matrix polynomial (8) associated to

the Poisson pencil (59) is




0 2(λw1 − 1) −λw2 − p

−2(λw1 − 1) −2p 2(λw3 − 1)

λw2 − p −2(λw3 − 1) 0




, (63)

so that the corresponding characteristic polynomial is

RM(p, λ;w1, w2, w3) = 2p3 − 2p
[(

4w1w3 +
(
w2
)2)

λ2 − 4(w1 + w3)λ+ 4
]
. (64)

Since Q is defined by w1 = u, w2 = w3 = 0, we have that

RQ(p, λ;u) =
1

4
RM(p, λ;u, 0, 0). (65)

We can conclude that also in the CH case a relation of the form (48) holds.

Appendix

In this appendix we collect some facts, concerning simple Lie algebras, used in the paper.
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A.1 The symplectic leaves of P1

Let g be a simple Lie algebra of rank n over C. Fix a Cartan subalgebra h, denote by

∆ ⊂ h∗ the root space of g, and for every α ∈ ∆ denote by Eα ∈ g a nonzero vector in the

corresponding root space, so that g decomposes as

g = h⊕
⊕

α∈∆

CEα.

Fix a base of simple roots Π = {α1, . . . , αn} ⊂ ∆, and denote by ∆+ (resp. ∆−) the corre-

sponding set of positive (resp. negative) roots. Denote n± =
⊕

α∈∆±
CEα, from which the

decomposition g = n−⊕h⊕n+ follows. Given α ∈ ∆, denote by ht(α) the height of α relative

to Π, and extend this to g by setting ht(Eα) = ht(α), α ∈ ∆, and ht(h) = 0, h ∈ h. Let h∨

be the dual Coxeter number of g, and introduce the normalized Killing form

〈x, y〉g =
1

2h∨
Tr(adx ad y), x, y ∈ g.

Let θ ∈ ∆ be the highest root of g, and consider the corresponding root vector Eθ (this is a

possible choice of the element A entering definition of the Poisson structure P1 in Section 5).

To describe the symplectic leaf

ker(adEθ)
⊥ = {x ∈ g | 〈x, y〉g = 0 ∀ y ∈ ker(adEθ)}

in more detail, we introduce the following gradation. Let ν : h → h∗ be the isomorphism

of vector spaces given by 〈ν(x), y〉 = 〈x, y〉g, x, y ∈ h, and let θ∨ = ν−1(θ) ∈ h. Then g

decomposes as follows,

g =

2⊕

i=−2

gi,

where gi = {x ∈ g | [θ∨, x] = i x}. The subalgebra g0 is a reductive subalgebra which contains

h, while g1 ⊕ g2, (resp. g−1 ⊕ g−2) is a nilpotent subalgebra contained in n+ (resp. n−).

Moreover, it can be shown [31] that dim g1 = dim g−1 = 2(h∨ − 2) and g±2 = CE±θ.

Lemma 14 We have that ker(adEθ)
⊥ = Cθ∨ ⊕ g1 ⊕ g2. In particular, dim

(
ker(adEθ)

⊥
)
=

2h∨ − 2.

Proof. We first describe the subspace ker(adEθ). It is clear that for x ∈ n+ then x ∈

ker(adEθ). For x ∈ h, since x ∈ ker(adEθ) if and only if 〈θ, x〉 = 0, and since 〈θ, θ∨〉 = 2, it

follows that the Cartan subalgebra decomposes into the (orthogonal) direct sum h = h̃⊕Cθ∨,

where h̃ = {x ∈ h | 〈x, θ〉 = 0}. If x ∈ g0 ∩ n−, then we have both [x,Eθ ] ∈ g2 = CEθ and

ht ([x,Eθ]) < ht(Eθ), which implies [x,Eθ] = 0. For x ∈ gi, i = −1,−2, then [E−θ, [x,Eθ]] =
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−[x, [Eθ, E−θ]]− [Eθ, [E−θ, x]] = [x, θ∨] = −ix, so that [x,Eθ] = 0 if and only if x = 0. Thus

for i = −1,−2 we have gi ∩ ker(adEθ) = {0}, and we proved that

ker(adEθ) = g̃0 ⊕ g1 ⊕ g2, (66)

where g̃0 = (g0 ∩ n−) ⊕ h̃ ⊕ (g0 ∩ n+). Note in particular that g0 = g̃0 ⊕ Cθ∨, and that

dimker(adEθ) = dim g0−1+dim g1+dim g2 = dim g0+dim g1. From (66) and the properties

of the Killing form it is easy to show that Cθ∨ ⊕ g1 ⊕ g2 ⊂ ker(adEθ)
⊥. It remains to prove

that the latter inclusion is in fact an equality. Since dim g = dim g0 + 2dim g1 + 2 we have

dim
(
ker(adEθ)

⊥
)
= dim g−dim (ker(adEθ)) = (dim g0+2dim g1+2)− (dim g0+dim g1) =

dim g1 + 2, from which the thesis follows. Moreover, since dim g1 = 2(h∨ − 2), we get

dim
(
ker(adEθ)

⊥
)
= 2h∨ − 2. �

We remark that the characterization of the symplectic leaf ker(adEθ)
⊥ provided in the

above lemma is not necessary for the results of present paper. We believe however that it

is a nice piece of information, which easily follows from the results of [31] and which to our

knowledge has never appeared in the literature before. In Table 1 the dimension of ker(adEθ)
⊥

is summarized for every finite-dimensional simple Lie algebra.

Table 1: Coxeter numbers, dual Coxeter numbers and the dimension of ker(adEθ)
⊥ for simple

Lie algebras.

g An Bn Cn Dn E6 E7 E8 F4 G2

h n+ 1 2n 2n 2n− 2 12 18 30 12 6

h∨ n+ 1 2n− 1 n+ 1 2n− 2 12 18 30 9 4

dim
(
ker(adEθ)

⊥
)

2n 4n− 4 2n 4n− 6 22 34 58 16 6

A.2 The intersection of the kernels in the DS case

Let us denote by h the Coxeter number of g and by N its dimension. Then N = n(h + 1).

Let {Xi, Yi, Hi}i=1,...,n be Chevalley generators of g, satisfying the relations

[Hi, Hj ] = 0, [Hi, Xj ] = CijXj , [Hi, Yj ] = −CijYj , [Xi, Yj ] = δijHi,

where C = (Cij)i,j=1,...,n is the Cartan matrix of g. Define the principal gradation of g by

setting degXi = − deg Yi = 1, for every i = 1, . . . , n, and extending it uniquely to a gradation

of the algebra by setting deg[x, y] = deg x+ deg y. Then we have

g =

h−1⊕

i=1−h

gi, where gi = {x ∈ g | deg x = i} .
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Note in particular that for every i = 1, . . . n we have Xi ∈ g1, Yi ∈ g−1 and that dim gh−1 = 1.

The principal gradation is induced by the adjoint action of the element

ρ∨ =

n∑

j,k=1

(
C−1

)
kj

Hj ∈ h,

so that we can equivalently write gi = {x ∈ g | adρ∨ x = ix}.

Denote I =
∑n

i=1 Yi the principal nilpotent element and let A = Eθ ∈ gh−1. The other

notations are as in Sections 5 and 6. We will show that the intersection between (kerP1)w and

(kerP2)w is trivial for all w ∈ S (more generally, for all w ∈ I +
⊕h−1

i=0 gi). Indeed, suppose

that v ∈ (kerP1)w ∩ (kerP2)w and decompose it with respect to the principal gradation:

v =
∑h−1

i=1−h vi. Since v ∈ (kerP1)w, every vi commutes with A and therefore v1−h = 0.

Decomposing also w = I +
∑h−1

j=0 wj , imposing that v ∈ (kerP2)w, and considering the

minimal degree element, we obtain that [v2−h, I] = 0. It follows that v2−h commutes both

with A and I, so that v2−h = 0 (see [7]). In the same way, one proves that vi = 0 for all

i = 3− h, . . . , h− 1.

A.3 The λ-degree of the characteristic polynomial

This part of the appendix is devoted to the proof that the degree in λ of the characteristic

polynomial RM(p, λ;w) is equal to the rank n of g, if w belongs to the symplectic leaf S.

First of all, we notice that

RM(p, λ;w) = det
(
gij
)
det (−p Id− ad(w − λA)) ,

so that we just need to compute the degree of det (p Id + ad(w − λA)) in the adjoint repre-

sentation.

Denote I =
∑n

i=1 Yi the principal nilpotent element, let Eθ ∈ gh−1 and denote Λλ =

I − λEθ = I − λA. We first compute the degree in λ of the characteristic polynomial

Cλ(p) = det (p Id + adΛλ) .

It is known [25] that the element Λ1 = I − Eθ is a regular semisimple element of g. The

following easy lemma is a special case of [32, Lemma 4.1]:

Lemma 15 If p is an eigenvalue for Λ1, then λ
1
h p is an eigenvalue for Λλ.

Proof. Since I ∈ g−1 and Eθ ∈ gh−1 we have

λ
1
h
adρ∨

Λ1 = λ
1
h
adρ∨

I − λ
1
h
adρ∨

Eθ = λ− 1
h I − λ

h−1
h Eθ = λ− 1

hΛλ,

proving the lemma.
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Now Λ1 is semisimple and therefore diagonalizable, and its characteristic polynomial is of the

form

C1(p) = pn
hn∏

i=1

(p− pi),

for certain pi ∈ C \ {0}, i = 1, . . . , hn. In particular, the contribution pn in the polynomial

above is due to the fact that Λ1 is regular. Due to the previous lemma, the characteristic

polynomial Cλ(p) of Λλ is given by

Cλ(p) = pn
hn∏

i=1

(p− λ
1
h pi),

which is a polynomial of degree nh
h

= n with respect to λ.

Now consider the general case, i.e., the element Λλ +w+ = I +w+ −λA = w−λA, where

w ∈ S and

w+ =
h−1∑

i=0

wi, wi ∈ gi.

Then we obtain

λ− 1
h
ad ρ∨

(Λλ + w+) = λ
1
h I − λλ

1−h

h Eθ +

h−1∑

i=0

λ− i

hwi

= λ
1
h (Λ1 + λ− 1

hM(λ;w+)), (67)

where for fixed w+ the function M(λ;w+) is a polynomial in λ− 1
h . It then follows that — for

a fixed value of λ — p(λ) is an eigenvalue of Λλ+w+ if and only if λ
1
h p(λ) is an eigenvalue for

Λ1 +λ− 1
hM(λ;w+). From [23, Theorem 6.3.12] we obtain that for any simple eigenvalue p of

Λ1, then there exists a unique eigenvalue p(λ) of Λ1+λ− 1
hM(λ;w+), admitting the expansion

p(λ) = p+O(λ− 2
h ) as λ → ∞.

Therefore λ
1
h p(λ) is an eigenvalue of Λλ + w+, with the asymptotic behaviour

λ
1
h p(λ) = λ

1
h p+O(λ− 1

h ) as λ → ∞.

Since Λλ + w+ ⊂ I + b, then Λλ + w+ is a regular element [25]. Then, its characteristic

polynomial in the adjoint representation is given by

det(p Id + Λλ + w+) = pn
nh∑

i=1

(p− λ
1
h pi(λ)), (68)

where pi(λ) = pi +O(λ− 2
h ) and the pi are simple eigenvalues of Λ1. From the representation

(68), it follows that it is a polynomial in λ of degree n.
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Bicocca for its hospitality. This work was carried out under the auspices of the GNFM

Section of INdAM. We would like to thank the anonymous referee whose attentive reading of

the manuscript helped to improve the presentation.

References

[1] J. Balog, L. Fehér, L. O’Raifeartaigh, P. Forgács, A. Wipf, Toda theory and Wn-algebra
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