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TOEPLITZ MINORS AND SPECIALIZATIONS OF SKEW SCHUR

POLYNOMIALS

DAVID GARCÍA-GARCÍA AND MIGUEL TIERZ

Abstract. We express minors of Toeplitz matrices of finite and large dimension in terms of

symmetric functions. Comparing the resulting expressions with the inverses of some Toeplitz

matrices, we obtain explicit formulas for a Selberg-Morris integral and for specializations of

certain skew Schur polynomials.
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1. Introduction

Let f(eiθ) =
∑

k∈Z dke
ikθ be an integrable function on the unit circle. The Toeplitz matrix

generated by f is the matrix

T (f) = (dj−k)j,k≥1.

That is, T (f) is an infinite matrix, constant along its diagonals, which entries are the Fourier

coefficients of the function f . We denote by TN (f) its principal submatrix of order N , and

DN (f) = detTN (f).

This determinant has the following integral representation

DN (f) =

∫

U(N)
f(M)dM =

1

N !

1

(2π)N

∫ 2π

0
...

∫ 2π

0

N∏

j=1

f(eiθj )
∏

1≤j<k≤N

|eiθj − eiθk |2dθ1...dθN ,

where dM denotes the normalized Haar measure on the unitary group U(N). This is known

as Heine identity. A main result in the theory of Toeplitz matrices is the strong Szegő limit

theorem, that describes the behaviour of these determinants as N grows to infinity, as long as

the function f is sufficiently regular (see section 2.2 for a precise statement of the theorem).

A Toeplitz minor is a minor of a Toeplitz matrix, obtained by striking a finite number of rows

and columns from T (f). This can be realized, up to a sign, as the determinant of a matrix of

the form

T λ,µN (f) = (dj−λj−k+µk)
N
j,k=1, (1)

where λ and µ are integer partitions that encode the particular striking considered (see section

2.1 for more details). We denote

Dλ,µ
N (f) = detT λ,µN (f).

Toeplitz minors also have an integral representation [15, 1]

Dλ,µ
N (f) =

∫

U(N)
sλ(M)sµ(M)f(M)dM = (2)

1

N !

1

(2π)N

∫ 2π

0
...

∫ 2π

0
sλ(e

−iθ1 , ..., e−iθN )sµ(e
iθ1 , ..., eiθN )

N∏

j=1

f(eiθj )
∏

1≤j<k≤N

|eiθj − eiθk |2dθ1...dθN ,

1
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where sλ, sµ are Schur polynomials1. Bump and Diaconis [15] described the asymptotic behaviour

of Toeplitz minors generated by functions that are sufficiently regular, as in Szegő’s theorem.

They proved that in the large N limit, these minors can be expressed as the product of the

corresponding Toeplitz determinant times a “combinatorial” factor, that depends only on the

function f and the striking considered and is independent of N (see section 2.2 for a precise

statement). Tracy and Widom obtained a similar result in [41], and they were compared in

[17]. Further generalizations regarding the asymptotics of integrals of the type (2) were given

in [16, 30]. Other works that study Toeplitz minors in relationship with Schur and skew Schur

polynomials are [29, 2, 35, 32]

The asymptotics of Toeplitz determinants generated by symbols that do not verify the regularity

conditions in Szegő’s theorem have been long studied. In the seminal work [21], Fisher and

Hartwig conjectured the asymptotic behaviour of Toeplitz determinants generated by a class of

(integrable) functions that violate these conditions. The functions in this class are products of a

function which is regular, in the sense of Szegő’s theorem, and a finite number of so-called pure

Fisher-Hartwig singularities. Their conjecture was later refined in [6] and [7], and only recently

a complete description of the asymptotics of these determinants was achieved by Deift, Its and

Krasovsky [18]. See [19] for a detailed historical account of the subject.

In this paper we exploit the formalism of symmetric functions to study Toeplitz minors.

After section 2, where some known results are reviewed, we obtain an equivalent expression for

the combinatorial factor of Bump and Diaconis in terms of skew Schur polynomials. This is

done in section 3, where we also characterize (i) a class of Toeplitz minors for which an exact

asymptotic expression can be obtained, and (ii) a class of Toeplitz minors that can be realized

as the specialization of a single skew Schur polynomial. In section 4 we compute the inverses of

some Toeplitz matrices, using the Duduchava-Roch formula and the kernel associated to two sets

of biorthogonal polynomials on the unit circle. Comparing these matrices with their expressions

in terms of Toeplitz minors we obtain explicit evaluations of a family of specialized skew Schur

polynomials and of a Selberg-Morris type integral.

2. Preliminaries

2.1. Symmetric functions. Let us recall some basic results involving symmetric functions

that can be found in [31, 38], for example. We denote z = eiθ in the following, and treat z as a

formal variable. A partition λ = (λ1, . . . , λl) is a finite and non-increasing sequence of positive

integers. The number of nonzero entries is called the length of the partition and is denoted by

l(λ), and the sum |λ| = λ1 + · · · + λl(λ) is called the weight of the partition. The entry λj is

understood to be zero whenever the index j is greater than the length of the partition. The

notation (ab) stands for the partition with exactly b nonzero entries, all equal to a. A partition

can be represented as a Young diagram, by placing λj left-justified boxes in the j-th row of the

diagram. The conjugate partition λ′ is then obtained as the partition which diagram has as

rows the columns of the diagram of λ (see figure 2.1 for an example). The following procedure

describes how to obtain the Toeplitz minor Dλ,µ
N (f), given by (1), from the underlying Toeplitz

matrix (we assume in the following that the length of the partitions λ and µ is less than or equal

to N , the size of the matrix under consideration):

1We abuse notation here; we assume it is clear when the expression f(M) should be read as
∏

j f(e
iθj ) (i.e.

when f is a function on the unit circle) and when it should be read as f(eiθ1 , . . . , eiθN ) (i.e. when f is a symmetric

function in several variables). See [31] and section 2.1 for definitions of Schur polynomials.
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Figure 1. The partition (3, 2, 2) and its conjugate (3, 3, 1).

• Strike the first |λ1 − µ1| columns or rows of TN+max {λ1,µ1}(f), depending on whether

λ1 − µ1 is greater or smaller than zero, respectively.

• Keep the first row of the matrix, and strike the next λ1 − λ2 rows. Keep the next row,

and strike the next λ2 − λ3 rows. Continue until striking λl(λ) − λl(λ)+1 = λl(λ) rows.

• Repeat the previous step on the columns of the matrix with µ in place of λ. The resulting

matrix is precisely T λ,µN (f), as defined in (1).

If x = (x1, x2, ...) is a set of variables, the power-sum symmetric polynomials pk are defined

as pk(x) = xk1 + xk2 + . . . for every k ≥ 1, and p0(x) = 1. They are related to the elementary

symmetric polynomials ek(x) and the complete homogeneous polynomials hk(x) by the formulas

exp

(
∞∑

k=1

pk(x)

k
zk

)

=
∞∑

k=0

hk(x)z
k =

∞∏

j=1

1

1− xjz
= H(x; z),

exp

(
∞∑

k=1

(−1)k+1 pk(x)

k
zk

)

=
∞∑

k=0

ek(x)z
k =

∞∏

j=1

(1 + xjz) = E(x; z).

(3)

We also set pk(x) = hk(x) = ek(x) = 0 for negative k. The families (hk(x)) and (ek(x)) where

k ≥ 0 consist of algebraically independent functions. Hence, we will see H and E as arbitrary

functions on the unit circle depending on the parameters x, and we will use indistinctly their

infinite product expression. We note also that these two functions satisfy H(x; z)E(x;−z) = 1.

The classical Jacobi-Trudi identities express Schur polynomials as Toeplitz minors generated by

H and E

sµ(x) = det (hj−k+µk(x))
N
j,k=1 = D∅,µ

N (H(x; z)) ,

sµ′(x) = det (ej−k+µk(x))
N
j,k=1 = D∅,µ

N (E(x; z)) ,

where l(µ), l(µ′) ≤ N , respectively, and ∅ denotes the empty partition. More generally, skew

Schur polynomials can be expressed as the minors

sµ/λ(x) = Dλ,µ
N (H(x; z)), s(µ/λ)′(x) = Dλ,µ

N (E(x; z)), (4)

where l(µ), l(µ′) ≤ N respectively. A skew Schur polynomial vanishes if λ * µ, which can

be seen as a consequence of its Toeplitz minor representation and the fact that the Toeplitz

matrices above are triangular. A central result in the theory of symmetric functions is the

Cauchy identity, and its dual form

∑

ν

sν(x)sν(y) =

∞∏

j=1

∞∏

k=1

1

1− xjyk
,

∑

ν

sν(x)sν′(y) =

∞∏

j=1

∞∏

k=1

(1 + xjyk),

where y = (y1, y2, . . . ) is another set of variables and the sums run over all partitions ν.

Gessel [25] obtained the following expression for the Toeplitz determinant generated by the

function f(z) = H(y; z−1)H(x; z)

DN





∞∏

k=1

1

1− ykz−1
∞∏

j=1

1

1− xjz



 =
∑

l(ν)≤N

sν(y)sν(x), (5)
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where the sum runs over all partitions ν of length l(ν) ≤ N . If one of the sets of variables x or

y is finite, say y = (y1, . . . , yd), comparing the right hand side above with the sum in Cauchy

identity and recalling that the Schur polynomial sν(y1, ..., yd) vanishes if l(ν) > d one obtains a

well known identity of Baxter [8]

DN





d∏

k=1

1

1− ykz−1
∞∏

j=1

1

1− xjz



 =

d∏

k=1

∞∏

j=1

1

1− xjyk
, (6)

valid when N ≥ d. Note that the right hand side above is independent of N . An analogous

identity follows if the factor H(x; z) is replaced by E(x; z), using the dual Cauchy identity

instead. However, no such identity is available for Toeplitz determinants generated by symbols

of the type E(y; z−1)E(x; z); this will be relevant later.

2.2. Toeplitz determinants and minors generated by smooth symbols. We record now

precise statements of the strong Szegő limit theorem and of its generalization to Toeplitz minors.

Theorem (Szegő). Let f(eiθ) =
∑

k∈Z dke
ikθ be a function on the unit circle, and suppose it

can be expressed as f(eiθ) = exp(
∑

k∈Z cke
ikθ), where the coefficients ck verify

∑

k∈Z

|ck| <∞,
∑

k∈Z

|k||ck|2 <∞. (7)

Then, as N →∞,

DN (f) ∼ exp

(

Nc0 +

∞∑

k=1

kckc−k

)

.

A function f satisfying the hypotheses of this theorem is continuous, nonzero, and has winding

number zero [12]. Functions with Fisher-Hartwig singularities need not verify these properties

(see section 4.2). Under these same conditions, the following theorem holds.

Theorem (Bump, Diaconis [15]). Let f verify the hypotheses in the previous theorem, and

suppose λ and µ are partitions of weights n and m respectively. Then, as N →∞

Dλ,µ
N (f) ∼ DN (f)

∑

φ⊢n

∑

ψ⊢m

χλφ χ
µ
ψ z
−1
φ z−1ψ ∆(f, φ, ψ), (8)

where the sum runs over all the partitions φ of n and ψ of m, the terms zφ, zψ are the orders

of the centralizers of the equivalence classes of the symmetric groups Sn, Sm indexed by φ and ψ

respectively, the functions χλ, χµ are the characters associated to the irreducible representations

of Sn and Sm indexed by λ and µ respectively, and

∆(f, φ, ψ) =
∞∏

k=1

{
knkcnk−mk

−k mk!L
(nk−mk)
mk

(−kckc−k), if nk ≥ mk

kmkcmk−nk
k nk!L

(mk−nk)
nk

(−kckc−k), if nk ≤ mk

.

Above, the coefficients nk,mk correspond to the partitions φ = (1n12n2 . . . ) and ψ = (1m12m2 . . . )

in their frequency notation, and L
(a)
n are the Laguerre polynomials [39].

Note that the product in the factor ∆(f, φ, ψ) is actually finite, since only a finite number of

nk’s and mk’s are distinct from zero for each pair φ,ψ. As mentioned before, we see that in the

N → ∞ limit the Toeplitz minor generated by a regular symbol factors as the corresponding

Toeplitz determinant times a sum depending only on f and the partitions λ, µ (and not on N).

The formula (8) can be implemented in MatLab for example, leading to quick evaluations for

values of, say, |λ|, |µ| = 15. Table 1 shows some of these values for particular choices of λ and µ.



TOEPLITZ MINORS AND SPECIALIZATIONS OF SKEW SCHUR POLYNOMIALS 5

λ µ limN→∞D
λ,µ
N (f)/DN (f) λ µ limN→∞D

λ,µ
N (f)/DN (f)

∅ c1 ∅ 1
2c

2
1 + c2

∅ 1
2c

2
1 − c2 ∅ 1

6c
3
1 + c1c2 + c3

∅ 1
6c

3
1 − c1c2 + c3 ∅ 1

12c
4
1 − c1c3 + c22

λ µ limN→∞D
λ,µ
N (f)/DN (f)

1
4c

2
−1c

2
1 + c−1c1 − 1

2c−2c
2
1 − 1

2c
2
−1c2 + c−2c2 + 1

1
6c−1c

3
1 +

1
2c

2
1 + c−1c1c2 + c2 + c−1c3

Table 1. Some values of the formula (8).

3. Toeplitz minors generated by symmetric functions

Let us now obtain an equivalent expression for the asymptotic formula (8) for the case of

Toeplitz minors generated by formal power series.

Theorem 1. Let

f(z) = H(x; z)H(y; z−1),

for some sets of variables x and y, where H is given by (3), and assume moreover that the

sequences of complete homogeneous symmetric polynomials (hk(x)) and (hk(y)) are square summable.

Then, for any two fixed partitions λ and µ we have

lim
N→∞

Dλ,µ
N (f) =

∑

ν

sλ/ν(y)sµ/ν(x) lim
N→∞

DN (f). (9)

Note that we understand f as a formal Laurent power series whose coefficients are symmetric

functions on x and y, and thus the convergence above is in the algebra of formal power series.

Proof. Let us first observe that the limit limN→∞DN (f) in the right hand side of (9) is well

defined as a formal expression, since by the identities of Gessel and Cauchy we have

lim
N→∞

DN (f) = lim
N→∞

∑

l(ν)≤N

sν(x)sν(y) =

∞∏

j=1

∞∏

k=1

1

1− xjyk
. (10)

We will use the following lemma, that has an elementary proof.

Lemma. Let ν be a partition verifying ν ⊂ (dN ), and consider the partition ←−ν d = (d −
νN , . . . , d − ν1) which is obtained by rotating 180o the complement of ν in the diagram of the

rectangular partition (dN ). Then the Schur polynomial sν verifies

sν(x
−1
1 , . . . , x−1N ) = s←−ν d(x1, . . . , xN )

N∏

j=1

x−dj .

If R,S are two strictly increasing sequences of natural numbers, we denote by detR,SM the

minor of the matrix M obtained by taking the rows and columns of M indexed by R and S,

respectively. Using the above lemma with d = max {λ1, µ1} we see that

Dλ,µ
N (f) =

∫

U(N)
sλ(M)sµ(M)f(M)dM =

∫

U(N)
s←−
λ d(M)s←−µ d(M)f(M)dM = det

R,S
T (f),



6 DAVID GARCÍA-GARCÍA AND MIGUEL TIERZ

where the sequences R,S are given by R = (rj)
N
j=1 = (j + µN+1−j)

N
j=1 and S = (sk)

N
k=1 =

(k + λN+1−k)
N
k=1. Since the Toeplitz matrices generated by each of the factors of f verify

T (f(z)) = T (H(y; z−1))T (H(x; z)), the use of Cauchy-Binet formula gives

det
R,S

T (f(z)) =
∑

T

det
R,T

T (H(y; z−1)) det
T,S

T (H(x; z)), (11)

where the summation is over all the strictly increasing sequences T = (t1, . . . , tN ) of length N of

positive integers2. There is a correspondence between such sequences and partitions ν of length

l(ν) ≤ N , given by νN+1−j = tj − j, for j = 1, ..., N . Thus, for each T we have

det
T,S

T (H(x; z)) = det(htj−sk(x))
N
j,k=1 = det(hj+νN+1−j−k−λN+1−k)(x))

N
j,k=1.

Reversing the order of its rows and columns, we see that the last determinant above isDλ,ν
N (H(x; z)).

According to (4) this is precisely the skew Schur polynomial sν/λ(x), and an analogous derivation

yields detR,T T (H(y; z−1)) = sν/µ(y). We thus obtain

Dλ,µ
N (f) =

∑

l(ν)≤N

sν/µ(y)sν/λ(x). (12)

Combining this with the following identity between Schur and skew Schur polynomials (Ex.

I.5.26 in [31])
∑

ν

sν/µ(y)sν/λ(x) =
∑

ν

sλ/ν(y)sµ/ν(x)
∑

κ

sκ(y)sκ(x), (13)

where the sums run over all partitions, we arrived at the desired conclusion, upon identification

of the second sum in the right hand side above with the large-N limit of the Toeplitz determinant

generated by f . �

An analogous reasoning shows that identity (9) holds also for functions of the form

f(z) = E(x; z)E(y; z−1),

after taking the conjugate of all the partitions indexing the skew Schur polynomials in the right

hand side of (9).

Let us emphasize that the theorem is to be understood as an identity among symmetric

functions. However, as usual in this context, one can specialize any algebraically independent

family of symmetric functions to any given sequence of, say, real or complex numbers, and extend

(9) to an identity involving more general Toeplitz matrices, as long as the formal manipulations

are justified after this specialization (see [38, 40, 4] for examples of this). Let us consider,

for instance, a function f that satisfies the regularity conditions in Szegő’s theorem. That is,

assume f(eiθ) = exp (
∑

k cke
ikθ), where the coefficients ck satisfy the decay conditions (7). Then,

assuming that c0 = 0 without loss of generality, we can write f(eiθ) = f+(eiθ)f−(eiθ), where

f+(eiθ) = exp

(
∑

k>0

cke
ikθ

)

= 1+
∑

k≥1

d+k e
ikθ, f−(eiθ) = exp

(
∑

k<0

cke
ikθ

)

= 1+
∑

k≥1

d−k e
−ikθ.

(14)

Now, recall that the complete homogeneous symmetric polynomials are a complete set of algebraically

independent generators of the ring of symmetric functions. Thus, we can consider the specializations

hk(x) 7→ d+k , hk(y) 7→ d−k (k ≥ 0)

on theorem 1 to obtain an identity for the Toeplitz minors generated by an arbitrary function

satisfying the conditions in Szegő’s theorem. Note also that the skew Schur polynomials above

2We are actually using the infinite dimensional generalization of the Cauchy-Binet formula that appears in [40].

The convergence of the sum in the right hand side follows from the square integrability of (hk(x)) and (hk(y)).
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can be defined in terms of the Fourier coefficients d+k , d
−
k by means of the Jacobi-Trudi identities,

so that the right hand side in (9) is well defined (note that the sum is actually finite for any

fixed pair of partitions λ and µ). Therefore, we can rephrase theorem 1 as follows.

Corollary 1. Let f(eiθ) = exp (
∑

k cke
ikθ), where the ck satisfy conditions (7), and define f+

and f− as in (14). Then,

lim
N→∞

Dλ,µ
N (f) = exp

(
∞∑

k=1

kckc−k

)
∑

ν

sλ/ν(d
−
k )sµ/ν(d

+
k ), (15)

where now the convergence is the usual convergence in C, and we have denoted by sλ/µ(d
±
k ) the

determinants

sλ/ν(d
±
k ) = det

(

d±j−νj−k+λk

)max (l(λ),l(ν))

j,k=1
.

Similar examples where an algebraic result concerning Toeplitz determinants is seen to be

equivalent to an analytic one for functions satisfying Szegő’s theorem can be found in [40, 10],

for instance.

We have assumed in the above discussion that f verifies the hypotheses in Szegő’s theorem.

This was necessary in order for the limit limN→∞DN (f) to be finite. Numerical experiments

suggest however that (15) holds for more general functions for which this limit is not finite, such

as functions with Fisher-Hartwig singularities. It follows from a generalization of (8) due to

Lyons [30] that this is indeed true for the case of Toeplitz matrices generated by positive valued

functions (as is the case, for instance, of Fisher-Hartwig singularities with zeros or poles, see

section 4.2), but we have been unable to extend this result to the most general case of arbitrary

functions with Fisher-Hartwig singularities.

We conclude this section showing that exact formulas are available when the function f can be

obtained as a specialization with a finite number of nonzero variables. There are two possibilities:

• Case 1: There is a factor of the type H specialized to a finite set of variables. Suppose f

is of the form f(z) = H(y1, . . . , yd; z
−1)H(x; z). Then, in the same fashion as in Baxter’s

identity (6), the corresponding Toeplitz determinant stabilizes and we obtain the formula

Dλ,µ
N





d∏

k=1

1

1− ykz−1
∞∏

j=1

1

1− xjz



 =

d∏

k=1

∞∏

j=1

1

1− xjyk
∑

ν

sλ/ν(y)sµ/ν(x),

that holds for every N ≥ d. An analogous result holds for symbols of the type f(z) =

H(y1, . . . , yd; z
−1)E(x; z).

• Case 2: There is a factor of the type E specialized to a finite set of variables. We assume,

without loss of generality, that f is of the form f(z) = E(y1, . . . , yd; z
−1)E(x; z). As

mentioned above, no N -independent formula is available for these symbols. However, it

follows from (4) that

s((dN )+µ/λ)′(y
−1
1 , . . . , y−1d , x) = Dλ,µ

N





d∏

k=1

y−1k

d∏

k=1

(1 + ykz
−1)

∞∏

j=1

(1 + xjz)



 =

=

d∏

k=1

y−Nk Dλ,µ
N (E(y1, . . . , yd; z

−1)E(x; z)),

(16)
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and we see that in this case the Toeplitz minor can be expressed essentially as the

specialization of a single skew Schur polynomial, indexed by the shape

µ′

d

N

λ′

A similar identity was obtained in [2]. Comparing with the analogue of equation (12)

for this symbol we see that (16) coincides with

d∏

k=1

y−Nk

∑

ν⊂(Nd)

sν/µ′(y1, ..., yd)sν/λ′(x),

where the (finite) sum runs over all partitions ν satisfying l(ν) ≤ N and ν1 ≤ d.

4. Inverses of Toeplitz matrices and skew Schur polynomials

The usual formula for the inversion of a matrix in terms of its cofactors reads as follows for

the case of Toeplitz matrices

(
T−1N (f)

)

j,k
= (−1)j+k

D
(1k−1),(1j−1)
N−1 (f)

DN (f)
. (17)

Hence, whenever the inverse of a Toeplitz matrix is known explicitly, formula (17) yields explicit

evaluations of the formulas appearing in section 3. In particular, if the function f is of the form

f(z) = E(y1, ..., yd; z
−1)E(x; z), the Toeplitz minor in the right hand side above has several

expressions: in terms of the inverse of the corresponding Toeplitz matrix

D
(1k),(1j)
N (f) = (−1)j+kDN+1(f)(T

−1
N+1(f))j+1,k+1, (18)

as a specialization of a skew Schur polynomial

D
(1k),(1j)
N (f) = s(N,...,N

︸ ︷︷ ︸
d

,j)/(k)(y
−1
1 , . . . , y−1d , x)

d∏

r=1

yNr , (19)

and as the multiple integral

D
(1k),(1j)
N (f) = (20)

1

N !

1

(2π)N

∫ 2π

0
...

∫ 2π

0
ek(e

−iθ1 , ..., e−iθN )ej(e
iθ1 , ..., eiθN )

N∏

j=1

f(eiθj)
∏

1≤j<k≤N

|eiθj − eiθk |2dθ1...dθN ,

where ej , ek are elementary symmetric polynomials (3) (we assume in the three last identities

that N ≥ 1 and 0 ≤ j, k ≤ N). Moreover, formula (9) gives the asymptotic behaviour

lim
N→∞

D
(1k),(1j)
N (f) =

min (j,k)
∑

r=0

hk−r(y)hj−r(x) lim
N→∞

DN (f), (21)

where the convergence is as formal series or the usual convergence, according to the context

(note that the partitions indexing the sum in (9) are now conjugated). It would be interesting

to compare Widom’s asymptotic formula for the inverses of Toeplitz matrices [43] with (21).

Other work with formulas for the inverses of Toeplitz matrices is [36].
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In the following, we recall some known explicit inverses of Toeplitz matrices and compute

another two in order to obtain evaluations for the Toeplitz minor D
(1k),(1j)
N (f). Comparing

these with equations (19) and (20) we will obtain explicit formulas for some specializations of

the above skew Schur polynomial and for the above integral for some choices of the symbol f , as

well as their asymptotics. We assume in the following invertibility of all the matrices involved.

4.1. Tridiagonal Toeplitz matrices. A simple example is given by the Toeplitz matrix generated

by the function f(z) = E(y; z−1)E(x; z), where x and y are single (nonzero) variables

TN (E(y; z−1)E(x; z)) =







1 + xy y

x 1 + xy
. . .

. . .
. . .






. (22)

In [42] an exact formula for the inverses of banded Toeplitz matrices was obtained (see [32]

for a recent work with a different proof). The inverse of a tridiagonal Toeplitz matrix has an

expression in terms of Chebyshev polynomials of the second kind [39]. These are defined by the

recurrence relation
{
Un+1(z) = 2zUn(z)− Un−1(z) (n ≥ 1),

U0(z) = 1, U1(z) = 2z.

The determinant of the matrix (22) is then given by [23]

DN (E(y; z−1)E(x; z)) =
(xy)N+1 − 1

xy − 1
= (xy)N/2UN (c)

(

c =
1 + xy

2
√
xy

)

, (23)

and its inverse by

(T−1N (E(y; z−1)E(x; z)))j,k =







(−1)j+k yk−j

(xy)(k−j+1)/2

Uj−1(c)UN−k(c)

UN (c)
(j ≤ k),

(−1)j+k xj−k

(xy)(j−k+1)/2

Uk−1(c)UN−j(c)

UN (c)
(j > k).

Inserting these expressions in equation (19) we obtain the following expression for an arbitrary

skew Schur polynomial indexed by a shape of at most two rows and specialized to two variables

s(N,j)/(k)(x, y
−1) = (xy−1)(N+j−k)/2Umin (j,k)(c)UN−max (j,k)(c) =

=
1

xkyN+j−k

min (j,k)
∑

r=0

(xy)r
N∑

r=max (j,k)

(xy)r,

for j, k = 0, ..., N and N ≥ 1. It is well known that a Schur polynomial specialized to two

variables is equal to a Chebyshev polynomial [26]. We also obtain from formula (21) that if

|x|, |y| < 1 then

lim
N→∞

s(N,j)/(k)(x, y
−1)yN = xjyk

(xy)−min (j,k)−1 − 1

(xy)−1 − 1
.

4.2. The pure Fisher-Hartwig singularity. The so-called pure Fisher-Hartwig singularity

is the function

|1− eiθ|2αeiβ(θ−π) (0 < θ < 2π), (24)

where the parameters α, β satisfy Re(α) > −1/2 and β ∈ C. The factor |1 − eiθ|2α may have

a zero, a pole, or an oscillatory singularity at the point z = 1, while the factor eiβ(θ−π) has a

jump if β is not an integer. Thus, depending on the different values of the parameters α and
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β, the symbol above may violate the regularity conditions in Szegő’s theorem. It will be more

convenient to work with the equivalent factorization [12]

(1− eiθ)γ(1− e−iθ)δ.

This function coincides with (24) if γ = α + β and δ = α − β; we will assume in the following

that the parameters γ and δ are positive integers. We can then express this function as the

specialization

f(z) = ϕγ,δ(z) = E(1, ..., 1
︸ ︷︷ ︸

δ

; z−1)E(1, ..., 1
︸ ︷︷ ︸

γ

; z). (25)

Functions with general Fisher-Hartwig singularities are obtained as the product of a function

verifying the regularity conditions in Szegő’s theorem times a finite number of translated pure

singularities of the form ϕγr ,δr(e
i(θ−θr)). Each of these factors has a singularity with parameters

γr, δr at the point eiθr .

The inverse of the Toeplitz matrix generated by the pure FH singularity can be computed by

means of the Duduchava-Roch formula [20, 37, 11]

T ((1 − z)γ)Mγ+δT ((1− z−1)δ) =
Γ(γ + 1)Γ(δ + 1)

Γ(γ + δ + 1)
MδT (ϕγ,δ)Mγ ,

where Ma is the diagonal matrix with entries (Ma)k,k =
(a+k−1
k−1

)
, for k ≥ 1. Böttcher and

Silbermann [13] used this formula to give an explicit expression for the determinant of the

Toeplitz matrix generated by the pure FH singularity

DN (ϕγ,δ) = G(N + 1)
G(γ + δ +N + 1)

G(γ + δ + 1)

G(γ + 1)

G(γ +N + 1)

G(δ + 1)

G(δ +N + 1)
, (26)

where G is the Barnes function [5]. Also the inverse of the corresponding Toeplitz matrix can

be computed explicitly by means of this formula [11]

(T−1N (ϕγ,δ))j,k = (−1)j+kΓ(γ + j)Γ(δ + k)

Γ(j)Γ(k)

N∑

r=max (j,k)

Γ(r)

Γ(γ + δ + r)

(
γ + r − k − 1

r − k

)(
δ + r − j − 1

r − j

)

.

Inserting these expressions in equation (19) we obtain

s(N,...,N
︸ ︷︷ ︸

d

,j)/(k)(1
M ) = G(N + 2)

G(M +N + 2)

G(M + 1)

G(M − d+ 1)

G(M − d+N + 2)

G(d+ 1)

G(d+N + 2)
× (27)

Γ(M − d+ j + 1)

Γ(j + 1)

Γ(d+ k + 1)

Γ(k + 1)

N∑

r=max (j,k)

Γ(r + 1)

Γ(M + r + 1)

(
M − d+ r − k − 1

r − k

)(
d+ r − j − 1

r − j

)

,

for j, k ≤ N and M > d (or M ≥ d, if j = 0). The above formula recovers known evaluations

whenever k = 0 and thus the function in the left hand side above is a Schur polynomial (these can

be computed by means of the hook-content formula [38], for instance). Explicit expressions for

such specialization of skew Schur polynomials indexed by partitions of certain shapes have been

obtained recently in [33], and coincide with the above formula when the shapes are the same.

The shapes covered by the above formula are not a subset nor a superset of those considered in

[33].
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Using expression (24), we see that the integral form of a Toeplitz minor generated by the pure

Fisher-Hartwig generality

Dλ,µ
N (ϕγ,δ) = s((δN )+µ/λ)′(1

γ+δ) = (28)

1

N !

1

(2π)N

∫ 2π

0
...

∫ 2π

0
sλ(e

−iθ)sµ(e
iθ)

N∏

j=1

e
1

2
iθj(γ−δ)|1 + eiθj |γ+δ

∏

1≤j<k≤N

|eiθj − eiθk |2dθ1...dθN ,

is the unitary version of Selberg integral known as Morris integral, with the insertion of two Schur

polynomials (we denote above sµ(e
iθ) = sµ(e

iθ1 , . . . , eiθN )). Explicit formulas are known [24] for

the evaluation of this integral, with and without the insertion of a single Schur polynomial sµ,

although its expression as the specialization of a skew Schur polynomial (28) appears to be new.

We note also that its minor representation allows a direct computation for the case of a single

polynomial

D∅,µ
N (ϕγ,δ) = DN (ϕγ,δ)sµ(1

N )

N∏

k=1

Γ(γ + k)

Γ(γ + k − µk)
Γ(δ +N − k + 1)

Γ(δ +N − k + µk + 1)
. (29)

A proof of this identity is sketched in the appendix. An explicit expression of the integral (28)

with the insertion of two Schur polynomials is known for the case γ = −δ [27]. Substituting

M −d by γ and d by δ, formula (27) gives an explicit evaluation of this integral valid for general

values3 of γ and δ whenever the Schur polynomials reduce to elementary symmetric polynomials

sλ = ek, sµ = ej .

4.3. Principal specializations. In order to study the principal specialization xj = qj−1 in the

above formulas, we recall the well known method of Borodin for obtaining the inverse of the

moment matrix of a biorthogonal ensemble. We follow the presentation in [9], where details and

proofs can be found. The starting point is a random matrix ensemble of the form

∫

· · ·
∫

det (ξj(zk))
N
j,k=1 det (ηj(zk))

N
j,k=1

N∏

j=1

f(zj)dzj

(up to a constant), for a weight function f supported on some domain and two families of

functions (ξj) and (ηj). If one is able to find two new families (ζj) and (ψj) that biorthogonalize
4

the former with respect to the weight f , that is

ζj ∈ Span{ξ1, . . . , ξj}, ψj ∈ Span{η1, . . . , ηj},
∫

ζj(z)ψk(z)f(z)dz = δj,k,
(30)

then the matrix of coefficients of the kernel

KN (z, ω) =
N∑

r=1

ζr(z)ψr(ω) =
N∑

j,k=1

cj,kξj(z)ηk(ω) (31)

satisfies
[
(cj,k)

N
j,k=1

]−1
=

(∫

ξk(z)ηj(z)f(z)dz

)N

j,k=1

.

If the ensemble is an orthogonal polynomial ensemble, then the moment matrix on the right

hand side above is a Hankel matrix, the functions ξj and ηj are the monomials zj−1, and we

3We have only proved the validity of the formula for integer values of γ and δ. However, by Carlson’s theorem

the formula holds for any positive γ and δ.
4Note that we are actually considering biorthonormal functions; we stick to the original terminology of [9] here

and below and speak of biorthogonal functions in the following.
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have that ζj = ψj = pj, the orthogonal polynomials with respect to the weight function f , that

is supported on the real line. The case where the moment matrix on the right hand side above

is the Toeplitz matrix generated by a function f supported on the unit circle corresponds to the

biorthogonal ensemble with functions ξj(z) = z−(j−1), ηj(z) = zj−1. Thus, the biorthogonality

condition (30) amounts to finding two families of polynomials pj and qj such that

1

2π

∫ 2π

0
pj(e

−iθ)qk(e
iθ)f(eiθ)dθ = δj,k. (32)

Let us remark that only when the Toeplitz matrix is hermitian (that is, when the function f is

real valued), these polynomials verify pj(e
−iθ) = qj(eiθ), the qj are the orthogonal polynomials

with respect to f , and the kernel above is the usual Christoffel-Darboux kernel (see [8, 28] for

more details). In general, one needs to consider a biorthogonal ensemble as above. Nevertheless,

one can compute the polynomials (pj) and (qj) in a similar fashion to the orthogonal case.

Lemma. Suppose the determinants DN (f) are nonzero for every N . Then, the polynomials pj
and qj in (32) are given by

pj(z) =
1

(Dj(f)Dj+1(f))1/2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

d0 d−1 . . . d−j
d1 d0 . . . d−(j−1)
...

...
...

dj−1 dj−2 d−1
1 z . . . zj

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

qj(z) =
1

(Dj(f)Dj+1(f))1/2

∣
∣
∣
∣
∣
∣
∣
∣
∣

d0 d−1 . . . d−(j−1) 1

d1 d0 . . . d−(j−2) z
...

...
...

...

dj dj−1 . . . d1 zj

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Proof. The condition on the determinants implies the existence of the polynomials themselves

(see Proposition 2.9 in [9], for instance), and they are uniquely determined up to multiplicative

constants. Hence, it suffices to verify the biorthogonality condition (32). We denote

pj(z) =

j
∑

r=0

a(j)r zr, qk(z) =

k∑

r=0

b(k)r zr. (33)

Now, if j ≥ k in (32) we can rewrite this integral as the sum

1

2π

∫ 2π

0
pj(e

−iθ)qk(e
iθ)f(eiθ)dθ =

1

(Dk(f)Dk+1(f)Dj(f)Dj+1(f))1/2
×

k∑

r=0

b(k)r

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

d0 d−1 . . . d−j
d1 d0 . . . d−(j−1)
...

...
...

dj−1 dj−2 d−1
1
2π

∫ 2π
0 eirθf(eiθ)dθ 1

2π

∫ 2π
0 ei(r−1)θf(eiθ)dθ . . . 1

2π

∫ 2π
0 ei(r−j)θf(eiθ)dθ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

which vanishes if j > k and equals 1 if j = k, since the last row in the above determinants is

precisely (dr, dr−1, . . . , dr−j). Analogously, if j < k in (32) the integral equals

1

(Dk(f)Dk+1(f)Dj(f)Dj+1(f))1/2

j
∑

r=0

a(j)r

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

d0 d−1 . . . d−(k−1)
1
2π

∫ 2π
0 e−irθf(eiθ)dθ

d1 d0 . . . d−(k−2)
1
2π

∫ 2π
0 e−i(r−1)θf(eiθ)dθ

...
...

...
...

dk dk−1 . . . d1
1
2π

∫ 2π
0 e−i(r−k)θf(eiθ)dθ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,
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and again all the determinants in the sum vanish. �

We now use this result to study the principal specialization of skew Schur polynomials indexed

by the shapes considered earlier. We assume in the following that q is a new (real) variable

verifying |q| < 1. We will denote by Γq and Gq the q-Gamma and q-Barnes functions [34], that

in particular verify

Γq(k + 1) =

∏k
j=1(1− qj)
(1− q)k =

(q; q)k
(1− q)k , Gq(k + 1) =

k−1∏

j=1

Γq(j + 1), (34)

whenever k is a natural number (we assume that an empty product takes the value 1). The

q-binomial coefficient is then given by

[
ω

z

]

q

=
Γq(ω + 1)

Γq(z + 1)Γq(ω − z + 1)
(Re(ω) ≥ Re(z) > 0) .

These functions coincide with their classical counterparts in the q → 1 limit, that is

lim
q→1

Γq(z) = Γ(z), lim
q→1

Gq(z) = G(z), lim
q→1

[
ω

z

]

q

=

(
ω

z

)

,

for all the ω and z such that the right hand sides above make sense. We consider the following

specialization [22]

f(z) = Θγ,δ(z) = E(1, q, . . . , qδ−1; z−1)E(q, q2, . . . , qγ ; z) =

γ
∑

k=−δ

[
δ + γ

δ + k

]

q

qk(k+1)/2zk,

for some positive integers γ and δ. The Toeplitz determinant generated by this function equals

DN (Θγ,δ) = Gq(N + 1)
Gq(δ + γ +N + 1)

Gq(δ + γ + 1)

Gq(δ + 1)

Gq(δ +N + 1)

Gq(γ + 1)

Gq(γ +N + 1)
,

and the biorthogonal polynomials pj , qj are given by

pj(z) =

(
(q; q)δ+j(q; q)γ+j
(q; q)j(q; q)δ+γ+j

)1/2 j
∑

r=0

(−1)j+r
[
j

r

]

q

(q; q)γ+r
(q; q)γ+j

(q; q)δ+j−r−1
(q; q)δ−1

zr,

qj(z) =

(
(q; q)δ+j(q; q)γ+j
(q; q)j(q; q)δ+γ+j

)1/2 j
∑

r=0

(−1)j+r
[
j

r

]

q

(q; q)γ+j−r−1
(q; q)γ−1

(q; q)δ+r
(q; q)δ+j

qrzr,

(35)

where (q; q)k is as defined in (34). The last three identities can be proved directly from their

determinantal expressions. We do not include the computations here but point to the second

method of proof in [14], that can be generalized to the present setting. A similar computation

is included in the appendix as an example. Recalling the notation (33), we have that the kernel

(31) is then given by

KN+1(z, ω) =
N∑

r=0

pr(z)qr(ω
−1) =

N∑

j,k=0





N∑

r=max (j,k)

a
(r)
j b

(r)
k



 zjω−k =

N∑

j,k=0





N∑

r=max j,k

(−1)j+kqj Γq(δ + j + 1)Γq(γ + k + 1)Γq(r + 1)

Γq(j + 1)Γq(k + 1)Γq(δ + γ + r + 1)

[
γ + r − k − 1

r − k

]

q

[
δ + r − j − 1

r − j

]

q



 zjω−k.
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Moreover, the coefficient of zjω−k in the above sum is the (j + 1, k + 1)-th entry of the inverse

of the matrix TN+1(Θγ,δ). Inserting this into expression (19) we obtain

s(N,...,N
︸ ︷︷ ︸

d

,j)/(k)(1, q, . . . , q
M−1) =

qdj−(d−1)k+d(d−1)N/2Gq(N + 2)
Gq(M +N + 2)

Gq(M + 1)

Gq(M − d+ 1)

Gq(M − d+N + 2)

Gq(d+ 1)

Gq(d+N + 2)
×

N∑

r=max (j,k)

Γq(M − d+ j + 1)Γq(d+ k + 1)Γq(r + 1)

Γq(j + 1)Γq(k + 1)Γq(M + r + 1)

[
M − d+ r − k − 1

r − k

]

q

[
d+ r − j − 1

r − j

]

q

,

for j, k ≤ N and M > d (or M ≥ d, if j = 0). As expected, this expression coincides with (27)

in the q → 1 limit. Also, as above, the formula recovers known expressions whenever k = 0

(and thus we have a Schur polynomial, comparing again with the hook-content formula [38], for

instance). Finally, it follows from (21) and the Cauchy identity that

lim
N→∞

s(N,...,N
︸ ︷︷ ︸

d

,j)/(k)(1, q, . . . , q
M−1)q−Nd(d−1)/2 =

qdj−(d−1)k

(1− q)d(M−d)
Gq(d+ 1)Gq(M − d+ 1)

Gq(M + 1)

min (j,k)
∑

r=0

q−r
[
M − d+ j − r − 1

j − r

]

q

[
d+ k − r − 1

k − r

]

q

.

Note that inverting a Toeplitz matrix by means of the kernel (31) is a general procedure that

can be used to obtain explicit evaluations of other specializations of the skew Schur polynomials

of the shapes considered above, as long as the biorthogonal polynomials (32) are available. In

particular, the results in subsection 4.2 for the pure Fisher-Hartwig singularity can be obtained

in such a way. The biorthogonal polynomials can be obtained5 as the q → 1 limit of the

polynomials (35), leading to the same formula (27).

Finally, taking into account that only one set of variables in the specialization of f needs to be

finite in equations (18)-(21), we can study the principal specialization of the above skew Schur

polynomials with an infinite number of variables. To do so, we consider the specialization

f(z) = Θδ(z) = E(1, q−1, . . . , q−(δ−1); z−1)E(qδ , qδ+1, . . . ; z) =
∞∑

k=−δ

qkδ+k(k−1)/2

(q; q)δ+k
zk,

for some positive integer δ. The Toeplitz determinant generated by this function is

DN (Θδ) =
1

(1− q)δN
Gq(δ + 1)Gq(N + 1)

Gq(δ +N + 1)
,

and the biorthogonal polynomials on the unit circle with respect to this function are given by

pj(z) =

(
(q; q)δ+j
(q; q)j

)1/2 j
∑

r=0

(−1)j+r
[
j

r

]

q

(q; q)δ+j−r−1
(q; q)δ−1

q−(δ−1)(j−r)zr,

qj(z) =

(
1

(q; q)j(q; q)δ+j

)1/2 j
∑

r=0

(−1)j+r
[
j

r

]

q

(q; q)δ+rq
δ(j−r)zr.

5In the hermitian case γ = δ, where the polynomials are a single family of orthogonal polynomials, one recovers

the family S a
n (z) introduced in [3] after substituting q by q1/2, z by q−1/2z and a by qγ .
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Again, these expressions can be verified from their determinantal formulas. The kernel in this

case is then

KN+1(z, ω) =
N∑

j,k=0





N∑

r=max j,k

(−1)j+kqr+(δ−1)j−δk (q; q)δ+k
(q; q)j

[
r

r − k

]

q

[
δ + r − j − 1

r − j

]

q



 zjω−k.

Inserting this in equation (19) we arrive at

s(N,...,N
︸ ︷︷ ︸

d

,j)/(k)(1, q, . . . ) =

q(d−1)j−dk+d(d−1)N/2

(1− q)d(N+1)

Gq(N + 2)Gq(d+ 1)

Gq(d+N + 2)

(q; q)d+k
(q; q)j

N∑

r=max (j,k)

qr
[

r

r − k

]

q

[
d+ r − j − 1

r − j

]

q

.

Once again, this identity coincides with the one given by the hook-content formula for k = 0. It

follows from (21) and the Cauchy identity that

lim
N→∞

s(N,...,N
︸ ︷︷ ︸

d

,j)/(k)(1, q, . . . )q
−Nd(d−1)/2 =

qdj−(d−1)k
(1− q)d(d−1)/2Gq(d+ 1)

(q; q)d∞

min (j,k)
∑

r=0

q−r
1

(q; q)j−r

[
d+ k − r − 1

k − r

]

q

,

where (q; q)∞ =
∏∞
k=1(1− qk) denotes the Euler function.
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Appendix: Direct computation of a minor generated by the pure FH singularity

We now sketch a proof of identity (29). We follow the second of the two proofs given in [14]

for the corresponding Toeplitz determinant. We include this computation to showcase how the

Toeplitz minor structure can be exploited to obtain evaluations of the more complicated objects

considered (i.e. multiple integrals, skew Schur polynomials), rather than for its mathematical

insight.

The Fourier coefficients of ϕγ,δ are [12]

dk =
Γ(γ + δ + 1)

Γ(γ − k + 1)Γ(δ + k + 1)
.

After taking out the factors

N∏

j=1

Γ(γ + δ + 1)

Γ(γ − µN +N − j + 1)
,

N∏

k=1

1

Γ(δ + µk +N − k + 1)
,
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coming from the rows and columns of D∅,µ
N (ϕγ,δ) respectively, we obtain the determinant

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Γ(γ−µN+N)
Γ(γ−µ1+1)

Γ(δ+µ1+N)
Γ(δ+µ1+1)

Γ(γ−µN+N)
Γ(γ−µ2+2)

Γ(δ+µ2+N−1)
Γ(δ+µ2)

. . . Γ(δ+µN+1)
Γ(δ+µN−N+2)

Γ(γ−µN+N−1)
Γ(γ−µ1)

Γ(δ+µ1+N)
Γ(δ+µ1+2)

Γ(γ−µN+N−1)
Γ(γ−µ2+1)

Γ(δ+µ2+N−1)
Γ(δ+µ2+1) . . . Γ(δ+µN+1)

Γ(δ+µN−N+3)
...

...
...

Γ(γ−µN+1)
Γ(γ−µ1−N+2)

Γ(γ−µN+1)
Γ(γ−µ1−N+3) . . . 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (36)

Subtracting (δ+µN−N+1+j) times the (j+1)-th row from the j-th row, for j = 1, ..., N−1, we
can make the last column vanish except for the 1 at the bottom, thus obtaining a determinant

of order N − 1. After extracting the factor

N−1∏

k=1

(γ + δ + 1)(µk − µN +N − k)

from the columns of the matrix, and the factor

N−1∏

j=1

Γ(γ − µN + j)

Γ(γ − µN−1 + j)

from the rows, we obtain a determinant with the same structure as (36), but with the following

changes: N is replaced by N − 1, δ is replaced by δ + 1 and µ is replaced by the partition

(µ1, . . . , µN−1), that results from discarding the last part of µ. Making use of this recursive

structure and the well-known expression

sµ(1
N ) =

1

G(N + 1)

∏

1≤j<k≤N

(µj − µk + k − j) (N ≥ l(µ)), (37)

one arrives at the desired expression.
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