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Abstract. We introduce and study (strict) Schottky G-bundles over a compact Riemann
surfaceX, whereG is a connected reductive algebraic group. Strict Schottky representations
are shown to be related to branes in the moduli space of G-Higgs bundles over X, and we
prove that all Schottky G-bundles have trivial topological type. Generalizing the Schottky
moduli map introduced in [Flo01] to the setting of principal bundles, we prove its local
surjectivity at the good and unitary locus. Finally, we prove that the Schottky map is
surjective onto the space of flat bundles for two special classes: when G is an abelian group
over an arbitrary X, and the case of a general G-bundle over an elliptic curve.

1. Introduction and Main Results

1.1. Schottky uniformizations. The classical Fuchsian uniformization theorem provides
an explicit parameterization of all Riemann surfaces X of genus g ≥ 2: every such X can
be obtained as H/Γ, a quotient of the upper half-plane H by a Fuchsian group Γ ⊂ PSL2R,
isomorphic to the fundamental group of X, π1(X). A less well-known result, the so-called
“retrosection theorem”, or Schottky uniformization, asserts that we can also write X ∼= Ω/Σ,
for a certain free group of Möbius transformations Σ ⊂ PSL2C of rank g (called, in this
context, a Schottky group) and region of discontinuity (for the Σ-action) Ω ⊂ CP1 (see
[Ber75, For51]).

These are two very different parametrizations: the Fuchsian one is essentially unique,
and provides an identification between Teichmüller space and one component of the (real)
character variety Hom(π1(X), PSL2R)/PSL2R (the quotient of representations π1(X) →
PSL2R by conjugation); by contrast, the Schottky one is defined on a less explicit sub-
set of Hom(Σ, PSL2C)/PSL2C, having the advantage of providing manifestly holomorphic
coordinates.

Passing from surfaces to holomorphic bundles over a fixed Riemann surface X, it is nat-
ural to consider analogous explicit parametrizations. In their famous papers [NS65, NS64],
Narasimhan and Seshadri proved that every polystable vector bundle over X, of degree zero,
can be obtained from a (unique up to conjugation) unitary representation. Ramanathan
generalised Narasimhan-Seshadri’s results to principal G-bundles, where G is any reductive
algebraic group over C (see [Ram75, Ram96]).

More precisely, a representation ρ : π1(X)→ K ⊂ G into K, a maximal compact subgroup
of G, defines a holomorphic G-bundle over X = H/π1(X), equipped with a natural flat
connection:

(1.1) Eρ := (H×G)/ρ π1(X),

using the diagonal action of π1(X), via ρ, on the trivial G-bundle G×H→ H. A special case
of the results of Narasimhan, Seshadri and Ramanathan is that a holomorphic G-bundle over
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X, which admits a flat connection, is polystable if and only if it can be written in the above
form, for some ρ : π1(X) → K, unique up to conjugation. Their result can thus be seen as
a bundle version of classical Fuchsian uniformization, and identifies the moduli space of flat
semistable G-bundles with the “real character variety”

Hom(π1(X),K)/K.

The question of whether some sort of Schottky uniformization can be obtained for a large
class of holomorphic G-bundles is still an open problem, as far as we know.1 Florentino
studied the case of vector bundles and obtained some partial results ([Flo01]), showing that
all flat line bundles, and all flat vector bundles over an elliptic curve are Schottky bundles:
these can be defined as in (1.1) for certain representations ρ of a free group of rank g into
the general linear group GLnC. Moreover, an open subset of the moduli space of degree zero
semistable vector bundles consists of Schottky vector bundles. This study was motivated by
an attempt to develop an analytic theory of non-abelian theta functions and their relation
to the spaces of conformal blocks in conformal field theory (see [Bea95, FMN03, Tyu03]).

Schottky (principal) G-bundles were defined by Florentino and Ludsteck, for a general
complex reductive algebraic group G ([FL14]). They showed that there exists a natural
equivalence between the categories of unipotent representations of a Schottky group of rank
g and unipotent holomorphic vector bundles over Riemann surface of genus g.

In this paper, we generalize the results of the article [Flo01] in two different ways: we
replace GLnC by an arbitrary connected complex reductive group G, and we consider a more
general definition of Shottky representations, allowing all marked generators to be represented
in the center of G.

1.2. Main results. We now summarize our main results, emphasizing the novelties in the
principal bundle case, while describing the contents of each section. Consider the usual
presentation

(1.2) π1(X) =
〈
α1, · · · , αg, β1, · · · , βg |

∏g
i=1αiβiα

−1
i β−1

i = 1
〉
,

of the fundamental group of a fixed Riemann surface X, of genus g ≥ 1 (we are implicitly
choosing a base point x0 ∈ X, but this is irrelevant when considering isomorphism classes
of representations). A representation ρ : π1(X) → G is said to be Schottky (with respect to
our choice of generators above) if ρ(αi) is in the center Z = ZG of G for all i = 1, · · · , g.
These include what we call strict Schottky representations, which verify ρ(αi) = e for all
i = 1, · · · , g, with e the identity of G. Although the definitions require a choice of generators
for π1(X), our results are independent of such choices. Thus, from an algebro-geometric
perspective, Schottky representations (up to conjugation) are naturally parametrized by the
affine geometric invariant theory (GIT) quotient

S := Hom (Fg, Z ×G) //G,

where Fg denotes a fixed free group of rank g (see Proposition 2.4). Besides these definitions
and first properties, in Section 2 we describe the irreducible components of the Schottky
space S and prove the existence of good and unitary Schottky representations for g ≥ 2.

Strict Schottky representations have the following natural topological interpretation. Sup-
pose that M is a 3-manifold whose boundary is X, and the natural morphism i∗ : π1(X)→
π1(M) induced by the inclusion i : X ↪→ M , has all the αi in its kernel and the βi are free,

1Interestingly, the consideration of the Schottky uniformization problem for vector bundles over Mumford
curves, in the framework of p-adic analysis, has furnished stronger results. (see [Fal83]).
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i = 1, · · · , g. Then it is easy to see that strict Schottky representations are the representa-
tions of π1(X) which “extend to M ”, meaning that they factor through i∗ (note that π1(M)

is indeed a free group of rank g). In addition to its relation to the uniformization problems
for holomorphic G-bundles, Schottky representations also appear in a different context, re-
lated to non-abelian Hodge theory: recently, Baraglia and Schaposnik considered G-Higgs
bundles over a Riemann surface equipped with an anti-holomorphic involution and showed
that, inside the moduli space of G-Higgs bundles, the locus of those which are fixed by an
associated involution define what is called an (A,B,A)-brane ([BS14]). In Section 3, we
identify all strict Schottky representations as elements of this brane (see [BS14, Proposition
43] and Proposition 3.2). The study of branes is of great interest in connection with mirror
symmetry and the geometric Langlands correspondence (see [KW07]).

Section 4 provides the definition of Schottky G-bundles and their relation to Schottky
vector bundles in terms of associated bundles. A Schottky (principal) G-bundle over X is
defined to be a holomorphic bundle which is isomorphic to a bundle of the form (1.1), for some
Schottky representation ρ (so that its conjugation class [ρ] belongs to S). Similarly, we define
strict Schottky bundles. Note that all Schottky bundles, being defined by representations of
π1(X), necessarily admit a flat holomorphic connection.

The association of a Schottky G-bundle to a Schottky representation defines what we call
the Schottky uniformization map:

W : S→MG,

where MG stands for the set of isomorphism classes of G-bundles over X admitting a flat
connection. Two important properties of W are in clear contrast with the Narasimhan-
Seshadri-Ramanathan uniformization (see Remark 7.6(1)):

(1) A (strict) Schottky bundle is not necessarily semistable (contrary to those coming from
unitary representations ρ : π1(X)→ K);

(2) If E = Eρ is a Schottky bundle, then [ρ] ∈ S is not unique in general, and the preimage
W−1([E]) is typically infinite.

By results of Ramanathan [Ram75], further developed in [Li93], the topological invariants
of flat G-bundles are labeled by elements in π1(DG), where DG is the derived group of G.
Moreover, there exist flat G-bundles with all possible topological types. In Section 5, we
prove that the Schottky case is particularly simple (Theorem 5.3):

Theorem. (A) Every Schottky G-bundle is topologically trivial.

In Section 6 we define and study the notion of analytic equivalence of representations and
consider the period map, for later use in computing the derivative of the Schottky map. In
general, Schottky representations and strict ones are distinct. Analytic equivalence allows to
prove that, for Schottky bundles, the distinction between the strict and the general case is
not relevant when G has a connected center (Proposition 6.4).

In Section 7, we consider the tangent spaces to Schottky space, describe them in terms
of the first cohomology group of Fg in certain Fg-modules, and compute the dimension of
the Schottky space S := S//G. We characterize the kernel of the derivative of the Schottky
moduli map at a good Schottky representation. We also prove that the good locus of strict
Schottky space is a Lagrangian submanifold of the complex manifold of the smooth points of
Hom(π1(X), G)//G.

Let MG denote the moduli space of semistable G-bundles over X and consider the re-
stricted map called the Schottky moduli map

V : S∗ →MG,
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where S∗ := W−1 (MG ∩MG) is a dense subset of S. With their natural complex structures,
this gives now a holomorphic map between the smooth locus of the corresponding spaces.
In Section 8 we compute the derivative of the Schottky moduli map at a good and unitary
representation (assuming also that [Eρ] is a smooth point of MG), proving that it is an
isomorphism when G is semisimple (Corollary 8.8). In the more general case of reductive G,
the Schottky moduli map will be a submersion (Theorem 8.6).

Theorem. (B) Let ρ : π1(X)→ G be a good and unitary Schottky representation, such that
[Eρ] is a smooth point in MG. Then, the derivative of the Schottky moduli map at [ρ] ∈ S∗
has maximal rank. In particular, locally around [ρ], the Schottky moduli map V : S∗ →MG

is a submersion, and dimV−1 ([Eρ]) = g dimZ.

Finally, in Section 9, we consider two special classes of Schottky principal bundles: the
first case are G-bundles where G = (C∗)m, for some m ∈ N, over a general surface X. In
this case, since our definition is more general than the one in [Flo01], the strict Schottky
condition turns out to be equivalent to flatness (Proposition 9.1). The second special class
consists of Schottky G-bundles over a compact Riemann surface of genus g = 1, which needs
a distinct treatment than the case g ≥ 2 (Theorem 9.7). Again, in this case, the Schottky
condition is equivalent to flatness.

Theorem. (C) Let X be an elliptic curve and E a G-bundle over X. Then E is Schottky if
and only if it admits a flat connection.

Acknowledgments

We thank I. Biswas, E. Franco, P. B. Gothen, C. Meneses-Torres and A. Oliveira for several
useful discussions on Schottky bundles and related subjects, and the referees for clarifying
comments. The last author thanks the organizers of the Simons Center for Geometry and
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2. Schottky Representations

Given a compact Riemann surface X of genus g ≥ 2, the classical Schottky uniformization
theorem (see [For51, Ber75]) states that X is isomorphic to a quotient ΩΣ/ Σ, where Σ ⊂
PSL2C is a Schottky group and ΩΣ ⊂ CP1 is the corresponding region of discontinuity in the
Riemann sphere. Schottky groups are finitely generated free purely loxodromic subgroups of
the Möbius group PSL2C (see also [Mas67]), and so, Σ is the image of a free group Fg, of g
generators, under a homomorphism ρ : Fg → PSL2C. Naturally, conjugate homomorphisms
define isomorphic surfaces.

In this section, we consider the space of isomorphism classes of representations of Fg into a
general complex reductive algebraic group G, and prove some properties of the corresponding
algebraic variety. This is an extension of the notion of Schottky representations studied in
[Flo01], which were associated to representations of Fg into GLnC.

We begin by fixing some notation. Denote by π1 = π1(X) the fundamental group of X,
and fix generators αi, βi, i = 1, · · · , g, of π1 giving the usual presentation

(2.1) π1 =
〈
α1, · · · , αg, β1, · · · , βg |

∏g
i=1αiβiα

−1
i β−1

i = 1
〉
.

Let G be a complex connected reductive algebraic group and denote by Fg a fixed free group
of rank g, with g fixed generators γ1, · · · , γg. Since G is algebraic, and π1 and Fg are finitely
presented, both Hom(π1, G) and Hom(Fg, G) are affine algebraic varieties.
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The reductive group G acts by conjugation on Hom(π1, G) and hence, one can define a
geometric invariant theory (GIT) quotient, called the G-character variety of π1 (also called
the Betti space in the context of the non-abelian Hodge theory, see [Sim94]), as

(2.2) B := Hom(π1, G)//G.

This is a categorical quotient which, as an affine algebraic variety, is the maximal spectrum
of the C-algebra of G-invariant regular functions in C[Hom(π1, G)] (see, for example [New78,
Theorem 3.5]).

2.1. Schottky representations. Denote by e ∈ G, the unit element of G, and by Z = ZG
the center of G.

Definition 2.1. A representation ρ : π1 → G is called:
(1) a Schottky representation if ρ(αi) ∈ Z for all i ∈ {1, · · · , g}
(2) a strict Schottky representation if ρ(αi) = e for all i ∈ {1, · · · , g}

The set of Schottky representations is denoted by S ⊂ Hom(π1, G) and the strict ones by Ss.
Of course, Ss ⊂ S and they coincide when Z = {e} (i.e., for adjoint groups).

For a useful alternative characterization of Schottky representations, consider the natural
short exact sequence of groups

1→ kerϕ ↪→ π1
ϕ→ Fg → 1

where ϕ is the natural epimorphism given, in terms of the generators, by

ϕ(αi) = e, and ϕ(βi) = γi, ∀i = 1, · · · , g,

so that kerϕ is the normal subgroup of π1 generated by all αi. Schottky representations
can also be defined with respect to the map ϕ as in the following lemma, whose proof is
straightforward (see also [FL14]).

Lemma 2.2. Let ρ ∈ Hom(π1, G) and let ϕ : π1 → Fg be as above. Then
(1) ρ is a Schottky representation if and only if ρ(kerϕ) ⊂ Z;
(2) ρ is a strict Schottky representation if and only if ρ(kerϕ) = {e}.

Using our fixed generators, we can see S as an algebraic subvariety of Hom(π1, G), iso-
morphic to (Z × G)g (and Ss as a smooth subvariety of S, isomorphic to Gg). A Schottky
representation ρ ∈ S ⊂ Hom(π1, G) may also be viewed as a representation

ρF = (ρ1, ρ2) : Fg → Z ×G.

Indeed, given ρ ∈ S, define ρ1 : Fg → Z, and ρ2 : Fg → G by

(2.3) ρF (γi) = (ρ1(γi), ρ2(γi)) := (ρ(αi), ρ(βi)) ∈ Z ×G, i = 1, · · · , g.

Conversely, given ρF = (ρ1, ρ2) : Fg → Z ×G, we obtain a Schottky representation ρ ∈ S ⊂
Hom(π1, G) defined by setting ρ(αi) := ρ1(γi) and ρ(βi) := ρ2(γi), i = 1, · · · , g. It is clear
that this defines an inclusion of algebraic varieties

(2.4) ψ : Hom(Fg, Z ×G) ↪→ Hom(π1, G),

identifying Hom(Fg, Z×G) with its image, which is precisely S. The strict Schottky locus Ss
is then identified with Hom(Fg, {e}×G) ' Hom(Fg, G) ' Gg, where the last isomorphism is
the evaluation map: (σ : Fg → G) 7→ (σ(γ1), · · · , σ(γg)) .

Remark 2.3. Our identifications depend on the choice of generators for π1 and Fg, but the
algebraic structure is independent of those choices (different choices provide isomorphic va-
rieties), as can be easily seen.
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It is clear that the conjugation action of the reductive group G on Hom(π1, G) restricts to
an action on S and on Ss. In terms of the identification S ∼= Hom(Fg, Z ×G), each element
g ∈ G acts as follows:

(2.5) (g · ρF )(γ) =
(
ρ1(γ), g ρ2(γ) g−1

)
for all γ ∈ Fg,

where ρF = (ρ1, ρ2) as above. As before, there exist a GIT quotient

S := S//G ∼= Hom (Fg, Z ×G) //G,

which we call the Schottky space (in particular, it is a character variety of Fg). Moreover,
since ψ : Hom (Fg, Z ×G) ↪→ Hom(π1, G) in (2.4) is clearly a G-equivariant inclusion of affine
algebraic varieties, in view of Equation (2.3) and (2.4), we have shown the following.

Proposition 2.4. There are the following morphisms between algebraic G-varieties:

Ss ∼= Hom(Fg, G) ∼= Gg ⊂ S ∼= Hom(Fg, Z ×G) ∼= (Z ×G)g ⊂ Hom(π1, G).

In particular, S and Ss are smooth. In turn, these induce morphisms of affine GIT quotients:

Ss = Ss//G ∼= Gg//G ⊂ S = S//G ∼= (Z ×G)g//G ⊂ B = Hom(π1, G)//G.

Note that, because the conjugation action is trivial on Z, we can also write

(2.6) S ∼= (Z ×G)g//G = Zg × (Gg//G) = Zg × Ss.

The GIT quotient under G of an irreducible variety is irreducible. Thus, Ss ∼= Gg//G is
irreducible. However, S can have several irreducible components, in bijection with the com-
ponents of Zg. It is well known that the connected component of the identity of Z is an
algebraic torus Z◦, and the quotient Zf := Z/Z◦ is finite.

Proposition 2.5. All irreducible components of S are isomorphic to

Hom (Fg, Z
◦ ×G) //G ∼= (Z◦)g × (Gg//G) ∼= (Z◦)g × Ss,

and the number of irreducible components of S is given by |Zf |g.

Proof. As a variety, we can write Z as a cartesian product of the above subgroups, Z =

Zf × Z◦. So, we get the following isomorphism of varieties, from Equation (2.6)

S ∼= Zg × Ss ∼= (Zf )g × (Z◦)g × Ss ∼= (Zf )g ×Hom (Fg, Z
◦ ×G) //G

which immediately proves the proposition. �

Remark 2.6. (1) Clearly, S = Ss, hence irreducible, when the center of G is trivial.
(2) Replacing Fg by other finitely generated groups can give very different results on compo-
nents. For example, whenG = PSL2C it is known that Hom(π1, G)//G has several irreducible
components, and only two of them correspond to representations that uniformize a Riemann
surface (Kleinian representations). On the other hand Hom(π1, SL2C)//SL2C is irreducible
(see [Gol88]).

2.2. Good and unitary representations. Although S and Ss are smooth, the algebraic
varieties S and Ss are singular in general. The notion of a good representation allows us to
consider smooth points of the GIT quotient, as we will see. Let Γ be a finitely generated
group, for example the fundamental group of a compact manifold. Given a representation
ρ : Γ→ G we denote by

Z(ρ) = {h ∈ G : ρ(γ)h = hρ(γ) ∀γ ∈ Γ}

its stabilizer in G, and denote by G · ρ its G-orbit in the algebraic variety Hom(Γ, G). Recall
the following standard definitions.
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Definition 2.7. Let ρ : Γ→ G be a representation. We say that ρ is:
(a) polystable if G · ρ is (Zariski)-closed,
(b) reducible if ρ(Γ) is contained in a proper parabolic subgroup of G,
(c) irreducible if it is not reducible,
(d) good if ρ is irreducible and Z(ρ) = Z.

Remark 2.8. Note that ρ is polystable if and only if Z(ρ) is a reductive group itself, and it is
irreducible if and only if Z(ρ) is reductive and a finite extension of Z (see [Sik12]). Moreover,
ρ is irreducible if and only if it is stable in the appropriate affine GIT sense (see [FC12]).

Now we apply these notions to the case of Schottky representations.

Definition 2.9. A representation ρ ∈ S ⊂ Hom (π1, G) is said to be polystable (resp. irre-
ducible, good) if ρ is polystable (resp. irreducible, good) as an element of Hom (π1, G).

Denote the set of all good (resp. good Schottky) representations by Homgd (π1, G) (resp.
Sgd). Since these notions are well defined under conjugation, we can define the corresponding
quotient spaces:

Bgd := Homgd (π1, G) //G and Sgd := Sgd//G,
and, from Proposition 2.4, we have the inclusion Sgd ⊂ Bgd.

The sets of good, polystable and irreducible representations are Zariski open in S (see for
example [Sik12]). By [Mar00, Lemma 4.6] there exists a good representation in Hom (π1, G),
that is, Homgd (π1, G) 6= ∅, if X has genus g ≥ 2. Note that the case g = 1 is slightly
different (see Section 9).

To show that Sgd is nonempty, we start by relating the relevant properties of ρ ∈ S with
the corresponding properties of ρ2 : Fg → G.

Proposition 2.10. Let ρ ∈ S ⊂ Hom (π1, G) be given by ρF = (ρ1, ρ2) : Fg → Z ×G as in
(2.3). Then:

(a) Z(ρ) = Z(ρ2) ⊂ G,
(b) ρ is irreducible if and only if ρ2 is irreducible,
(c) ρ is a good Schottky representation if and only if ρ2 is a good representation of Fg.

Proof. (a) Denote by C(h) the centralizer of an element h ∈ G, C(h) := {g ∈ G : hg = gh}.
Since ρ is completely defined by the image of the generators of π1, the stabilizer of ρ is the
intersection of the centralizers of the images of the generators αi, βi of π1 and γi of Fg:

Z (ρ) =
⋂g
i=1C(ρ(αi))

⋂g
i=1C(ρ(βi)) =

⋂g
i=1C(ρ2(γi)) = Z(ρ2),

because ρ(αi) = ρ1 (γi) ∈ Z, which implies C(ρ(αi)) = G.
(b) Let us suppose that ρ : π1 → G is reducible. By definition, ρ (π1) ⊂ P for some proper

parabolic subgroup P ⊂ G. This means that ρ (αi) , ρ (βi) ∈ P, ∀i = 1, · · · , g. So,

ρ (βi) = ρ2 (γi) ∈ P, ∀i ⇔ ρ2 (Fg) ⊂ P,

proving that ρ2 is reducible. The proof of the converse is analogous, using again ρ(αi) =

ρ1(γi) ∈ Z, and also the fact that any parabolic subgroup contains the center of G.
(c) This follows immediately from (a) and (b). �

Recall that, for a connected reductive algebraic group G over C, there exists a maximal
compact connected real Lie group K whose complexification coincides with G. Ramanathan
showed that the moduli space of semistable G-bundles over X, which admit a flat connection,
is homeomorphic to Hom(π1,K)/K ([Ram75]).

We now show that good Schottky representations exist, and these can be taken to be
unitary, as well.
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Lemma 2.11. Let K be a maximal compact subgroup of G. If H is a subgroup of K which
is dense in the manifold topology of K, then ZG(H) = ZG(K) = Z.

Proof. Being the intersection of centralizers of single elements, the centralizer of any subgroup
of G is an algebraic subgroup of G, hence Zariski closed. In particular, ZG(K) centralizes
the Zariski closure of K, which is well known to be G. So ZG(K) = ZG(G) = Z. Moreover,
since H is dense in K, their centralizers are equal, ZG(H) = ZG(K). �

Now recall that any connected compact Lie group can be generated by two elements.

Theorem 2.12. [Aue34] Let K be a connected compact Lie group. Then there are two
elements c, d ∈ K such that the closure of the subgroup they generate, 〈c, d〉, equals K.
Moreover, the set of such pairs {(c, d)} is dense in K ×K.

Proposition 2.13. Let g ≥ 2. Then, there is always a good strict Schottky representation
ρ : π1 → G. Moreover, such a representation can be defined to take values in K.

Proof. Let c, d ∈ K be two elements of K, such that 〈c, d〉 = K, as in Theorem 2.12. Then
we explicitly define a unitary representation ρ : π1 → K by:

ρ (αi) = e, ∀i = 1, · · · , g, and


ρ (β1) = c

ρ (β2) = d

ρ (βi) = e, ∀i = 3, · · · , g,
(2.7)

Since the subgroup H := 〈c, d〉 is dense in K, the subgroup ρ(π1) ⊂ K is also dense in K. So
ZG(ρ) = Z, by Lemma 2.11, which proves that ρ is a good strict Schottky representation. �

Theorem 2.14. Let g ≥ 2. The subsets of good representations Homgd (π1, G) and Sgd are
Zariski open in Hom (π1, G) and S, respectively. A good representation defines a smooth
point in the corresponding geometric quotient. Thus, the geometric quotients Bgd and Sgd are
complex manifolds, and Sgd is a complex submanifold of Bgd.

Proof. In Proposition 2.13 we constructed a good Schottky representation, for g ≥ 2. By
[Sik12, Proposition 33], the subspaces of good representations in Hom(π1, G) and S are
Zariski open. Thus, Homgd (π1, G) and Sgd are open. Since we are considering either surface
groups or free groups, [Sik12, Corollary 50] shows that if ρ ∈ Homgd (π1, G), respectively
ρ ∈Sgd, then its class [ρ] is a smooth point of B, respectively S. �

3. Higgs bundles and Schottky representations

In this section, we relate Schottky representations to certain Lagrangian subspaces of the
moduli space of Higgs G-bundles. It is a fundamental result in the theory of Higgs bundles,
the so-called non-abelian Hodge theorem, that by considering the Hitchin equations for G-
Higgs fields, one obtains a homeomorphism between the Betti space B = Hom(π1, G)//G and
the moduli space of semistable G-Higgs bundles over X, denoted by H.

It is a recent observation in [BS14] that, when considering G-Higgs bundles over Riemann
surfaces with a real structure, one is naturally lead to representations into G of the funda-
mental group of a 3-manifold with boundary X. These are naturally related to Schottky
representations, as we present below. Our approach via Schottky representations has one
advantage: by showing the vanishing of the complex symplectic form on the strict Schottky
locus (see Proposition 7.3), we get a simple argument for the fact that (at least a natural com-
ponent of) the Baraglia-Schaposnik brane is indeed non-empty and Lagrangian with respect
to the natural complex structure of B (coming from the complex structure of G).
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3.1. Schottky representations and flat connections on a three manifold. Suppose
that our Riemann surface X, of genus g, is the boundary ∂M , of a compact 3-manifold M .
Choose a basepoint in this boundary, x0 ∈ X ⊂ M . From the inclusion of pointed spaces
(X,x0) ↪→ (M,x0) one gets an induced homomorphism:

(3.1) ϕ : π1 = π1(X,x0)→ π1(M,x0),

between their fundamental groups.
One particularly interesting case is when X bounds a 3-dimensional handlebody M , so

that π1(M,x0) is free of rank g. In this case, by carefully choosing the generators of each
fundamental group, we can arrange so that ϕ coincides with the map defining Schottky
representations (see Lemma 2.2).

Proposition 3.1. Let M be a compact 3-dimensional handlebody of genus g whose boundary
is a compact surface X. Then, the moduli space Ss of strict Schottky representations with
respect to ϕ coincides with the moduli space FM (G) of flat G-connections over M .

Proof. By hypothesis π1(M,x0) is a free group of rank g, and π1 has a “symplectic presenta-
tion” in terms of generators αi and βi, i = 1, · · · , g, as in Equation (2.1), so that

ϕ(αi) = 1, ϕ(βi) = γi, i = 1, · · · , g,

where γ1, · · · , γg form a free basis of π1(M,x0). Thus, a strict Schottky representation
ρ : π1 → G with respect to ϕ factors through a representation of π1(M,x0) ∼= Fg via
ϕ. By standard differential geometry arguments, this is precisely the same as saying that
the corresponding flat connection ∇ρ on X extends, as a flat connection, to the 3-manifold
M . Conversely, a flat G-connection on M induces a representation ρ : π1 → G satisfying
ρ(kerϕ) = {e}, and thus it is a strict Schottky representation of π1 (with respect to ϕ), by
Lemma 2.2. This correspondence is well defined up to conjugation by G, and so, we have a
natural identification:

Ss = Hom(Fg, G)//G ∼= FM (G),

as wanted. �

3.2. Schottky representations and (A,B,A)-branes. Suppose now that we have an anti-
holomorphic involution f : X → X, defining a real structure on X. This induces, as in [BS14,
§3], an anti-holomorphic involution

(3.2) f∗ : H → H,

where H is the moduli space of G-Higgs bundles over X. Following [BS14, §3], denote the
set of fixed points of f∗ in H by LG, and call it the Baraglia-Schaposnik brane inside H.

Consider the 3-manifold with boundary X̂ := X×[−1, 1]. The anti-holomorphic involution
f : X → X defines now an orientation preserving involution σ : X̂ → X̂ given by

σ(x, t) = (f(x),−t).

Note that the boundary of X̂ consists of two copies of X, but the boundary of the compact
3-manifold M := X̂/σ is homeomorphic to X.

Proposition 3.2. Let f : X → X be an anti-holomorphic involution such that M is a
handlebody of genus g, and let x0 ∈ X ⊂ M be fixed by f . Then, the moduli space Ss of
strict Schottky representations with respect to the map ϕ in (3.1) is included in the Baraglia-
Schaposnik brane LG.

Proof. In [BS14, Prop. 43], Baraglia and Schaposnik show that any flat G-connection on
M defines, under the non-abelian Hodge theorem sending B to H, a G-Higgs bundle which
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(A) Involution f on X, and its fixed curves Xf (B) Involution σ restricted to Xf × I

Figure 3.1. Involutions

is fixed by the involution f∗. Thus, they have produced a map, which they prove to be an
inclusion:

FM (G)→ LG ⊂ H.
Since, by Proposition 3.1, Ss can be identified with FM (G) the proposition follows. �

Remark 3.3. The assumption of the previous proposition is verified when the anti-holomor-
phic involution f has as fixed point locus, Xf , the union of g + 1 disjoint loops and dis-
connected orientation double cover (see [BS14, Proposition 3] and Figure 3.1). In this case,
[BS14, Proposition 10] says that the set of smooth points of LG is a non-empty Lagrangian
submanifold of H. In a future work, we plan to further address this construction.

4. Schottky G-bundles

Let again X be a compact Riemann surface, with fundamental group π1 and ρ : π1 → G be
a representation into a reductive group. The associated bundle construction, from a universal
cover p : Y → X, defines a G-bundle over X associated to ρ. We write this G-bundle as
Eρ := (Y ×G)/ρ π1, with equivalence classes given by2

(4.1) (y, g) ∼ (γ · y, ρ(γ) · g) , ∀γ ∈ π1, (y, g) ∈ Y ×G.

4.1. Schottky principal bundles and the uniformization map. Thus, the space of
representations parametrizes holomorphic G-bundles, and we can view this construction as
providing a natural map, that we call the uniformization map:

(4.2)
E : B → MG

[ρ] 7→ [Eρ]

Here,MG represents the set of isomorphism classes ofG-bundles that admit a holomorphic flat
connection. To simplify terminology, we say that a bundle is flat if it admits a holomorphic
flat connection. Note that E is well defined on conjugacy classes, since if ρ and σ are conjugate
representations, then Eρ ∼= Eσ. Moreover, by considering the holonomy representation of a
given flat G-bundle, the map E is easily seen to be surjective.

Definition 4.1. A G-bundle E over the Riemann surface X is called:

(1) a Schottky G-bundle if E is isomorphic to Eρ for some Schottky representation ρ :

π1 → G, that is, ρ (αi) ∈ Z for all i = 1, · · · , g.
(2) a strict Schottky G-bundle if E is isomorphic to Eρ for some strict Schottky repre-

sentation ρ : π1 → G, that is, ρ (αi) = e for all i = 1, · · · , g.

Remark 4.2. (1) Schottky vector bundles were defined by [Flo01] as vector bundles isomorphic
to Vρ := (Y ×Cn)/ρ π1 for a representation ρ : π1 → GLnC with ρ (αi) = e for all i = 1, · · · , g.

2We are using a left action both on Y and on G; this was chosen (other options would be equivalent) for a
standard use of Fox calculus in section 8.
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Then, the associated frame bundle is, by definition the GLnC-bundle defined by the same
representation: Eρ = (Y × GLnC)/ρ π1. So, if V is a Schottky vector bundle then the
associated frame bundle is a strict Schottky GLnC-bundle. In other words, according to our
definition, Schottky vector bundles are the same as strict Schottky (principal) GLnC-bundles.
See, however, Proposition 6.4 and Example 6.5.
(2) In terms of the uniformization map in Equation (4.2) we simply say that E is Schottky
(resp. strict Schottky) if and only if E−1([E]) ⊂ S (resp. E−1([E]) ⊂ Ss).

4.2. Associated Schottky bundles. In the following, we describe how the Schottky prop-
erty is transferred to associated bundles. Throughout this section, G and H denote connected
reductive algebraic groups, ZG and ZH the corresponding centers.

Suppose we have a G-bundle E over X. Then, the H-bundle over X, obtained from the
trivial bundle E ×H → E by letting G act on H through a homomorphism φ : G → H is
denoted by E(H) := (E×H)/φG, and we say that E(H) is obtained from E by extension of
structure group. This is, conceptually, the same as the construction of the bundle Eρ starting
from universal cover of X, the π1 bundle Y → X, and the homomorphism ρ : π1 → G, as in
(4.1).

Proposition 4.3. Let φ : G→ H be a group homomorphism and E be a Schottky G-bundle.
Then:

(1) If E is a strict Schottky G-bundle, then E(H) is a strict Schottky H-bundle.
(2) If φ(ZG) ⊂ ZH , then E(H) is a Schottky H-bundle.

Proof. First note that if E = Eρ, for some ρ : π1 → G, then E(H) = Eφ◦ρ. Then, assuming
ρ is a strict Schottky representation, ρ(kerϕ) is the identity of G (as in Lemma 2.2). This
implies that (φ◦ρ)(kerϕ) = φ(e) = eH , the identity of H, so Eφ◦ρ is a strict Schottky bundle,
as wanted. The second case is similar, using the hypothesis φ(ZG) ⊂ ZH . �

A G×H-bundle E can be seen as an ordered pair (EG, EH), with EG and EH a G-bundle
and a H bundle respectively. Indeed, from E we can define EG := E(G) and EH := E(H),
where there are considered the projections πG : G×H → G and πH : G×H → H, respectively.
So, the following proposition is an easy consequence of the previous one.

Proposition 4.4. A (G × H)-bundle E is (strict) Schottky if and only if the EG and EH
are (strict) Schottky principal bundles.

Proof. Assume that E = Eρ for a certain Schottky representation ρ = (ρG, ρH) : π1 → G×H.
Then, both ρG and ρH are Schottky representations because (ρG(αi), ρH(αi)) = ρ(αi) ∈
ZG×H = ZG × ZH for i = 1, · · · , g. By Proposition 4.3, EπG◦ρ is Schottky. On the other
hand, it is easy to see that EG = EρG = EπG◦ρ, so EG is Schottky. The same argument applies
to EH . The converse statement and the strict case are treated in a similar fashion. �

Let now g = Lie(G) be the Lie algebra of G. Given a G-bundle E, the GL(g)-bundle
associated to the adjoint representation Ad : G→ GL(g) corresponds, via the frame bundle
construction, to the vector bundle (with g as fiber):

(4.3) Ad(E) := E ×Ad g.

called the adjoint bundle.

Proposition 4.5. If E is a Schottky G-bundle then the adjoint bundle Ad(E) is a Schottky
vector bundle.
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Proof. Since E is a Schottky G-bundle, there is ρ ∈ Hom(π1, G) with ρ (αi) ∈ Z for all
i = 1, · · · , g, such that E ∼= Eρ = (Y ×G)/ρ π1. By construction, the vector bundle associated
to E by the adjoint representation can be seen as

Ad(E) = E ×Ad g ∼= (Y × g)/Adρ π1

where Adρ : π1 → G→ GL(g) is the composition of the representations Ad and ρ. Because
ρ(αi) ∈ Z and since ker (Ad) = Z, we see that Adρ(αi) is the identity map, for all i =

1, · · · , g. Thus, we obtain a strict Schottky representation Adρ : π1 → GL(g). So, Ad(E) ∼=
Y ×Ad ρ g is a strict Schottky GL(g)-bundle. �

The following simple example shows that the converse of Proposition 4.5 is not valid.

Example. Consider the C∗-bundle E → X defined as the frame bundle of a line bundle
L with non-zero first Chern class. Then, Ad (E) is the trivial line bundle, as conjugation
is trivial in this case, so that Ad (E) is trivially a Schottky vector bundle. But E is not
Schottky, as it does not admit a flat holomorphic connection (Weil’s theorem [Wei38]).

However, by only requiring that E admits a flat holomorphic connection, we obtain a
necessary and sufficient condition.

Proposition 4.6. Suppose that the G-bundle E admits a flat holomorphic connection. Then,
E is a Schottky G-bundle if and only if Ad(E) is a Schottky vector bundle.

Proof. If E is Schottky, Proposition 4.5 implies that Ad(E) is Schottky. Conversely, suppose
that E admits a flat G-connection. Then it is of the form E ∼= Eρ, for some ρ : π1 → G. Note
that Ad(Eρ) ∼= EAdρ . Since by hypothesis Ad(E) is a Schottky vector bundle, this means that
Adρ(αi) is the identity morphism, ∀i = 1, · · · , g. As ker(Ad) = Z (because G is reductive),
we may conclude that ρ(αi) ∈ Z for all i = 1, · · · , g, that is, E ∼= Eρ where ρ is a Schottky
representation. �

Moreover, when G is a connected semisimple algebraic group, we can drop the flatness
condition above.

Theorem 4.7. Let G be a connected semisimple algebraic group. Then E is a Schottky
G-bundle if and only if the adjoint bundle Ad(E) is a Schottky vector bundle.

Proof. By Proposition 4.5, if E is Schottky, Ad(E) is Schottky too. Conversely, assume
that Ad(E) is a Schottky vector bundle. Then, Ad(E) admits a flat connection and [AB03,
Proposition 2.2] proved that, because G is semisimple, E admits a flat connection too. So,
the conditions of Proposition 4.6 are fulfilled, and E is a Schottky G-bundle. �

5. Topological type

The moduli space of G-bundles over a compact Riemann surface is a disjoint union of con-
nected components indexed by π1 (G), the fundamental group of G (see [Ram75], [GPO17]).
In this section, we show that all Schottky G-bundles over a compact Riemann surface X
have trivial topological type, corresponding to the identity element 0 ∈ π1 (G). Therefore,
any Schottky G-bundle E is globally trivial in the smooth category, although it is generally
non-trivial as a flat, or as an algebraic principal bundle.

5.1. Topological types of G-bundles. In this subsection, G is just a connected topological
group which admits a universal cover (this is the case provided G is locally path connected
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and semilocally simply connected). To characterize G-bundles topologically, consider the
short exact sequence of group homomorphisms

(5.1) 1→ ker p→ G̃
p→ G→ 1,

where p : G̃→ G is a universal cover. It is known that ker p ∼= π1 (G) is a discrete subgroup
of the center of G̃, so that (5.1) defines G̃ as a central extension of G (cf. also Lemma 5.1
below). The exact sequence (5.1) induces a short exact sequence of sheaves

1→ π1(G)→ G̃
p→ G→ 1,

where the underline denotes the sheaf of continuous functions defined on open subsets of the
base X into the corresponding group. In turn, we get an exact sequence in (non-abelian)
sheaf cohomology, with an associated coboundary map:

H1 (X, G)
δ−→ H2 (X, π1(G)) ∼= π1(G),

whose right isomorphism comes from using the orientation on X (see, for example [Gol88]).
The map δ serves to define the topological type of a G-bundle. Namely, interpreting an
isomorphism class of a G-bundle E as an element of H1 (X, G) we define its topological type
as (see also [Ram75, Remark 5.2])

δ(E) := δ([E]) ∈ π1(G).

The topological type is functorial in the sense that, if a H-bundle EH is obtained from a
G-bundle EG by extension of the structure group φ : G→ H, then:

(5.2) δ(EH) = φ∗(δ(EG)),

using the induced morphism φ∗ : π1(G)→ π1(H) (see [Ram75, Remark 5.1]). The following
simple lemma should be well known, but we include a proof for convenience of the reader.

Lemma 5.1. Let G be a connected, locally path connected and semilocally simply connected
topological group, and p : G̃ → G be a universal cover of G. Then Z

G̃
= p−1 (ZG) and

p
(
Z
G̃

)
= ZG.

Proof. Let z̃ ∈ Z
G̃
. Since p is surjective, for all h ∈ G, there is h̃ ∈ p−1(h) ⊂ G̃, and we

obtain
hp(z̃) = p(h̃)p(z̃) = p(h̃z̃) = p(z̃)p(h̃) = p(z̃)h,

showing that p (z̃) ∈ ZG. We conclude that Z
G̃
⊂ p−1(ZG).

Conversely, let z ∈ ZG and fix z̃ ∈ p−1(z) ⊂ G̃. We want to show that z̃ ∈ Z
G̃
.

Since G̃ is path connected, given h̃ ∈ G̃ there is a continuous path λ : [0, 1] → G̃ with
λ(0) = ẽ and λ(1) = h̃, where ẽ is the identity element of G̃. Since p(z̃λ(t)z̃−1λ(t)−1) =

zp(λ(t))z−1p(λ(t))−1 = e, the following map is well defined and continuous:

Ψ : [0, 1] → ker p

t 7→ z̃λ(t)z̃−1λ(t)−1.

Noting that ker p ∼= π1(G) ⊂ Z
G̃
is a discrete subgroup of G̃, the image of Ψ is constant and

so Ψ([0, 1]) = {ẽ}. Thus:
ẽ = Ψ(0) = Ψ(1) = z̃h̃z̃−1h̃−1,

showing that z̃ ∈ Z
G̃
. Finally p

(
Z
G̃

)
= ZG is a simple consequence of Z

G̃
= p−1 (ZG). �

5.2. Topological triviality of Schottky G-bundles. Now, we return to the case where
G is a connected complex reductive group, and suppose that E is a flat G-bundle, a bundle
isomorphic to Eρ for some ρ : π1 → G. Then, the value δ(E) lies, in fact, in the subgroup
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π1(DG) ⊂ π1(G) coming from the natural inclusion DG ↪→ G, where DG is the derived
group of G. Moreover, in [Ram75], Ramanathan defined a natural map from connected
components of Hom(π1, G) to π1(DG). More precisely, the following statement was recently
shown in [LR15, Appendix] (following [Li93] and [Ram75]).

Theorem 5.2. For any complex reductive group G, there is a natural bijection

π0(Hom(π1, G)) ∼= π1(DG).

In particular, for groups whose derived group is not simply connected, there exist flat bun-
dles E which are not topologically trivial. By contrast, all Schottky bundles are topologically
trivial, as we now show.

Theorem 5.3. Let G be a connected complex reductive group, and let E be a Schottky G-
bundle. Then E has trivial topological type.

Proof. If E ∼= Eρ is Schottky then it is defined by a representation ρ : Fg → ZG ×G. Since
Fg is free, we can lift ρ to a representation ρ̃ : Fg → G̃ × G̃, verifying ρ = (p × p) ◦ ρ̃,
where as above, p : G̃→ G is the universal cover (G̃ is a complex Lie group, not necessarily
algebraic). By Lemma 5.1, we see that ρ̃ has image in Z

G̃
× G̃ ⊂ G̃ × G̃, so it defines a

Schottky representation inside Hom(π1, G̃). The corresponding G̃-bundle Eρ̃ is topological
trivial, since π1(G̃) is trivial. Finally, as Eρ = E(p×p)◦ρ̃ is obtained by extension of structure
group, it is also topological trivial, by Equation (5.2) with φ = p× p. �

By [Ram75, Theorem 5.9], the components of the moduli space of semistable G-bundles
MG over a Riemann surface X are normal projective varieties indexed by the topological
types of G-bundles. Thus, we can write the moduli spaceMG as a disjoint union

MG =
⊔

δ∈π1(G)

Mδ
G.

whereMδ
G denotes the moduli space of semistableG-bundles with topological type δ ∈ π1(G).

In [GPO17], the theory of G-Higgs bundles is used to prove the non-emptiness of the moduli
spaces Mδ

G, for each topological type δ ∈ π1(G) (see also [Ram96, Proposition 7.7]). In
particular,M0

G ⊂MG is connected.

Corollary 5.4. The isomorphism class of a semistable Schottky G-bundle E lies in the
connected componentM0

G.

6. The Uniformization Map

The association of a G-bundle to a representation of π1 was called the uniformization map
in section 4. In this section, we introduce the notion of analytic equivalence (see [Flo01]),
consider the tangent space of Schottky space at good representations, and define the period
map.

6.1. Analytic equivalence. Recall that the uniformization map (4.2)

(6.1)
E : B := Hom (π1, G) //G → MG

[ρ] 7→ [Eρ]

is surjective but, in general, not injective. This leads us to consider what we call analytic
equivalence.

Definition 6.1. Two representations ρ, σ ∈ Hom (π1, G) are called analytically equivalent if
their associated G-bundles are isomorphic, so that Eρ ∼= Eσ, or equivalently E[ρ] = E[σ].
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The next result provides two useful criteria for analytic equivalence, generalizing Lemma
2 of ([Flo01]) (see also [Gun67]), one of them in terms of holomorphic sections of Ω1

X , the
canonical line bundle of X. Let p : Y → X be a universal covering map of X.

Theorem 6.2. Let ρ, σ ∈ Hom(π1, G) and y0 ∈ Y . Then the following conditions are
equivalent:

(1) Eσ ∼= Eρ, that is σ and ρ are analytically equivalent;
(2) There exists a holomorphic function h : Y → G such that

h(γ · y) = ρ(γ)h(y)σ(γ)−1, ∀γ ∈ π1, y ∈ Y ;

(3) There exists ω ∈ H0(X,Ad(Eσ)⊗ Ω1
X) such that

σ(γ) = hω(γ · y)ρ(γ)hω(y)−1, ∀γ ∈ π1, y ∈ Y

where hω is the unique solution of the differential equation h−1dh = ω with the initial
condition h(y0) = e ∈ G.

Proof. (1) ⇔ (2) Since the pullback p∗ (Eσ) → Y using p : Y → X is a holomorphically
trivial G-bundle on Y , its sections sσ can be viewed as holomorphic maps sσ : Y → G

satisfying sσ(γ · y) = σ(γ)sσ(y) for all γ ∈ π1, y ∈ Y (and similarly for Eρ). Analogously,
an isomorphism ψ : Eσ → Eρ is given by an isomorphism between the pullback bundles
ψ̃ : p∗(Eσ)→ p∗(Eρ) satisfying ψ̃(y, g) = (y, h(y) g), ∀(y, g) ∈ Y ×G, for some holomorphic
h : Y → G. Since ψ̃ sends a section of p∗ (Eσ) to a section of p∗ (Eρ) we have h(y)sσ(y) =

sρ(y), for all y ∈ Y , which implies, h(γ · y)σ(γ)sσ(y) = ρ(γ)h(y)sσ(y), as wanted.
(2)⇔ (3) Writing hγ(y) := h(γ · y) we have, from (2), the equation ρ(γ) = hγσ(γ)h−1, for

all γ ∈ π1, as holomorphic functions on Y . Taking the exterior derivative we get

0 = d(hγ)γ′σ(γ)h−1 − hγσ(γ)h−1dhh−1,

(γ′ is the derivative of γ : y 7→ γy) which is equivalent to (hγ)−1dhy γ′ = σ(γ)h−1dhσ(γ)−1,
for all γ ∈ π1. Setting ω := h−1dh, this equation can be rewritten as Adσ(γ) · ω = ωγγ′,
which precisely means that the 1-form ω is the pullback to Y of a holomorphic section (still
denoted the same) ω ∈ H0(X,Ad(Eσ)⊗Ω1

X). Conversely, since the solution of the differential
equation ω = h−1dh with the condition h(y0) = e over the simply connected space Y is unique
and satisfies the equality (3) then, obviously it satisfies (2). �

It is clear that Schottky space is different from the strict Schottky space, when the center
Z is nontrivial. However, there is no need to distinguish the strict and non-strict cases when
considering their associated bundles, in the case that Z is itself connected, as we now see.

Proposition 6.3. Let G be a complex connected reductive group with center Z, and let
ρ : π1 → G and σ, ν : π1 → Z be representations. If there is an isomorphism Eσ ∼= Eν of
Z-bundles, then the representations σρ, νρ ∈ Hom(π1, G), give isomorphic G-bundles Eσρ ∼=
Eνρ.

Proof. By Theorem 6.2, there exists a holomorphic function h : Y → Z such that ν(γ)h(y) =

h(γ · y)σ(γ), for every γ ∈ π1, y ∈ Y . Considering this equation in G, and since ν, σ are in
the center of G, we can multiply by ρ(γ), obtaining:

ν(γ)ρ(γ)h(y) = h(γ · y)σ(γ)ρ(γ), ∀γ ∈ π1, y ∈ Y.

Thus, νρ : π1 → G is analytically equivalent to the Schottky representation σρ : π1 → G. So
again by Theorem 6.2, Eσρ ∼= Eνρ. �
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Proposition 6.4. Suppose that Z is connected. Then E is a G-Schottky bundle if and only
if it is a strict G-Schottky bundle.

Proof. A strict Schottky bundle is trivially a Schottky bundle. So, let E = Eρ be a Schottky
G-bundle, with ρ : π1 → G a Schottky representation and, using Theorem 6.2, we look for a
strict Schottky representation analytically equivalent to ρ.

Let DG be the derived group of G. In terms of the well-known decomposition G = Z ·DG,
and our usual generators, we can write ρ(αi) = ν(αi)ρ̃(αi) and ρ(βi) = ν(βi)ρ̃(βi) for every
i = 1, · · · , g, for some ν(αi), ν(βi) ∈ Z, with ρ̃(βi) ∈ DG and ρ̃(αi) = e. This assignment
defines representations ν : π1 → Z and ρ̃ : π1 → DG satisfying ρ(γ) = ν(γ)ρ̃(γ) for all
γ ∈ π1.

The representation ν defines a Schottky Z-bundle, Eν . As Z is connected, by Proposition
9.1 there is an isomorphism of Z-bundles Eν ∼= Eσ, where Eσ is the Z-bundle associated
to a strict Schottky representation σ : π1 → Z, (so that σ(αi) = e). By Proposition 6.3,
Eρ = Eνρ̃ ∼= Eσρ̃. Since σρ̃ : π1 → G is a strict Schottky representation, we are done. �

Example 6.5. Since C∗, the center of GLnC, is connected, every Schottky GLnC-bundle is
strict Schottky. On the other hand, for vector bundles with trivial determinant, corresponding
to G = SLnC, because Z = Zn, our definition of Schottky bundles is more general than the
one used in [Flo01].

For later use, we now provide another description of the fiber of the uniformization map.

Definition 6.6. Given a representation ρ ∈ Hom (π1, G), we define the following map, called
the orbit map

Qρ : H0(X,AdEρ ⊗ Ω1
X) → B
ω 7→ Qρ (ω) := [σ] ,

with σ ∈ Hom (π1, G) the representation given by

σ (γ) := hω (γ · y) ρ (γ)hω (y)−1 , γ ∈ π1, y ∈ Y.

Here, hω is defined in Theorem 6.2 (3), whose proof readily shows the following.

Lemma 6.7. The fibre E−1([Eρ]) coincides with Qρ
(
H0
(
X,AdEρ ⊗ Ω1

X

))
, the image of the

orbit map. In other words, Eρ ∼= Eσ if and only if [σ] ∈ Im (Qρ).

6.2. Tangent spaces and group cohomology. We now describe the tangent space of
B = Hom (π1, G) //G, at a good representation, in terms of the group cohomology of π1.

More generally, let Γ denote a finitely generated group and fix ρ ∈ Hom (Γ, G). The adjoint
representation on the Lie algebra of G, g = Lie(G), composed with ρ, that is

(6.2) Adρ : Γ→ G→ GL (g) ,

induces on g a Γ-module structure, which we denote by gAdρ . The cohomology groups of Γ

with coefficients in gAdρ , are explicitly given by:

H0
(
Γ, gAdρ

)
:= Z0

(
Γ, gAdρ

)
=
(
gAdρ

)Γ (Γ invariants in gAdρ),

H1
(
Γ, gAdρ

)
:= Z1

(
Γ, gAdρ

)
/B1

(
Γ, gAdρ

)
where (see, e.g., [Bro94])

Z1
(
Γ, gAdρ

)
:= {φ : Γ→ g |φ(γ0γ1) = φ(γ0) + Adρ(γ0) · φ(γ1) , ∀γ0, γ1 ∈ Γ} ,

B1
(
Γ, gAdρ

)
:= {φ : Γ→ g | ∃a ∈ g, φ(γ0) = Adρ(γ0) · a− a , ∀γ0 ∈ Γ} .
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Let us recall the isomorphism between the Zariski tangent space of the character variety at
a good representation ρ, and the first cohomology group H1

(
Γ, gAdρ

)
. The following result

was proved by Goldman [Gol84], Martin [Mar00] (generalizing the case of G = GLnC proved
by Weil [Wei38]) and Lubotzky and Magid [LM85], see also [Sik12].

Theorem 6.8. For a good representation ρ ∈ Hom (Γ, G) we have,

T[ρ] (Hom (Γ, G) //G) ∼= H1
(
Γ, gAdρ

)
.

The identification between tangent spaces to character varieties and group cohomology
spaces is very useful in many situations. In particular, we can use it to compute the dimension
of the complex manifolds Bgd = Hom (π1, G)gd //G and Sgd ⊂ Bgd, consisting of classes of
good representations, when Γ is the fundamental group π1 of a surface of genus g. In fact,
by [Mar00, Lemma 6.2], we have, for ρ ∈ Bgd:

dimZ1
(
π1, gAdρ

)
= (2g − 1) dimG+ dimZ,

dimB1
(
π1, gAdρ

)
= dimG− dimZ,

and also the following.

Proposition 6.9. [Mar00] If [ρ] ∈ Bgd, then

T[ρ]B ∼= H1
(
π1, gAdρ

)
and dimT[ρ]B = (2g − 2) dimG+ 2 dimZ.

6.3. The period map. As in Theorem 6.2, seing holomorphic sections ω ∈ H0(X,AdEρ ⊗
Ω1
X) as 1-forms on the universal cover Y , we can integrate them along paths to obtain elements

in group cohomology of π1. This defines the period map.
Fix y ∈ Y and ω ∈ H0(X,AdEρ ⊗ Ω1

X). Let us denote by φωy the map:

φωy : π1 → g

γ 7→ φωy (γ) :=
´ γ·y
y ω,

where we denote also by ω its pullback to Y . In fact, φωy is a cocycle in Z1(π1, gAdρ), and its
cohomology class only depends on ω (and not on the basepoint y ∈ Y ).

Proposition 6.10. Fix a representation ρ : π1 → G, and y ∈ Y . Then, for every ω,
φωy ∈ Z1(π1, gAdρ). Moreover, the assignement

PAdρ : H0
(
X,AdEρ ⊗ Ω1

X

)
→ H1

(
π1, gAdρ

)
ω 7→ [φωy ],

is a well defined linear map between finite dimensional C-vector spaces, and is independent
of y ∈ Y .

Definition 6.11. We call PAd ρ, as defined above, the period map associated with ρ.

Proof. Using the action on 1-forms γ ·ω = Adρ(γ) ·ω = (ω ◦ γ)γ′, γ ∈ π1, as in Theorem 6.2,
we compute, by linearity and change of variable:

φωy (γ1γ2) =
´ γ1·y
y ω +

´ γ1·(γ2·y)
γ1·y ω

= φωy (γ1) +
´ γ2·y
y (ω ◦ γ1) γ′1

= φωy (γ1) + γ1 · φωy (γ2),

which shows that φωy is a cocycle in Z1
(
π1, gAdρ

)
. The proof that PAdρ(ω) is independent of

the base point follows a similar computation to conclude that φωy − φωy′ is 1-coboundary, for
another y′ ∈ Y . �
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Recall that the orbit map

Qρ : H0(X,AdEρ ⊗ Ω1
X)→ B,

(see Definition 6.6) verifies Qρ(0) = [ρ], and its derivative at the identity, for a good repre-
sentation ρ is a map:

d0Qρ : H0(X,AdEρ ⊗ Ω1
X)→ T[ρ]B ∼= H1(π1, gAdρ).

Lemma 6.12. For a representation ρ ∈ Hom (π1, G), the image of d0Qρ coincides with the
kernel of the map d[ρ]E, the derivative of E at [ρ].

Proof. Using Theorem 6.2, and Lemma 6.7, the proof is analogous to the proof of [Flo01,
Lemma 4(a)]. �

For a good representation ρ ∈ Hom (π1, G), such that [ρ] ∈ E−1(MG), we can form the
diagram

(6.3) H0
(
X,AdEρ ⊗ Ω1

X

) d0Qρ //

PAdρ ))

T[ρ]B

∼=
��

d[ρ]E // T[Eρ]MG

H1
(
π1, gAdρ

)
.

The next result shows that, in fact, the triangle above is commutative.

Proposition 6.13. For each good representation ρ in Hom (π1, G), the maps d0Qρ and PAdρ ,
coincide under the vertical isomorphism of diagram (6.3).

Proof. Since G is a connected reductive group over complex numbers, there is a faithful
representation φ : G → GLnC. By associating a representation ρ ∈ Hom (π1, G) to the
composition φ ◦ ρ = ρ̄ ∈ Hom (π1, GLnC), φ induces an injective morphism of algebraic
varieties φ̄ : B → Gn, where Gn = Hom (π1, GLnC) //GLnC. The Lie algebra g, can be
seen as a subalgebra of the Lie algebra gl = MnC of GLnC, and we obtain an inclusion of
π1-modules gAdρ ⊂ glAdρ̄ . On the other hand, Florentino proved in [Flo01, Lemma 4(b)] this
result for G = GLnC. So, we obtain the following diagram, where Eρ̄ is the associated vector
bundle of Eρ.

H1
(
π1, gAdρ

)
// H1

(
π1, glAdρ̄

)

T[ρ]B

∼=

ee

d[ρ]φ̄ // T[ρ̄]Gn

∼=
88

H0
(
X,Ad(Eρ)⊗ Ω1

X

)
//

PAdρ

OO

d0Qρ

88

H0
(
X,End (Eρ̄)⊗ Ω1

X

)
d0Qρ̄

gg
PAdρ̄

OO

Above, the horizontal arrows are inclusions of vector spaces, because H0 and H1 behave
functorially. Finally, since the triangle on the right is commutative, the same holds for the
left triangle, as wanted. �

7. Schottky space

In this section we compute the dimension of Schottky space and prove that the strict
Schottky space is a Lagrangian subspace of the Betti space. We also define the Schottky
uniformization and moduli maps, by restricting the uniformization map to Schottky repre-
sentations, and to those representations whose flat bundles are semistable.
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7.1. Dimension of Schottky space. We now compute the dimensions of S and Ss, using
the techniques of group cohomology. By the density result (Theorem 2.14), the computations
can be carried out at good representations. Using formula (2.6) we can write the inclusion
Sgd ⊂ Bgd as

Hom(Fg, Z)×Hom(Fg, G)gd//G ∼= Zg × Sgds ↪→ Bgd ∼= Hom(π1, G)gd//G

(ρ1, [ρ2]) 7→ [ρ].

Above, the notation should be clear according to Section 2. Correspondingly, from Theorem
6.8, we obtain the inclusion of tangent spaces:

(7.1) T[ρ]S = Tρ1(Zg)⊕ T[ρ2]Ss ∼= zg ⊕H1
(
Fg, gAdρ2

)
↪→ H1

(
π1, gAdρ

)
= T[ρ]B

for [ρ] ∈ Sgd. Recall that gAdρ2 denotes the Fg-module Lie(G) = g, with the Fg-action given

by the composition Fg
ρ2→ G

Ad→ GL(g).

Proposition 7.1. Let g ≥ 2. We have dimSs = (g − 1) dimG+ dimZ.

Proof. Since good representations are dense in Ss, it is enough to compute the dimension at
a strict good representation, [ρ] ∈ Sgds , ρ : Fg → G. By Theorem 6.8, we know

dimSs = dimT[ρ]Ss = dimH1
(
Fg, gAdρ

)
.

Since Fg is a free group, there is no cocycle condition, so any 1-cocycle is completely defined
by the image of its generators; this means that Z1(Fg, gAdρ)

∼= gg. In order to compute the
dimension of the space of 1-coboundaries, B1

(
Fg, gAdρ

)
, we consider the linear map between

vector spaces

ψρ : g → gg

v 7→
(
ρ (γ1) vρ(γ1)−1 − v, · · · , ρ (γg) vρ(γg)

−1 − v
)
,

and note that B1(Fg, gAdρ) = ψρ(g). Thus:

dimB1(Fg, gAdρ) = dimψρ(g) = dim g− dim kerψρ = dim g− dim z(ρ)

where z(ρ) := {v ∈ g| vρ(γi) = ρ(γi)v,∀i = 1, · · · , g} is the Lie algebra of the stabilizer of ρ,
Z(ρ). Finally,

dimH1
(
Fg, gAdρ

)
= dimZ1

(
Fg, gAdρ

)
− dimB1

(
Fg, gAdρ

)
= g dimG− dimG+ dimZ(ρ).

Since ρ is good, by definition Z(ρ) = Z, and the proof is finished. �

Corollary 7.2. For g ≥ 2, the Schottky space S is equidimensional (all irreducible compo-
nents have the same dimension). Moreover,

dimS = (g − 1) dimG+ (g + 1) dimZ.

Proof. This follows immediately from the previous result and from Proposition 2.5, as dimZ◦ =

dimZ. �

7.2. Lagrangian subspaces of Ss. Recall that a Lagrangian submanifold L ⊂ M of a
symplectic manifold M is a half dimensional submanifold such that the symplectic form
vanishes on any tangent vectors to L.

It is well known that character varieties of surface group representations have a natural
symplectic structure ([Gol84]), which can be constructed as follows. Consider an Ad-invariant
bilinear form 〈 , 〉 on g. Then, using the cup product on group cohomology

(7.2) ∪ : H1
(
π1, gAdρ

)
⊗H1

(
π1, gAdρ

)
→ H2

(
π1, gAdρ

)
,
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and composing it with the contraction with 〈 , 〉 and with the evaluation on the fundamental
2-cycle, we obtain a non-degenerate bilinear pairing:

(7.3) H1
(
π1, gAdρ

)
⊗H1

(
π1, gAdρ

) ∪−→ H2
(
π1, gAdρ

) 〈 , 〉−→ H2 (π1, C) ∼= C

Under the identification of H1
(
π1, gAdρ

)
with the tangent space at a good representation

ρ ∈ Bgd, this pairing defines a complex sympletic form on the complex manifold Bgd. This
symplectic form is complex analytic with respect to the complex structure on Bgd coming
from the complex structure on G, and Sgds ⊂ Bgd is Lagrangian.3

Proposition 7.3. The good locus of the strict Schottky space Sgds is a Lagrangian submanifold
of Bgd.

Proof. The restriction of the map (7.2) to H1
(
Fg, gAdρ

)
is a vanishing map:

∪ : H1
(
Fg, gAdρ

)
⊗H1

(
Fg, gAdρ

)
→ H2

(
Fg, gAdρ

)
= 0,

because free groups have vanishing higher cohomology groups (see [Bro94]). Since the tangent
space, at a good point, to the strict Schottky locus Ss is identified with H1

(
Fg, gAdρ

)
(see

Theorem 6.8), this means that the symplectic form, defined above on Bgd, vanishes on any
two tangent vectors to Sgds . Since the dimension of Bgd is twice the dimension of Sgds (see
Proposition 6.9 and Proposition 7.1), we conclude the result. �

Remark 7.4. (1) The proof that LG is Lagrangian is only done for complex semisimple groups
in [BS14]. Thus, Proposition 3.2 generalizes that statement for reductive complex algebraic
groups. Moreover, since there are good strict Schottky representations for every g ≥ 2, the
current approach furnishes a proof that the Baraglia-Schaposnik branes are non-empty, at
least in the conditions of Remark 3.3.
(2) Proposition 3.2 shows that we have an inclusion Ss ⊂ LG in the (A,B,A)-branes of [BS14]
and in the case G is an adjoint group, S = Ss ⊂ LG. In a future work, we plan to study the
conditions under which this inclusion is actually a bijection.

7.3. The Schottky uniformization and moduli maps.

Definition 7.5. The Schottky uniformization map

(7.4) W : S→MG

is defined by W[ρ] := [Eρ], the isomorphism class of the Schottky G-bundle Eρ. From (4.2),
W = E ◦ i where i : S→ B is the inclusion from Proposition 2.4.

Remark 7.6. (1) As mentioned above, W[ρ] is not necessarily semistable. In fact, maximally
unstable rank vector 2 bundles with trivial determinant are Schottky (see [Flo01]). Also, W
is not injective in general: this happens already for the line bundle case (see [Flo01]).
(2) Recall that, from Theorem 5.3, W[ρ] has trivial topological type.

As defined, the target of the Schottky uniformization mapMG is a set, and it can be given
the structure of a stack. However, since we want to consider the relation between Schottky
space S and the moduli space of G-bundles, we need to further restrict W to be a morphism
of algebraic varieties.

Let MF
G = MG ∩MG be the moduli space of semistable G-bundles on X that admit a

flat connection. It is a, generally singular, projective complex algebraic variety. In order to
characterize the derivative of the Schottky map W, we will consider the subsets

B∗ := E−1
(
MF

G

)
, S∗ := W−1

(
MF

G

)
,

3For a general real Lie group, the analogous pairing defines a smooth (C∞) symplectic structure, see [Gol84].
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consisting of representations (resp. Schottky representations) [ρ] whose associated bundles
Eρ are semistable.

Proposition 7.7. For g ≥ 2, the subset S∗ ⊂ S contains the unitary Schottky representations.
Moreover, S∗ ∩ Sgd is open in S.

Proof. By Proposition 2.13 and Theorem 2.14 we know that Sgd contains unitary representa-
tions and it is smooth and open in S, since g ≥ 2. If ρ ∈ S is a unitary representation, then
Eρ is semistable by Ramanathan’s theorem. So, [Eρ] ∈MF

G and [ρ] ∈W−1(Eρ) ⊂ S∗. Thus
S∗ ∩ Sgd is non-empty, so it is open in S, by the coarse moduli property. �

Definition 7.8. The Schottky moduli map

(7.5) V : S∗ →MG

is defined to be the restriction of the Schottky uniformization map W to the subset S∗ =

W−1(MF
G) ⊂ S of representations defining semistable G-bundles.

Theorem 7.9. Let ρ be a good Schottky representation, then

(7.6) ker d[ρ]V ∼= T[ρ]S
⋂

Im d0Qρ.

Proof. It is immediate from Lemma 6.12. �

8. Surjectivity of the Schottky moduli map

In this section, we consider the image of the Schottky moduli map inside the moduli space
of semistable G-bundles. The main result is the proof that this map is a local submersion at
a good and unitary Schottky representation (see Theorem 8.6).

8.1. Bilinear relations. Let again K denote a maximal compact subgroup of the complex
connected reductive algebraic group G. We fix an hermitian structure on the complex Lie
algebra g ofG, denoted by 〈 , 〉 : g×g→ C (C-linear on the first entry) which is invariant under
the adjoint action of K on g. For example, if G = GLnC, we can take 〈A, B〉 := tr (AB∗) ,

∀A, B ∈ g ,where ∗ means conjugate transpose and tr the matrix trace.
We now define an hermitian inner product on H0

(
X,Ad (Eρ)⊗ Ω1

X

)
, when ρ : π1 → K ⊂

G is a unitary representation. As before, Y is a universal cover of the compact Riemann
surface X of genus g ≥ 2, and we let D ⊂ Y denote a fundamental domain for the quotient
X = Y /π1.

Definition 8.1. Let ω1, ω2 ∈ H0
(
X,AdEρ ⊗ Ω1

X

)
, with ρ : π1 → K ⊂ G. Define the

following hermitian inner product

(8.1) (ω1, ω2) := i

ˆ
X
〈ω1, ω2〉 := i

ˆ
D
〈h1(z), h2(z)〉 dz ∧ dz̄

where ωi = hi(z)dz for z ∈ Y .

Remark. The above integral depends on the choice of the hermitian inner product on g.
However, by unitarity of ρ, it is independent of the choice of the fundamental domain D.

To prove the unitarity of the period map ω 7→ PAdρ (ω), at unitary representations, gener-
alizing [Flo01, Proposition 5], we need also a pairing on H1

(
π1, gAdρ

)
. We use the so-called

Fox calculus, and extend 1-cocycles φ : π1 → gAdρ by Z-linearity to the group ring Z [π1] (see
[Flo01, Gol84]). The boundary ∂D can be considered as a 4g polygon, with a vertex z0 ∈ Y ,
and the other vertices ordered as:{

z0, α1z0, α1β1z0, α1β1α
−1
1 z0, R1z0, R1α2z0, · · · , Rgz0 = z0

}
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where Rk =
∏k
i=1 αiβiα

−1
i β−1

i , and define R := Rg. The Fox derivatives of R give:

∂R

∂αi
:= Ri−1 −Riβi,

∂R

∂βi
:= Ri−1αi −Ri .

Introduce also a Z-linear involution ] on Z [π1] defined by ] (
∑
niγi) :=

∑
niγ
−1
i , ni ∈ Z. In

particular:

(8.2) ]
∂R

∂αi
= R−1

i−1 − β
−1
i R−1

i and ]
∂R

∂βi
= α−1

i R−1
i−1 −R

−1
i .

Definition 8.2. Define a pairing on H1
(
π1, gAdρ

)
by

〈〈φ1, φ2〉〉 := i

g∑
j=1

〈
φ1

(
] ∂R∂βj

)
, φ2 (βj)

〉
−
〈
φ1

(
] ∂R∂αj

)
, φ2 (αj)

〉
,

for φ1, φ2 ∈ Z1
(
π1, gAdρ

)
.

Remark 8.3. It can be shown that this pairing is well defined on cohomology classes, and is
hermitian (being a complex analogue of the pairing in [Gol84]). Moreover, it coincides (up to
the factor i) with the cup product pairing in (7.2), when using our hermitian structure on g.

Theorem 8.4. Let ρ : π1 → K ⊂ G be a unitary and good representation. Then, for all
ω1, ω2 ∈ H0

(
X,Ad (Eρ)⊗ Ω1

X

)
, we have:

(ω1, ω2) =
〈〈
PAdρ (ω1) , PAdρ (ω2)

〉〉
.

In other words, at a good and unitary representation, the period map is unitary.

Proof. Fix a base point y = z0 ∈ Y , let φ1 (γ) :=
´ γ·y
y ω1 be a 1-cocycle representing

PAdρ (ω1), and write ω2 = h(z) dz. Define also f : Y → g by f (z) :=
´ z
y ω1, so that

we have ω1 = df (with a slight abuse of notation we identify forms in D ⊂ X with their
pullbacks to Y ). Computing as in Proposition 6.10, this function verifies

(8.3) f(γz) = φ1(γ) +

ˆ γ·z

γ·y
ω1 = φ1(γ) +

ˆ z

y
γ · ω = φ1(γ) + γ · f(z),

where we write γ · f for the Adρ-action of π1 on functions on Y . Note that, for 1-forms on
Y , we have γ · h dz = h(γz)γ′(z) dz.

Using 〈ω1, ω2〉 = d 〈f, hdz〉 = d
(
〈f, h〉 dz

)
, applying Stokes’ theorem to (8.1), and decom-

posing the boundary ∂D as the 4g polygon described above, we get:

(ω1, ω2) = i

ˆ
∂D
〈f (z) , h (z)〉 dz =(8.4)

= i

ˆ α1y

y
〈f(z), h(z)〉 dz + · · ·+ i

ˆ Rgy

Rg−1αgβgα
−1
g y
〈f(z), h(z)〉 dz

For each j = 1, · · · , g, we reduce the pair of integrals:

(8.5)
ˆ Rj−1αjy

Rj−1y
〈f, h〉 dz +

ˆ Rj−1αjβjα
−1
j y

Rj−1αjβjy
〈f, h〉 dz,

to a single one by using the change of variables property (8.3), and the Adρ-invariance
〈γ · f, γ · h〉 = 〈f, h〉 for all γ ∈ π1. Employing the notation fγ ≡ f ◦ γ, and using
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Rj−1αjβjα
−1
j = Rjβj , the expression (8.5) equals:
ˆ Rj−1αjy

Rj−1y
〈f, h〉 dz −

ˆ Rjβjαjy

Rjβjy
〈f, h〉 dz =

=

ˆ αjy

y

(〈
fRj−1 , hRj−1

〉
R′j−1 −

〈
fRjβj , hRjβj

〉
(Rjβj)′

)
dz

=

ˆ αjy

y
(〈φ1(Rj−1) +Rj−1 ·f, Rj−1 ·h〉 − 〈φ1(Rjβj) +Rjβj ·f, Rjβj ·h〉) dz

=

ˆ αjy

y
(〈φ1(Rj−1), Rj−1 · h〉 − 〈φ1(Rjβj), Rjβj · h〉) dz

=

ˆ αjy

y

(
−
〈
φ1(R−1

j−1), h
〉

+
〈
φ1(β−1

j R−1
j ), h

〉)
dz

= −
〈
φ1(R−1

j−1), h
〉

+
〈
φ1(β−1

j R−1
j ), h

〉
= −

〈
φ1

(
] ∂R∂αj

)
, φ2 (αj)

〉
where we also used the cocycle property φ1 (γ) = −Adρ (γ) · φ1

(
γ−1

)
= −γ · φ1

(
γ−1

)
. An

analogous computation for the integrals
´ Rj−1αjβjy
Rj−1αjy

and
´ Rjy
Rj−1αjβjα

−1
j y

, and a substitution

into Equation (8.4) provides the desired formula. �

Theorem 8.4 may be called the bilinear relations for periods of Ad (Eρ) since it reduces
to the classical Riemann’s bilinear relations in the one dimensional case, that is, when ρ ∈
Hom(π1,C∗) (see [Flo01]).

8.2. Derivative at unitary representations. From Theorem 7.9 and (7.1), we know that
the kernel of the derivative of the Schottky map at a good Schottky representation ρ ∈
Hom (π1, G) is given by

ker d[ρ]V ∼=T[ρ]S
⋂

Im d0Qρ ∼=
(
zg ⊕H1 (Fg, gAd ρ2)

)⋂
Imd0Qρ

where ρ = (ρ1, ρ2) : Fg → Z×G, as in Section 2. According to Proposition 6.13, since d0Qρ,
coincides with PAdρ , we can write the kernel as the following intersection

ker d[ρ]V ∼=
(
zg ⊕H1 (Fg, gAd ρ2)

)⋂
ImPAdρ .

Note that we are identifying the cohomology space, given by zg ⊕H1 (Fg, gAd ρ2) , with its
image under the natural inclusion zg ⊕H1

(
Fg, gAdρ2

)
⊂ H1

(
π1, gAdρ

)
.

In the case ρ is strict, T[ρ]Ss ∼= H1 (Fg, gAd ρ2) and we can identify the cohomology space

H1
(
Fg, gAdρ2

)
with its image under the natural inclusion H1

(
Fg, gAdρ2

)
⊂ H1

(
π1, gAdρ

)
.

Lemma 8.5. Let ρ be a unitary and good strict Schottky representation. Consider ω ∈
H0
(
X,Ad (Eρ)⊗ Ω1

X

)
such that PAdρ (ω) ∈ H1

(
Fg, gAdρ2

)
(in particular, the component of

PAdρ (ω) in zg vanishes). Then ω = 0. In other words, under the stated conditions:

H1
(
Fg, gAdρ2

)⋂
ImPAdρ = 0.

Proof. According to Theorem 8.4, the hermitian inner product of ω verifies
(ω, ω) =

〈〈
PAdρ (ω) , PAdρ (ω)

〉〉
. In this case the cup product of this class with itself is

PAdρ (ω) ∪ PAdρ (ω) ∈ H2
(
Fg, gAdρ2

)
. Since for a free group Fg, H2

(
Fg, gAdρ2

)
= 0, we

obtain PAdρ (ω) ∪ PAdρ (ω) = 0 and by Theorem 8.4, ω = 0 since the Hermitian product is
non-degenerate. �
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We can now prove our main result of this section (Theorem B of the introduction). Let
Vs : Ss → MG be the restriction of the Schottky moduli map (Definition 7.8) to strict
Schottky space.

Theorem 8.6. Let ρ be a good and unitary Schottky representation, and suppose that [Eρ] ∈
MG is a smooth point. If ρ is strict, the derivative of the Schottky moduli map, d[ρ]Vs :

T[ρ]Ss → T[Eρ]MG, is an isomorphism. In the general case, the derivative of the Schottky
moduli map V : S∗ → MG has maximal rank at [ρ]. In particular, V is a local submersion
so that, locally around [ρ], it is a projection with dim

(
V−1 ([Eρ])

)
= g dimZ◦.

Proof. In the case ρ is strict,

ker d[ρ]Vs
∼= H1

(
Fg, gAdρ2

)⋂
Im
(
PAdρ

)
and by Lemma 8.5, dim ker d[ρ]Vs = 0. Since, by Theorem 7.1, dimT[ρ]Ss = (g − 1) dimG+

dimZ and by [Ram96, Theorem 5.9], dimMG = (g − 1) dimG+ dimZ, thus

dimT[ρ]Ss = dimMG,

and we conclude that d[ρ]Vs is an isomorphism at [ρ], where ρ is a good and unitary strict
Schottky representation.

In the general case, by (7.1), we have T[ρ]S ∼= zg ⊕ T[ρ2]Ss, where ρ2 is a good and unitary
strict Schottky representation. The tangent space T[ρ2]Ss can be identified with a subspace
of T[ρ]S. By the previous case, d[ρ2]V is an isomorphism, so if we take as domain T[ρ]S,
d[ρ]V remains surjective with dim ker d[ρ]V = g dimZ◦, because by Corollary 7.2 dimT[ρ]S =

dimT[ρ2]Ss + g dimZ◦. �

Remark 8.7. If ρ is a unitary representation of Hom(π1, G), the corresponding G-bundle is
semistable, by the main result in Ramanathan [Ram75]. Assuming that g ≥ 3 and ρ is good
and unitary, then [Eρ] is stable and smooth inMG, by Biswas-Hoffmann [BH12, Lemma 2.2].

In the case G is semisimple, the previous theorem implies the following.

Corollary 8.8. Let G be semisimple. Then, at a good and unitary Schottky representation
ρ, the derivative of the Schottky map, d[ρ]V : T[ρ]S→ T[Eρ]MG, is an isomorphism.

Proof. First of all notice that the dimension of both spaces is the same. Indeed, since G
is semisimple, dimZ = 0. Moreover, applying Corollary 7.2 to T[ρ]S we get dimT[ρ]S =

(g − 1) dimG and by [Ram96, Theorem 5.9], dimMG = (g − 1) dimG. By Theorem 8.6,
ker d[ρ]V = 0, so the result follows. �

9. Some Special Classes of Schottky Bundles

In this section, we consider two special classes of Schottky G-bundles over a compact
Riemann surface X: the case when G is a connected algebraic torus (over a general X); and
general G-bundles over an elliptic curve (X has genus 1). Recall that, by slight abuse of
terminology, we say that a bundle is flat if it admits a holomorphic flat connection.

9.1. Abelian Schottky G-bundles. Let G be a complex connected algebraic torus. Then,
it is well known that G is isomorphic to (C∗)n, for some n ∈ N. So, we fix G = (C∗)n, and
note that, in this situation, Schottky spaces are smooth varieties for any g. Indeed, the space
of strict Schottky representations becomes

Ss = Hom (Fg, (C∗)n) ∼= (C∗)ng

and S = Hom (Fg, (C∗)n × (C∗)n) ∼= (C∗)2ng. We now generalize the result of [Flo01], stating
that all flat line bundles are strict Schottky C∗-bundles.



PRINCIPAL SCHOTTKY BUNDLES 25

Proposition 9.1. Let E be a (C∗)n-bundle over a compact Riemann surface X. Then E is
a strict Schottky bundle if and only if it is flat.

Proof. If E is Schottky then it is induced by a representation, so E is flat, by definition.
Assume now that E is a flat G-bundle, with G = (C∗)n. As in Proposition 4.4, we can
view E as an ordered n-tuple of C∗-bundles (E1, · · · , En), and then each Ei admits a flat
connection. On the other hand, it is well known that C∗-bundles are equivalent to line
bundles, i.e., vector bundles of rank one. So, each Ei is a line bundle of degree zero (since Ei
is flat). According to [Flo01], every line bundle with degree 0 is a Schottky vector bundle,
that is, a strict Schottky C∗-bundle. So, this implies that Ei is strict Schottky for every
i = 1, · · · , n. Hence, by Proposition 4.4, E is also a strict Schottky bundle. �

Remark 9.2. (1) Replacing (C∗)n by an arbitrary reductive abelian group G, not necessarily
connected, one can show that the previous result is still valid.
(2) It has been shown in [FL14] that unipotent bundles (arising from successive extensions
of C∗-bundles) are also Schottky, and in fact, there is an equivalence of categories between
flat unipotent bundles over X, and unipotent representations of free groups.

For G = (C∗)n, it is well known that all G-bundles, considered as (ordered) n-tuples of
line bundles, are semistable. Thus, the moduli space of semistable (C∗)n-bundles coincides
with the space of all (C∗)n-bundles:

M(C∗)n ∼= H1(X, (O∗X)n) ∼= H1(X,O∗X)n.

It is well known that this sits in an exact sequence

H1(X,OX)n → H1(X,O∗X)n → Zn,

whose last morphism is the multi-degree, or first Chern class. So, the space of flat (C∗)n-
bundles coincides with the kernel of the degree map, that is, with

(H1(X,O∗X)n)0 ∼= J(X)n,

where J(X) is the Jacobian of X. In this context the strict Schottky moduli map looks as
follows

Vs : Hom (Fg, (C∗)n)→ J(X)n,

and Proposition 9.1 implies that Vs is onto (then, of course V : S→ J(X)n). Also note that
dimSs = dimJ (X)n = ng. So this description reproduces the line bundle case, for n = 1,
treated in [Flo01].

9.2. Schottky G-bundles over elliptic curves. In this section, we consider principal
Schottky bundles over an elliptic curve X, the case g = 1, which was excluded in previ-
ous sections4. Firstly, we consider the case of vector bundles over an elliptic curve and recall
some results relating flat connections, semistability and the Schottky property. Then, we
relate G-bundles with the corresponding adjoint bundle in order to translate some of the
previous properties to this case.

We begin by recalling the following theorem, due to Atiyah and Tu [Ati57, Tu93], which
relates semistability with the indecomposable property.

Theorem 9.3. [Tu93] Every indecomposable vector bundle over an elliptic curve is semistable;
it is stable if and only if its rank and degree are relatively prime.

4Note that the case X = P1 (g = 0) is irrelevant, as π1 is trivial and so are Schottky representations.
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To relate flatness with semistability we now use Weil’s theorem [Wei38, Theorem 10], which
states that a vector bundle is flat if and only all its indecomposable components have degree
zero.

Proposition 9.4. Let V be a vector bundle over an elliptic curve X. Then, V is flat if and
only if V is semistable of degree zero.

Proof. By the Krull-Remak-Schmidt Theorem, we can write V as a direct sum of indecom-
posable subbundles

V = ⊕ni=1Vi.

Suppose that V is flat. By Weil’s theorem mentioned above, deg(Vi) = 0 and, by Theorem
9.3, each one of Vi’s are semistable. Since the sum of semistable vector bundles of the same
slope (µ(Vi) = deg(Vi)/rk(Vi) = 0) is semistable (of the same slope), V is semistable with
deg(V ) = 0. Conversely, let V be semistable of degree 0. Then 0 = deg(V ) =

∑
deg(Vi), and

if some Vi has degree deg(Vi) 6= 0 then, at least, there is one Vj with deg(Vj) > 0 = deg(V ).
By definition, this contradicts the hypothesis that V is semistable. Therefore, all of these
Vi’s have degree zero which implies, by [Wei38, Theorem 10], that every summand Vi is flat.
Since a direct sum of flat bundles admits a natural flat connection, V is itself flat. �

In [Flo01, Thm. 6], it is shown that all flat vector bundles over elliptic curves are Schottky.
By considering adjoint bundles, we now establish similar conclusions for G-bundles over
elliptic curves.

Proposition 9.5. Let X be an elliptic curve, G a connected reductive algebraic group and E
a G-bundle over X. Then the following are equivalent:

(1) E is semistable;
(2) Ad(E) is semistable;
(3) Ad(E) is flat.

If G is semisimple, then all conditions above are equivalent to:
(4) E is flat.

Proof. [AB01, Proposition 2.10] states that E is semistable if and only if Ad (E) is also
semistable; thus we obtain the equivalence between the two first assertions. The statements
(2) and (3) are equivalent by Proposition 9.4. Finally, we can use [AB03, Proposition 2.2],
in the case that G is semisimple, to conclude that E admits a flat connection if and only if
Ad(E) admits one (see also [BG96]). �

Remark 9.6. When G is reductive, although the equivalence (3)⇔ (4) is not generally valid,
we still can say that if E is flat, then Ad(E) is flat (see [AB03, Proposition 3.1]).

Theorem 9.7. Let X be an elliptic curve, and let E be a G-bundle over X, for a connected
reductive algebraic group G. Then, E is flat if and only if E is Schottky. In other words, for
g = 1, the Schottky uniformization map W : S→MG is surjective.

Proof. A Schottky G-bundle E is, by definition, flat. If the G-bundle E admits a flat connec-
tion then it induces a flat connection in Ad (E). Using [Flo01, Theorem 6], Ad (E) is strict
Schottky, because it is a flat vector bundle of degree 0. By Proposition 4.6, since Ad (E) is
Schottky and E is flat we obtain that E is a Schottky G-bundle. �

Remark 9.8. When G has a connected center the above result, together with Proposition 6.4,
implies that, on an elliptic curve, E is flat if and only if it is a strict Schottky G-bundle.

The following Corollary follows directly from Proposition 9.5 and Theorem 9.7.
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Corollary 9.9. Let X be an elliptic curve and let G be a semisimple algebraic group. Then
every semistable G-bundle over X is Schottky and it is strict Schottky if Z is connected. In
particular, the Schottky moduli map V : S∗ →MG is surjective.

Remark 9.10. (1) A statement that includes both cases in Sections 9.1 and 9.2 is the following:
Let X be a compact Riemann surface, G a connected reductive group, and E a G-bundle on
X. If either π1 or G are abelian, then E is flat if and only if E is Schottky.
(2) In the case g = 1, since π1

∼= Z2, there are no irreducible representations (nor good
representations) ρ : π1 → G, for non-abelian G. However, the moduli space of semistable G-
bundles is non-empty, and is generally a weighted projective space (see for example [FMW98]).

Schottky vector bundles over elliptic curves, have been applied to an analytic construction
of non-abelian theta functions for G = SLnC, which is completely analogous to the abelian
classic case, [FMN03, FMN04], in the context of geometric quantization of the moduli space
of vector bundles. In a future work, we plan to give a generalization of these results to
Schottky G-bundles over an elliptic curve, for a general reductive algebraic group G.
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