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Integer Quantum Hall plateau transitions are usually modeled by a system of non-interacting
electrons moving in a random potential. The physics of the most relevant degrees of freedom, the
edge states, is captured by a recently-proposed random network model, in which randomness is
induced by a parameter-dependent modification of a regular network. In this paper we formulate
a specific map from random potentials onto 2D discrete surfaces, which indicates that 2D gravity
emerges in all quantum phase transitions characterized by the presence of edge states in a disordered
environment. We also establish a connection between the parameter in the network model and the
Fermi energy in the random potential.

Introduction. The investigation of plateau transitions in
the Quantum Hall Effect (QHE) continues to be one of
the most exciting research topic in modern condensed
matter physics. Much of the current interest is motivated
by the emergence of a similar type of physics in the con-
text of topological insulators. The Quantum Hall plateau
transition is in fact an example of a metal-insulator tran-
sition (see [1] for a review) with the plateau region be-
tween the Landau Levels (LLs) corresponding to the in-
sulating phase where all the states are localized due to
the external magnetic field. The transition is a disorder-
induced localization/delocalization transition of Ander-
son type, characterized by a divergent localization length
ξ at the critical point with localization index ν.
In this paper we focus on QHE plateau transitions, which
are usually modelled by a system of non-interacting
electrons moving in a 2D random potential (RP) V (r)
characterized by a white-noise Gaussian distribution.
Throughout the paper, we shall consider RPs with a fi-
nite correlation length generated by N Gaussian sources,
i.e.

V (r) =

N∑
i=1

Wi exp

(
−|r− ri|2

2σ2

)
, (1)

where σ2 is the variance, ri is the position vector of the
i−th source and the coefficients {Wi}Ni=1 are randomly
chosen in [−W,W ], with W ∈ R. In such RP landscape,
electrons are localized [2] and fill the Fermi sea which ac-
tually consists of a collection of lakes with characteristic
size l, as displayed in FIG. 1. The delocalization of elec-
trons is triggered by the presence of an external magnetic
field B which does not change the total energy of the sys-
tem but rearranges the eigenstates and forms LLs. The
mechanism of delocalization can be intuitively explained
using the following semi-classical picture. At large B,
the electrons in a LL are strongly localized and their

FIG. 1: RP generated by N = 2500 Gaussian sources on a
torus. Points mark maxima (red), minima (blue) and saddle
points (green). The plane denotes the Fermi level.

state corresponds to an orbital motion with small radius
r ∼ 1/B. At the boundary of a lake, the orbital motion
combines with the reflection due to the potential giving
rise to a precession motion along equipotential lines (cy-
cloid). The electrons localized along the boundaries of
the lakes form the so-called edge states. When an edge
electron approaches a saddle point that is sufficiently
close to the boundaries of two neighbour lakes, quantum
tunnelling of the particle from one boundary to the other
becomes sizable (see FIG. 2). Therefore, edge electrons
may either jump from one lake to another with a finite
probability t, or continue to move along the boundary
of the original lake with probability r, with t2 + r2 = 1.
The presence of such quantum scattering nodes at sad-
dle points enables electrons to reach arbitrary distances
with a finite probability and is at the origin of the lo-
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FIG. 2: Neighborhood of a saddle point (green dot) separating
two lakes (blue areas) in a RP. The cycloid represents the
motion of edge states along the boundary of a lake. The
parameters r and t denote the reflection and transmission
probabilities, respectively, while B is the magnetic field.

calization/delocalization transition. Taking inspiration
from this semi-classical picture, J. Chalker and P. Cod-
dington (CC) [3] formulated a network model of quantum
scattering nodes based on a regular lattice that is meant
to provide an effective description of the physics of edge
states (the only relevant degrees of freedom in plateau
transitions). Its generalization on a Kagome lattice was
proposed in [4] and a similar network model for the Spin
Quantum Hall Effect (SQHE) was studied in [5, 6]. Nu-
merical investigations of the localization length ξ at the
critical point, i.e. ξ ∼ (t−tc)−ν with tc = 1/

√
2, resulted

in ν = 2.56 ± 0.62 for a regular lattice [7–9, 11, 12] and
ν = 2.658± 0.046 for the Kagome lattice [4]. Both these
values are not compatible with the experimental value
ν = 2.38 ± 0.06 measured for plateau transitions in the
IQHE [13, 14]. A possible solution to fix the discrep-
ancy was put forward in [15, 16] by considering random
networks (RNs), which should better account for the dis-
order present in a RP. The numerical estimate obtained
in this framework ν = 2.372 ± 0.017 [15, 16] confirms
indeed a very good agreement with the experimental re-
sult.
In [15, 16] it was also argued that the randomness of
RNs leads to the appearance of 2D quantum gravity, in
the continuum limit. The primary objective of this paper
is to show that 2D gravity is indeed emerging from the
RPs framework, establishing a precise correspondence
between RNs and RPs. Notice that quantum gravity
is also involved in the understanding of Fractional QHE
[17, 18] revealing the physics of Laughlin wave-function.
In that context, the interaction between fermions is re-
sponsible for the emergence of gravity in the bulk. In-
stead, in the present paper gravity is related to the 1+1
dimensional edge states, which originates from the RP.

Network models with geometric disorder. Let us briefly
review the construction of RNs carried on in [15, 16]. The
main idea is to generate randomness in a regular CC net-
work making an extreme replacement, which consists in

“opening” a scattering node in the horizontal (vertical)
direction with probability p0 (p1) setting t = 0 (t = 1)
(see FIG. 3), or leaving it unchanged with probability
1 − p0 − p1. In the following, we shall set pn = p0 = p1
to maintain statistical isotropy [15, 16]. Since in the RP
picture the scattering node simulates a saddle point and
the four squares surrounding it corresponds to an alter-
nate sequence of maxima and minima (see FIG. 3), after
the extreme replacement the scattering node becomes an
hexagon containing a maximum (minimum) and two ad-
jacent triangles each containing a minimum (maximum),
as depicted in FIG. 3. Thus, starting from a regular

FIG. 3: Top: “opening” of a scattering node in the horizontal
and vertical directions. Bottom: result of the extreme re-
placement on the network. Red, blue and green points mark
maxima, minima and saddle points in the corresponding RP
framework.

CC network where all the faces are quadrangles and ran-
domly making the extreme replacement with probabil-
ity pn, a tiling of the plane with n−gons is obtained.
In [16] it was shown that in this type of RNs the lo-
calization index has a non-trivial dependence on the re-
placement probability pn, with a line of critical points
for pn ∈ [0, 1/2]. A natural question addressed in the
present paper concerns the physical interpretation of the
parameter pn within the RP model. As we shall see, pn
is connected with the height or Fermi energy level of edge
states in the RP landscape.

Random potentials and discrete surfaces. The RP (1) cor-
responds to a 2D smooth surface characterized by Nmax
maxima, Nmin minima, Nsp saddle points (see FIG. 1)
and with Euler characteristics

χ = Nmin +Nmax −Nsp , (2)

according to Morse theory [19]. Connecting maxima and
minima following the gradient of V (r) gives a unique
quadrangulation of the surface, namely a 2D discrete sur-
face S made of v = Nmax + Nmin vertices, e edges and
f = Nsp quadrangular faces (see FIG. 4). Denoting by
ni the connectivity of the i−th vertex, i.e. the num-
ber of edges connected to it, the Euler characteristics
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χ = v − e+ f of S can be expressed as

2πχ =

v∑
i=1

R(ni) , R(n) =
π

2
(4− n) , (3)

where, according to Gauss-Bonnet theorem, R(n) can be
interpreted as the discrete Gaussian curvature associated
to each vertex of S. Formula (3) follows immediately
from the fact that e = 2f = 1

2

∑v
i=1 ni, from which

χ = v − e+ f = v − f = 1
4

∑v
i=1(4− ni).

Notice that by construction each face of S contains ex-
actly one saddle point. Therefore, connecting saddle
points belonging to nearest neighbor faces of S results
in a dual 2D discrete surface S∗, made of v∗ = f ver-
tices with connectivity 4, e∗ edges and f∗ = v n−gonal
faces, where n is the connectivity of the vertex of S ly-
ing within each face of S∗ (see FIG. 4). By duality, each
n−gonal face of S∗ carries a discrete Gaussian curvature
R(n) and brings a local contribution to 2πχ as described
in eq. (3). Following this procedure, to each RP is asso-
ciated a 2D random discrete surface S or equivalently S∗,
which ultimately corresponds to a network model where
either the connectivity of the sites or the number of sides
of the faces carries the discrete Gaussian curvature of the
surface. In the following, we will denote by S or S∗ both
the discrete surface or the network associated to it.

FIG. 4: Topography of a RP generated by N = 900 Gaussian
sources placed on a torus. Points mark maxima (red), minima
(blue) and saddle points (green). White and black lines are
the edges of S and S∗, respectively.

Random potentials vs. Random networks. To establish
contact between RPs and RNs, let us give a concrete
example. Consider a RP generated by N = L2 Gaus-
sian sources evenly distributed on a regular square lattice
of size L with unit spacing and doubly periodic bound-
ary conditions, i.e. a torus. Let ri = (xi, yi) = (i
mod (L), di/Le) be the position of the i−th source on

FIG. 5: Networks associated to the truncated discrete sur-
faces Sc and S∗

c . White and black lines are the links of Sc

and S∗
c , respectively, while the areas highlighted in light blue

correspond to the regions under the Fermi level.

the lattice, where d∗e is the ceiling function. Then, the
RP at the generic point r = (x, y) ∈ [0, L− 1]× [0, L− 1]
of the torus is

V (r) =

N∑
i=1

∑
n∈Z2

Wi exp

(
−|r− ri + nL|2

2σ2

)
, (4)

where the range of the summation index n = (nx, ny) is
restricted to {−1, 0, 1}×{−1, 0, 1} in the numerical sim-
ulation. Eq. (2) implies that the critical points of (4) are
such that Nmax + Nmin = Nsp since χ = 0 for a torus.
In FIG. 6, the distributions of critical points per unit
height of the potential are reported for a statistical sam-
ple consisting of m = 45 simulations on square lattices
of size L = 300 with W = 1/10 and σ =

√
2. Since at

finite W and σ the potential V (r) is bounded, the distri-
butions are defined on a finite support, also in the limit
L → ∞. However, in the case under consideration, they
are well approximated by Gaussian distributions with ex-
pectation values µmax = −µmin = 0.187, µsp = 0 and
standard deviations σmax = σmin = σsp = 0.119. Fol-
lowing the procedure described in the previous section, a
discrete surface S or equivalently S∗ can be uniquely as-
sociated to (4) (see FIG. 4). The introduction of a Fermi
level c ∈ R induces a truncation of both S and S∗ since a
fraction of the vertices stays inside the Fermi lakes. The
resulting truncated surface Sc or S∗c is such that the dis-
connected portions of the original surface lying under the
Fermi level, which may contain an arbitrary number of
vertices, can be replaced with single isolated vertices as
displayed in FIG. 5. This operation is indeed physically
meaningful since the scattering of edge states is not af-
fected by the bulk of Fermi lakes. Therefore, varying the
Fermi level produces a flow within the space of discrete
surfaces parametrized by c.
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FIG. 6: Number of maxima (∆Nmax), minima (∆Nmin) and
saddle points (∆Nsp) in the height range [h, h + ∆h], with
∆h = 1/200, divided by the area A of the lattice. The statis-
tical sample consists of m = 45 simulations on square lattices
of size L = 300, i.e. A = mL2, with W = 1/10 and σ =

√
2.

FIG. 7: Curvature distributions for the RN (blue dots) and
the dual network S∗

c (red squares) for various values of the
parameters pn and pc which minimize the SSE.

Observe that the truncation of the discrete surfaces
caused by the Fermi level corresponds to the removal
of sites in the associated networks and, consequently, to
the emergence of polygonal faces with a larger number
of sides (see FIG. 5). The net effect of this process is
very reminiscent of that induced in the CC network by
the surgery performed in [15, 16] leading to RNs. For
this reason, we expect the replacement probability pn of
RNs to be somehow related to the Fermi level in RPs.

For the purposes of comparing these two models, it is
first necessary to restore particle-hole duality in the RP
framework since RNs, which tend to Dirac fermion mod-
els in the continuum limit, possess it. To this aim, the
range of energies accessible to fermions in the RP is re-

FIG. 8: Correspondence between the replacement probabil-
ity pn and pc obtained searching for the best match between
the two curvature distributions. The inset plot gives the es-
timated SSE as a function of pc.

stricted from [c,+∞[ to the symmetric interval [−|c|, |c|]
and the complementary interval [−∞,−|c|]∪ [|c|,+∞[ is
labelled as “non-valid” region.
Secondly, notice that the replacement probability pn in
the RN framework is equivalent to half the ratio between
the number of removed scattering nodes, i.e. saddle
points, and the total number of them. This observation
suggests that half of the ratio between the number of sad-
dle points in the non-valid region and the total number of
them, denoted by pc, is the most appropriate parameter
of the RP to be put in relation to pn. In this respect,
the observable taken into consideration is the distribu-
tion of discrete Gaussian curvatures R of the polygons
tiling both the RN and the dual network S∗c to varying
of pn and pc, respectively. Denoting by nn(R) and nc(R)
the number of polygons with curvature R in the RN and
in S∗c , respectively, the defining criterion for the associ-
ation between pn and pc is the minimization of the sum
of squared errors, SSE =

∑
R∈N (nn(R)− nc(R))

2
. In

FIG. 7 distributions of curvatures in both the RN and
S∗c are compared for some values of pn and pc that min-
imize the SSE. The statistical samples consist of more
than 50 RN simulations on a 100×1000 network for each
value of pn ∈ [0, 1/2] and 45 RP simulations on a square
lattice of size L = 300 for each value of c ∈ [0, 1/2]. A
good agreement between the two models is obtained for
a suitable correspondence pn ↔ pc, as reported in FIG.
8.

Conclusions. There are strong evidences that the field-
theory description of plateau transitions corresponds to
a model of fermions interacting with random gauge and
scalar potentials and also with structurally-disordered ge-
ometry. Indicating that, in the scaling limit, localization
transitions of this type are correctly described by matter
fields coupled to 2D quantum gravity. Starting from a
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random potential model, we have explicitly constructed
a map onto the 2D disordered graphs Sc and S∗c depend-
ing on the Fermi-level. Thus, observing the appearance
of the basic ingredient of random network models [15, 16]
for Quantum Hall plateau transitions and giving an inter-
pretation of the replacement probability in term of the
Fermi energy. Sc and S∗c , being quadrangulations and
n−gon tiling’s of the plane, have a straightforward inter-
pretation as discrete random surfaces, explicitly showing
the emergence of 2D gravity. As discussed also in [15],
the notion of functional measure of random surfaces re-
mains an open problem. From the current analysis, it
appears that the distribution of Gaussian curvatures on
the random surface associated with the random poten-
tial coincides with the corresponding distribution in the
random network model, suggesting that the functional
measure of random surfaces can be defined in terms of
the measure of random potentials. In conclusion, we re-
vealed a deep link between random potentials in Ander-
son localization problem and 2D curved surfaces, where
the edge states responsible for plateau transitions live.
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