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GENERATING SERIES FOR THE E-POLYNOMIALS OF

GL(n,C)-CHARACTER VARIETIES

CARLOS FLORENTINO, AZIZEH NOZAD, AND ALFONSO ZAMORA

Abstract. With G = GL(n,C), let XΓG be the G-character variety of a given
finitely presented group Γ, and let X

irr
Γ G ⊂ XΓG be the locus of irreducible repre-

sentation conjugacy classes. We provide a concrete relation, in terms of plethystic
functions, between the generating series for E-polynomials of XΓG and the one for
X

irr
Γ G, generalizing a formula of Mozgovoy-Reineke [MR]. The proof uses a natu-

ral stratification of XΓG coming from affine GIT, the combinatorics of partitions,
and the formula of MacDonald-Cheah for symmetric products; we also adapt it to
the so-called Cartan brane in the moduli space of Higgs bundles. Combining our
methods with arithmetic ones yields explicit expressions for the E-polynomials, and
Euler characteristics, of the irreducible stratum of GL(n,C)-character varieties of
some groups Γ, including surface groups, free groups, and torus knot groups, for low
values of n.

1. Introduction

Let G be a complex reductive algebraic group, Γ be a finitely presented group, such
as the fundamental group of a compact manifold or a finite CW -complex, and let

XΓG = Hom(Γ, G)//G

be the G-character variety of Γ: the (affine) geometric invariant theory quotient of the
algebraic variety of representations of Γ into G. When the group Γ is the fundamental
group of a Riemann surface (or more generally, a Kähler group) these varieties are
homeomorphic to moduli spaces of G-Higgs bundles via the non-abelian Hodge corre-
spondence (see, for example [Sim]), spaces which have been studied in connection to
important problems in Mathematical-Physics in the context of mirror symmetry, and
in the quantum field theory interpretation of the geometric Langlands correspondence
[KW].

The study of geometric and topological properties of character varieties is an active
topic and there are many recent advances in the computation of their Poincaré polyno-
mials and other invariants, especially in the surface group case and for related groups Γ.
With the introduction of arithmetic methods, Hausel and Rodriguez-Villegas [HRV1]
showed that many of these varieties are of polynomial type, which allows, upon apply-
ing a theorem of N. Katz [HRV1, Appendix] to infer their E-polynomials by counting
the number of points over finite fields. The fact that moduli spaces of Higgs bundles
have pure cohomology allows the derivation of the Poincaré polynomial from the E-
polynomial, and this approach was particularly successful in the case of smooth moduli
spaces (see the works of Schiffmann, Mellit [Sc, Me], and references therein).

Key words and phrases. representations of finitely presented groups, character varieties, E-
polynomials, Hodge theory.
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However, explicitly computable formulae for these polynomials are very hard to
obtain, in particular for many well known singular character varieties, as one can
infer from the geometric methods of Logares, Muñoz, Newstead and Lawton [LMN],
[LM] and from the arithmetic approach of Baraglia and Hekmati [BH], which become
intractable for higher dimensional groups G.

In this article, we introduce another point of view in the computations of E-
polynomials of GL(n,C)-character varieties for arbitrary finitely presented Γ. In par-
ticular, our methods yield formulae for E-polynomials of character varieties which are
not necessarily of polynomial type. The new approach is based on a stratification of
GL(n,C)-character varieties by partition type, and relates well with geometric and
arithmetic techniques, relying also on the combinatorics of the plethystic functions,
that have been previously used with success in connection with counting formulae for
moduli spaces of polynomial type over finite fields.

This new perspective on E-polynomial calculations for character varieties, unveils
another connection between the representation theory of GL(n,C), and that of the
symmetric group Sn. A similar approach may be possible for other reductive groups
G, yelding a relation between effective E-polynomial computations for G-character
varieties of an arbitrary Γ, and the representation theory of the Weyl group of G. Our
approach is also intimately related to the plethystic program for counting gauge invari-
ant operators in supersymmetric quantum field theories, where a fundamental role is
played by symmetric products of the moduli spaces of vacua (see [FHH]). In another
direction, by combining our approach with previous results on character varieties of
free groups, we were able to prove (see [FNZ]) that the E-polynomials of XΓSL(n,C)
and of XΓPGL(n,C) agree for all n ∈ N, when Γ is a free group, an equality predicted
in [LM, Rmk. 9] (and proved there for n = 2, 3).

We now outline the article, and some of the main results. In sections 2 and 3 we
present the main properties of E-polynomials defined from mixed Hodge structures
on complex quasi-projective varieties, and we describe natural methods for stratifying
general G-character varieties in the context of affine geometric invariant theory (GIT).
Since we always work over C, we will abbreviate GL(n,C) to GLn. Let E(X;u, v)
denote the E-polynomial (in two variables u, v) of a quasi-projective complex variety
X. In section 4 we introduce the stratification by partition type of the character
varieties XΓGLn, for arbitrary Γ. Along with XΓGLn, we consider what we call the
irreducible character varieties:

X irr
Γ GLn ⊂ XΓGLn,

which are Zariski open subvarieties consisting of (equivalence classes of) irreducible
representations ρ : Γ → GLn. Let us denote the plethystic exponential of a formal
power series f(x, y, z) ∈ Q[x, y][[z]] by PExp(f) (definition in Section 4). We prove:

Theorem 1.1. Let Γ be a finitely generated group. Then, in Q[u, v][[t]]:

∑

n≥0

E(XΓGLn;u, v) t
n = PExp





∑

n≥1

E(X irr
Γ GLn;u, u) t

n



 .

Unravelling the above power series, and the definitions and properties of the plethys-
tic functions, we obtain a closed formula for each individual E-polynomial of XΓGLn

as a finite sum in the E-polynomials of the irreducible character varieties X irr
Γ GLn of

lower dimension, indexed by what we call rectangular partitions of n (see Definition
4.14).
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Corollary 1.2. For every n and Γ as above,

E(XΓGLn;u, v) =
∑

[[k]]∈RPn

n
∏

l,h=1

E(X irr
Γ GLl;u

h, vh)kl,h

kl,h!h
kl,h

,

where RPn is the (finite) set of all rectangular partitions of n.

As a first application of these results, in Section 5 we write the E-polynomial of

the abelian stratum X [1n]
Γ GLn ⊂ XΓGLn in terms of usual partitions, generalizing a

result in [FS]; we also apply the same methods to write the E-polynomial of the so-
called Cartan brane on the moduli space of rank n and degree zero Higgs bundles, an
algebraic variety which is generally not of polynomial type.

Theorem 1.1 and Corollary 1.2 work both ways so that, by knowing all polynomials
E(XΓGLm;u, v) for all m ≤ n, we are able to determine E(X irr

Γ GLn;u, v). This is
explored in the last subsection, where by using previous computations of E-polynomials
of XΓGLn, for n = 2 and 3, and for groups Γ other than the free group (mainly using
[BH]), we determine E-polynomials of some irreducible character varieties that have
not been calculated before: when Γ is the fundamental group of a compact surface
(in both the orientable, and non-orientable cases) and when Γ is a torus knot group.
From these formules, we readily obtain new results for these groups Γ: the number of
irreducible components of X irr

Γ GLn and their Euler characteristics.

Acknowledgements. We would like to thank A. González-Prieto, E. Franco, S. Law-
ton, M. Logares, J. Mart́ınez, S. Mozgovoy, V. Muñoz, A. Oliveira, F. Rodriguez-
Villedgas, J. Silva and M. Tierz for several interesting and very useful conversations
on topics around mixed Hodge structures and E-polynomials. We also thank the or-
ganizers of the VII Iberoamerican Congress on Geometry, Valladolid (2018) and of
the Special Session on Geometry of Representation Spaces in the Joint AMS/MMA
Meeting (2019), where preliminary versions of these results were presented.

2. Mixed Hodge structures and E-polynomials

Let X be a quasi-projective variety over C (possibly singular, not complete, and/or
not irreducible). Denote by Hk

c (X) := Hk
c (X,C) its degree k (singular) complex

cohomology group, with compact support, for k ∈ {0, · · · , 2d}, where d is the complex
dimension of X. Deligne defined natural and functorial mixed Hodge structures on the
Hk

c (X), which are subtle algebraic invariants of X (c.f. [De]). For the general theory
of mixed Hodge structures on cohomology groups and its properties, see [De] and [PS].
Here, we review their most important features for our purposes, and introduce the
notation.

2.1. Mixed Hodge polynomials. Numerically, mixed Hodge structures on X can
be codified via the so-called mixed Hodge numbers

hk,p,q(X) = dimCH
k,p,q
c (X) ∈ N0,

where p, q ∈ {0, · · · , k}. We say that (p, q) are k-weights of X, when hk,p,q 6= 0.
In general, mixed Hodge numbers verify hk,p,q = hk,q,p, and dimCH

k
c (X) =

∑

p,q h
k,p,q,

so they provide the (compactly supported) Betti numbers (and the usual Betti num-
bers, in the smooth case, by Poincaré duality). For some interesting classes of spaces,
the above sum reduces to a one-variable sum. For example, when X is a compact
Kähler manifold, the Hodge structure is called pure, which means that for each k,
the only k-weights are of the form (p, k − p) with p ∈ {0, · · · , k}. Another such case,
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relevant for the present article, is when X is of Hodge-Tate type (also called balanced
type), for which all the k-weights are of the form (p, p) with p ∈ {0, · · · , k}.

We can assemble all the hk,p,q(X) in the mixed Hodge polynomial

(2.1) µ(X; t, u, v) :=
∑

k,p,q≥0

hk,p,q(X) tkupvq ∈ N0[t, u, v],

of three variables. The mixed Hodge polynomial specializes to the (compactly sup-
ported) Poincaré polynomial by setting u = v = 1, P c

t (X) = µ(X; t, 1, 1). Again, this
gives the usual Poincaré polynomial in the smooth situation.

2.2. The E-polynomial. Mixed Hodge polynomials are generally difficult to com-
pute. However, by substituting t = −1 we obtain a certain Euler characteristic version,
which is easier to compute due to its multiplicative and additive properties. We define
the E-polynomial of X by

(2.2) E(X; u, v) =
∑

k,p,q

(−1)khk,p,q(X) upvq ∈ Z[u, v],

which is also called the E-polynomial. Observe that

χc(X) = E(X; 1, 1) = µ(X; −1, 1, 1)

is the (compactly supported) Euler characteristic of X.
The Künneth theorem is valid for mixed Hodge structures (see [PS]) and so, µ

verifies a multiplicative property with respect to Cartesian products:

µ(X × Y ) = µ(X)µ(Y ),

and induces analogous statements for P c and E (we write simply µ(X), P c(X), E(X)
etc, in formulae where the variables of the polynomials are not relevant).

The big computational advantage of E(X), as compared to µ(X) or P c(X) is that
it satisfies both an additive property with respect to stratifications by locally closed (in
the Zariski topology) strata and a multiplicative property for fibrations in at least three
important situations that we summarize in the following statement.

Proposition 2.1. [DL, LMN] If the quasi-projective variety X has a closed subvariety
Z ⊂ X (so that X = Z ⊔ (X \Z) is a stratification of X by locally closed subvarieties),
then

E(X) = E(Z) +E(X \ Z).
Also, if X is the total space of an algebraic fibration of quasi-projective varieties

F → X → B,

and either:
(i) it is locally trivial in the Zariski topology of B, or
(ii) F , X and B are smooth, the fibration is locally trivial in the complex analytic
topology, and π1(B) acts trivially on H∗

c (F ), or
(iii) X, B are smooth and F is a complex connected Lie group.
Then

E(X) = E(F ) · E(B).

Proof. The additive property is well known and can be found in [DL] or in the book
[PS]. The multiplicative property presented here is a slight reformulation (in the non-
equivariant case) of the one in Dimca-Lehrer [DL, Thm. 6.1] (and [DL, Remarks
6.2]), and also appears in [LMN, Prop. 1.9]; a more detailed proof has been recently
presented in [FS], so we refer to those proofs, adding only a couple of comments that
may serve to deduce the present statement.
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The weight polynomial used by Dimca-Lehrer is equivalent to the E-polynomial in
the case of Hodge-Tate type varieties, using the substitution t2 = uv. So, this statement
is a generalization of [DL, Thm. 6.1] to the 2 variable E-polynomial. Note also that
the case (iii) actually follows from (ii) since the action of π1(B) on the cohomology of
a connected Lie group F is always trivial. �

Example 2.2. (1) Let n ∈ N0. Simple calculations give

µ(Cn) = t2nunvn, µ(C∗; t, u, v) = t2uv + t.

This implies that E(Cn) = (uv)n and E(C∗) = uv − 1, a result compatible with the
locally closed decomposition C = C∗ ⊔ {0}. Note the absense of additivity for µ.
(2) The group GLnC can be given as the fibration of smooth varieties,

SLnC → GLnC → C∗,

whose projection map is the determinant. This is not locally trivial in the Zariski
topology, but it is so in the analytic topology, and the fact that the complex Lie group
SLnC is connected implies that π1(C

∗) acts trivially on the cohomology of SLnC.
Then, the Proposition 2.1 implies:

E(GLnC) = E(SLnC)(uv − 1).

Note that all the groups in the fibration are of Hodge-Tate type.1

In this article, if the E-polynomial of an algebraic variety X depends only on the
product uv (for example, when X is of Hodge-Tate type, such as the cases in Example
2.2), we write x = uv and use the notation:

Ex(X) := E(X;
√
x,

√
x) ∈ Z[x].

For example, since E(C∗; u, v) = uv − 1 we write Ex(C
∗) = x− 1. Then Ex((C

∗)l) =
(x− 1)l, by the product formula.

3. Affine GIT and Character Varieties

In this section we recall some aspects of Geometric Invariant Theory (GIT) and of
character varieties of finitely presented groups.

3.1. Affine GIT. Consider an affine algebraic variety X over C, and an affine alge-
braic reductive C-group G. Given an algebraic action of G on X, we have an induced
action of G on the ring C[X] of regular functions on X and we can define the (affine)
GIT quotient by

X//G := Spec
(

C[X]G
)

,

where C[X]G denotes the subring of G-invariants in C[X]. In many situations this
quotient differs from the usual orbit quotient, since this one identifies G-orbits whose
closures intersect. Nevertheless, with the notion of stability we can sometimes recover
good properties of the GIT quotient. Let Gx ⊂ G denote the stabilizer of a point
x ∈ X and let us call the subgroup GX := ∩x∈XGx the center of the action, since it
acts trivially, and G/GX acts effectively on X. Denote by ψx be the (effective) orbit
map through x:

ψx : G/GX → X

g 7→ g · x.
1In fact, every complex algebraic reductive group G is of Hodge-Tate type (see, eg. [DL] and [Jo]).
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Definition 3.1. In the situation above, we say that x ∈ X is polystable if the orbit
G · x is closed in X. We say that x ∈ X is stable if it is polystable and ψx is a proper
map.

Remark 3.2. This definition of stability differs from that of [MJK], being equivalent
to the more common notion when GX is finite (see [Ki, CF]). The above definition is
more convenient in this article (as was the case in [Ki]) since, for character varieties,
GX always contains the center of G (see below).

By standard GIT results, one can show that the stable locus Xs ⊂ X is a Zariski
open (hence dense, when non-empty) set and one gets a better quotient for the stable
locus. We say that a morphism

f : X → Y

is a geometric quotient if f is G-invariant, induces the quotient topology on Y , and it is
a bijection Y = X/G which preserves rings of functions in the sense that C[f−1(U)]G =
C[U ], for every U ⊂ Y open. The following shows that the stable quotient is geometric.

Proposition 3.3. The restriction Xs → Xs/G of the affine quotient map Φ : X →
X//G is a geometric quotient. Moreover, Φ(Xs) is Zariski open in X//G.

Proof. See [Mu, Chap. 5]. �

3.2. Character varieties. Let G be as before, and let Γ be a finitely presented group.
Denote by

RΓG = Hom(Γ, G)

the algebraic variety of representations of Γ in G. An element ρ ∈ RΓG is defined by
ρ(γ), for γ in a generating set for Γ, and the elements ρ(γ) ∈ G, satisfy the algebraic
relations of Γ. Consider also the algebraic action of G on RΓG by conjugation of
representations. The corresponding GIT quotient is the G-character variety of Γ:

XΓG := Hom(Γ, G)//G,

sometimes also called the moduli space of representations of Γ into G.
We will need to work also with an alternative description of this quotient, by using

polystable representations which, according to Definition 3.1, are representations ρ ∈
Hom(Γ, G) = RΓG whose orbits G · ρ := {gρg−1 : g ∈ G} are (Zariski) closed. The
subset of polystable representations in RΓG is denoted by Rps

Γ G, and it can be shown
that Rps

Γ G ⊂ RΓG is a Zariski locally-closed subvariety (containing the stable locus
Rs

ΓG ⊂ RΓG, but neither open nor closed in general). It can also be shown that a
representation ρ : Γ → G is polystable if and only if it is completely reducible. This
means that if ρ(Γ) is contained in some proper parabolic P ⊂ G, then it is actually
contained in a Levi subgroup of P (see [Si]).

Proposition 3.4. [FL1] There is a bijective correspondence:

XΓG = RΓG//G ∼= Rps
Γ G/G,

where the right hand side is called the polystable quotient.

We also need the notion of irreducible representations, and consider the character
varieties consisting of these “nicer” representations. For a given ρ ∈ Rps

Γ G, denote by
Zρ := Gρ the centralizer of ρ(Γ) inside G (coincides with the stabilizer of ρ). For char-
acter varieties, Zρ always contains ZG, the center of G. Hence, ZG is always contained
in the center of the action (justifying our definition of stability, when dimZG > 0).

Definition 3.5. Let ρ ∈ Rps
Γ G. We say that ρ is irreducible if Zρ is a finite extension

of ZG.
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Remark 3.6. (1) This definition is equivalent to the usual definition, involving para-
bolic subgroups: indeed, ρ ∈ Hom(Γ, G) is irreducible if and only if it is polystable
and its image is not contained in a proper parabolic subgroup of G (see [CF, Si]).
(2) For character varieties, irreducibility is equivalent to stability in the sense of Def-
inition 3.1 (see [CF, Prop. 5.11 (iii)]). So, the subset of irreducible representations,
denoted Rirr

Γ G ⊂ Rps
Γ G, equals the stable locus, and being a Zariski open subset of

RΓG, is a quasi-projective variety.

Since irreducibility is well defined on G-orbits, we define the G-irreducible character
variety of Γ as

X irr
Γ G := Rirr

Γ G/G

which is a geometric quotient. Hence, X irr
Γ G is a Zariski open subvariety of XΓG, by

Proposition 3.3.

3.3. Stratification by stabilizer dimension. Let GR := GRΓG ⊂ G be the center
of the action of G on RΓG, that is:

GR :=
⋂

ρ∈RΓG

Zρ,

where Zρ is the stabilizer of ρ. Then, dimZρ ≥ dimGR ≥ dimZG, for all ρ ∈ RΓG.

Proposition 3.7. Let m0 := dimGR ∈ N0. Then, the character variety XΓG can be
written as a union of locally closed quasi-projective varieties,

XΓG =
⊔

m≥m0

Xm
Γ G,

where Xm
Γ G consists of equivalence classes of polystable representations ρ with dimZρ =

m. Moreover, Xm0

Γ G is precisely the open and dense stable locus X s
ΓG = Φ(Rs

ΓG) as
in Proposition 3.3.

Proof. Let Rm
Γ G ⊂ Rps

Γ G be the subset of all polystable representations ρ ∈ Rps
Γ G

such that dimZρ = m, and note that we have

Rps
Γ G =

⊔

m≥m0

Rm
Γ G,(3.1)

as a finite set-theoretic disjoint union. Since the stabilizer dimension is a conjugation
invariant, denote their equivalence classes under conjugation by Xm

Γ G = Rm
Γ G//G. By

Proposition 3.4, the character variety XΓG is isomorphic to the polystable quotient
and, hence, equation (3.1) yields the set-theoretic disjoint union:

XΓG ∼=
⊔

m≥m0

Rm
Γ G//G =

⊔

m≥m0

Xm
Γ G.(3.2)

To prove the locally closedness property, consider the following construction. Observe
that the subset Rm0

Γ G = {ρ ∈ Rps
Γ G|dimZρ = m0 = dimGR} (which is non-empty by

assumption) is precisely the subset of stable points, since the condition dimZρ = m0

is equivalent to dimZρ being minimal. This also means that the orbit map ψρ is
proper and conversely (see Definition 3.1), proving the last statement. Therefore,
from Proposition 3.3, the restriction

Φm0
: Rm0

Γ G→ Rm0

Γ G/G

is a geometric quotient, and the stable locus Rm0

Γ G ⊂ Rps
Γ G and Xm0

Γ G := Φm0
(Rm0) ⊂

XΓG are Zariski open subsets. Now, let R>m0

Γ G := Rps
Γ G \Rm0

Γ G. Given that R>m0

Γ G



8 C. FLORENTINO, A. NOZAD, AND A. ZAMORA

is Zariski closed in Rps
Γ G and the action of G is well defined on it, we can repeat the

argument for the subset:

Rm1

Γ G := {ρ ∈ R>m0

Γ G | dimZρ = m1} ⊂ R>m0

Γ G,

where m1 ∈ N is the minimum of the dimensions of {Zρ | ρ ∈ R>m0

Γ G}; then Rm1

Γ G is

a Zariski open (and non-empty) subset (of the Zariski closed set R>m0

Γ G) containing

all stable representations in R>m0

Γ G. Hence, again, the restriction

Φm1
: Rm1

Γ G→ Rm1

Γ G/G,

is a geometric quotient and Xm1

Γ G := Φm1
(Rm1

Γ G) is also an open subset of the Zariski

closed set XΓG \ Xm0

Γ G = R>m0

Γ G//G, and therefore Xm1

Γ G is locally closed. By
repeating this procedure in a finite number of steps we obtain a stratification of the
character variety XΓG by locally-closed quasi-projective varieties, which completes the
proof. �

4. The linear case: GLn.

In this Section, we examine the linear case, the case of G = GLn.
Let Γ be a finitely presented group. We now provide explicit formulae for the E-

polynomials of GLn-character varieties of Γ in terms of E-polynomials of all irreducible
GLm-character varieties of Γ, for m ≤ n. These formulae present several interesting
features: firstly, they are independent of the group Γ; secondly they relate, not just
the individual polynomials E(XΓGLn), but their generating functions (as power series
in a formal variable), to the corresponding generating functions of the E(X irr

Γ GLn);
moreover, the relation between these two kinds of generating functions is the so-called
plethystic exponential which plays a prominent role in the combinatorics of symmetric
functions, and has applications in counting of gauge invariant operators in supersym-
metric quantum theories (see eg. [FHH]).

Note that, besides their intrinsic relevance, irreducible character varieties often coin-
cide, or are related with, the smooth locus of the full character varieties. For example,
by [FL2] the irreducible character variety X irr

Γ GLn coincides precisely with the smooth
locus of the full character variety XΓGLn, in the case of the free group Γ = Fr. Re-
cently, this theme has been greatly expanded in [GLR].

4.1. The stratification by partition type. We start by describing what we call the
stratification by partition type of our GLn-character varieties, a convenient refinement
of the stratification by stabilizer dimension of Proposition 3.7. Given the standard rep-
resentation of GLn in Cn, we have a natural notion of direct sum ρ1⊕ρ2 ∈ RΓGLn1+n2

of representations ρi : Γ → GLni , i = 1, 2. This is clearly a commutative operation.
To proceed, we need to consider partitions of n, and employ the following “power”

notation. A partition of n ∈ N is denoted by [k] = [1k1 · · · jkj · · · nkn ] where the
exponent kj means that [k] has kj ≥ 0 parts of size j ∈ {1, · · · , n}, so that n =
∑n

j=1 j · kj . The sum of the exponents |[k]| := ∑

kj will be called the length of [k]

and Pn stands for the finite set of partitions of n ∈ N. For example, [12 4] ∈ P6 is the
partition 6 = 4 + 1 + 1, whose length is 3.

Definition 4.1. Let G = GLn and [k] ∈ Pn. We say that ρ ∈ RΓG = Hom(Γ, G) is
[k]-polystable if ρ is conjugated to

(4.1)
n

⊕

j=1

ρj
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where each ρj is, in turn, a direct sum of kj > 0 irreducible representations ofRΓ(GLj),
for j = 1, · · · , n (by convention, if some kj = 0, then ρj is not present in the direct

sum). We denote [k]-polystable representations by R[k]
Γ G and use similar terminol-

ogy/notation for equivalence classes under conjugation X [k]
Γ G ⊂ XΓG.

Remark 4.2. We note that the trivial partition [n] = [n1] (of minimal length 1) corre-

sponds exactly to the irreducible locus: R[n]
Γ G = Rirr

Γ G and X [n]
Γ G = X irr

Γ G. Moreover,

R[k]
Γ G ⊂ Rps

Γ G as every [k]-polystable representation, being a sum of irreducibles, has
indeed a closed G-orbit inside RΓG.

Proposition 4.3. Fix n ∈ N, and let G = GLn. The character variety XΓG can
be written as a disjoint union, labelled by partitions [k] ∈ Pn, of locally closed quasi-
projective varieties of [k]-polystable equivalence classes:

XΓG =
⊔

[k]∈Pn

X [k]
Γ G,

and this stratification refines the one by stabilizer dimension (Proposition 3.7).

Proof. Let [k] = [1k1 · · · nkn ] be a partition of n. As in the proof of Proposition 3.7
note that

Rps
Γ G =

⊔

[k]∈Pn

R[k]
Γ G,(4.2)

is a set theoretic disjoint union, and the analogous decomposition is valid for the
polystable character variety X ps

Γ G. Indeed, every polystable representation is com-
pletely reducible and this means, for G = GLn, that it is a direct sum of irreducibles.
Thus, for every ρ ∈ Rps

Γ G we have a unique partition [k] = [1k1(ρ) · · ·nkn(ρ)] ∈ Pn so

that kj(ρ) is the number (possibly zero) of representations in Rirr
Γ GLj that appear in

the decomposition of ρ in (4.1). In particular, the length of [k],
∑

j kj(ρ) = |[k]|, is
well defined by ρ ∈ Rps

Γ G. Proposition 3.4 and equation (4.2) yield

XΓG ∼=
⊔

[k]∈Pn

R[k]
Γ G//G =

⊔

[k]∈Pn

X [k]
Γ G,(4.3)

as a set theoretic disjoint union. The fact that this is a stratification by locally-closed
quasi-projective varieties follows the same steps of the proof in Proposition 3.7, noting

that, for every ρ ∈ R[k]
Γ G, we have

dimZρ =
∑

kj(ρ) = |[k]|.

Indeed, by Schur’s lemma the stabilizer of ρj ∈ Rirr
Γ GLj is the center of GLj , which

equals C∗, independently of j > 0. Hence, this stratification refines the one in Propo-
sition 3.7 and different partitions with the same length become (disjoint) irreducible
components of each stratum by stabilizer dimension. �

Corollary 4.4. Let G = GLnC. If, for a given character variety XΓG, all [k]-
polystable strata for [k] ∈ Pn are of Hodge-Tate type, then XΓG is of Hodge-Tate
type.

Proof. This follows at once, by combining Proposition 4.3 with Proposition 2.1. �

Note that the converse statement is not valid in general. Moreover, there are charac-
ter varieties which are not of Hodge-Tate type. Indeed, a recent article by I. Rapinchuk
[Ra] showed that every irreducible affine variety, defined over Q, can be written as an ir-
reducible component of a character variety; this class certainly contains varieties which
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are not of Hodge-Tate type, such as a smooth affine cubic in the plane isomorphic to
an elliptic curve with one point removed2.

4.2. Generating functions of E-polynomials. Recall that the partition [k] =
[1k1 · · ·nkn ] ∈ Pn has kj ≥ 0 parts of size j ∈ {1, · · · , n}. For each [k] ∈ Pn, de-
note by L[k] the reductive subgroup:

(4.4) L[k] := GLk1
1 × · · · ×GLkn

n ⊂ GLn,

which we call the [k]-Levi of GLn (in fact, all Levi subgroups of GLn are conjugate to
one obtained in this way).

Now, L[k] acts naturally, factorwise, on the space of polystable representations of

type [k], R[k]
Γ G, and the GIT quotient is a product of irreducible character varieties

(recall that each block of polystable representations corresponds to irreducible ones):

(4.5) R[k]
Γ G//L[k] = (X irr

Γ GL1)
k1 × (X irr

Γ GL2)
k2 × · · · × (X irr

Γ GLn)
kn .

Note, however, that this does not coincide with the [k]-character variety X [k]
Γ GLn as

defined in Proposition 4.3. Indeed, when some kj > 1, there is a permutation group

acting on R[k]
Γ G by permuting the blocks of equal size. To obtain X [k]

Γ G define, for
each partition [k] ∈ Pn, the finite subgroup

S[k] := Sk1 × Sk2 × · · · × Skn ⊂ Sn,

of the symmetric group Sn on n letters. For an algebraic variety X, we let Symm(X) =
Xm/Sm denote the mth symmetric product of X.

Proposition 4.5. Let G = GLn and let Γ be a finitely presented group. For every
partition [k] ∈ Pn, there are isomorphisms of algebraic varieties:

X [k]
Γ G ∼= ×n

j=1 Sym
kj (X irr

Γ GLj).

Proof. This follows directly from the construction above. Indeed, since:

X [k]
Γ G ∼= R[k]

Γ G//G,

and the action of G on R[k]
r G reduces to an action of L[k] and the action of permutation

of blocks of equal size, we get from equation (4.5):

X [k]
Γ G ∼=

(

R[k]
Γ G//L[k]

)

/S[k] ∼=
(

×n
j=1(X irr

Γ GLj)
kj
)

/
(

×n
j=1Skj

)

.

Moreover, since each subgroup Skj ⊂ Sn only permutes the kj blocks of size j, and

does not act on other blocks, the result follows from Xk/Sk = SymkX. �

By the above proposition, we need to consider symmetric products of irreducible
character varieties. It is interesting to observe that the E-polynomials of symmetric
products are intrinsically related to the so-called plethystic exponential functions, which
we now recall. Given a power series f ∈ Q[x, y][[z]], formal in z, written in the form:

(4.6) f(x, y, z) =
∑

n≥0

fn(x, y) z
n,

where fn(x, y) ∈ Q[x, y] are polynomials in x, y, with rational coefficients3, the plethys-
tic exponential, denoted PExp, is defined formally (in terms of the usual exponential)

2We thank Sean Lawton for providing us this reference.
3For our purposes, coefficients in Q are enough, although the theory can be developed over any

field or even ring.
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as:

PExp(f) := eΨ(f) ∈ Q[x, y][[z]],

where Ψ, called the (multi-variable) Adams operator, is the invertible Q-linear operator

on Q[x, y][[z]] acting on monomials in x, y and z as: Ψ(xiyjzk) =
∑

l≥1
xliyljzlk

l , where

(i, j, k) ∈ N3
0 \ {(0, 0, 0)}. Note that, from the additivity of Ψ, we get the property:

PExp(f1 + f2) = PExp(f1) PExp(f2), ∀f1, f2 ∈ Q[x, y][[z]].

Proposition 4.6. Let X be a quasi-projective variety. Then, the generating function
of the E-polynomial of its symmetric products Symm(X), m ∈ N, is a rational function,
and can be written as:

∑

n≥0

E(Symn(X);u, v) yn = PExp(E(X;u, v)y).

Proof. We apply the generating function of J. Cheah who showed, in [Ch], the following
formula:

∑

n≥0

µ(Symn(X); t, u, v) yn =
∏

k,p,q≥0

(1− (−t)kupvqy)(−1)k+1hk,p,q(X),

(recall from equation (2.2) that hk,p,q(X) are the Hodge-Deligne numbers ofX for coho-
mology with compact support). Since, by definition, E(X;u, v) =

∑

k,p,q≥0(−1)khk,p,q(X)up vq,
the above equality becomes:

∑

n≥0

E(Symn(X);u, v) yn =
∏

k,p,q≥0

(1− upvqy)(−1)k+1hk,p,q(X).

The proof follows from the next Lemma, by using ap,q :=
∑

k≥0(−1)khk,p,q(X). �

Recall that plethystic exponentials have also a product form. The following can be
shown in much greater generality; we restrict to the case at need, for simplicity.

Lemma 4.7. If g(u, v) =
∑

p,q≥0 ap,qu
pvq for some ap,q ∈ Z, then:

PExp(g(u, v)y) =
∏

p,q≥0

(1− upvqy)−ap,q .

Proof. Taking the logarithm of the left hand side, we get:

Ψ(g(u, v)y) =
∑

k≥1

g(uk, vk)yk

k
=

∑

k≥1

∑

p,q≥0

ap,qu
kpvkqyk

k
=

=
∑

p,q≥0

ap,q
∑

k≥1

(upvqy)k

k
= −

∑

p,q≥0

ap,q log(1− upvqy)

= log





∏

p,q≥0

(1− upvqy)−ap,q



 ,

which is the logarithm of the right hand side. �

Remark 4.8. As mentioned, the above product formula is valid more generally, and
there are analogous formulae for formal power series in any number of variables.

We will also use the following property of formal power series.
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Lemma 4.9. Let R be a ring and let gn ∈ R[[t]] be a sequence of formal power series
written as

gn(t) =
∑

k≥0

a
(n)
k tk, n ∈ N, a

(n)
k ∈ R.

Then
∏

n≥1

gn(t
n) = g1(t) g2(t

2) g3(t
3) · · · =

∑

n≥0

∑

[k]∈Pn

a
(1)
k1

· · · a(n)kn
tn.

Proof. This follows by expanding

(
∑

k≥0

a
(1)
k tk)(

∑

k≥0

a
(2)
k t2k)(

∑

k≥0

a
(3)
k t3k) · · · =

∑

n≥0

bnt
n,

and noting that bn collects all terms of the form a
(1)
k1

· · · a(n)kn
such that n =

∑n
j=1 j kj .

These are precisely the partitions of n. �

We are now ready for the proof of Theorem 1.1, as follows.

Theorem 4.10. Let Γ be any finitely presented group, and write AΓ
n(u, v) := E(XΓGLn;u, v),

BΓ
n(u, v) := E(X irr

Γ GLn;u, v). Then:

∑

n≥0

AΓ
n(u, v)t

n = PExp





∑

n≥1

BΓ
n(u, v)t

n



 .

Proof. From Proposition 4.5, and the multiplicative property of E we get, for the
[k]-polystable stratum of XΓGLn:

E(X [k]
Γ GLn;u, v) = a

(1)
k1

(u, v) · · · a(n)kn
(u, v),

where we define the polynomials

a
(j)
k (u, v) := E(Symk(X irr

Γ GLj);u, v) ∈ Z[u, v].

Since the E-polynomial is also additive, we get by Proposition 4.3,

E(XΓGLn;u, v) =
∑

[k]∈Pn

E(X [k]
Γ GLn;u, v) =

∑

[k]∈Pn

a
(1)
k1

(u, v) · · · a(n)kn
(u, v).

Now, we form the generating function:

∑

n≥0

AΓ
n(u, v)t

n =
∑

n≥0

E(XΓGLn;u, v)t
n =

∑

n≥0





∑

[k]∈Pn

a
(1)
k1

(u, v) · · · a(n)kn
(u, v)



 tn

which, by Lemma 4.9 (with R = Z[u, v]) equals to the product,

g1(u, v)(t) g2(u, v)(t
2) g3(u, v)(t

3) · · · · =
∏

n≥1

gn(u, v)(t
n),

where:

gn(u, v)(t) :=
∑

k≥0

a
(n)
k (u, v)tk =

∑

k≥0

E(Symk(X irr
Γ GLn);u, v)t

k

= PExp(E(X irr
Γ GLn;u, v)t) = PExp(BΓ

n(u, v)t),

and the last line used Proposition 4.6. Finally, we use the multiplicative property of
plethystic exponentials to obtain:
∑

n≥0

AΓ
n(u, v)t

n =
∏

n≥1

gn(u, v)(t
n) =

∏

n≥1

PExp(BΓ
n(u, v) t

n) = PExp(
∑

n≥1

BΓ
n(u, v) t

n),

as wanted. �
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Corollary 4.11. Assume that X irr
Γ GLn is of Hodge-Tate type. Then:

∑

n≥0

AΓ
n(x) t

n = PExp





∑

n≥1

BΓ
n(x) t

n



 ,

with AΓ
n(x) = Ex(XΓGLn) and B

Γ
n(x) = Ex(X irr

Γ GLn).

Remark 4.12. (1) When Γ is the free group, the above formula appears in the proof of
[MR, Thm 2.5]. So Corollary 4.11 generalizes it to the general Hodge-Tate case.
(2) The case when BΓ

n(x) = 0 for n ≥ 2 is still interesting. For example, using
BΓ

1 (x) = (x−1)r in Corollary 4.11, we recover the E-polynomials of the GLn-character
varieties of Γ = Zr, the free abelian group of rank r. See [FS] and Subsection 5.1 below.
(3) We thank S. Mogovoy for drawing our attention to his recent Preprint [Mo1], where
another method of approaching this Corollary is suggested (cf, [Mo1, Thm. 1.2]),
within a general framework for counting isomorphism classes of objects in additive
categories over finite fields (which can be traced back to [Mo2]), using also Katz’s
Theorem [HRV1, Appendix]. However, our proof of Theorem (4.10), does not rely
on counting points over finite fields, and hence remains valid for character varieties
(over C) which are not necessarily of Hodge-Tate type or of polynomial count. See
Subsection 5.2 for an example.

4.3. Rectangular partitions and the E-polynomial of each individual strata.

A further combinatorial analysis of the plethystic exponential in Theorem 4.10 allows
us to get an explicit formula relating the polynomials AΓ

n(u, v) and BΓ
n(u, v) through

a finite process: indeed, for a fixed n, AΓ
n(u, v) only depends on BΓ

m(u, v) for m ≤ n,
and this can be given in a concrete way using what we call rectangular partitions.
Moreover, this also allows to obtain a closed expression for the E-polynomials of each
individual strata, which can easily be implemented algorithmically using standard
computer software.

We start by noting that, in the particular case when f is of the form f(x, y, z) =
g(x, y)z (so that f1 = g in equation (4.6), the remaining terms being zero), the plethys-
tic exponential can be written in yet another useful form, in terms of usual partitions.

Lemma 4.13. For any g(u, v) ∈ Q[u, v], we have

PExp(g(u, v)y) =
∑

n≥0





∑

[k]∈Pn

n
∏

j=1

g(uj , vj)kj

kj ! jkj



 yn .

Proof. By direct computation, we have:

PExp(g(u, v)y) = exp (Ψ(g(u, v)y)) = exp





∑

j≥1

g(uj , vj)yj

j





=
∏

j≥1

exp

(

g(uj , vj)yj

j

)

=
∏

j≥1

∑

k≥0

g(uj , vj)kyjk

k! jk

=
∑

n≥0

yn





∑

[k]∈Pn

n
∏

j=1

g(uj , vj)kj

kj ! jkj



 ,

where in the last expression we gather all terms that contribute to yn. Since these
correspond to writing n =

∑n
j=1 j kj, they correspond to partitions of n. �
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To write PExp of an arbitrary series f(x, y, z) ∈ Q[x, y][[z]] in a similar way, we also
need to develop a theory of rectangular partitions of a positive integer.

k3,1 = 1 k2,1 = k1,1 = 1 k1,3 = 1 k1,2 = k1,1 = 1 k1,1 = 3

Figure 4.1. The five rectangular partitions of n = 3. The gluing map
π takes the first one to the Young diagram of the partition [3], the
second one corresponds to [1 2] and the last three to [13].

Definition 4.14. Let n ∈ N be a natural number. A rectangular partition of n is
a double sequence of non-negative integers kl,h ≥ 0 (and kl,h ≤ n) for each l, h ∈
{1, · · · , n} satisfying

n =

n
∑

l=1

n
∑

h=1

l h kl,h,

the finite set of rectangular paritions of n is denoted by RPn and such a rectangular
partition is denoted by

[[k]] = [(1× 1)k1,1 (1× 2)k1,2 · · · (1× n)k1,n · · · (n× n)kn,n ] ∈ RPn .

There is a canonical “gluing map” sending a rectangular partition to a usual partition:

π : RPn → Pn

[[k]] 7→ [m] = [1m1 · · ·nmn ] defined by ml :=

n
∑

h=1

h · kl,h.

The geometric intepretation of rectangular partitions is as follows: we are decom-
posing an initial set with area n, into a set of rectangles of each possible size l×h ≤ n
(of length l and heigth h), and each l×h rectangle appears with multiplicity kl,h (rect-
angles l × h and h× l are considered distinct). This explains the terminology “gluing
map” as it is obtained by gluing all rectangles to form the usual Young diagram of a
partition.

Example 4.15. For n = 3, Figure 4.1 shows the 5 possible rectangular partitions (all
multiplicities kl,h not indicated are zero). Figure 4.2 shows the 11 cases for n = 4.

The following general formula may be useful in other situations.

Theorem 4.16. Given two sequences of polynomials an(u, v), bn(u, v) ∈ Q[u, v], sat-
isfying:

(4.7)
∑

n≥0

an(u, v)t
n = PExp(

∑

n≥1

bn(u, v)t
n)

we have:

an(u, v) =
∑

[k]∈Pn

n
∏

j=1

1

kj!





∑

d|j

bd(u
j/d, vj/d)

j/d





kj

=
∑

[[k]]∈RPn

n
∏

l,h=1

bl(u
h, vh)kl,h

kl,h!h
kl,h

.
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k4,1 = 1 k3,1 = k1,1 = 1 k2,2 = 1 k2,1 = 2 k2,1 = k1,2 = 1 k2,1 = 1, k1,1 = 2

k1,4 = 1 k1,3 = k1,1 = 1 k1,2 = 2 k1,2 = 1, k1,1 = 2 k1,1 = 4

Figure 4.2. The eleven rectangular partitions of n = 4. The gluing
map π takes the first rectangular partition to the Young diagram of the
partition [4], the second one corresponds to [1 3], the third and fourth
ones to [22], the fifth and sixth to [12 2] and the last five to [14].

Remark 4.17. As with Lemma 4.7, both Lemma 4.13 and the above formulae are valid
for an arbitrary number r of variables. For example, we have:

an(u1, · · · , ur) =
∑

[[k]]∈RPn

n
∏

l,h=1

bl(u
h
1 , · · · , uhr )kl,h
kl,h!h

kl,h
,

when
∑

n≥0 ant
n = PExp(

∑

n≥1 bnt
n), and an, bn ∈ Q[u1, · · · , ur].

Proof. In view of the above Remark, we consider the one variable case x = uv, the

general case being analogous. By setting Cj(x) :=
∑

d|j
bd(x

j/d)
j/d , we first show that

an(x) =
∑

[k]∈Pn

∏n
j=1

Cj(x)
kj

kj !
. This can be done by expanding the exponential:

∑

n≥0

an(x) t
n = exp(Ψ((b1(x)t) + Ψ(b2(x)t

2) + · · · )

= exp(b1(x)t+
1

2
b1(x

2)t2 + · · ·+ b2(x)t
2 +

1

2
b2(x

2)t4 + · · · )

= exp(
∑

n≥1

∑

d|n

d

n
bd(x

n/d)tn)

=
∏

n≥1

exp(Cn(x)t
n) =

∏

n≥1

∑

k=0

1

k!
Cn(x)

ktnk .

By collecting all terms contributing to a given m =
∑

jkj , we see that we are consid-

ering partitions of m, in the form [k] = [1k1 · · ·mkm] and we get

∑

n≥0

an(x) t
n =

∑

m≥1

(
∑

[k]∈Pm

m
∏

j=1

1

kj !
Cj(x)

kj ) tm,

which finishes the proof of the first expression. To prove the second one, we need to
collect all terms contributing to a given part of size j: we see that we are decomposing
j = lh, as a rectangle of length l and height h, where the length appears as the
subscript in the polynomials bl, and the height appears as the power of the variable x.
Moreover, the coefficient of each rectangle l × h is precisely 1

k!hk if its multiplicity is
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k ≥ 0. So, we get a sum of rectangular partitions of n, where [[k]] ∈ RPn contributes
as:

n
∏

l,h=1

bl(x
h)kl,h

kl,h!h
kl,h

,

as wanted. �

Now, we can prove Corollary 1.2, and write the E-polynomial of each stratum (by
partition type) in terms of the irreducible lower dimensional strata.

Theorem 4.18. Let Γ be a finitely presented group. Then,

E(XΓGLn;u, v) =
∑

[[k]]∈RPn

n
∏

l,h=1

BΓ
l (u

h, vh)kl,h

kl,h!h
kl,h

,

Moreover, for a given [m] ∈ Pn, the E-polynomial of the corresponding stratum is:

E(X [m]
Γ GLn;u, v) =

∑

[[k]]∈π−1[m]

n
∏

l,h=1

BΓ
l (u

h, vh)kl,h

kl,h!h
kl,h

,

where BΓ
l (u, v) := E(X irr

Γ GLl;u, v).

Proof. The first formula is just Theorem 4.16 for BΓ
l (u, v). The second formula is

immediate from the above construction, as the only terms which contribute to a parti-
tion, i.e, to a given Young diagram, correspond to rectangular partitions whose image
under π is that same Young diagram. �

Example 4.19. The simplest case is n = 2, G = GL2, where we get that the E-
polynomial for the character variety is given by (dropping the superscript Γ in Ai(u, v)
and Bi(u, v)):

A2(u, v) = E(XΓGL2; u, v) =
1

2
B1(u

2, v2) +
1

2
B1(u, v)

2 +B2(u, v),

since, for each stratum, we have:

E(X [2]
Γ GL2; u, v) = B2(u, v),

E(X [12]
Γ GL2; u, v) =

1

2
B1(u

2, v2) +
1

2
B1(u, v)

2 .

In the following examples, for brevity, we assume that E(X irr
Γ GLn; u, v) only de-

pends on the product variable x = uv; the 2 variable E-polynomial is treated in exactly
the same way.

Example 4.20. Next, with n = 3, G = GL3, and using the same ordering as in Figure
4.1, we get 5 terms:

A3(x) = Ex(XΓGL3) = B3(x) +B2(x)B1(x) +
B1(x

3)

3
+
B1(x

2)B1(x)

2
+
B1(x)

3

6
,

where the first term corresponds to Ex(X [3]
Γ GL3), the second to Ex(X [1 2]

Γ GL3), and

remaining 3 terms to Ex(X [13]
Γ GL3).
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Example 4.21. In a similar way, for n = 4, G = GL4, we obtain the polynomials for
each strata:

Ex(X [4]
Γ GL4) = B4(x),

Ex(X [1 3]
Γ GL4) = B3(x)B1(x),

Ex(X [22]
Γ GL4) =

B2(x)
2

2
+
B2(x

2)

2
,

Ex(X [122]
Γ GL4) =

B2(x)B1(x
2)

2
+
B2(x)B1(x)

2

2
,

Ex(X [14]
Γ GL4) =

B1(x
4)

4
+
B1(x

3)B1(x)

3
+
B1(x

2)2

8
+
B1(x

2)B1(x)
2

4
+
B1(x)

4

24
,

yielding A4(x) = Ex(XΓGL4) as the sum of these 5 strata (which comprise the 11
terms coming from the rectangular partitions in Figure 4.2).

5. Some Explicit Computations, for low n

In this last section, we collect several explicit computations of E-polynomials of
GLn-character varieties, and their partition type strata, for some classes of groups Γ,
including surface groups, free groups and torus knot groups. We concentrate on the
two extreme cases of these strata: the abelian stratum and the irreducible stratum.
The abelian case allows some results for general n, but the E-polynomials of irreducible
character varieties are typically very difficult to calculate; however, for low values of
n, we can use some previous computations of E-polynomials (obtained in most cases
by point counting over finite fields, see for example [MR, BH]) to determine the E-
polynomials and the Euler characteristics of the irreducible character varieties, yelding
new results for the ireducible stratum. As mentioned before the irreducible locus
coincides, in many cases, with the smooth locus of the full character variety.

We also illustrate our methods with a simple computation of the E-polynomial of
the Cartan brane inside the moduli space of GLn-Higgs bundles, an object of interest
in the geometric Langlands programme (see [FPN]).

5.1. E-polynomials of the abelian strata. We start by examining representations
of finitely presented abelian groups. The following result, recently obtained in [FS],
deals with the group Γ = Zr.

Theorem 5.1. Let r, n ∈ N. Then XZrGLn is of Hodge-Tate type and

Ex(XZrGLn) =
∑

[k]∈Pn

n
∏

j=1

(xj − 1)r kj

kj ! jkj
.

Proof. For the Hodge-Tate statement, see [FS] or Proposition 5.3, below. In that
article, the formula is shown as a consequence of computing the mixed Hodge-Deligne
polynomial of XZrGLn. For the E-polynomial we can also apply our main result
obtaining a simpler proof. Being an abelian group, every irreducible representation of
Zr is one dimensional, and for n = 1 we have

Ex(XZrGL1) = Ex(Hom(Zr,C∗)) = Ex((C
∗)r) = (x− 1)r.

Then, the generating series
∑

n∈NB
Zr

n (x)tn of the irreducible loci reduces to

BZr

1 (x)t = (x− 1)rt,
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as BZr

1 (x) = Ex(X irr
Zr GL1) = Ex(XZrGL1), and B

Zr

n (x) ≡ 0 for all n > 1. Then, the
generating series for Ex(XZrGLn), by Theorem 4.10, is

∑

n≥0

AZr

n (x)tn = PExp(BZr

1 (x)t) =
∑

n≥0





∑

[k]∈Pn

n
∏

j=1

BZr

1 (xj)kj

kj! jkj



 tn,

(where the last equality comes from Lemma 4.13) which immediately gives the result
for AZr

n (x) = Ex(XZrGLn). �

Now, let us consider a general finitely presented group Γ, with abelianization

ΓAb := Γ/[Γ,Γ],

where [Γ,Γ] is the normal subgroup generated by all commutators in Γ (words of the
form aba−1b−1, a, b ∈ Γ). It is well known that ΓAb

∼= Zr ⊕ FN , where r ∈ N0 is called
the rank of ΓAb and the torsion FN is a finite abelian group of order N . It is also clear
that we have

(5.1) RΓGL1 = Rirr
Γ GL1

∼= RΓAb
GL1,

and the same applies to the corresponding character varieties. More generally, we have

the following Lemma, that justifies calling X [1n]
Γ GLn the abelian stratum.

Lemma 5.2. For every n ∈ N, the abelian stratum is isomorphic to the character
variety of the abelianization of Γ:

X [1n]
Γ GLn

∼= XΓAb
GLn.

Proof. This is a consequence of the analogous isomorphism of polystable loci:

R[1n]
Γ GLn

∼= Rps
ΓAb

GLn,

which can be shown as follows. Every polystable representation of ΓAb into GLn

gives, by composition with the quotient Γ → ΓAb, a representation of Γ which belongs
to the [1n] stratum, since the only irreducible representations of an abelian group

are one-dimensional. So, Rps
ΓAb

GLn ⊂ R[1n]
Γ GLn, and the inclusion is a morphism of

algebraic varieties. Conversely, for a [1n]-polystable representation of Γ into GLn, all
the generators of Γ are sent to diagonal matrices (in some basis, being direct sums of
one-dimensional representations); so, all commutators (the kernel of Γ → ΓAb) are sent
to the identity. Thus, it defines a unique GLn representation of ΓAb. �

Proposition 5.3. Let Γ be a finitely generated group with abelianization ΓAb = Zr ⊕
FN , with N = |FN |. Then, the abelian stratum is of Hodge-Tate type, and its E-
polynomial satisfies:

Ex(X [1n]
Γ GLn) =

∑

[k]∈Pn

n
∏

j=1

Nkj(xj − 1)rkj

kj ! jkj
.

Proof. It follows from a formula of J. Cheah ([Ch]), that symmetric products of bal-
anced varieties are balanced (see also [Sil]). Therefore, since

X [1n]
Γ GLn

∼= SymnXΓGL1,

we only need to show that XΓGL1 is of Hodge-Tate type. Clearly,

XΓGL1 = X irr
Γ GL1

∼= RΓGL1
∼= RΓAb

C∗ = Hom(Zr ⊕ FN ,C
∗)
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Since FN is an abelian group of order N ∈ N, it is a direct sum of cyclic groups Zm,
m ∈ N. The set Hom(Zm,C

∗) is in bijection with the mth roots of unity (sending the
generator of Zm to each root). Therefore, Hom(FN ,C

∗) has N elements and

Hom(Zr ⊕ FN ,C
∗) ∼= Hom(Zr,C∗)×Hom(FN ,C

∗) ∼= (C∗)r × FN ,

which is clearly of Hodge-Tate type and we get:

BΓ
1 (x) = Ex(X irr

Γ GL1) = N(x− 1)r.

Finally, using Theorem 4.18, the abelian stratum [1n] is obtained from all rectangular
partitions with a single column (i.e. kl,h = 0 unless l = 1, see Definition 4.14), and
this corresponds to usual partitions [k] ∈ Pn. So, we get:

(5.2) Ex(X [1n]
Γ GLn) =

∑

[k]∈Pn

n
∏

j=1

BΓ
1 (x

j)kj

kj ! jkj
=

∑

[k]∈Pn

n
∏

j=1

Nkj (xj − 1)rkj

kj ! jkj
.

as wanted. �

5.2. The Cartan brane of the moduli space of Higgs bundles. We now illustrate
the method of computation of E-polynomials in a non-balanced case: the Cartan brane
in the moduli space of Higgs bundles.

The non-abelian Hodge correspondence (c.f. [Sim]) establishes a homeomorphism
between XΓgGLn, for the surface group Γg = π1(Σg) (where Σg is a Riemann surface
of genus g) and the moduli space MnΣg of rank n Higgs bundles (E,ϕ) of degree zero,
over Σg. This is a singular algebraic variety, whose singular stratification is again given
in terms of partitions. More precisely, thinking of the moduli space as parametrizing
polystable Higgs bundles, we have a disjoint union of locally closed subvarieties

MnΣg =
⊔

[k]∈Pn

M[k]Σg,

where, for a partition [k] = [1k1 · · ·nkn ], M[k]Σg is the locus of Higgs bundles of the
form:

n
⊕

j=1

(Ej , ϕj)

where each (Ej , ϕj) is, in turn, a direct sum of kj > 0 stable Higgs bundles of rank j
(and degree zero), for j = 1, · · · , n (again, if some kj = 0, the Higgs summand (Ej , ϕj)
is not present in the direct sum). Note that non-abelian Hodge correspondence matches
precisely the strata labelled by the same partitions. That is, we have homeomorphisms

M[k]Σg ≈ X [k]
Γg
GLn,

since stable Higgs bundles of a given rank m ≤ n, correspond to irreducible representa-
tions of Γg into GLm. However, these homeomorphisms are not holomorphic (on their
smooth loci): in fact, the Hodge structure is pure on MnΣg and mixed (of Hodge-Tate

type) on X [k]
Γg
GLn.

Nevertheless, we can compute the E-polynomial of the is the lowest dimensional
stratum, M[1n]Σg, called the Cartan brane in [FPN], as follows. This stratum consists
of direct sums of Higgs line-bundles of degree zero:

(L1, ϕ1)⊕ · · · ⊕ (Ln, ϕn),

and so we have:

M[1n]Σg
∼= SymnM1Σg,
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where M1Σg is isomorphic to the cotangent bundle of the Jacobian of Σg, T
∗(JΣg).

Since we are dealing with symmetric products, the analogous method for obtaining the

E-polynomial of X [1n]
Γg

GLn, as in Proposition 5.3, gives:

E(M[1n]Σg; u, v) =
∑

[k]∈Pn

n
∏

j=1

B1(u
j , vj)kj

kj! jkj
,

where

B1(u, v) = E(M1Σg; u, v) = E(T ∗JΣg; u, v) = (uv)g(1− u)g(1− v)g,

because the Jacobian JΣg of Σg (an abelian variety of dimension g), has a pure Hodge
structure and well known cohomology ring (the cotangent bundle of JΣg is trivial, and
the term (uv)g comes from the use of compactly supported cohomology). We have
thus shown the following.

Theorem 5.4. The E-polynomial of the Cartan brane of the moduli space of rank n
Higgs bundles of degree zero is given by:

E(M[1n]Σg; u, v) =
∑

[k]∈Pn

n
∏

j=1

(

(uj − u2j)(vj − v2j)
)kjg

kj ! jkj
.

5.3. E-polynomials of irreducible character varieties. In [MR], Mozgovoy and
Reineke obtained formulae for the E-polynomials of GLn-character varieties of the free
group of rank r, Γ = Fr. Recently, for n = 2 and 3, Baraglia and Hekmati derived
explicit formulae for the E-polynomials of GLn-character varieties of surface groups
(both the orientable and non-orientable cases) and for torus knot groups (as well as
the cases G = SLn, for n = 2, 3 [BH]). These results were obtained by counting the
number of points of a spreading out of these character varieties, over finite fields, and
rely on a theorem of N. Katz ([HRV1, Appendix]). Briefly, the later proves that, if
there is unique polynomial that encodes the number of points, over every finite field,
of a spreading out of a given complex variety X, then this polynomial agrees with the
E-polynomial of X.

In this final subsection, we use some of those formulae and our Theorem 4.10, to
determine E-polynomials of the corresponding irreducible character varieties, deriv-
ing E(X irr

Γ GLn) from the knowledge of E(XΓGLn). Explicit expressions are given in
Theorems 5.5 and 5.7 below, and are new results, to the best of our knowledge. As a
consequence, we obtain the numbers of irreducible components and Euler characteris-
tics of X irr

Γ GLn.
We consider the following classes of groups Γ. If Σg is a compact surface without

boundary of genus g ≥ 1, its fundamental group can be written as

Γg := π1(Σg) =
〈

a1, b1, . . . , ag, bg|a1b1a−1
1 b−1

1 · · · agbga−1
g b−1

g = 1
〉

,

and its abelianization is (Γg)Ab = Z2g, since the unique relation is a product of commu-
tators (belongs to [Γg,Γg]). A non-orientable compact surface (without boundary) of
genus k is a connected sum of k copies of the real projective plane RP2. Its fundamental
group is denoted by

Γ̂k :=
〈

a1, a2, . . . , ak|a21 · · · a2k = 1
〉

,

and in this case we have: (Γ̂k)Ab
∼= Zk−1 ⊕ Z2, since this is the kernel of the map

Zk → Z, sending (b1, · · · , bk) ∈ Zk to 2(b1 + · · · + bk), whose vanishing corresponds
to wrtiting a21 · · · a2k = 1 additively. As before, we let Fr denote the free group in
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r generators. Note that Γg, Γ̂k and Fr exhaust all fundamental groups of compact
surfaces with a finite set of points removed. Finally, consider the fundamental group

Γa,b = 〈x, y|xa = yb〉
of the complement of a torus knot in S3 of type (a, b), where a, b ∈ N are relatively
prime. Its abelianization coincides with the first homology group, which is Z (rank 1
and no torsion).

5.3.1. The case of GL2. All the E-polynomials below depend on a single variable
x = uv, so we again use the notation Ex(X) := E(X;

√
x,

√
x).

Theorem 5.5. The following are the E-polynomials of irreducible GL2-character va-
rieties for the given groups Γ:

(1) For Γ = Fs+1, we have

Ex(X irr
Fs+1

GL2)

(x− 1)s+1
= (x− 1)sxs((x+ 1)s − 1)− 1

2
(x+ 1)s +

1

2
(x− 1)s.

(2) For Γg = π1(Σg), with c = 2g − 2,

Ex(X irr
Γg
GL2)

(x− 1)c+2
= (x2−1)c(xc+1)+

(xc+1 − x− 1)

2
(x+1)c− (xc+1 − x+ 1)

2
(x−1)c−xc.

(3) For Γ̂k = π1(Σ̂g), with h = k − 2,

Ex(X irr
Γk
GL2)

(x− 1)h+1
= 2(xh + 1)(x2 − 1)h + xh(x− 1)

(x− 1)h + (x+ 1)h

2
+

+(2− 4xh)(x− 1)h − (x+ 1)h − 2xh.

(4) For Γa,b we have:

Ex(X irr
Γa,b

GL2)

x− 1
=

{

1
4(a− 1)(b − 1)(x− 2), a, b both odd
1
4(b− 1)(ax − 3a+ 4), a even, b odd.

Proof. In all cases, the character varieties XΓGL2 were shown to be of polynomial type,
so their E-polynomials equal their counting polynomials computed in [BH]. Thus, to
obtain the formulae above, we consider the stratification:

XΓGL2 = X [2]
Γ GL2 ⊔ X [12]

Γ GL2
∼= X irr

Γ GL2 ⊔ XΓAb
GL2.

So, Ex(X irr
Γ GL2) is obtained by subtracting, from Ex(XΓGL2), the E-polynomial of

the abelian stratum using Proposition 5.3, given the rank and torsion of ΓAb.
In the free group case Γ = Fr, we have ΓAb = Zr (no torsion), so

Ex(X [12]
r GL2) =

1

2
(x2 − 1)r +

1

2
(x− 1)2r,

and the above formula comes from [BH, Section 6.2], where it was shown, using r =
s+ 1:

Ex(Xs+1GL2) = (x− 1)s+1

(

(x3 − x)s − (x2 − x)s + x
(x+ 1)s + (x− 1)s

2

)

.

For the surface group case, we have (Γg)Ab = Z2g, and Proposition 5.3 gives:

Ex(X [12]
Γg

GL2) =
1

2
(x2 − 1)2g +

1

2
(x− 1)4g .
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Thus, to obtain (2), we subtract it from the formula in [BH, Section 6.5], which can
be rewritten, letting c = 2g − 2, as:

Ex(XΓgGL2)

(x− 1)c+2
= (x2−1)c(xc+1)+

(xc+1 + x2 + x)

2
(x+1)c− (xc+1 − x2 + x)

2
(x−1)c−xc.

For (3), we have (Γ̂k)Ab
∼= Zk−1 ⊕ Z2, so Proposition 5.3 gives us,

Ex(X [12]
Γk

GL2) = (x2 − 1)k−1 + 2(x− 1)2k−2 = (x− 1)k−1[(x+ 1)k−1 + 2(x− 1)k−1],

which is subtracted from [BH, Section 6.8], using h = k − 2:

Ex(XΓk
GL2)

(x− 1)h+1
= 2(xh + 1)(x2 − 1)h + xh(x− 1)

(x− 1)h + (x+ 1)h

2
+

+x[(x+ 1)h + 2(x− 1)h]− 4(x2 − x)h − 2xh.

For (4), the E-polynomial of the character variety of the torus knot appears in [BH,
Section 6.10]:

Ex(XΓa,b
GL2) =

{

(x− 1)
(

x+ 1
4(a− 1)(b− 1)(x − 2)

)

, a, b both odd

(x− 1)
(

x+ 1
4(b− 1)(ax− 3a+ 4)

)

, a even, b odd.

So, to get the irreducible part, we again subtract the abelian stratum:

Ex(X [12]
Γa,b

GL2) =
1

2
(x2 − 1) +

1

2
(x− 1)2 = x2 − x,

using (Γa,b)Ab = Z in Proposition 5.3. �

Corollary 5.6. The variety X irr
Γ GL2 has respectively 1, 1, 2, 1

4 (a − 1)(b − 1) and
1
4a(b− 1) irreducible components, for the groups Fr, Γg, Γ̂k, Γa,b (ab odd), and Γa,b (a
even, b odd) respectively. The Euler characteristics of all these character varieties are
zero.

Proof. The number of irreducible components equals the leading coefficient of the
corresponding E-polynomial. For the Euler characteristic, just substitute x = 1 in the
appropriate formulae. �

5.3.2. The case of GL3. In the case n = 3, the stratification by partition type is:

XΓGL3 = X [3]
Γ GL3 ⊔ X [1 2]

Γ GL3 ⊔ X [13]
Γ GL3,

and Ex(X [1 2]
Γ GL3) = Ex(X irr

Γ GL1)Ex(X irr
Γ GL2). For the orientable surface group Γg,

E(XΓgGL3) has been computed in [BH, Section 7.1]. The abelian stratum is also easy
to get: in this case (from Example 4.20), we have

Ex(X [13]
Γg

GL3) =
B1(x

3)

3
+
B1(x

2)B1(x)

2
+
B1(x)

3

6
,

with B1(x) = (x− 1)2g (as (Γg)Ab = Z2g). Therefore, we can obtain the E-polynomial
of the irreducible stratum as:

Ex(X irr
Γg
GL3) = Ex(XΓgGL3)− Ex(X irr

Γg
GL1)Ex(X irr

Γg
GL2)− Ex(X [13]

Γg
GL3)

Here, we just present the final result.
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Theorem 5.7. The irreducible GL3-character variety of a compact orientable surface
of genus g has zero Euler characteristic, is an irreducible variety, and its E polynomial,
setting c = 2g − 2, is given by:

Ex(X irr
Γg
GL3)

(x− 1)c+2
= (x− 1)2c+2[x3c − xc+1

2
− (x+ 1)c(xc + 1) +

1

3
]

+ (x− 1)2c+1(x− 2x2c)[
xc(x− 2)

2
+ (x+ 1)c(xc + 1)]

+ (x− 1)2c(x2 + x+ 1)c[(x+ 1)c(x3c + 1) + x2c]

+ (x− 1)2c(x− 2)x2c[(x+ 1)c(xc + 1) +
xc(x− 3)

6
]

+
(x− 1)c+1(x+ 1)c

2
[xc+1 − x3c+1]

+ (x− 1)c(xc − 1)[xc−2 + xc+1 − 2] + (x− 1)c+2[x2c−2 − xc−2]

+
(x2 + x+ 1)c

3
[x3c+1(x+ 1)− (x2 + x+ 1)]− x3c .

Remark 5.8. The case of a free group of rank r, Γ = Fr, can be treated in a completely
explicit way for every n. In the article [FNZ], where we relate the E-polynomials
of XFrG, for G = GLn, SLn and PGLn, we have obtained explicit formulae for the
E-polynomials and Euler characteristics of all partition type strata, for all values of r
and n.
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