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On Hodge polynomials of Singular Character Varieties

Carlos Florentino1, Azizeh Nozad2, Jaime Silva3, and Alfonso Zamora4

Abstract

Let XΓ G := Hom(Γ ,G)//G be the G-character variety of Γ , where G is a complex reductive group

and Γ a finitely presented group. We introduce new techniques for computing Hodge-Deligne and

Serre polynomials of XΓ G, and present some applications, focusing on the cases when Γ is a free

or free abelian group. Detailed constructions and proofs of the main results will appear elsewhere.

1 Introduction

Let G be a connected reductive complex algebraic group, and Γ be a finitely presented group. The

G-character variety of Γ is defined to be the (affine) geometric invariant theory (GIT) quotient

XΓ G = Hom(Γ ,G)//G.

The most well studied families of character varieties include the cases when the group Γ is the

fundamental group of a Riemann surface Σ , and its “twisted” variants. In these cases, the non-abelian

Hodge correspondence (see, for example [Si]) shows that (components of) XΓ G are homeomorphic

to certain moduli spaces of G-Higgs bundles which appear in connection to important problems

in Mathematical-Physics: for example, these spaces play an important role in the quantum field

theory interpretation of the geometric Langlands correspondence, in the context of mirror symmetry

([KW]).

The study of geometric and topological properties of character varieties is an active topic and there

are many recent advances in the computation of their Poincaré polynomials and other invariants. For

the surface group case (Γ = π1(Σ) and related groups) the calculations of Poincaré polynomials

started with Hitchin and Gothen, and have been pursued more recently by Hausel, Lettelier, Mel-

lit, Rodriguez-Villegas, Schiffmann and others, who also considered the parabolic version of these

character varieties (see [HRV, Me, Sc]). Those recent results use arithmetic methods: it is shown that

the number of points of the corresponding moduli space over finite fields is given by a polynomial,
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which turns out to coincide with the E-polynomial of XΓ G ([HRV, Appendix]). Then, in the smooth

case, the pure nature of the cohomology of Higgs bundles moduli spaces allows the derivation of the

Poincaré polyomial from the E-polynomial.

On the other hand, for many important classes of singular character varieties, explicitly com-

putable formulas for the E-polynomials (also called Serre, or Hodge-Euler polynomials) are very

hard to obtain. In the articles of Logares, Muñoz, Newstead and Lawton [LMN], [LM] (using geo-

metric methods) and of Baraglia and Hekmati [BH] (using arithmetic methods), the E-polynomials

are computed for several character varieties, with G = GL(n,C), SL(n,C) and PGL(n,C) for small

values of n, but the computations quickly become intractable for n higher than 3.

In this short article, we describe some of the techniques and constructions that we have recently

developed for computations of E-polynomials of singular character varieties, and present some of

their main applications.

The outline of the article is as follows. Section 2 covers notations and preliminaries on mixed

Hodge and E-polynomials and on character varieties in the context of GIT. In section 3, we explain

how to use equivariant mixed Hodge structures to study (the identity component of) XΓ G when Γ is

a free abelian group and G a classical group. These character vareities have orbifold singularities and

we can obtain their full mixed Hodge polynomials. In section 4, for arbitrary Γ , we define a strat-

ification of GL(n,C)-character varieties (which also exists for G = SL(n,C) or PGL(n,C)) which

allows writing down an explicit plethystic exponential relation between generating functions of the

E-polynomials of XΓ GL(n,C) and of its locus of irreducible representations X irr
Γ GL(n,C). Finally,

in Section 5, we consider the free group Γ = Fr of rank r, and announce the solution of a conjecture

of Lawton and Muñoz: the E-polynomials of XFr SL(n,C) and of XFr PGL(n,C) coincide, for every

n ∈N. For lack of space, the proofs are omitted and will be published elsewhere.
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2 Preliminaries on Hodge-Deligne polynomials, Affine GIT and Character

Varieties

In this article, all algebraic varieties are defined over C, G is a connected reductive algebraic group,

and Γ is a finitely presented group.

Let X be a quasi-projective variety (not necessarily irreducible), of complex dimension ≤ d.

Deligne showed that the compactly supported cohomology H∗
c (X) := H∗

c (X ,C) can be endowed

with a mixed Hodge structure whose mixed Hodge numbers are given by

hk,p,q(X) := dimC Hk,p,q
c (X) ∈N0,

for k, p,q ∈ {0, · · · ,2d}, and we call (p,q) the k-weights of X , if hk,p,q 6= 0 (c.f. [De], [PS]).
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Mixed Hodge numbers are symmetric in the weights, hk,p,q = hk,q,p, and dimC Hk
c (X)=∑p,q hk,p,q.

Therefore, they provide the (compactly supported) Betti numbers, yielding the usual Betti numbers,

by Poincaré duality, in the non-singular case. They are also the coefficients of the mixed Hodge

polynomial of X on three variables,

µ(X ; t,u,v) := ∑
k,p,q

hk,p,q(X) tkupvq ∈ N0[t,u,v], (1)

which specializes to the (compactly supported) Poincaré polynomial by setting u = v = 1, Pc
t (X) :=

µ(X ; t,1,1) (and provides the usual Poincaré polynomial in the smooth situation). Plugging t =−1,

mixed Hodge polynomials convert into the E-polynomial of X , or the Serre polynomial of X , given

by

E(X ; u,v) = ∑
k,p,q

(−1)khk,p,q(X) upvq ∈ Z[u,v].

From the E-polynomial we can compute the (compactly supported) Euler characteristic of X as

χc(X) = E(X ; 1,1) = µ(X ; −1,1,1).
Serre polynomials satisfy an additive property with respect to stratifications by locally closed (in

the Zariski topology) strata: if X has a closed subvariety Z ⊂ X we have (see, eg. [PS]),

E(X) = E(Z)+E(X \Z).

The E-polynomial also satisfies (c.f. [DL, LMN]) a multiplicative property for fibrations. Namely,

for a given algebraic fibration F →֒ X → B, we have

E(X) = E(F) ·E(B)

in any of the following three situations:

(i) the fibration is locally trivial in the Zariski topology of B,

(ii) F , X and B are smooth, the fibration is locally trivial in the complex analytic topology, and π1(B)
acts trivially on H∗

c (F), or

(iii) X , B are smooth and F is a complex connected Lie group.

We say X is of Hodge-Tate type (also called balanced type) if all the k-weights are of the form (p, p)
with p ∈ {0, · · · ,k}, in which case the sum in µ(X) reduces to a one-variable sum. In particular, the

E-polynomials of Hodge-Tate type varieties depend only the product uv, so we write x = uv and use

the notation E(X ; x) := E(X ;
√

x,
√

x) ∈ Z[x].
Now let X be an affine algebraic variety, and let the reductive group G act algebraically on X . The

induced action of G on the ring C[X ] of regular functions on X defines the (affine) GIT quotient

X//G := Spec
(

C[X ]G
)

,

where C[X ]G is the subring of G-invariants in C[X ]. This quotient identifies G-orbits whose closures

intersect, such that each point in the quotient classifies an equivalence class of orbits, leading to

a stability condition. Let Gx ⊂ G be the stabilizer of x ∈ X and consider the orbit map through x,

ψx : G → X ; g 7→ g · x. We define x ∈ X to be stable if ψx is a proper map and polystable if the orbit

G · x is closed in X . Stability implies polystability, but not conversely.

GIT shows that the stable locus X s ⊂ X is a Zariski open set (hence dense, when non-empty) and

that the restriction of the affine quotient map Φ : X → X//G to the stable locus, X s → X s/G, is a

geometric quotient (or an orbit space), where Φ(X s) is Zariski open in X//G.

Now, consider a finitely presented group Γ . The (generally singular) algebraic variety of repre-

sentations of Γ in G is

RΓ G = Hom(Γ ,G).



4 Carlos Florentino, Azizeh Nozad, Jaime Silva, and Alfonso Zamora

Each ρ ∈ RΓ G is determined by ρ(γ), for each generator γ ∈ Γ , and satisfying the relations of the

group Γ . There is an algebraic action of G on the variety RΓ G by conjugation of representations,

g−1ρg, yielding the G-character variety of Γ ,

XΓ G := Hom(Γ ,G)//G,

as the GIT quotient.

By definition, polystable representations are representations ρ : Γ → G whose orbits G · ρ :=
{gρg−1 : g ∈ G} are Zariski closed in RΓ G. Alternatively, a representation ρ is polystable if and

only if it is completely reducible (i.e, if ρ(Γ )⊂ P ⊂ G for some proper parabolic P of G, then ρ(Γ )
is contained in a Levi subgroup of P). Denote the subset of polystable representations in RΓ G by

R
ps
Γ G⊂RΓ G, which is a Zariski locally-closed subvariety containing the stable locus R

s
Γ G⊂RΓ G.

Proposition 1. [FL1] There is a bijective correspondence:

XΓ G = RΓ G//G ∼= R
ps
Γ G/G,

where the right hand side is called the polystable quotient.

We say that ρ is irreducible if ρ(Γ ) is not contained in a proper parabolic subgroup of G. Al-

ternatively, ρ is irreducible if it is polystable and Zρ , the centralizer of ρ(Γ ) inside G, is a finite

extension of the center ZG ⊂ G. Denote by R
irr
Γ G ⊂ R

ps
Γ G the subset of irreducible representations

(being a Zariski open subset of RΓ G, R irr
Γ G is a quasi-projective variety), and since irreducibility is

well defined on G-orbits, denote by

X
irr

Γ G := R
irr
Γ G/G (2)

the G-irreducible character variety of Γ , which is a geometric quotient, as it happens with the stable

locus. In fact, it can be proved that irreducibility is equivalent to GIT stability for character varieties

(see [CF, Thm. 1.3(1)]).

3 The Free Abelian Case

In this section, we are concerned with the determination of the mixed Hodge polynomials of char-

acter varieties XΓ G of the free abelian group of rank r, Γ ∼= Zr. As we always work over C, we

abbreviate the notation of the classical groups such as the linear group, special linear, special or-

thogonal and symplectic to GLn, SLn, SOn and Spn, respectively (instead of GL(n,C), etc).

The topology and geometry of the character varieties XZr G was studied in [FL2, Sk], among

others. Most important for us are the following facts:

(i) there is only one irreducible component containing the trivial representation, that we denote by

X 0
Zr G [Sk, Theorem 2.1],

(ii) if the semisimple part of G is a classical group (ie, one of SLn, SOn and Spn), there exists an

algebraic isomorphism

X
0
Zr G ∼= (TG)

r /WG (3)

where TG is a maximal torus of G, and WG its Weyl group [Sk, Theorem 2.1],

(iii) the irreducibility of the free abelian character varieties XZr G can be characterized, in terms

of G: for example, if the semisimple part of G is a product of SLn’s and Spn’s then XZr G is

irreducible, so that XZr G ∼= X 0
Zr G [FL2, Theorem 1.2].



On Hodge polynomials of Singular Character Varieties 5

We now focus on the determination of the mixed Hodge numbers of XZr G when it is irreducible,

or of X
0
Zr G when the algebraic isomorphism (3) applies. We start by explaining how mixed Hodge

numbers transform under finite quotients.

Let X be a complex quasi-projective variety and F a finite group acting algebraically on it. The

action of F on X induces an action on its cohomology. Since F acts by algebraic isomorphisms,

it also induces an action on the mixed Hodge components. Then we can regard Hk,p,q (X) as F-

modules, that we denote by
[

Hk,p,q (X)
]

F
. As in equation (1) for the mixed Hodge polynomial, we

codify these in the equivariant mixed Hodge polynomial, defined by

µF(X ; t,u,v) := ∑
k,p,q

[

Hk,p,q (X)
]

tkupvq ∈ R(F) [t,u,v]

whose coefficients belong to R(F), the representation ring of F . The polynomial µF(X ; t,u,v) may

also be seen as a polynomial-weighted representation. For instance, one can consider equivariant

cohomology to obtain an isomorphism

H∗ (X/F) ∼= H∗ (X)F
(4)

that respects mixed Hodge structures. In particular, this isomorphism allows us to identify the mixed

Hodge polynomial of the quotient X/F as the coefficient of the trivial representation of µF(X ; t,u,v)
when written on a basis of irreducible representations of F . Another important consequence for us is

the inequality hk,p,q (X)≥ hk,p,q (X/F), which holds since Hk,p,q (X/F) is given by the F-invariant

part of Hk,p,q (X). We conclude that if X is, for instance, a balanced variety, or if its mixed Hodge

structure is actually pure (that is, if hk,p,q 6= 0 then k = p+ q), then the same holds for X/F.

We now summarize our strategy to obtain the mixed Hodge polynomials of X 0
Zr G, in the cases

when the isomorphism (3) holds (so, these character varieties are isomorphic to finite quotients of

algebraic tori). The only non-zero Hodge numbers of the maximal torus TG
∼= (C∗)n

are hk,k,k (TG).
Moreover, its natural mixed Hodge structure satisfies:

Hk,k,k (TG) ∼=
k
∧

H1,1,1 (TG) .

So, the action of WG on the cohomology ring can be understood from the one on the mixed Hodge

component H1,1,1 (TG). The next three theorems are proved in [FS].

Theorem 1. For a reductive group G satisfying (3), we have

µ(X 0
Zr G; t,u,v) =

1

|WG| ∑
g∈WG

[det(I+ tuvAg)]
r

where Ag is the automorphism of H1,1,1(TG) induced by the action of g ∈WG.

The proof starts by establishing the r = 1 case, and using the diagonal action for higher r as well

as the isomorphism (3), together with the multiplicative relation for the equivariant polynomials

µWG

(

T r
G

)

= µWG
(TG)

⊗r . We remark that Theorem 1 generalizes a formula for the Poincaré polyno-

mial of X 0
Zr G, recently obtained in [St].

To further work with Theorem 1, we examine the induced action of WG on H1,1,1 (TG) for some

classical groups. In the case G = GLn, the Weyl group is the symmetric group Sn on n letters, which

acts on H1,1,1 (TG)∼=Cn by permutation of coordinates, and we obtain a general formula in terms of

partitions of n.

A partition of n∈N is denoted by [k] = [1k1 · · · jk j · · ·nkn ] where the exponent k j ≥ 0 is the number

of parts of size j ∈ {1, · · · ,n}, so that n = ∑n
j=1 j · k j. Let Pn denote the finite set of partitions of n.

Theorem 2. The mixed Hodge polynomials of XZr GLn and of XZr SLn satisfy
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µ(XZr GLn; t,u,v) = µ(XZr SLn; t,x)(1+ tuv)r = ∑
[k]∈Pn

n

∏
j=1

(1− (−tuv) j)k jr

k j! jk j
,

By using similar considerations as for the GLn case, we can also deduce a concrete formula for Spn in

terms of bipartitions. A bipartition of n, denoted [a,b] ∈ Bn consists of two partitions [a] ∈ Pk and

[b] ∈ Pl , such that 0 ≤ k, l ≤ n with k+ l = n. One can show that bipartitions of n are in one-to-one

correspondence with conjugacy classes in WSpn , the Weyl group of Spn.

Theorem 3. The mixed Hodge polynomial of XZr SpnC is given by

µ(XZr Spn; t,u,v) =
1

2nn!
∑

[a,b]∈Bn

c[a,b]

k

∏
i=1

(1− (−tuv)i)air
l

∏
j=1

(1+(−tuv) j)b jr

where c[a,b] is the size of the conjugacy class in WSpn , corresponding to [a,b] ∈ Bn.

The same method allows to obtain explicit expressions for µ(X 0
Zr G) in the case of other reductive

G; the special orthogonal groups SOn will be addressed in a future work.

4 Generating functions for E-polynomials

In this section we consider character varieties with arbitrarily bad singularities. In this case, there

are formidable difficulties in computing the corresponding Poincaré polynomials in general, and

previous explicit methods have dealt with the E-polynomials for low dimensional groups such as

SL2 and SL3 ([LMN, LM, BH]).

By using the additive and multiplicative properties of E-polynomial, for G=GLn we now address

our new approach on E-polynomial computations based on a stratification of XΓ G that we term by

partition type, and which works for arbitrary Γ .

Using standard arguments in GIT, any character variety admits a stratification by the dimension

of the stabilizer of a given representation. When G is the general linear group GLn (as well as the

related groups SLn and PGLn), there is a more convenient refined stratification that gives a lot of

information on the corresponding character varieties XΓ G which we call stratification by partition

type.

Definition 1. Let G = GLn and [k] ∈ Pn. We say that ρ ∈ RΓ G = Hom(Γ ,G) is [k]-polystable if ρ
is conjugated to

⊕n
j=1 ρ j where each ρ j is, in turn, a direct sum of k j > 0 irreducible representations

of RΓ (GL j), for j = 1, · · · ,n (by convention, if some k j = 0, then ρ j is not present in the direct sum).

We denote [k]-polystable representations by R
[k]
Γ G and use similar terminology/notation for

equivalence classes under conjugation X
[k]

Γ G ⊂ XΓ G. It is to be noted that the trivial partition

[n] = [n1] ∈ Pn corresponds exactly to the irreducible (or stable) locus: X
[n]

Γ G = X irr
Γ G.

Proposition 2. Fix n ∈ N, and let G = GLn. Then XΓ G =
⊔

[k]∈Pn
X

[k]
Γ G, as a disjoint union of

locally closed quasi-projective varieties.

The next result relates, by the plethystic exponential, the generating functions of the E-polynomials

E(XΓ GLn) to the corresponding generating functions of the E-polynomials of the irreducible char-

acter varieties E(X irr
Γ GLn).

The plethystic exponential of a formal power series f (x,y,z) = ∑n≥0 fn(x,y)zn ∈Q[x,y][[z]] is de-

noted by PExp( f ), and defined formally (in terms of the usual exponential) as PExp( f ) := eΨ ( f ) ∈
Q[x,y][[z]], whereΨ acts on monomials as:Ψ(xiy jzk)=∑l≥1

xliyl jzlk

l
, where (i, j,k)∈N3

0\{(0,0,0)},
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and is Q-linear on Q[x,y][[z]]. This exponential plays a prominent role in the combinatorics of sym-

metric functions, and has applications in counting of gauge invariant operators in supersymmetric

quantum field theories (see eg. [FHH]).

Theorem 4. Let Γ be any finitely presented group. Then:

∑
n≥0

E(XΓ GLn;u,v)tn = PExp

(

∑
n≥1

E(X irr
Γ GLn;u,v)tn

)

.

The proofs of Theorem 4 and Proposition 2 are detailed in [FNZ]; they allow to write explicit expres-

sions for E(XΓ GLn), for any group Γ , for which we have a formula for E(X irr
Γ GLm), for all m ≤ n,

by a simple finite algorithm (and vice-versa). The formula of Theorem 4 generalizes a formula of

[MR] to an arbitrary group Γ , even if the corresponding GLn-character variety is not of polynomial

type.

5 The Free Group Case

In this last section, we describe applications of the above methods to the case of the free group of rank

r, Γ = Fr; for simplicity we adopt the notations XrGLn, XrSLn, etc, for the corresponding character

varieties. In [MR], it was shown that X irr
r GLn and XrGLn are of polynomial type. Moreover, by

counting points over finite fields and using a theorem of Katz ([HRV, Appendix]), Mozgovoy and

Reineke found a formula for the E-polynomial of X irr
r GLn that can be written as follows (dropping

the x variable in E(X ; x), and using |[k]| := k1 + · · ·+ kd for the length of a partition [k] ∈ Pd).

Proposition 3. [MR, FNZ] For r,n ≥ 2, we have:

E(X irr
r GLn) = (x− 1)∑

d|n

µ(n/d)

n/d
∑

[k]∈Pd

(−1)|[k]|

|[k]|

( |[k]|
k1, · · · ,kd

)

d

∏
j=1

b j(x
n/d)k j x

n(r−1)k j
d ( j

2),

where µ is the Möbius function, and the b j(x) are polynomials defined by:

(1+ ∑
n≥1

bn(x)tn)

(

1+ ∑
n≥1

(

(x− 1)(x2 − 1) . . .(xn − 1)
)r−1

tn

)

= 1. (5)

Using Propositions 2 and 3 and Theorem 4, we are able to write down very explicit expressions for

E(X
[k]

r GLn), the E-polynomials of all polystable strata of XrGLn (see [FNZ, Secs. 5 and 6], where

we also compute E(X irr
Γ GLn) for other Γ and low n).

We now provide a few lines on a forthcoming proof of the equality between the E-polynomials

of XrSLn and of XrPGLn for all n ∈ N. This has been conjectured in Lawton-Muñoz in [LM], who

proved by explicit computation the cases n = 2 and 3.

In a analogous way as for GLn (see Section 4), we can define the [k]-polystable loci X
[k]

r SLn and

X
[k]

r PGLn as follows. For a partition [k] ∈ Pn, the [k]-stratum of XrSLn is defined by restriction of

the corresponding one for GLn:

X
[k]

r SLn := {ρ ∈ X
[k]

r GLn | detρ = 1},

where the determinant of a representation is an element of RrC
∗. By considering the action RrC

∗×
XrGLn → XrGLn given by multiplication of (conjugacy classes of) representations, which is well

defined on the GIT quotients and preserves the stratification of GLn, we can define

X
[k]

r PGLn := X
[k]

r GLn/RrC
∗ = X

[k]
r GLn/(C

∗)r. (6)
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Theorem 5. [FNZ2] For the free group Fr, we have the equalities:

E(XrSLn) = E(XrPGLn) = E(XrGLn)(x− 1)−r

E(X
[k]

r SLn) = E(X
[k]

r PGLn) = E(X
[k]

r GLn)(x− 1)−r,

for every r, n and partition [k] ∈ Pn.

The proof of Theorem 5 uses geometric methods and has two parts. The easy part is the relation

between the E-polynomials of X
[k]

r PGLn and of X
[k]

r GLn, which follows from the locally trivial

(in the Zariski topology) fibration corresponding to the quotient (6). The difficult part is the relation

between the strata X
[k]

r PGLn and X
[k]

r SLn which involves finite quotients: it requires the proof of

the triviality of the action of the center Zn ⊂ SLn on the cohomology (with compact support) of all

the strata X
[k]

r SLn; for this we use equivariant cohomology and a deformation retraction between

X irr
r SLn and the smooth part of the semialgebraic set Hom(Fr,SU(n))/SU(n) (see [FL]).
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