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STABILITY CONDITIONS AND THE A2 QUIVER

TOM BRIDGELAND, YU QIU AND TOM SUTHERLAND

Abstract. For each integer n > 2 we describe the space of stability conditions on the

derived category of the n-dimensional Ginzburg algebra associated to the A2 quiver. The

form of our results points to a close relationship between these spaces and the Frobenius-

Saito structure on the unfolding space of the A2 singularity.

1. Introduction

In this paper we study spaces of stability conditions [2] on the sequence of CYn trian-

gulated categories Dn associated to the A2 quiver. Our main result is Theorem 1.1 below.

There are several striking features. Firstly, we obtain uniform results for all n > 2: the

space of stability conditions quotiented by the action of the spherical twists is independent

of n, although the identification maps are highly non-trivial. Secondly, there is a close

link between our spaces of stability conditions and the Frobenius-Saito structure on the

unfolding space of the A2 singularity: in fact this structure is precisely what encodes the

identifications between our stability spaces for various n. A third interesting feature is

that the space of stability conditions on the derived category of the path algebra of the A2

quiver arises as a kind of limit of the spaces for the categories Dn as n → ∞.

1.1. Statement of results. For each integer n > 2 we let Dn = DCYn(A2) denote the

bounded derived category of the CYn complex Ginzburg algebra associated to the A2

quiver. It is a triangulated category of finite type over C, and is characterised by the

following two properties:

(a) It is CYn, i.e. for any pair of objects A,B ∈ Dn there are natural isomorphisms

Hom•

Dn
(A,B) ∼= Hom•

Dn
(B,A[n])∨. (1)

(b) It is generated by two spherical objects S1, S2 satisfying

Hom∗
Dn

(S1, S2) = C[−1]. (2)

We denote by D∞ the bounded derived category of the complex path algebra of the A2

quiver. It is again a C-linear triangulated category, and is characterised by the property
1
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that it is generated by two exceptional objects S1, S2, which satisfy (2) and

Hom∗
D∞

(S2, S1) = 0.

The notation D∞ is convenient: the point being that as n increases, the Serre dual to the

extension S1 → S2[1] occurs in higher and higher degrees, until when n = ∞ it doesn’t

occur at all.

For each 2 6 n 6 ∞ we denote by Stab(Dn) the space of stability conditions on the

category Dn. We define Stab∗(Dn) ⊂ Stab(Dn) to be the connected component containing

stability conditions in which the objects S1 and S2 are stable of equal phase. Let Aut(Dn)

denote the group of exact C-linear autoequivalences of the category Dn, considered up to

isomorphism of functors. We define Aut∗(Dn) to be the subquotient consisting of autoe-

quivalences which preserve the connected component Stab∗(Dn), modulo those which act

trivially on it. When n < ∞ the objects Si are spherical and hence define Seidel-Thomas

twist functors TwSi
∈ Aut(Dn). These autoequivalences preserve the connected component

Stab∗(Dn), and we denote by Sph∗(Dn) ⊂ Aut∗(Dn) the subgroup they generate.

The simple complex Lie algebra associated to the A2 quiver is g = sl3(C). Its Cartan

subalgebra can be described explicitly as

h = {(u1, u2, u3) ∈ C3 :
∑

i

ui = 0}.

The complement of the root hyperplanes is

hreg = {(u1, u2, u3) ∈ h : i 6= j =⇒ ui 6= uj}.

There is an obvious action of the Weyl group W = S3 permuting the ui which is free on

hreg. The quotient h/W is isomorphic to C2, and has natural co-ordinates (a, b) obtained

by writing

p(x) = (x− u1)(x− u2)(x− u3) = x3 + ax+ b.

The image of the root hyperplanes ui = uj is the discriminant

∆ = {(a, b) ∈ C2 : 4a3 + 27b2 = 0}.

We can now state the main result of this paper.

Theorem 1.1. (a) For 2 6 n < ∞ there is an isomorphism of complex manifolds

Stab∗(Dn)/ Sph∗(Dn) ∼= hreg/W.
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Under this isomorphism the central charge map Stab∗(Dn) → C2 induces the multi-

valued map hreg/W → C2 given by

∫

γi

p(x)(n−2)/2 dx

for an appropriate basis of paths γi connecting the zeroes of the polynomial p(x).

(b) For n = ∞ there is an isomorphism of complex manifolds

Stab(D∞) ∼= h/W.

Under this isomorphism the central charge map Stab(D∞) → C2 corresponds to the

map h/W → C2 given by
∫

δi

ep(x) dx

for an appropriate basis of paths δi which approach ∞ in both directions along rays

for which Re(x3) → −∞.

Theorem 1.1 gives a precise link with the Frobenius-Saito structure on the unfolding

space of the A2 singularity x3 = 0. The corresponding Frobenius manifold is precisely

M = h/W . The maps appearing in part (a) of our result are then the twisted period maps

of M with parameter ν = (n − 2)/2 (see Equation (5.11) of [6]). The map in part (b) is

given by the deformed flat co-ordinates of M with parameter ~ = 1 (see [5, Theorem 2.3]).

1.2. Related work. Just as we were finishing this paper, A. Ikeda posted the paper [10]

which also proves Theorem 1.1 (a), and indeed generalizes it to the case of the Ak quiver

for all k > 1. The methods we use here are quite different however, and also yield (b), so

we feel that this paper is also worth publishing.

As explained above, two of the most interesting features of Theorem 1.1 are the fact that

the space Stab∗(Dn)/ Sph∗(Dn) is independent of n < ∞, and that this space embeds in

Stab(D∞). At the level of exchange graphs such results were observed for arbitrary acyclic

quivers by one of us with A.D. King [14].

The n < ∞ case of Theorem 1.1 was first considered by R.P. Thomas in [23]: he obtained

the n = 2 case and discussed the relationship with Fukaya categories and homological

mirror symmetry. The n = 2 case was also proved in [3] and generalised to arbitrary

ADE Dynkin diagrams. The n = 3 case of Theorem 1.1 was proved in [21], and was
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extended to all Dynkin quivers of A and D type in [4]. The first statement of part (a),

that Stab∗(D) ∼= hreg/W , was proved for all n < ∞ in [18].

The case n = ∞ of Theorem 1.1 was first considered by King [13] who proved that

Stab(D∞) ∼= C2. This result was obtained by several other researchers since then, and

a proof was written down in [18]. The more precise statement of Theorem 1.1 (b) was

conjectured by A. Takahashi [22].

Since the first version of this paper was posted, several generalizations and extensions of

Theorem 1.1 have appeared. The following seem particularly noteworthy. In [9] a general

result relating stability conditons on Fukaya categories of surfaces to spaces of quadratic

differentials with exponential singularities is proved. This includes Theorem 1.1 (b) as a

very special case.

In [11] a new notion of q-stability conditions is introduced, in terms of which one can

make sense of the statement of Theorem 1.1 when the Calabi-Yau dimension n > 2 is

replaced with an arbitrary s ∈ C with Re(s) > 2. This allows one to see all twisted

periods of the Frobenius manifold via central charges.

In [15], an analogue of Theorem 1.1 for the Kronecker quiver is proved. In this case the

relevant Frobenius manifold is the quantum cohomology of P1. The case of quivers of type

affine An was considered in [24]. A general framework for such results, involving Fukaya

categories of surfaces, quadratic differentials and Hurwitz spaces is explained in [12].

Acknowledgements. We thank Alastair King and Caitlin McAuley for many useful con-

versations on the topic of this paper. Qiu is is supported by Beijing Natural Science

Foundation (Z180003).

2. Autoequivalences and t-structures

In this section we describe the principal components of the exchange graphs of the

categories Dn = DCYn(A2) and study the action of the group of reachable autoequivalences.

We start by recalling some general definitions concerning tilting (see [4, Section 7] for more

details).

2.1. Let D be a triangulated category. We shall be concerned with bounded t-structures

on D. Any such t-structure is determined by its heart A ⊂ D, which is a full abelian

subcategory. We use the term heart to mean the heart of a bounded t-structure. A heart

will be called finite-length if it is artinian and noetherian as an abelian category.
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We say that a pair of hearts (A1,A2) in D is a tilting pair if the equivalent conditions

A2 ⊂ 〈A1,A1[−1]〉, A1 ⊂ 〈A2[1],A2〉

are satisfied. Here the angular brackets signify the extension-closure operation We also say

that A1 is a left tilt of A2, and that A2 is a right tilt of A1. Note that (A1,A2) is a tilting

pair precisely if so is (A2[1],A1).

If (A1,A2) is a tilting pair in D, then the subcategories

T = A1 ∩ A2[1], F = A1 ∩A2

form a torsion pair (T ,F) ⊂ A1. Conversely, if (T ,F) ⊂ A1 is a torsion pair, then the

subcategory A2 = 〈F , T [−1]〉 is a heart, and the pair (A1,A2) is a tilting pair.

A special case of the tilting construction will be particularly important. Suppose that A

is a finite-length heart and S ∈ A is a simple object. Let 〈S〉 ⊂ A be the full subcategory

consisting of objects E ∈ A all of whose simple factors are isomorphic to S. Define full

subcategories

⊥S = {E ∈ A : HomA(E, S) = 0}, S⊥ = {E ∈ A : HomA(S,E) = 0}.

One can either view 〈S〉 as the torsion-free part of a torsion pair on A, in which case the

torsion part is ⊥S, or as the torsion part, in which case the torsion-free part is S⊥. We

can then define tilted hearts

µ−

S (A) = 〈S[1], ⊥S〉, µ+
S (A) = 〈S⊥, S[−1]〉,

which we refer to as the left and right tilts of the heart A at the simple S. They fit into

tilting pairs (µ−

S (A),A) and (A, µ+
S (A)). Note the relation

µ+
S[1] ◦ µ

−
S (A) = A.

The exchange graph EG(D) is the graph with vertices the finite-length hearts in D and

edges corresponding to simple tilts. The group Aut(D) of triangulated autoequivalences

of D acts on this graph in the obvious way: an auto-equivalence Φ ∈ Aut(D) sends a

finite-length heart A ⊂ D to the finite-length heart Φ(A) ⊂ D.

2.2. For each 2 6 n 6 ∞ we define the triangulated category Dn as in the Introduction.

It is the bounded derived category of the CYn Ginzburg algebra associated to the A2

quiver [7]. This category contains two distinguished objects S1 and S2 corresponding to
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S[1] ⊥S S

A

µ−
S (A)

S S⊥ S[−1]

A

µ+
S (A)

Figure 1. Left and right tilts of a heart.

the vertices of the quiver, and a canonical heart

An = 〈S1, S2〉 ⊂ Dn,

which is the extension-closed subcategory generated by these objects. The heart An has

finite-length, and hence defines a point of the exchange graph EG(Dn); we denote by

EG◦(Dn) the connected component containing this point. We call EG◦(Dn) the principal

component of the exchange graph, and refer to the hearts defined by its vertices as reachable

hearts. We say that a heart A ⊂ Dn is full if it is equivalent to An as an abelian category.

Remark 2.1. When n > 2, the canonical heart An is equivalent to the category Rep(A2)

of representations of the A2 quiver; besides the simple objects S1 and S2, it contains one

more indecomposable object which we denote by E; there is a short exact sequence

0 −→ S2 −→ E −→ S1 −→ 0. (3)

When n = 2, the canonical heart A2 is equivalent to the category of representations of the

preprojective algebra of the A2 quiver; besides E there is another non-simple indecompos-

able object fitting into a short exact sequence

0 −→ S1 −→ F −→ S2 −→ 0. (4)

For this reason, the case n = 2 is slightly special, and since our main result Theorem 1.1

is already known (and is considerably easier to prove) in this case [23, 3], in what follows

we shall restrict to the case n > 3.

A triangulated autoequivalence of Dn is called reachable if its action on EG(Dn) preserves

the connected component EG◦(Dn). An autoequivalence is called negligible if it is reachable

and acts by the identity on EG◦(Dn). It is easy to see that an autoequivalence Φ ∈

Aut(Dn) is negligible precisely if Φ(S1) ∼= S1 and Φ(S2) ∼= S2. We write Aut∗(Dn) for
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the subquotient of the group Aut(D) consisting of reachable autoequivalences, modulo

negligible autoequivalences. We will show that this agrees with the definition given in the

Introduction later: see Section 4.1 and Prop. 4.4.

In the case n < ∞ an important role will be played by spherical twist functors [20].

Recall that an object S ∈ Dn is called spherical if

Hom•

Dn
(S, S) = C⊕ C[−n].

Any such object defines an autoequivalence TwS ∈ Aut(Dn) called a spherical twist. This

has the property that for each object E ∈ Dn there is a triangle

Hom•

Dn
(S,E)⊗ S −→ E −→ TwS(E),

where the first arrow is the evaluation map. In particular, the distinguished objects Si ∈ Dn

are spherical, and hence define twist functors TwSi
∈ Aut(Dn).

Lemma 2.2. Take 2 6 n < ∞, and define the following autoequivalences of Dn:

Σ = (TwS1
◦TwS2

)[n− 1], Υ = (TwS2
◦TwS1

◦TwS2
)[2n− 3].

Then we have

Σ(S1, E, S2) = (S2[1], S1, E), Υ(S1, S2) = (S2, S1[n− 2]).

Proof. The defining properties (1) and (2) of the category Dn, together with the short exact

sequence (3), implies that TwS1
(S2) = E. In particular E is also spherical. Applying the

long exact sequence in cohomology to the short exact sequence (3), and using the fact that

the objects Si are spherical, shows that

Hom•

Dn
(S1, E) = C[−n], Hom•

Dn
(E, S2) = C[−n]. (5)

Using the CYn property we therefore obtain the identities

TwS1
(S2) = E, TwE(S1) = S2[1], TwS2

(E) = S1.

For any spherical object S there is an identity TwS(S) = S[1 − n], and for any pair of

spherical objects there is a relation

TwS1
◦TwS2

= TwTwS1
(S2) ◦TwS1

.

Thus we can write Σ = (TwE ◦TwS1
)[n− 1]. This implies that

Σ(S1) = TwE(S1) = S2[1], Σ(S2) = TwS1
(S2) = E,

and it follows that Σ(E) is the unique nontrivial extension of these two objects, namely

S1. This proves the first claim.
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Moving on to the second identity, we use the braid relation

TwS1
◦TwS2

◦TwS1
= TwS2

◦TwS1
◦TwS2

proved by Seidel and Thomas [20]. This implies that

Υ(S1) = Σ(S1[−1]) = S2, Υ(S2) = TwS2
(E[n− 2]) = S1[n− 2],

which completes the proof. �

2.3. The following description of the tilting operation in Dn is the combinatorial under-

pinning of our main result.

Proposition 2.3. Take 3 6 n < ∞, and consider the hearts obtained by performing simple

tilts of the standard heart An ⊂ Dn. We have

(a) The left tilt of An at the simple S2 is another full heart:

An = 〈S1, S2〉 → 〈S2[1], E〉 = Σ(An).

(b) Repeated left tilts at appropriate shifts of S1 gives a sequence of hearts

An = 〈S1, S2〉 → 〈S1[1], S2〉 → 〈S1[2], S2〉 → · · · → 〈S1[n− 2], S2〉 = Υ(An).

Proof. This can be found in [14, Proposition 5.4], but for the convenience of the reader we

give a proof here. Note that since E ∈ ⊥S2 we have 〈S2[1], E〉 = Σ(An) ⊂ µ−
S2
(An). But it

is a standard fact, and easily proved, that if one heart is contained in another then they are

equal. This gives (a). For the first step in part (b) note that since the only indecomposables

in An are S1, S2 and E, we have ⊥S1 = 〈S2〉. It follows that µ−
S1
(An) = 〈S1[1], S2〉. We

have

Hom1
Dn

(S1[k], S2) = 0 = Hom1
Dn

(S2, S1[k]), 0 < k < n− 2,

so if n > 3 the heart 〈S1[1], S2〉 is semi-simple, with simple objects S1[1] and S2. It follows

that its left tilt with respect to the simple S1[1] is the subcategory 〈S1[2], S2〉. Repeating

the argument we obtain the given sequence of hearts. �

As explained in the proof of Prop. 2.3, when n > 3 each of the intermediate hearts in

the sequence in (b) is semi-simple, and in particular non-full. The semi-simplicity implies

that

µ±
S2
〈S1[k], S2〉 = 〈S1[k], S2[±1]〉,

so that tilting these intermediate hearts with respect to S2 gives hearts of the same kind

up to shift.
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Lemma 2.4. Take 3 6 n < ∞. Then every reachable heart is of the form

Φ(〈S1[k], S2〉) ⊂ Dn,

where Φ is a reachable autoequivalence, and 0 6 k 6 (n− 2)/2.

Proof. What we proved above shows that every time we tilt a heart of the form 〈S1[k], S2〉

with 0 6 k < n − 2 we obtain another heart of the same form, up to the action of some

autoequivalence, which is necessarily reachable. Since tilting commutes with autoequiva-

lences, in the sense that

µ±

Φ(S)(Φ(A)) = Φ(µ±
S (A)),

it follows that any heart is of the given form, with 0 6 k < n− 2. To complete the proof,

note that if k1 + k2 = n− 2, the autoequivalence Υ exchanges the hearts 〈S1[ki], S2〉 up to

shift. �

Lemma 2.5. Take 3 6 n < ∞.

(a) The autoequivalences Σ,Υ and [1] are all reachable.

(b) The spherical twists TwSi
are reachable.

(c) In the group Aut∗(Dn) there are relations

Σ3 = [1], Υ2 = [n− 2].

Proof. The reachability of Σ and Υ is immediate from Prop. 2.3. Lemma 2.2 shows that

Σ3(An) = An[1] ⊂ Dn. Thus the shift functor [1] is also reachable, which gives (a). Part

(b) then follows from the relations

(Σ ◦ TwS1
)[n− 2] = Υ = (TwS2

◦Σ)[n− 2]

For part (c) consider the autoequivalence Σ3[−1]. Since it fixes the objects S1, S2, it is

negligible, and hence defines the identity element in Aut∗(Dn). The same argument applies

to Υ2[2− n]. �

Lemma 2.6. For 3 6 n < ∞ the action of Aut∗(Dn) on the set of full reachable hearts is

free and transitive.

Proof. The transitivity follows from Lemma 2.4, since for k in the given range the heart

〈S1[k], S2〉 is full only for k = 0. For the freeness it is therefore enough to consider

autoequivalences which preserve the standard heart An ⊂ Dn. Any such autoequivalence

Φ must preserve the simple objects S1, S2 of An, and it cannot exchange them since it
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Figure 2. The projective exchange graph of D3 drawn on the hyper-
bolic disc. The action of PAut∗(D3) corresponds to the standard action
of PSL(2,Z) on the disc.

preserves the Ext-groups between them, which are asymmetric for n > 3. Thus Φ(Si) = Si

and it follows that Φ defines the identity element of Aut∗(Dn). �

Note that when n = 3 it follows from Lemma 2.4 that all reachable hearts are full. Thus

in this case the principal component EG◦(D3) is a torsor for the group Aut∗(D3).

2.4. We denote by Br3 the Artin braid group of the A2 root system; in the notation of

the Introduction it is the fundamental group of the quotient hreg/W . More concretely, Br3

is the standard braid group on three strings, and has a presentation

Br3 = 〈σ1, σ2 : σ1σ2σ1 = σ2σ1σ2〉.

The centre of Br3 is generated by the element τ = (σ1σ2)
3.

Proposition 2.7. Take 3 6 n < ∞.

(a) The group Aut∗(Dn) is generated by Σ,Υ and the shift functor [1].

(b) The group Aut∗(Dn) is generated by the subgroup Sph∗(Dn) together with [1].
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Figure 3. Similar pictures of the projective exchange graphs of D2 and D4

(orientations omitted). As before, the action of PAut∗(Dn) ∼= PSL(2,Z)
corresponds to the standard one.

(c) There is an isomorphism Br3 ∼= Sph∗(Dn) sending the generator σi to TwSi
.

(d) The isomorphism in (c) sends the central element τ to [4− 3n].

(e) The smallest power of [1] contained in Sph∗(Dn) is [3n− 4]. Thus there is a short

exact sequence

1 −→ Sph∗(Dn) −→ Aut∗(Dn) −→ µ3n−4 −→ 1.

Proof. Part (a) follows from the explicit description of tilts given in Prop. 2.3, since any

element of Aut∗(Dn) takes the canonical heart A to a full reachable heart. Part (b) is then

immediate from the definitions of Σ and Υ. It was proved in [20] that there is an injective

group homomorphism ρ : Br3 → Aut(Dn) sending the generator σi to the twist functor

TwSi
. By Lemma 2.5(b) this induces a surjective homomorphism ρ̄ : Br3 → Sph∗(Dn). It

is immediate from Lemma 2.5 and the definition of Υ that ρ̄(τ) = [4 − 3n], which gives

(d). Note that if g ∈ Br3 satisfies ρ̄ = 1, then the autoequivalence ρ(g) is negligible, so

commutes with the autoequivalences TwSi
, which shows that g must be central. But then

g must be a power of τ which, by (d), implies that g is the identity. This completes the

proof of (c). Part (e) again follows from the fact that τ generates the centre of Br3, since

any shift [d] lying in the subgroup Sph∗(D) ⊂ Aut∗(Dn) is necessarily central. �

2.5. It will be useful to introduce the quotient group

PAut∗(Dn) = Aut∗(Dn)/[1].
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When 3 6 n < ∞ the natural action of auto-equivalences on the Grothendieck group

K0(D) ∼= Z⊕2 induces a group homomorphism

ρ : PAut∗(Dn) → PGL(K0(D)). (6)

Taking the basis ([S1], [S2]) ⊂ K0(D) we can identify the target of this map with PGL(2,Z).

From the definition of the twist functors we have

ρ(TwS1
) =

(

(−1)n+1 1
0 1

)

, ρ(TwS2
) =

(

1 0
(−1)n (−1)n+1

)

.

It is a standard fact that for n odd, the map Br3 → PGL(2,Z) sending the generators

σ1, σ2 to these matrices induces an isomorphism Br3 /〈τ〉 ∼= PSL(2,Z) < PGL(2,Z). It

then follows from Prop. 2.7 that the map (6) is an isomorphism onto its image. Note that

ρ(Σ) =

(

0 −1
1 1

)

, ρ(Υ) =

(

0 1
(−1)n 0

)

. (7)

These elements have order 3 and 2 respectively. When considering spaces of stability

conditions in Section 4 we will see the actions of these autoequivalences on the dual space

HomZ(Γ,C), which are given by the transposes of the same matrices.

2.6. The autoequivalence group of the category D∞ is much simpler.

Proposition 2.8. There is an equality Aut∗(D∞) = Aut(D∞). Moreover

(a) The group Aut(D∞) ∼= Z with the Serre functor Σ being a generator.

(b) There is a relation Σ3 = [1].

Proof. This is easy and well-known. The Auslander-Reiten quiver for D∞ is an infinite
sequence

· · · → E[−1] → S1[−1] → S2 → E → S1 → S2[1] → E[1] → · · ·

and Σ moves along this to the right by one place. �

It follows from this result that PAut(D∞) ∼= µ3. Note that our use of the symbol Σ

in Prop. 2.8 is reasonably consistent with our earlier use for the category Dn for n < ∞.

For example, Prop. 2.3 (a) continues to hold when n = ∞. Note also that Prop. 2.3 (b)

becomes an infinite chain of tilts of non-full hearts in this case.
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3. Conformal maps

In this section we describe some explicit conformal maps which will be the analytic

ingredients in the proof of our main result. We set ω = exp(2πi/3). We introduce the

Möbius transformation T (z) = −(z+1)/z of order 3 defined by the transpose of the matrix

ρ(Σ) appearing in (7). Consider the unit circle C0 = {z ∈ C : |z| = 1}. It is easily checked

that (cf. Figure 4)

C± = T±1(C0) = {z ∈ C : |z±1 + 1| = 1}, (8)

and that C− = {z ∈ C : Re(z) = −1
2
}. These circles are illustrated in Figure 4, together

with the region cut out by the inequalities

|z + 1| > 1, |z + 1| > |z|. (9)

C0C+

C−

x

y

Figure 4. The circles C0 and C±.

3.1. Fix an integer 3 6 n < ∞ and set ν = (n−2)/2. Consider the domain Rn ⊂ C ⊂ P1

depicted in Figure 5. It is bounded by the line Re(z) = −ν and by the curves ℓ± which

are the images under the map z 7→ (1/πi) log(z) of the arcs of the circles C± connecting

0±1 and ω, where 0−1 = ∞. We also consider splitting Rn into two halves R±
n by dividing

it along the line Im(z) = 0, and we take R−
n to be the part lying below the real axis. Note

that the boundary of the domain R−
n has three corners, namely −ν,∞, 2

3
, and these occur
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in anti-clockwise order. Carathéodory’s extension of the Riemann mapping theorem, e.g.

[1, Theorem 2.8.8], ensures that there is a unique biholomorphism

fn : H → R−
n

which extends homeomorphically over the boundary of the upper half plane H ⊂ P1, and

sends (0, 1,∞) to (−ν,∞, 2
3
).

x

y

0 1

l+

l−

2

3

2−n
2

Figure 5. The region Rn.

Proposition 3.1. The function fn can be written explicitly as

fn(t) =
1

πi
log

(

φ
(2)
n (a, b)

φ
(1)
n (a, b)

)

,

where t = −27b2/4a3, and

φ(i)
n (a, b) =

∫

γi

(x3 + ax+ b)
n−2

2 dx, (10)

for appropriately chosen paths γi connecting zeroes of the integrand.

Note that the given expression for fn depends only on the quantity t because rescaling

(a, b) with weights (4, 6) rescales both the functions φ
(i)
n with weight 3(n−2)+2 = 3n−4,

and hence leaves their ratio unchanged. We will split the proof of Proposition 3.1 into two

steps. In the first, we show that the function gn(t) = exp(πifn(t)) is given by the ratio of
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solutions to a hypergeometric equation, and in the second we show that the periods (10)

satisfy the same equation.

3.2. The first part of the proof of Proposition 3.1 is a minor extension of the usual proof

of the Schwarz triangle theorem, see e.g. [8, Section 4.7], [16, Section V.7]. The basic point

is that since the map gn maps the three connected components of R\{0, 1} to arcs of circles

in P1, it is given by a ratio of solutions to a hypergeometric equation, whose coefficients are

determined by the angles at which these circles meet. In contrast to the usual setting of

the Schwarz triangle theorem, the map gn is not injective on the upper half-plane, and one

of the angles is > π. Although only small extensions to the usual argument are required

to deal with this issue, for the convenience of the reader we will give the argument in full.

The main tool in the proof is the Schwarzian derivative, whose key properties we briefly

recall here. Let f : U → C be a holomorphic function on a domain U ⊂ C. The Schwarzian

derivative is defined by the expression

Sf(t) =

(

f ′′(t)

f ′(t)

)′

−
1

2

(

f ′′(t)

f ′(t)

)2

.

We shall need the following properties:

(S1) Suppose that f ′(t) is non-vanishing on a domain U ⊂ C. Thus Q(t) = −Sf(t)/2

defines a holomorphic function Q : U → C. Then there exist two holomorphic

solutions y1(t), y2(t) to the differential equation

y′′(t)−Q(t)y(t) = 0,

such that f(t) = y1(t)/y2(t).

(S2) If R ∈ PGL2(C) is a Möbius transformation, then S(R ◦ f) = S(f).

(S3) If f : U → C and g : V → C are composable holomorphic functions, then

S(f ◦ g) = (S(f) ◦ g) · (g′)2 + S(g).

We shall also need the following standard computation.

Lemma 3.2. Suppose that k : U → C is a holomorphic function defined in a neighbourhood

of t0 ∈ U ⊂ C, which satisfies k(t0) = 0 and k′(t0) 6= 0. Take α ∈ R and set q(z) = zα,

viewed as a multi-valued function on C∗. Then S(q ◦ k) is a single-valued meromorphic

function at t = t0, and satisfies

S(q ◦ k) =
1− α2

2(t− t0)2
+O

( 1

t− t0

)

. (11)
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Proof. Shrinking U if necessary we can assume that the only zero of k on U is at t =

t0. Then q ◦ k is a multi-valued holomorphic function on U \ {t0}, but the associated

Schwarzian derivative S(q ◦k) is clearly single-valued, since the various branches of q differ

by multiplication by a constant factor. A direct calculation shows that

Sq(z) =
1− α2

2z2
.

The result follows by applying property (S3) on subdomains of U \ {t0} on which q ◦ z is

single-valued. �

3.3. Consider the function gn(t) = exp(πifn(t)). By definition this is holomorphic on the

upper half-plane H ⊂ C, with non-vanishing derivative. Our first objective is to show

that the Schwarzian derivative Sgn(t) extends to a meromorphic function on the Riemann

sphere P1, and to understand its leading order behaviour at the points t = 0, 1,∞.

Take a point t ∈ R \ {0, 1} and a neighbourhood t ∈ B ⊂ C \ {0, 1} invariant under

complex conjugation. By construction, the function gn is holomorphic on B∩H, with non-

vanishing derivative. Moreover, gn extends continuously over B ∩ R, and the extension is

injective, and maps B∩R onto the arc of a circle C ⊂ P1. Let R be a Möbius transformation

taking this circle C to the real axis R ⊂ C. Then the composite R ◦ gn is real-valued on

B∩R, so by the Schwarz reflection principle extends to a holomorphic function on B. It is

easy to see that this function is locally univalent, and hence has non-vanishing derivative.

It follows that S(R ◦ gn) extends to a holomorphic function on B which is real-valued on

B∩R. But by property (S2), this function coincides with Sgn. Thus we conclude that Sgn,

which is holomorphic on H ⊂ C by construction, extends to a holomorphic function on a

neighbourhood of each point of R\{0, 1}, and is real-valued on the real axis. Applying the

reflection principle again we find that Sgn extends to a holomorphic function on C\{0, 1}.

It thus remains to examine its behaviour at the points {0, 1,∞}.

Consider first the point t = 0, and again take a small neighbourhood 0 ∈ B ⊂ C

invariant under complex conjugation. As before, the function gn is holomorphic on B ∩H,

with non-vanishing derivative, and extends continuously to B∩R. This time the extension

maps the two halves of the real axis B ∩R± into the arcs of two circles C± which meet at

an angle π/2 at the point gn(0) = i2−n. Let R be a Möbius transformation which maps

this point to 0, and the circles C− and C+ to the circles R and R · i respectively. The

function k(t) = R(gn(t))
2 is then holomorphic on B ∩ H, and continuous and real-valued

on B ∩ R, so by the reflection principle extends to a holomorphic function k : B → C
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satisfying k(0) = 0. It is easy to see that since gn is locally univalent on B ∩ H, the same

is true of k, and hence k′(0) 6= 0. Applying Lemma 3.2 to the function R(gn(t)) = k(t)1/2,

and using property (S2), we conclude that Sgn has a double pole at t = 0, with leading

order behaviour given by the right-hand side of (11), with t0 = 0 and α = 1
2
.

A very similar argument applies at the point t = ∞. It is convenient to set u = t−1

and consider the behaviour of the map hn(u) = gn(u
−1) near the point u = 0. The above

argument then applies, with the two circles C± now meeting at an angle π/3 at the point

hn(0) = ω. We consider a Möbius transformation R which maps this point to 0, and the

circles C− and C+ to the rays of argument 0 and π/3 respectively. We then consider the

function k(u) = R(hn(u))
3. We conclude that Shn has a double pole at u = 0, with leading

order behaviour given by (3.2) with α = 1
3
. Using property (S3) it follows that the leading

order behaviour of Sgn near t = ∞ is

Sgn(t) =
4

9t2
+O(t−3).

In particular, Sgn(t) has a double zero at t = ∞.

Finally, we consider the point t = 1. We again take a small neighbourhood 1 ∈ B ⊂ C

invariant under complex conjugation. A little care is required since the function gn is not

injective on B ∩H. Nonetheless, the two components of B ∩R \ {1} are mapped by gn to

the two circles r− and R · i2−n, which meet at an angle of 1
2
(n−1)π at the point gn(1) = ∞.

We can therefore take a Möbius transformation R which maps ∞ to 0, and maps these

two arcs of circles to the rays R · in−1 and R.

Introduce the functions

l(t) = R(gn(t))
1/(n−1), k(t) = l(t)2,

defined by some fixed branch of z 7→ z1/(n−1) near 0. Note that if we set p(z) = zn−1 then

we can write

l = (p−1 ◦R ◦ p) ◦ (p−1 ◦ gn).

Since R(∞) = 0, we have R(z) = (cz + d)−1, for some c, d ∈ C with c 6= 0, and it is then

easily checked that p−1 ◦ R ◦ p is holomorphic at ∞, with non-vanishing derivative. The

regionR−
n is closed under the map z 7→ z/(n−1), so the function exp(πifn(t)/(n−1)), which

is a branch of p−1◦gn(t), is holomorphic on B∩H, and has a continuous extension to B∩R

sending t = 1 to z = ∞. Since the region Rn is contained in the strip |Re(z)| < 1
2
(n− 1),
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this function is moreover injective. But note that l cannot be extended to a holomorphic

function on B since it maps the two components of B ∩ R \ {1} to circles meeting at an

angle of π/2.

We have now shown that k(t) = l(t)2 is a holomorphic function on B∩H, which extends

continuously to B∩R and satisfies k(1) = 0. By construction it is real-valued on B∩R, so

by the reflection principle extends to a holomorphic function on B, and the last remarks of

the previous paragraph shows that k′(1) 6= 0. Setting α = (n− 1)/2 we can apply Lemma

3.2 to the function R(gn(t)) = k(t)α to conclude that Sgn has a double pole at t = 1, with

leading order behaviour given by (11).

3.4. Consider again the function gn(t) = exp(πifn(t)) on H. The property (S1) shows

that gn(t) is given by the ratio y2(t)/y1(t) of two solutions to the differential equation

y′′(t)−Q(t)y(t) = 0, Q(t) = −1
2
Sgn(t). (12)

The function Q(t) extends to a meromorphic on P1, with double poles at t = 0, 1, no other

poles, and a double zero at infinity. It follows that it is uniquely determined by the leading

terms in the Laurent expansions at t = 0, 1,∞. Indeed, if two such functions had the same

leading terms at these points, then their difference would have a triple zero at infinity, at

worst simple poles at t = 0, 1, and no other poles, and any such function is zero.

It remains to show that the solutions yi(t) can be written as period integrals of the form

(10). We will show in the next subsection that these period integrals satisfy a hypergeo-

metric equation

t(t− 1)p′′(t) +
(

(a+ b+ 1)t− c
)

p′(t) + ab · p(t) = 0, (13)

with parameters

a = 1
2

(

1
3
− ν

)

, b = −1
2

(

1
3
+ ν

)

, c = 1
2
.

A standard calculation, e.g. [16, Section 7], puts this in the Q-form (12), with −2Q(t)

having leading order behaviour at the points t = 0, 1,∞ given by expressions of the form

(11), suitably interpreted at t = ∞. The relevant angles are

α0 = 1− c = 1
2
, α1 = c− a− b = 1

2
+ ν, α∞ = b− a = 1

3
.

Since these agree with what we computed above, it follows that the differential equation

(12) coincides with the Q-form of the equation (13).

The final thing to check is that we can take the paths γi in the integral (10) to be

integral cycles rather than complex linear combinations of such cycles. Note that there is
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a unique solution to (13) up to scale which vanishes at t = ∞. Since gn(t) → 0 as t → ∞

in H this solution must coincide with y2. But this is indeed given by an integral cycle,

namely the vanishing cycle. Since the other solution y1 is obtained by applying monodromy

transformations, it follows that it is also integral. Indeed, at t = 0 the monodromy has

order 2 and preserves the image of the real axis under gn, namely the unit circle. It follows

that it is z 7→ ±z−1.

3.5. In this section we prove that the twisted periods (10) satisfy the hypergeometric

differential equation (13). Let us consider a ∈ C to be fixed. As always we set ν = (n−2)/2

with n > 3. Consider the function

fa(h) = h−(ν+1)

∫

eh(u
3+au)du = h−(ν+ 4

3
)

∫

ew
3+h2/3awdw,

where we set w = h1/3 · u. Introduce the differential operator

Dh = h∂h + ν + 1.

Then

(Dh +
1

3
)fa(h) =

2

3
· h−(ν+ 4

3
)

∫

h
2

3 · aw · ew
3+h2/3awdw.

Repeating we obtain

(Dh −
1

3
)(Dh +

1

3
)fa(h) =

4

9
· h−(ν+ 4

3
)

∫

h
4

3 · (aw)2 · ew
3+h2/3awdw,

and it follows that
(

(Dh −
1

3
)(Dh +

1

3
) +

4a3

27
· h2

)

fa(h) = h−ν ·
4a2

27

∫

(3w2 + h
2

3a) · ew
3+h2/3aw dw = 0.

Now consider the inverse Laplace transform

pa(b) =

∫

ebhfa(h) dh =

∫ ∫

eh(u
3+au+b) · h−(ν+1) du dh.

Exchanging the order of integration and using
∫

eh(s+b) · h−(ν+1)dh = Γ(−ν) · (s + b)ν ,

where Γ(x) denotes the gamma function, this becomes

pa(b) = Γ(−ν) ·

∫

(x3 + ax+ b)ν dx.
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x

y

0 1

l+

l−

2

3

−∞

Figure 6. The region R∞

Under the inverse transform h∂h becomes −b∂b − 1, so the transform of the operator Dh

is −b∂b + ν. The twisted periods therefore satisfy the differential equation

(

(−b∂b + ν +
1

3
)(−b∂b + ν −

1

3
) +

4a3

27
· ∂2

b

)

pa(b) = 0.

Setting t = −27b2/4a3 this becomes

(

t(t− 1)∂2
t +

(

(1− ν)t−
1

2

)

∂t +
1

4

(

ν2 −
1

9

)

)

p(t) = 0, (14)

which coincides with (13).

3.6. For the case n = ∞ we instead consider the region R∞ depicted in Figure 6. It is

bounded by the same two curves ℓ±. We again consider the half region R−
∞ consisting of

points of R∞ with negative imaginary part. The boundary has two corners, namely 2
3
and

∞. Carathéodory’s extension of the Riemann mapping theorem ensures that there is a

biholomorphism

f∞ : H → R+
∞ (15)

which extends continuously over the boundary, and sends the points (0,∞) to (2
3
,∞).

Considering the orientations of the two regions shows that R<0 is mapped to ℓ−, and R>0

to the open interval of the real axis (−∞, 2/3). Note that in this case the map f∞(t) is not
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unique: precomposing it with a dilation of the form t 7→ λ · t with λ ∈ R>0 gives another

suitable map.

Proposition 3.3. One possible choice for the function f∞ can be written explicitly as

f∞(t) =
1

πi
log

(

φ
(2)
∞ (a, b)

φ
(1)
∞ (a, b)

)

,

where t = a3, b is arbitrary, and

φ(i)
∞ (a, b) =

∫

δi

exp
(

x3 + ax+ b
)

dx, (16)

for certain contours δi : R → C which satisfy Re δ(x)3 → −∞ as x → ±∞.

Note that the function f∞ only depends on a, because changing b multiplies both func-

tions φ
(i)
∞ (a, b) by an equal factor, and hence leaves their ratio unchanged.

Proof. We shall give a direct proof in this case. Consider the Airy function

Ai(a) =
1

2πi

∫

δ

exp
(x3

3
− ax

)

dx,

where the path of integration δ : R → C tends to ∞ along the rays of argument ±π/3 as

x → ±∞. We shall need two standard properties of this function, see e.g. [8, Section 8.9]

or [17, Section 11.8]. Firstly, it is an entire function of a ∈ C, with zeroes only on the

negative real axis. Secondly, there is an asymptotic expansion of Ai(a) as a → ∞ which

implies that there is a constant R ∈ C such that

Ai(a) · exp

(

2a
3

2

3

)

· a
1

4 → R, (17)

as a → ∞ in any closed subsector of C \ R<0. In particular, it follows that Ai(a) → 0 as

a → ∞ in the closed sector | arg(a)| 6 π/3.

Let us introduce the functions

g(a) =
ω2Ai(−ω2a)

ωAi(−ωa)
, h(a) =

1

πi
log g(a), f(t) = h

(

t1/3
)

.

By what was said above, the function g(a) is meromorphic, with zeroes and poles only on

the rays R>0 ·ω
±1. In particular, it is regular and non-vanishing on a neighbourhood of the

closed sector Σ ⊂ C bounded by the rays of argument 0 and π/3. Choosing the principal
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branch of log, the function h(a) is then well-defined and holomorphic on this sector, and

satisfies h(0) = 2/3. To define the function f(t) we choose the branch of the cube root

function on H which lies in Σ. Then f(t) is also well-defined and holomorphic on H.

We will show that the function f(t) gives a possible choice for the map (15). In view of

the obvious relation

ωi ·Ai(ωia) =
1

2πi

∫

ωi·δ

exp
(x3

3
− ax

)

dx, (18)

this will be enough to prove the result. Note that the factor of 1
3
multiplying x3 can be

absorbed by rescaling t by a factor of 3, which is a transformation of the form mentioned

just before the statement of the Proposition.

It is an immediate consequence of (18) that

Ai(a) + ωAi(ωa) + ω2Ai(ω2a) = 0,

and it follows that

g(ωia) = T i(g(a)), (19)

where T (z) = −(z + 1)/z is the Möbius transformation of order 3 appearing in (8). The

definition of the Airy function implies that Ai(a) = Ai(ā), and hence that

g(a) = g(ā)−1. (20)

It follows that g maps points on the real axis onto the unit circle C0. Using (8) and (19)

this implies that g maps the ray of argument π/3, which is part of the circle R · ω2, to the

circle C− = T−1(C0).

Putting all this together we find that the function f is holomorphic on the upper half-

plane and extends continuously to the boundary. It satisfies f(0) = 2
3
and maps the

boundary rays R<0 and R>0 to the images under (1/iπ) log(z) of the circles C− and C0

respectively. The asymptotic property (17) shows that f extends continuously over ∞.

Let us now compose f with the inverse of the Riemann map (15). The resulting function

k = f ◦ f−1
∞ defines a holomorphic map k : H → H which extends continuously over the

boundary, and satisfies k(R) ⊂ R. By the reflection principle, k extends to a meromorphic

function on P1, which has a single pole at ∞. The asymptotic formula (17) shows that

f(t) behaves like a constant multiple of t1/2 as t → ∞. It follows from this that the pole

of k is simple, and hence that k(t) = λ · t for some λ ∈ R>0. �
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4. Stability conditions

In this section we analyse the space of stability conditions on the categories Dn and give

the proof of the main result, Theorem 1.1. We refer to [2] and [4, Section 7] for basic

definitions concerning stability conditions. The basic idea is to identify a fundamental

domain Un for the action of the group PAut∗(Dn) on the space of projective stability

conditions P Stab∗(Dn), and show that its image under the logarithmic central charge map

can be identified with the region Rn of Section 3.

4.1. Take 3 6 n 6 ∞ and let Stab(Dn) denote the space of stability conditions on the

triangulated category Dn. In particular, all stability conditions in this space are assumed to

satisfy the support property. There is a distinguished connected component Stab∗(Dn) ⊂

Stab(Dn) which contains all stability conditions σ = (Z,P) whose heart P((0, 1]) coincides

with the canonical heart An ⊂ Dn.

The group of autoequivalences Aut(Dn) acts on Stab(Dn) by

Φ · (Z,P) = (Z ′,P ′), Z ′(E) = Z(Φ−1(E)), P ′(φ) = Φ(P(φ)).

Recall that an autoequivalence Φ ∈ Aut(Dn) is negligible if it fixes the objects S1, S2. Any

such autoequivalence acts trivially on an open subset of Stab∗(Dn), and hence on the whole

connected component Stab∗(Dn). Conversely, any autoequivalence which acts trivially on

Stab∗(Dn) must be negligible.

There is an action of C on Stab(Dn), commuting with the action of Aut(Dn), given by

the rule

λ · (Z,P) = (Z ′,P ′), Z ′(E) = exp(−iπλ) · Z(E), P ′(φ) = P(φ+ Re(λ)).

Note that the action of the shift [k] ∈ Aut(Dn) coincides with the action of k ∈ C. This

action of C on Stab(Dn) is free and proper, and we can consider the quotient complex

manifold

P Stab(Dn) = Stab(Dn)/C,

together with the distinguished connected component P Stab∗(Dn) ⊂ P Stab(Dn). The

central charge map induces a local isomorphism of complex manifolds

P Stab∗(Dn) → PHomZ(K0(Dn),C) ∼= P1. (21)

We refer to points of the quotient space P Stab∗(Dn) as projective stability conditions.

Note that a projective stability condition determines full subcategories of stable and
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semistable objects of Dn, and a well-defined phase difference φ(B) − φ(A) ∈ R for any

two semistable objects A,B ∈ Dn.

4.2. Let us again take 3 6 n 6 ∞ and define the following subsets of the space of

projective stability conditions P Stab∗(Dn).

Definition 4.1. (a) Let U+
n ⊂ P Stab∗(Dn) be the subset of projective stability condi-

tions for which the objects S1 and S2 are both stable and

0 6 φ(S2)− φ(S1) < (n− 2)/2. (22)

(b) Let U−
n ⊂ P Stab∗(Dn) be the subset of projective stability conditions for which the

objects S1, S2 and E are all stable, and both of the following inequalities hold:

φ(S1)− φ(S2) < φ(S2[1])− φ(E), φ(S1)− φ(S2) < φ(E)− φ(S1[−1]). (23)

(c) Let Un = U−
n ∪ U+

n ⊂ P Stab∗(Dn).

In Prop. 4.4 below we will show that the subset Un is a fundamental domain for the

action of PAut∗(Dn). The following result is a first step towards this.

Lemma 4.2. For any 3 6 n 6 ∞ the subset Un ⊂ P Stab∗(Dn) is open. Moreover, if

a projective stability condition lies in the boundary of Un then one of the following two

conditions is satisfied:

(i) the set of stable objects up to shift is {S1, S2}, and

φ(S2)− φ(S1) = (n− 2)/2; (24)

(ii) the set of stable objects up to shift is {S1, S2, E}, and the inequalities

φ(S1)− φ(S2) 6 φ(S2[1])− φ(E), φ(S1)− φ(S2) 6 φ(E)− φ(S1[−1]) (25)

hold, with one or both being an equality.

In particular, when n = ∞, only case (ii) can occur.

Proof. It is a general fact [4, Prop. 7.6] that if an object S is stable with respect to some

stability condition then the same is true for all stability conditions in an open neighbour-

hood. Moreover the phase φ(S) varies continuously in this neighbourhood. It follows

immediately that if σ̄ ∈ Un satisfies φ(S1) 6= φ(S2), then an open neighbourhood of σ̄

also lies in Un. On the other hand, any projective stability condition for which S1, S2 are

semistable with φ(S1) = φ(S2) can be lifted to a stability condition with standard heart

An. The object E is then necessarily semistable with φ(E) = φ(Si), and all points in an
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open neighbourhood of σ̄ lie in either U−
n or U+

n depending on the sign of φ(S2) − φ(S1).

Thus Un is open.

Consider σ̄ ∈ P Stab∗(Dn) lying in the closure of U+
n . Then the objects S1 and S2 are

semistable, and the non-strict version of the inequality (22) holds. In particular n < ∞.

It follows that σ̄ can be lifted to a stability condition whose heart contains, and hence is

equal to, the heart An(k) = 〈S1[k], S2〉 of Prop. 2.3, for some 0 6 k 6 (n − 2)/2. This

implies that the objects S1 and S2 are in fact stable. If σ̄ lies in the boundary of U+
n , so

that σ̄ /∈ U+
n , it follows that the equality (24) must hold.

Suppose now that σ̄ ∈ P Stab∗(Dn) lies in the closure of U−
n . Then the objects S1, S2

and E are all semistable, and the the inequalities (25) both hold. The triangle associated

to the short exact sequence (3) shows that for any lift

φ(S2) 6 φ(E) 6 φ(S1) 6 φ(S2) + 1.

We cannot have φ(S1) = φ(S2) + 1 since then either φ(E) = φ(S1), or φ(E) = φ(S2), and

in either case one of the equalities (25) fails. Thus φ(S1) − φ(S2) < 1, and hence σ̄ can

be lifted to a stability condition with heart An. If σ̄ lies in the boundary of Un we cannot

have φ(S1) = φ(S2) since as above, such stability conditions lie in Un. It follows that S1,

S2 and E are all in fact stable, and again, since σ̄ /∈ Un, at least one of the inequalities

(25) must be an equality. �

4.3. The following result gives the link with the regions considered in Section 3.

Proposition 4.3. Take 3 6 n 6 ∞. Then the function

gn(σ̄) =
1

πi
log

(Z(S1)

Z(S2)

)

defines a biholomorphic map between the regions Un and Rn, where the branch of log is

chosen so that Re gn(σ) = φ(S1)− φ(S2).

Proof. It follows from the proof of Lemma 4.2 that if σ̄ ∈ Un then the set of stable

objects up to shift is precisely {S1, S2} or {S1, S2, E} depending on whether σ̄ ∈ U+
n

or σ̄ ∈ U−
n . Indeed, if σ̄ ∈ U+

n then it can be lifted to a stability condition whose heart

is An(k) = 〈S1[k], S2〉 for some 0 6 k 6 (n − 2)/2. If k > 0 this heart is semisimple, so

the only stable objects are S1, S2 up to shift, and if k = 0 the same result holds since

φ(S1) 6 φ(S2). On the other hand, if σ̄ ∈ U+
n then 0 < φ(S1) − φ(S2) < 1, and σ̄ can
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be lifted to a stability condition with heart An, which implies that the stable objects are

precisely S1, S2 and E.

Let us consider the two halves U±
n of the fundamental domain separately. The region U+

n

consists of projective stability conditions σ̄ for which the only stable objects are S1 and S2

up to shift. It is easy to see that any such σ̄ is determined by the value of z = gn(σ̄) ∈ C,

and using the finite-length hearts An(k) = 〈S1[k], S2〉 of Prop. 2.3 it is also easy to see

that all values of z ∈ C compatible with the constraint (22) are realised. Thus gn maps

the region U+
n bijectively onto the region (2− n)/2 < Re(z) 6 0.

We showed above that for all projective stability conditions σ̄ in the region U−
n , the

objects S1, S2 are stable, and 0 < φ(S1)− φ(S2) < 1. It is easy to see that the set of such

projective stability conditions is mapped bijectively by gn onto the strip 0 < Re(z) < 1.

Since Z(E) = Z(S1) + Z(S2), an elementary piece of geometry shows that

φ(E)− φ(S2) < φ(S1)− φ(E) ⇐⇒ |Z(S2)| < |Z(S1)|.

Recalling from Lemma 2.2 and Prop. 2.8 the action of Σ on objects, and noting that by

(7) it induces the Möbius transformation T of Section 3 on the projective space (21), we

find that the inequalities (23) can be alternatively expressed as

|Z(S1) + Z(S2)| > |Z(S2)|, |Z(S1) + Z(S2)| > |Z(S1)|.

In terms of z = Z(S2)/Z(S1) this gives the inequalities (9) defining the grey area of

Figure 4. Thus the image of U−
n is the part of the strip 0 < Re(z) < 1 bounded by the

images of the circles C± under the map (1/iπ) log(z). �

4.4. The following result will be a key ingredient in our proof of Theorem 1.1.

Proposition 4.4. Take 3 6 n 6 ∞. Then

(i) an autoequivalence Φ ∈ Aut(Dn) is reachable precisely if its action on Stab(Dn)

preserves the connected component Stab∗(Dn) ⊂ Stab(Dn);

(ii) the open subset Un ⊂ P Stab∗(Dn) is a fundamental domain for the action of

PAut∗(Dn).

Proof. Suppose that σ̄ lies in the intersection Un ∩Φ−1(Un) for some Φ ∈ Aut(Dn), so that

σ̄ ∈ Un and also Φ(σ̄) ∈ Un. Consider the case that σ̄ ∈ U+
n . Then Φ preserves the set

of stable objects {S1, S2} up to shift. Suppose that Φ exchanges the two objects up to

shift. Then given the degrees of the maps between S1 and S2 it follows that n < ∞. Using
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Lemma 2.2 we then obtain

Φ(S1, S2) = Υ(S1, S2) = (S2, S1[n− 2]))

up to shift, and the inequality (22) then gives a contradiction. Thus Φ preserves the objects

Si up to a shift, and it follows easily that Φ[d] is negligible for some d ∈ Z, and hence that

Φ is reachable and defines the identity element of PAut∗(Dn).

Consider now the case when σ̄ ∈ U−
n . Then Φ preserves the set of stable objects

{S1, S2, E} up to shift. Suppose that Φ defines a non-trivial permutation of these ob-

jects up to shift. From Lemma 2.2 and Prop. 2.8 we know that

Σ(S1, E, S2) = (S2[1], S1, E), Σ−1(S1, E, S2) = (E, S2, S1[−1]), (26)

and from the degrees of the maps between S1, S2 and E it follows that Φ = Σ±1. Comparing

(26) with the form of the inequalities (23) gives a contradiction. Thus again Φ preserves

the objects Si up to a shift, and hence defines the identity element of PAut∗(Dn).

Consider the union

W =
⋃

Φ∈PAut∗(Dn)

Φ(Ūn) ⊂ P Stab∗(Dn). (27)

By Lemma 4.2, for any projective stability condition σ̄ lying in the closure of Un, the set

of stable objects up to shift is contained in {S1, S2, E}, and hence σ̄ can only lie in the

closure of a different region Φ(Un) for finitely many Φ ∈ PAut∗(Dn). Thus the union in

(27) is locally-finite, and hence W is a closed subset.

We now prove that W is an open subset. Consider σ̄ lying in the boundary of Un, and a

small open neighbourhood σ̄ ∈ V ⊂ P Stab∗(Dn). According to Lemma 4.2 there are two

cases. In case (i) the stable objects are S1, S2 up to shift, and if V is small enough these

remain stable, and all points of V lie in the closure of either Un or Υ(Un) depending on

which of the positive numbers

φ(S2)− φ(S1), φ(S1[n− 2])− φ(S2),

is the smallest. In case (ii) the stable objects are S1, S2 and E. Once again, if V is small

enough these objects remain stable, and all points of V lie in the closure of one of the

regions Σi(Un) depending on which of the positive numbers

φ(S1)− φ(S2), φ(S2[1])− φ(E), φ(E)− φ(S1[−1]),
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is the smallest. This completes the proof that W is open. Since, by Prop. 2.7(a), the

autoequivalences Φ and Σ generate PAut∗(Dn), we also see that W is connected. Thus

W = P Stab∗(Dn), and in particular, any reachable autoequivalence preserves the con-

nected component Stab∗(Dn).

We have now proved one half of part (i) and part (ii). To complete the proof of (i)

take an autoequivalence Ψ ∈ Aut(Dn) preserving the distinguished component Stab∗(Dn).

Then Ψ maps Un into the union (27). Thus we can find a point σ̄ ∈ Un, and a reachable

autoequivalence Φ ∈ Aut∗(Dn) such that Ψ(σ̄) = Φ(σ̄). Applying the first two paragraphs

of this proof to the composite Ψ ◦ Φ−1 it follows that Ψ is reachable. �

Remark 4.5. Suppose a projective stability condition σ̄ ∈ P Stab∗(Dn) is fixed by some

non-trivial element Φ ∈ Aut∗(Dn). By Prop. 4.4 it is enough to consider the case when σ̄

lies in the closure of the fundamental domain Un. The proof of Prop. 4.4 then shows that

there are two possibilities:

(a) the stable objects are S1, S2 up to shift, Φ = Υ, and

Z(S2) = in−2 · Z(S1), φ(S2)− φ(S1) =
1
2
(n− 2);

(b) the stable objects are S1, S2 and E up to shift, Φ = Σ±1, and

Z(E[1]) = ω · Z(S1) = ω2 · Z(S2),

φ(S1)− φ(S2) = φ(S2[1])− φ(E) = φ(E)− φ(S1[−1]) =
2

3
.

These two cases are illustrated in Figure 7. For n < ∞ it is easy to see that both

possibilities occur, and that the quotient

P Stab∗(Dn)/PAut∗(Dn),

therefore has two orbifold points, with stabilizer groups µ2 and µ3 respectively. In the

case n = ∞ only the second case occurs, and we obtain a single µ3 orbifold point in the

quotient.

4.5. We now prove a projectivised version of our main result, Theorem 1.1. Recall from

Section 1 that the quotient h/W is isomorphic to C2, and has co-ordinates (a, b) obtained

by writing

p(x) = (x− u1)(x− u2)(x− u3) = x3 + ax+ b.
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Figure 7. Orbifold points in the boundary of Un when n is odd.
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Figure 8. Exchange graph as the skeleton of space of stability conditions

The image of the root hyperplanes ui = uj is the discriminant

∆ = {(a, b) ∈ C2 : 4a3 + 27b2 = 0}.

The space h has a C∗ action which rescales the co-ordinates ui with weight 1. This acts

on (a, b) with weights (2, 3). We thus have

C∗\(h \ {0})/W ∼= P(2, 3).

The weighted projective space P(2, 3) contains two orbifold points which we label by their

stabilizer groups: thus µ2 = [1 : 0] and µ3 = [0 : 1]. The image in P(2, 3) of the discriminant

is a single non-orbifold point ∆ = [−3 : 2]. The coarse moduli space map is

P(2, 3) → P1, [a : b] 7→ [a3 : b2].
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We take the affine co-ordinate t = −27b2/4a3 on the coarse moduli space. The points

(µ2,∆, µ3) then correspond to t = (0, 1,∞) respectively.

In the case n = ∞ we consider the action of µ3 on C given by a 7→ ω · a. The quotient

has a single orbifold point at a = 0 with stabilizer group µ3. We take the co-ordinate

t = a3 on the coarse moduli space, which is isomorphic to C.

Theorem 4.6. (a) For 3 6 n < ∞ the action of PAut∗(Dn) on P Stab∗(Dn) is proper

and quasi-free and there is an isomorphism of complex orbifolds

P Stab∗(Dn)/PAut∗(Dn) ∼= P(2, 3) \∆.

(b) The action of PAut(D∞) on P Stab(D∞) is proper and quasi-free and there is an

isomorphism of complex orbifolds

P Stab(D∞)/PAut∗(D∞) ∼= C/µ3.

Proof. Consider part (a) first. We shall actually prove more, namely that there is an

isomorphism of complex manifolds

hn : ˜P(2, 3) \∆ −→ P Stab∗(Dn), (28)

where the space on the left is the orbifold universal cover, with the following two properties:

(i) it intertwines the action of the orbifold fundamental group on the left, with the

action of PAut∗(Dn) on the right, under the homomorphism

ρ : π1(P(2, 3) \∆) → PAut∗(Dn), (29)

which sends the local generators at the orbifold points µ2 and µ3 to the autoequiv-

alences Υ and Σ respectively;

(ii) it makes the following diagram commute

˜P(2, 3) \∆ P Stab∗(Dn)

P1 PHomZ(K0(Dn),C)

hn

∼=

in which the vertical arrows are local analytic isomorphisms, given on the left by

a particular ratio of twisted periods (10), and on the right by the central charge
map.
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The fact that conditions (i) and (ii) are compatible is the statement that the monodromy

representation of the equation (13) agrees with the action of the map PAut∗(Dn) on central

charges under the homomorphism ρ. This holds because the Möbius maps specified by the

mondromy of the hypergeometric differential equation are precisely those defined by the

matrices given in (7)

To construct a suitable map (28), first consider the subset Pn ⊂ P1 which is the union

of the lower and upper half-planes ± Im(t) > 0 in the coarse moduli space of P(2, 3), glued

along the segment (0,∞) = (µ2, µ3). We can glue the isomorphism fn : H → R−
n of Section

3 to its complex conjugate to obtain an isomorphism fn : Pn → Rn. Composing this with

the inverse of the isomorphism gn : Un → Rn of Prop. 4.3 gives a biholomorphic map

hn = g−1
n ◦ fn : Pn → Un. By construction this map satisfies the condition (ii).

Since Pn is simply-connected we can lift it to the universal cover and hence view it as

a subset of the space appearing on the left of (28). The subsets Pn and Un are then both

fundamental domains for the relevant group actions, so there is a unique way to extend

hn uniquely so as to satisfy condition (i) on the dense open subset which is the disjoint

union of the translates of the fundamental domains. Since the conditions (i) and (ii) are

compatible, the resulting map hn also satisfies (ii). Using the local homeomorphisms to

P1 we can then extend hn over the boundaries of the fundamental domains to obtain the

required isomorphism.

The proof of part (b) proceeds along similar lines. The universal cover of the orbifold

C/µ3 is just C itself, so in this case we look for an isomorphism

h∞ : C → P Stab∗(D∞),

satisfying the properties

(i) it intertwines the action of µ3 on both sides, given on the left by a 7→ ω · a, and on

the right by the autoequivalence Σ;

(ii) it makes the following diagram commute

C P Stab∗(D∞)

C/µ3 PHomZ(K0(D∞),C)

h∞

∼=
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where the local analytic isomorphism on the left is given by a particular ratio of

the functions (16).

The fact that these two conditions are compatible follows from the relations (18) and (19),

after recalling that the Möbius transformation T is induced by the action of Σ on the space

PHomZ(K0(D∞),C).

To construct the required map h∞, we first consider the subset P∞ ⊂ C which is the

union of the lower and upper half-planes ± Im(t) > 0 in the coarse moduli space, glued

along the segment (0,∞) = (µ3,∞). We can glue the isomorphism f∞ : H → R−
∞ of

Section 3 to its complex conjugate to obtain an isomorphism f∞ : P∞ → R∞. Composing

with the inverse of the isomorphism g∞ : U∞ → R∞ of Prop. 4.3 gives a biholomorphic

map h∞ : P∞ → U∞. We can again lift P∞ into the universal cover, via the map a = t1/3,

and so view P∞ as the sector in the a–plane bounded by the rays of phase ±π/3. The

resulting map satisfies condition (ii) by construction. We then extend the map h∞ to a

dense open subset of C using condition (i). The compatibility of the two conditions ensures

that this extension also satisfies condition (ii). Finally, we can extend h∞ over the missing

rays using the vertical local isomorphisms in the above commuting diagram. �

4.6. The final step is to lift Theorem 4.6 to obtain a proof of our main result Theorem

1.1. Consider first the case 3 6 n < ∞. We have a diagram of complex manifolds and

holomorphic maps

C̃2 \∆ Stab∗(Dn)

˜P(2, 3) \∆ P Stab∗(Dn)
hn

The vertical arrows are C-bundles, and the bottom horizontal arrow hn is the isomorphism

constructed in the proof of Theorem 4.6. We would like to complete the diagram by filling

in an upper horizontal isomorphism satisfying the property claimed in Theorem 1.1. Note

that by construction the central charge map

P Stab(Dn) → P1

corresponds under the isomorphism hn to the map given by ratios of the functions φ
(i)
n (a, b)

of Prop. 3.1. These functions are well-defined on the universal cover of C2 \∆, and there
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is therefore a unique way to fill in the upper arrow to give an isomorphism

hn : C̃2 \∆ → Stab∗(Dn) (30)

so that the composition with the central charge map on Stab∗(Dn) is given by the twisted

periods φ
(i)
n (a, b).

The isomorphism (29) lifts to an isomorphism

ρ : π1(C
2 \∆) → Sph∗(Dn), (31)

by mapping the extra generator corresponding to a loop in the fibre of the C∗-bundle

π : C2 \∆ → P(2, 3) \∆

to the element [3n− 4]. This loop is given explicitly by a path of the form

(a(θ), b(θ)) = (e4πiθ · a, e6πiθ · b), θ ∈ [0, 1].

By the formula (10) this means that the cebtral charges of the objects Si vary as

Z(Si)(θ) = φ(i)(e4πiθ · a, e6πiθ · b) = e(3n−4)πiθ · φ(i)(a, b) = e(3n−4)πiθ · Z(Si),

and hence the phases of these objects increase by 3n− 4. This calculation shows that the

map (30) we constructed is equivariant with respect to the group isomorphism (31), and

passing to quotients then gives the statement of Theorem 1.1 (a).

In the case n = ∞ we have a similar diagram

C2 Stab∗(D∞)

C P Stab∗(D∞)
h∞

in which the vertical arrows are again C-bundles. The bundle on the left is just the

projection C2 → C given by (a, b) 7→ a. By construction, the central charge map

P Stab∗(D∞) → P1

is given by ratios of the functions φ
(i)
∞ (a, b) of Prop. 3.3. These functions lift to C2 and

there is therefore a unique way to fill in the upper arrow with an isomorphism

h∞ : C2 → Stab∗(D∞) (32)
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so that the composition with the central charge map on Stab(D∞) is given by the oscillating

integrals φ
(i)
∞ (a, b). This completes the proof of Theorem 1.1.

Recall that in this case there is an isomorphism of groups

Z → Aut(D∞), 1 7→ Σ.

The map (32) can be made equivariant by letting Z act on C2 via

(a, b) 7→ (e2πi/3 · a, b+ πi/3).

The element 3 7→ Σ3 = [1] then fixes a and acts by b 7→ b+ πi.
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