
ar
X

iv
:1

50
1.

07
42

1v
4 

 [
m

at
h-

ph
] 

 1
6 

Ju
n 

20
16

BETHE ANSATZ AND THE SPECTRAL THEORY OF AFFINE

LIE ALGEBRA–VALUED CONNECTIONS.

THE SIMPLY–LACED CASE

DAVIDE MASOERO, ANDREA RAIMONDO, DANIELE VALERI

Abstract. We study the ODE/IM correspondence for ODE associated to
ĝ-valued connections, for a simply-laced Lie algebra g. We prove that subdom-
inant solutions to the ODE defined in different fundamental representations
satisfy a set of quadratic equations called Ψ-system. This allows us to show
that the generalized spectral determinants satisfy the Bethe Ansatz equations.
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0. Introduction

The ODE/IM correspondence, developed since the seminal papers [13, 3], con-
cerns the relations between the generalized spectral problems of linear Ordinary
Differential Equations (ODE) and two dimensional Integrable Quantum Field The-
ories (QFT), or continuous limit of Quantum Integrable Systems. Accordingly, the
acronym IM usually refers to Integrable Models (or Integrals of Motion). More re-
cently, it was observed that the correspondence can also be interpreted as a relation
between Classical and Quantum Integrable Systems [27], or as an instance of the
Langlands duality [17].

The original ODE/IM correspondence states that the spectral determinant of
certain Schrödinger operators coincides with the vacuum eigenvalue Q(E) of the Q-
operators of the quantum KdV equation [4], when E is interpreted as a parameter
of the theory. This correspondence has been proved [13, 3] by showing that the
spectral determinant and the eigenvalues of theQ operator solve the same functional
equation, namely the Bethe Ansatz, and they have the same analytic properties.

The correspondence has soon been generalized to higher eigenvalues of the Quan-
tum KdV equation – obtained modifying the potential of the Schrödinger operator
[5] – as well as to Conformal Field Theory with extended Wn-symmetries, by consid-
ering ODE naturally associated with the simple Lie algebra An (scalar linear ODEs
of order n+1) [10, 34]. Within this approach, the original construction corresponds
to the Lie algebra A1, and the associated ODE is the Schrödinger equation.
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After these results, it became clear that a more general picture including all
simple Lie algebras – as well as massive (i.e. non conformal) Integrable QFT –
was missing. While the latter issue was addressed in [20, 27] (and more recently in
[11, 1, 30]), the ODE/IM correspondence for simple Lie algebras different from An

has not yet been fully understood.
The first work proposing an extension of the ODE/IM correspondence to clas-

sical Lie algebras other than An is [9], where the authors introduce a g-related
scalar ODE as well as the important concept of Ψ-system. The latter is a set of
quadratic relations that solutions of the g-related ODE are expected to satisfy in
different representations. It was then recognized in [17] that the g-related scalar
differential operators studied in [5, 9] can be regarded as affine opers associated to
the Langlands dual of the affine Lie algebra ĝ. This discovery gave the theory a
solid algebraic footing – based on Kac-Moody algebras and Drinfeld-Sokolov Lax
operators – which was further investigated in [32] and that we hereby follow.

In the present paper we establish the ODE/IM correspondence for a simply laced
Lie algebra g, in which case the affine Lie algebra ĝ coincides with its Langlands dual
[17]. More concretely, we prove that for any simple Lie algebra g of ADE type there
exists a family of spectral problems, which are encoded by entire functions Q(i)(E),
i = 1, . . . , n = rank g, satisfying the ADE-Bethe Ansatz equations [31, 35, 2]:

n∏

j=1

ΩβjCij

Q(j)
(
Ω

Cij

2 E∗
)

Q(j)
(
Ω−

Cij
2 E∗

) = −1 , (0.1)

for every E∗ ∈ C such that Q(i)(E∗) = 0. In equation (0.1), C = (Cij)
n
i,j=1 is

the Cartan matrix of the algebra g, while the phase Ω and the numbers βj are the
free-parameters of the equation. More precisely, following [17] we introduce the
ĝ-valued connection

L(x,E) = ∂x +
ℓ

x
+ e+ p(x,E)e0 , (0.2)

where ℓ ∈ h is a generic element of the Cartan subalgebra h of g, e0, e1, . . . , en are the
positive Chevalley generators of the affine Kac-Moody algebra ĝ and e =

∑n
i=1 ei.

In addition, the potential1 is p(x,E) = xMh∨

−E, where M > 0 and h∨ is the dual
Coxeter number of g.

After [32], for every fundamental representation 2 V (i) of ĝ we consider the
differential equation

L(x,E)Ψ(x,E) = 0 . (0.3)

The above equation has two singular points, namely a regular singularity in x = 0
and an irregular singularity in x = ∞, and a natural connection problem arises
when one tries to understand the behavior of the solutions globally. We show that
for every representation V (i) there exists a unique solution Ψ(i)(x,E) to equation
(0.3) which is subdominant for x → +∞ (by subdominant we mean the solution
that goes to zero the most rapidly). Then, we define the generalized spectral
determinant Q(i)(E; ℓ) as the coefficient of the most singular (yet algebraic) term
of the expansion of Ψ(i)(x,E) around x = 0. Finally, we prove that for generic ℓ ∈ h

the generalized spectral determinants Q(i)(E; ℓ) are entire functions and satisfy the
Bethe Ansatz equation (0.1), also known as Q-system.

The paper is organized as follows. In Section 1 we review some basic facts
about the theory of finite dimensional Lie algebras, affine Kac-Moody algebras and

1We stick to a potential of this form for simplicity. However all proofs work with minor
modifications for a more general potential discussed in [5, 17].

2Actually V (i) is an evaluation representation of the i-th fundamental representation of g.
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their finite dimensional representations. Furthermore, we introduce the relevant
representations that we will consider throughout the paper.

Section 2 is devoted to the asymptotic analysis of equation (0.3). The main result
is provided by Theorem 2.4, from which the existence of the fundamental (subdom-
inant) solution Ψ(i)(x,E) follows. The asymptotic properties of the solution turn
out to depend on the spectrum of Λ = e0 + e ∈ ĝ, as observed in [32].

The main result of Section 3 is Theorem 3.6, which establishes the following
quadratic relation among the functions Ψ(i)(x,E), known as Ψ-system, that was
conjectured in [9]:

mi

(
Ψ

(i)

− 1
2

(x,E) ∧Ψ
(i)
1
2

(x,E)
)
= ⊗j∈IΨ

(j)(x,E)⊗Bij . (0.4)

Here, Ψ
(i)

± 1
2

(x,E) is the twisting of the solution Ψ(i)(x,E) defined in (2.8), while

mi is the morphism of ĝ-modules defined by (1.11), and B = (Bij)
n
i,j=1 denotes

the incidence matrix of g. In order to prove Theorem 3.6, we first establish in
Proposition 3.4 some important properties of the eigenvalues of Λ on the relevant
representations previously introduced. More precisely, we show that in each repre-
sentation V (i) there exists a maximal positive eigenvalue λ(i) (see Definition 2.3),
and that the following remarkable identity holds:

(
e−

πi
h∨ + e

πi
h∨

)
λ(i) =

n∑

j=1

Bijλ
(j) , i = 1, . . . , n = rank g . (0.5)

Equation (0.5) shows that the vector (λ(1), . . . , λ(n)) is the Perron-Frobenius eigen-
vector of the incidence matrix B, and this implies that the λ(i)’s are (proportional
to) the masses of the Affine Toda Field Theory with the same underlying Lie algebra
g [18].

In Section 4 we derive the Bethe Ansatz equations (0.1). To this aim, we study
the local behavior of equations (0.3) close to the Fuchsian singularity x = 0, and we

define the generalized spectral determinants Q(i)(E; ℓ) and Q̃(i)(E; ℓ) using some
properties of the Weyl group of g. In addition, using the Ψ-system (0.4) we prove
Theorem 4.3, which gives a set of quadratic relations among the generalized spec-
tral determinants (equation (4.6)). Evaluating these relations at the zeros of the
functions Q(i)(E; ℓ), we obtain the Bethe Ansatz equations (0.1).

Finally, in Section 5, we briefly study an integral representation of the sub-
dominant solution of equation (0.3) with a linear potential p(x,E) = x, and we
compute the spectral determinants Q(i)(E; ℓ). Some explicit computations of the
eigenvectors of Λ are provided in Appendix A.

In this work we do not study the asymptotic behavior of the Q(i)(E)’s, for E ≪ 0,
that was conjectured in [9], neither we address the problem of solving the Bethe
Ansatz equations (0.1) – for a given asymptotic behavior of the functions Q(i)(E)’s
– via the Destri-de Vega integral equation [8]. These problems are of a rather
different mathematical nature with respect to the ones treated in this work, and
they will be considered in a separate paper.

Note added in press. We proved the ODE/IM correspondence for non simply–
laced Lie algebras in [29].
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1. Affine Kac-Moody algebras and their finite dimensional

representations

In this section we review some basic facts about simple Lie algebras, affine Kac-
Moody algebras and their finite dimensional representations which will be used
throughout the paper. The discussion is restricted to simple Lie algebras of ADE
type, but most of the results hold also in the non-simply laced case; we refer to
[19, 24] for further details. At the end of the section we introduce a class of ĝ-valued
connections and the associated differential equations.

1.1. Simple lie algebras and fundamental representations. Let g be a simple
finite dimensional Lie algebra of ADE type, and let n be its rank. The Dynkin
diagrams associated to these algebras are given in Table 1. Let C = (Cij)i,j∈I

be the Cartan matrix of g, and let us denote by B = 21n − C the corresponding
incidence matrix. Since g is simply-laced, it follows that Bij = 1 if the nodes i, j
of the Dynkin diagram of g are linked by an edge, and Bij = 0 otherwise.

An
α1 α2

. . .
αn−1 αn

E6
α1 α2 α3 α5 α6

α4

Dn
α1 α2

. . .
αn−2 αn

αn−1

E7
α1 α2 α3 α4 α6 α7

α5

E8
α1 α2 α3 α4 α5 α7 α8

α6

Table 1: Dynkin diagrams of simple Lie algebras of ADE type.
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Let {fi, hi, ei | i ∈ I = {1, . . . , n}} ⊂ g be the set of Chevalley generators of g.
They satisfy the following relations (i, j ∈ I):

[hi, hj ] = 0 , [hi, ej] = Cijej , [hi, fj] = −Cijfj , [ei, fj ] = δijhi , (1.1)

together with the Serre’s identities. Recall that

h =
⊕

i∈I

Chi ⊂ g

is a Cartan subalgebra of g with corresponding Cartan decomposition

g = h⊕

(
⊕

α∈R

gα

)
. (1.2)

As usual, the gα are the eigenspaces of the adjoint representation and R ⊂ h∗ is the
set of roots. For every i ∈ I, let αi ∈ h∗ be defined by αi(hj) = Cij , for every j ∈ I.
Then gαi

= Ceαi
. Hence, ∆ = {αi | i ∈ I} ⊂ R. The elements α1, . . . , αn are

called the simple roots of g. They can be associated to each vertex of the Dynkin
diagram as in Table 1. We denote by

P = {λ ∈ h∗ | λ(hi) ∈ Z, ∀i ∈ I} ⊂ h∗

the set of weights of g and by

P+ = {λ ∈ P | λ(hi) ≥ 0, ∀i ∈ I} ⊂ P

the subset of dominant weights of g. We recall that we can define a partial ordering
on P as follows: for λ, µ ∈ P , we say that λ < µ if λ− µ is a sum of positive roots.
For every λ ∈ h∗ there exists a unique irreducible representation L(λ) of g such
that there is v ∈ L(λ) \ {0} satisfying

hiv = λ(hi)v , eiv = 0 , for every i ∈ I .

L(λ) is called the highest weight representation of weight λ, and v is the highest
weight vector of the representation. We have that L(λ) is finite dimensional if and
only if λ ∈ P+, and conversely, any irreducible finite dimensional representation of
g is of the form L(λ) for some λ ∈ P+. For λ ∈ P+, the representation L(λ) can be
decomposed in the direct sum of its (finite dimensional) weight spaces L(λ)µ, with
µ ∈ P , and we have that L(λ)µ 6= 0 if and only if µ < λ. We denote by Pλ the set
of weights appearing in the weight space decomposition of L(λ); the multiplicity
of µ in the representation L(λ) is defined as the dimension of the weight space L(λ)µ.

Recall that the fundamental weights of g are those elements ωi ∈ P+, i ∈ I, satis-
fying

ωi(hj) = δij , for every j ∈ I . (1.3)

The corresponding highest weight representations L(ωi), i ∈ I, are known as funda-
mental representations of g, and for every i ∈ I we denote by vi ∈ L(ωi) the highest
weight vector of the representation L(ωi). Since the simple roots and the funda-
mental weights of g are related via the Cartan matrix (which is non-degenerate) by
the relation

ωi =
∑

j∈I

(C−1)jiαj , i ∈ I ,

then we can associate to the i−th vertex of the Dynkin diagram of g the corre-
sponding fundamental representation L(ωi) of g.
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1.2. The representations L(ηi). Let us consider the dominant weights

ηi =
∑

j∈I

Bijωj , i ∈ I ,

where B = (Bij)i,j∈I is the incidence matrix defined in Section 1.1, and let L(ηi)
be the corresponding irreducible finite dimensional representations. In addition, we
consider the tensor product representations

⊗

j∈I

L(ωj)
⊗Bij , i ∈ I .

We now show that we can find a copy of the irreducible representation L(ηi) inside

the representations
∧2 L(ωi) and

⊗
j∈I L(ωj)

⊗Bij . This will be used in Section 3
to construct the so-called ψ-system.

Lemma 1.1. The following facts hold in the representation
∧2

L(ωi).

(a) For every j ∈ I, we have that

ej(fivi ∧ vi) = 0 .

(b) For every h ∈ h, we have that

h(fivi ∧ vi) = ηi(h)(fivi ∧ vi) .

(c) Any other weight of the representation
∧2

L(ωi) is smaller than ηi.

Proof. Since vi is a highest weight vector for L(ωi) we have that ejvi = 0 for every
j ∈ I. Moreover, using the relations [ej , fi] = δijhi together with equation (1.3),
we have

ejfivi = fiejvi + δijhivi = δijvi ,

and therefore ej(fivi ∧ vi) = δijvi ∧ vi = 0, proving part (a). By linearity, it
suffices to show part (b) for h = hi, i ∈ I. Recall that, by equation (1.1), we have
[hi, fj ] = −Cijfj , for every i, j ∈ I. Then,

hjfivi = (fihj + [hj , fi]) vi = (δij − Cji)fivi .

Hence, hj(fivi ∧ vi) = (2δij − Cji)(fivi ∧ vi) = ηi(hj)(fivi ∧ vi). Finally, let w 6=
ωi, ηi − ωi be a weight appearing in L(ωi). It follows from representation theory of
simple Lie algebras that

ω < ηi − ωi = ωi −
∑

j∈I

Cjiωj < ωi .

Therefore, by part (b), the maximal weight of
∧2

L(ωi) is wi + ηi − ωi = ηi, thus
proving part (c). �

As a consequence of the above Lemma it follows that fivi∧vi ∈
∧2

L(ωi) is a highest

weight vector of weight ηi. Since g is simple, the subrepresentation of
∧2 L(ωi)

generated by the highest weight vector fivi ∧ vi is irreducible. Therefore, it is

isomorphic to L(ηi). By the complete reducibility of
∧2

L(ωi) we can decompose
it as follows:

2∧
L(ωi) = L(ηi)⊕ U ,

where U is the direct sum of all the irreducible representations different from L(ηi).
By an abuse of notation we denote with the same symbol the representation L(ηi)

and its copy in
∧2

L(ωi). For every i ∈ I, let us denote by wi = ⊗j∈Iv
⊗Bij

j . The

following analogue of Lemma 1.1 in the case of the representation
⊗

j∈I L(ωj)
⊗Bij

holds true.

Lemma 1.2. The following facts hold in the representation
⊗

j∈I L(ωj)
⊗Bij .

6



(a) For every j ∈ I, we have that

ejwi = 0 .

(b) For every h ∈ h, we have that

hwi = ηi(h)wi .

(c) Any other weight of the representation
⊗

j∈I L(ωj)
⊗Bij is smaller than ηi.

Proof. Same as the proof of Lemma 1.1. �

As for the previous discussion, by Lemma 1.2 it follows thatwi ∈
⊗

j∈I L(ωj)
⊗Bij

is a highest weight vector which generates an irreducible subrepresentation isomor-
phic to L(ηi). Lemmas 1.1 and 1.2, together with the Schur Lemma, imply that
there exists a unique morphism of representations

mi :

2∧
L(ωi) →

⊗

j∈I

L(ωj)
⊗Bij , (1.4)

such that Kermi = U and mi(fivi ∧ vi) = wi.

1.3. Affine Kac-Moody algebras and finite dimensional representations.

Let h∨ be the dual Coxeter number of g. Let us denote by κ the Killing form of g
and let us fix the following non-degenerate symmetric invariant bilinear form on g

(a, b ∈ g):

(a|b) =
1

h∨
κ(a|b) .

Let g ⊗ C[t, t−1] be the space of Laurent polynomials with coefficients in g. For

a(t) =
∑N

i=−M ait
i ∈ C[t, t−1], we let

Rest=0 a(t)dt = a−1 .

The affine Kac-Moody algebra ĝ is the vector space ĝ = g⊗C[t, t−1]⊕Cc endowed
with the following Lie algebra structure (a, b ∈ g, f(t), g(t) ∈ C[t, t−1]):

[a⊗ f(t), b ⊗ g(t)] = [a, b]⊗ f(t)g(t) + (a|b)Rest=0 (f
′(t)g(t)dt) c ,

[c, ĝ] = 0 .
(1.5)

The set of Chevalley generators of ĝ is obtained by adding to the Chevalley genera-
tors of g some new generators f0, h0, e0 (for the construction, see for example [24]).
The generator e0, which plays an important role in the paper, can be constructed
as follows. There exists a root −θ ∈ R, known as the lowest root of g, such that
−θ − αi 6∈ R, for every i ∈ I. Then

e0 = a⊗ t , for some a ∈ g−θ . (1.6)

We now consider an important class of representations of ĝ. Let V be a finite
dimensional representation of g. For ζ ∈ C∗ we define a representation of ĝ, which
we denote by V (ζ), as follows: as a vector space we take V (ζ) = V , and the action
of ĝ is defined by

(a⊗ f(t))v = f(ζ)(av) , c v = 0 , for a ∈ g , f(t) ∈ C[t, t−1] , v ∈ V .

The representation V (ζ) is called an evaluation representation of ĝ. If V and W
are representations of g then any morphism of representations f : V → W can
obviously be extended to a morphism of representations f : V (ζ) → W (ζ), which
we denote by the same letter by an abuse of notation. Similarly, when referring
to weights or weight vectors of the evaluation representation V (ζ), we mean the
weights and weight vectors of the representation V with respect to the action of g.

7



For a representation V of g and k ∈ C, we denote Vk = V (e2πik) the evaluation
representation of ĝ corresponding to ζ = e2πik. Clearly, if k ∈ Z then Vk = V0 =
V (1), and if k ∈ 1

2 + Z then Vk = V 1
2
= V (−1). Then, for each vertex i ∈ I of the

Dynkin diagram of g, we associate the following finite dimensional representation
of ĝ:

V (i) = L(ωi) p(i)
2

, (1.7)

where L(ωi) is the fundamental representation of g with highest weight ωi, and the
function p : I → Z/2Z is defined inductively as follows:

p(1) = 0 , p(i) = p(j) + 1 , for j < i such that Bij > 0. (1.8)

By an abuse of language we call the representations (1.7), for i ∈ I, the finite
dimensional fundamental representations of ĝ. These representations will play a
fundamental role in the present paper.

Example 1.3. In type An, V (1) = L(ω1)0 is the evaluation representation at ζ = 1
of the standard representation L(ω1) = Cn+1. Moreover,

V (i) =

i∧
V

(1)
i−1
2

, for k = 1, . . . , n .

Example 1.4. In type Dn, V (1) = L(ω1)0 is the evaluation representation at ζ = 1
of the standard representation L(ω1) = C2n. Moreover,

V (i) =

i∧
V

(1)
i−1
2

, for k = 1, . . . , n− 2 .

Finally, V (n−1) = L(ωn−1)n
2

and V (n) = L(ωn)n
2

are the evaluation representations
at ζ = (−1)n of the so-called half-spin representations.

Example 1.5. In type E6, V
(1) = L(ω1)0 and V (5) = L(ω5)0 are the evaluation

at ζ = 1 of the two 27-dimensional representations (they are dual to each other).
Moreover,

V (2) =

2∧
V

(1)
1
2

, V (3) =

3∧
V

(1)
0

∼=

3∧
V

(5)
0 , V (4) =

2∧
V

(5)
1
2

.

Finally, V (6) = L(ω6) 1
2

is the evaluation representation at ζ = −1 of the adjoint

representation.

As a final remark, note that by equation (1.7) we have
(

2∧
L(ωi)

)

p(i)+1
2

=

2∧
V

(i)
1
2

, (1.9)

and if we introduce the evaluation representation

M (i) =
⊗

j∈I

(
V (j)

)⊗Bij
, ∀i ∈ I , (1.10)

then by equation (1.7), and from the fact that Bij 6= 0 implies p(i) = p(j) + 1, it
follows that the morphism mi defined by equation (1.4) extends to a morphism of
evaluation representations

mi :

2∧
V

(i)
1
2

→M (i) . (1.11)

The construction of the ψ−system will be provided by means of the above extended
morphism. Due to Lemmas 1.1 and 1.2, the evaluation representation

W (i) = L(ηi) p(i)+1
2

, i ∈ I , (1.12)

8



is a subrepresentation of both
∧2 V

(i)
1
2

and M (i), and the copies of W (i) in these

representations are identified by means of the morphism mi.

1.4. ĝ-valued connections and differential equations. Let {fi, hi, ei | i =
0, . . . , n} ⊂ ĝ be the set of Chevalley generators of ĝ, and let us denote e =

∑n
i=1 ei.

Fix an element ℓ ∈ h. Following [17] (see also [32]), we consider the ĝ-valued
connection

L(x,E) = ∂x +
ℓ

x
+ e+ p(x,E)e0 , (1.13)

where p(x,E) = xMh∨

−E, with M > 0 and E ∈ C. Since e is a principal nilpotent
element, it follows from the Jacobson-Morozov Theorem together with equation
(1.6) that there exists an element h ∈ h such that

[h, e] = e , [h, e0] = −(h∨ − 1)e0 , (1.14)

see for instance [7]. Under the isomorphism between h and h∗ provided by the
Killing form, the element h corresponds to the Weyl vector (half sum of positive
roots). Let k ∈ C and introduce the quantities

ω = e
2πi

h∨(M+1) , Ω = e
2πiM
M+1 = ωh∨M .

Moreover, let Mk be the automorphism of ĝ-valued connections which fixes ∂x, g
and c and sends t→ e2πikt. Then from equations (1.5), (1.13) and (1.14) we get

Mk

(
ωk adhL(x,E)

)
= ωkL(ωkx,ΩkE) . (1.15)

We denote Lk(x,E) = Mk (L(x,E)), for every k ∈ C. Note in particular that
L0(x,E) = L(x,E). Equation (1.15) implies that for a given finite dimensional
representation V of g, the action of Lk(x,E) on the evaluation representation V0
of ĝ is the same as the action of L(x,E) on Vk, for every k ∈ C. In addition, let Ĉ

be the universal cover of C∗, suppose ϕ(x,E) : Ĉ → V0 is a family – depending on
the parameter E – of solutions of the (system of) ODE

L(x,E)ϕ(x,E) = 0 , (1.16)

and for k ∈ C introduce the function

ϕk(x,E) = ω−khϕ(ωkx,ΩkE) . (1.17)

Since on any evaluation representation of ĝ we have

ead ab = eabe−a , a, b ∈ ĝ , (1.18)

then by equations (1.15) and (1.18), we have that

Lk(x,E)ϕk(x,E) = 0 , (1.19)

namely ϕk(x,E) : Ĉ → Vk is a solution of (1.16) for the representation Vk.

2. Asymptotic Analysis

Let V be an evaluation representation of ĝ. Let us denote by C̃ = C \ R≤0, the
complex plane minus the semi-axis of real non-positive numbers, and let us consider

a solution Ψ : C̃ → V of

L(x,E)Ψ(x) = Ψ′(x) +

(
ℓ

x
+ e+ p(x,E)e0

)
Ψ(x) = 0 . (2.1)

Equation (2.1) is a (system of) linear ODEs, with a Fuchsian singularity at x = 0
and an irregular singularity at x = ∞. Our goal is to prove the existence of
solutions of equation (2.1) with a prescribed asymptotic behavior at infinity in a
Stokes sector of the complex plane. In the present form, however, equation (2.1)
falls outside the reach of classical results such as the Levinson theorem [26] or the

9



complex Wentzel-Kramers-Brillouin (WKB) method [16], since the most singular
term p(x,E)e0 is nilpotent. In order to study the asymptotic behavior of solutions
to (2.1) we use a slight modification of a gauge transform originally introduced in
[32], and we then prove the existence of the desired solution for the new ODE by
means of a Volterra integral equation.

We now consider the required transformation. First, we note that the function

p(x,E)
1

h∨ has the asymptotic expansion

p(x,E)
1

h∨ = q(x,E) +O(x−1−δ),

where

δ =M(h∨(1 + s)− 1)− 1 > 0, s = ⌊
M + 1

h∨M
⌋, (2.2)

and

q(x,E) = xM +

s∑

j=1

cj(E)xM(1−h∨j). (2.3)

For every j = 1, . . . , s, the function cj(E) is a monomial of degree j in E.

Lemma 2.1. Let L(x,E) be the ĝ-valued connection defined in (1.13) and let h ∈ h

satisfy relations (1.14). Then, we have the following gauge transformation

q(x,E)ad hL(x,E) = ∂x + q(x,E)Λ +
ℓ−Mh

x
+O(x−1−δ) , (2.4)

where Λ = e0 + e, the function q(x,E) is given by (2.3) and δ by (2.2).

Proof. It follows by a straightforward computation using relations (1.14). �

Remark 2.2. The transformation (2.4) differs from the one used in [32] and given
by

xM adhL(x,E) = ∂x + xMΛ +
ℓ−Mh

x
−

e0E

xM(h∨−1)
.

The latter transformation fails to be the correct if M(h∨ − 1) ≤ 1. In fact, in this

case the term e0E/x
M(h∨−1) goes to zero slowly and alters the asymptotic behavior.

We are then left to analyze the equation

Ψ′(x) +

(
q(x,E) Λ +

ℓ−Mh

x
+A(x)

)
Ψ(x) = 0 , (2.5)

where A(x) = O(x−1−Mh∨

) is a certain matrix-valued function. From the general
theory we expect the asymptotic behavior to depend on the primitive of q(x,E),
which is known as the action. In the generic case M+1

h∨M
/∈ Z+, the action is defined

as

S(x,E) =

∫ x

0

q(y, E)dy , x ∈ C̃ , (2.6)

where we chose the branch of q(x,E) satisfying q ∼ |x|M for x real. In the case
M+1
h∨M

∈ Z+ then formula (2.6) becomes

S(x,E) =

s−1∑

j=0

∫ x

0

cj(E)yM(1−h∨j)dy + cs(E) log x , s =
M + 1

h∨M
.

Existence and uniqueness of solutions to equation (2.1) (or equivalently, of (2.5))
depend on the properties of the element Λ = e+e0 in the representation considered.
We therefore introduce the following

Definition 2.3. Let A be an endomorphism of a vector space V . We say that
a eigenvalue λ of A is maximal if it is real, its algebraic multiplicity is one, and
λ > Reµ for every eigenvalue µ of A.

10



We are now in the position to state the main result of this section.

Theorem 2.4. Let V be an evaluation representation of ĝ, and let the matrix
representing Λ ∈ ĝ in V have a maximal eigenvalue λ. Let ψ ∈ V be the corre-
sponding unique (up to a constant) eigenvector. Then, there exists a unique solution

Ψ(x,E) : C̃ → V to equation (2.1) with the following asymptotic behavior:

Ψ(x,E) = e−λS(x,E)q(x,E)−h
(
ψ + o(1)

)
as x→ +∞ .

Moreover, the same asymptotic behavior holds in the sector | argx| < π
2(M+1) , that

is, for any δ > 0 it satisfies

Ψ(x,E) = e−λS(x,E)q(x,E)−h
(
ψ+o(1)

)
, in the sector | arg x| <

π

2(M + 1)
− δ .

(2.7)
The function Ψ(x,E) is an entire function of E.

Remark 2.5. We will prove in Section 3 that the hypothesis of the theorem are

satisfied in the ADE case for the representations V (i),
∧2

V
(i)
1
2

, M (i) and W (i),

which were introduced in the previous section.

Remark 2.6. In the case M(h∨ − 1) > 1, the asymptotic expansion of the solution
Ψ in the above theorem reduces to

Ψ(x) = e−λxM+1

M+1 q(x,E)−h
(
ψ + o(1)

)
, in the sector | argx| <

π

2(M + 1)
.

Before proving Theorem 2.4, we apply it to prove the existence of linearly inde-
pendent solutions to equation (2.1). First, note that for any k ∈ R such that

|k| < h∨(M+1)
2 , the function

Ψk(x,E) = ω−khΨ(ωkx,ΩkE) , x ∈ R+ (2.8)

defines, by analytic continuation, a solution Ψk : C̃ → Vk of equation (2.1) in the
representation Vk. Theorem 2.4 implies the following result.

Corollary 2.7. For any k ∈ R such that |k| < h∨(M+1)
2 , on the positive real

semi-axis the function Ψk has the asymptotic behaviour

Ψk(x,E) = e−λγkS(x,E)q(x,E)−hγ−kh(ψ + o(1)) , x≫ 0 , (2.9)

where ψ is defined as in Theorem 2.4 and γ = e
2πi

h∨ . Moreover, let l ∈ Z+ be

such that 1 ≤ l ≤ h∨

2 . Then, the functions Ψ 1−l
2
, . . . ,Ψ l−1

2
are linearly independent

solutions to equation (2.1) in the representation V l+1
2

.

Proof. A simple computation shows that S(ωkx,ΩkE) = γkS(x,E), and similarly
q(ωkx,ΩkE) = ωMq(x,E). Therefore by Theorem 2.4,

Ψ(ωkx,ΩkE) = ω−Mhe−γkλS(x,E)q(x,E)−h(ψ + o(1)) , x≫ 0 .

Hence, on the positive real semi axis we have

Ψk(x,E) = e−γkλS(x,E)q(x,E)−hγ−kh(ψ + o(1)) , x≫ 0 ,

where we have used the identity ωM+1 = γ. Note that γk, k ∈ { 1−l
2 , . . . , l−1

2 },
are pairwise distinct. Therefore, the vectors ψk are linearly independent. This
concludes the proof. �

Remark 2.8. A slight variation of the proof of Theorem 2.4 presented below allows
one to prove that the asymptotic behavior of Ψ holds on a larger sector of the
complex plane, consisting of three adjacent Stokes sectors. This refined result is
necessary to consider the lateral connection problem, where one considers the linear
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relations among solutions that are subdominant in different Stokes sectors. Such a
problem leads naturally to another instance of the ODE/IM correspondence, namely
to spectral determinants related to the transfer matrix of integrable systems, see
e.g. [28].

2.1. Proof of Theorem 2.4. To complete our analysis, we need to further simplify

equation (2.5) with a new gauge transformation. Let us denote by L̃(x,E) =
q(x,E)ad hL(x,E), where L(x,E) and h are as in Lemma 2.1.

Lemma 2.9. Let ℓ =
∑

i∈I ℓihi and h =
∑

i∈I aihi, with ℓi, ai ∈ C, and con-
sider the element N =

∑
i∈I(ℓi −Mai)fi ∈ g . Then we have the following gauge

transformation:

eα(x) adN L̃(x,E) = ∂ + q(x,E) Λ +O(x−1−M ) ,

where α(x) = (x q(x,E))
−1

.

Proof. It follows by a straightforward computation using the explicit form of L̃(x,E)
given in equation (2.4), together with the definitions of N and α(x) and the com-
mutation relations (see (1.1))

[fi, e0] = 0 and [fi, ej] = δijhi , for every i, j ∈ I .

�

By Lemma 2.9 and equation (1.18), it follows that the ODE (2.5) is transformed
into

Ψ̃′(x) +
(
q(x,E) Λ + Ã(x)

)
Ψ̃(x) = 0 , (2.10)

where Ã(x) = O(x−1−M ), and Ψ̃(x) = G(x)Ψ(x), with G(x) = eα(x)N . Since
G(x) = 1 + o(x−M ), then we look for a solution to equation (2.10) with the same
asymptotic behavior (2.7) as the solution Ψ(x) to equation (2.5). Finally, we define

Φ(x) = eλS(x,E)Ψ̃(x). Then, it is easy to show that equation (2.10) takes the form

Φ′(x) +
(
q(x,E) Λ̃ + Ã(x)

)
Φ(x) = 0 , (2.11)

where Λ̃ = Λ − λ1. Note that Λ̃ψ = 0. The problem is now reduced to prove the
existence of a solution to equation (2.11) satisfying, for every ε > 0, the asymptotic
condition

Φ(x) = ψ + o(1) , in the sector | argx| <
π

2(M + 1)
− ε . (2.12)

To proceed with the proof we need to introduce some elements of WKB analysis,
for which we refer to [16, Chap. 3]. We fix κ > 0 (possibly depending on E) big
enough such that the Stokes sector

Σ = {x ∈ C̃ | ReS(x,E) ≥ ReS(κ,E)}

has the following two properties: S is a bi-holomorphic map from Σ to the right
half-plane {z ∈ C | Re z ≥ 0}, and Σ coincides asymptotically with the sector
| argx| < π

2(M+1) . In other words, any ray of argument | argx| < π
2(M+1) eventually

lies inside Σ, while any ray of argument | argx| > π
2(M+1) eventually lies in the

complement of Σ. For any ε > 0, we define Dε = S−1{| arg z| ≤ π
2 − ε}, and we

introduce the space B of holomorphic bounded functions U : Dε → V for which the
limit limx→∞ U(x) = U(∞) is well-defined. The space B is complete with respect
to the norm ‖U‖∞ = supx∈Dε

|U(x)|.
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We construct the solution of equation (2.11) with the desired asymptotic behavior
(2.12) as the solution of the following integral equation in the Banach space B:

Φ(x) = K[Φ](x) + ψ(i) , (2.13)

where the Volterra integral operator K is defined as

K[Φ](x) =

∫ ∞

x

e−Λ̃
(
S(x,E)−S(y,E)

)
Ã(y)Φ(y)dy .

The integral above is computed along any admissible path c, and we say that a

(piecewise differentiable) parametric curve c is admissible if
∫ t

0 |ċ(s)|ds = O(|c(t)|)

and ReS(c(t), E) is a non decreasing function. For example, S−1(t+x) is an admis-
sible path [16]. Note that a solution Φ(x) of equation (2.11), with the asymptotic
behavior (2.12) belongs to B. Moreover, it satisfies equation (2.10) if and only
if it satisfies the Volterra integral equation (2.13). Indeed, provided that K is a
continuous operator, we have that limx→∞K[Φ](x) = 0 and

K[Φ]′(x) = −Ã(x)Φ(x) − q(x,E) Λ̃K[Φ](x)

= −Ã(x)Φ(x) − q(x,E) Λ̃
(
Φ(x) − ψ(i)

)

= −Ã(x)Φ(x) − q(x,E) Λ̃Φ(x) ,

where the last equality follows from the fact that Λ̃ψ(i) = 0.

In order to prove that the solution of the integral equation (2.13) exists and it is
unique we start showing that K is a continuous operator on B and its spectral
radius is zero, i.e. limn→∞ ‖Kn‖

1
n = 0. By hypothesis, all eigenvalues of Λ have

non-positive real part. Since Λ is semi-simple, i.e. diagonalizable, we deduce that
there exists a β > 0 such that for any κ ≥ 0 and any ϕ ∈ V ,

|eκΛ̃ϕ| ≤ β|ϕ| . (2.14)

Since |Ã(x)| = O(x−1−M ), we have that |Ã| ∈ L1(c, |ċ(t)|dt) for every admissible
path c , and the function

ρc(x) = β

∫ ∞

x

|Ã(c(s))||ċ(s)|ds (2.15)

is well-defined and satisfies limx→∞ ρc(x) = 0. Moreover, the inequality (2.14)
implies that

∣∣∣∣
∫ ∞

x

e−Λ̃
(
S(x,E)−S(y,E)

)
Ã(y)U(y)dy

∣∣∣∣ ≤ ρc(x)‖U‖∞,

for every U ∈ B. By (2.14) and (2.15) it follows [16] that K[U ] is path-independent
and thus well defined. Furthermore, we have

|K[U ](x)| ≤ ‖U‖∞ρ(x) and ‖K‖ = sup
|U|∞=1

‖K[U ]‖∞ ≤ ρ̄ ,

where

ρ(x) = inf
c admissible

ρc(x) , ρ̄ = sup
x∈Dε

ρ(x) .

Note that ρ(x) is a bounded function such that limx→∞ ρ(x) = 0. Hence, we
conclude that K is a well-defined bounded operator on B. By definition, Kn[U ]
can be written in terms of K(x, y) as

Kn[U ](x) =

∫ ∞

x

. . .

∫ ∞

yn−1

K(x, y1) . . .K(yn−1, yn)U(yn)dy1 . . . dyn ,
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where K(x, y) is the matrix-valued function

K(x, y) = e−Λ̃
(
S(x,E)−S(y,E)

)
Ã(y) ,

and from this it follows that Kn[U ](x) can be estimated as

|Kn[U ](x)| = ‖U‖∞

∫ ∞

x

. . .

∫ ∞

yn−1

|Ã(y1)| . . . |Ã(yn)|dy1 . . . dyn ≤ ‖U‖∞
ρn(x)

n!
.

Thus

‖Kn‖ ≤
ρ̄n

n!
, (2.16)

and the series

Φ =
∑

n∈Z+

Kn[ψ]

converges in B. Clearly Φ satisfies the integral equation (2.13), since

K[Φ] =
∞∑

n=1

Kn[ψ] = Φ− ψ .

Moreover, Φ is the unique solution of equation (2.13), for if Φ̃ is another solution
then

Kn[Φ− Φ̃] = Φ− Φ̃ , for every n ∈ Z+ .

By equation (2.16), it follows that Φ = Φ̃.

It remains to prove that Φ is an entire function of E. This follows, by a stan-

dard perturbation theory argument, from the fact that Ã and S are holomorphic
functions of E in Dε. Theorem 2.4 is proved.

3. The Ψ-system

In this section, for a simple Lie algebra g of ADE type, we prove an algebraic
identity known as Ψ-system, which was conjectured first in [9]. Recall from Section
1.3 that we can write

2∧
V

(i)
1
2

∼=W (i) ⊕ U , M (i) =
⊗

j∈I

(
V (j)

)⊗Bij ∼=W (i) ⊕ Ũ , (3.1)

where the representation W (i) = L(ηi) p(i)+1
2

, i ∈ I, was defined in equation (1.12),

and U and Ũ are direct sums of all the irreducible representations different from
W (i). Due to (1.11), for every i ∈ I we have a morphism of representations

mi :
∧
V

(i)
1
2

→M (i) , Kermi = U .

The Ψ-system is a set of quadratic relations, realized by means of the morphisms
mi, among the subdominant solutions to the linear ODE (2.1) defined on the rep-

resentations
∧
V

(i)
1
2

and M (i).

In order to prove the main result of this section, we need to study the maximal

eigenvalue (and the corresponding eigenvector) of Λ in the representations
∧2

V
(i)
1
2

,

M (i) and W (i). To this aim, we recall some further facts from the theory of simple
Lie algebras and simple Lie groups. First, we need the following

Lemma 3.1. Let h ∈ h satisfy relations (1.14), and let us set γ = e
2πi
h∨ . Then, for

every k ∈ C, the following formula holds:

γk adhΛ = γkM−k(Λ) . (3.2)
14



In particular, if ψ is an eigenvector of Λ in an evaluation representation V , then
ψk = γ−khψ is an eigenvector of Λ in the representation Vk, and we have

Λψ = λψ if and only if Λψk = γkλψk . (3.3)

Proof. It follows directly from the commutation relations (1.14). �

Now consider the element Λ̄ = Λ|t=1 ∈ g, which is well known [25] to be a regular

semisimple element of g. Therefore, its centralizer gΛ̄ = {a ∈ g | [Λ̄, a] = 0} is a
Cartan subalgebra of g, which we denote h′. Due to Lemma 3.1, it follows that

γadhΛ̄ = γΛ̄ , (3.4)

where h ∈ h is the element introduced in Section 1 satisfying relations (1.14).
Equation (3.4) says that Λ̄ is an eigenvector of γadh, and this in turn implies that
h′ is stable under the action of γadh. Since γadh is a Coxeter-Killing automorphism
of g [25], we can regard γadh as a Coxeter-Killing automorphism of h′. From these
considerations it follows – as proved in [6] – that we can choose a set of Chevalley
generators of g, say {f ′

i , h
′
i, e

′
i | i ∈ I} ⊂ g, such that h′ =

⊕
i∈I Ch

′
i and that the

identity
21n + γadh + γ− ad h = (Bt)2 , (3.5)

holds as operators on h′. Here B denotes, as usual, the incidence matrix of g.
Following [18], relation (3.5) can be used to express – in the basis {h′i, i ∈ I} –
the eigenvectors of γadh in terms of the eigenvectors of B. Now it is well known
that the incidence matrix B is a non-negative irreducible matrix [24]. Therefore,
it has a maximal (in the sense of the Perron-Frobenius theory) eigenvalue, which

is γ
1
2 + γ−

1
2 , and a corresponding eigenvector, say (x1, x2, . . . , xn) ∈ R

n
>0. If we fix

x1 = 1, we then have the following relation for every i ∈ I:
∑

j∈I

Bijxj = (γ−
1
2 + γ

1
2 )xi , xi > 0 . (3.6)

Following [18], and essentially using (3.5), we finally obtain

Λ̄ =
∑

i∈I

γ
p(i)
2 xih

′
i , (3.7)

where xi, i ∈ I, are defined in (3.6) and the function p(i), i ∈ I, is given in (1.8).

Remark 3.2. Note that equation (3.7) corresponds to a precise normalization of Λ̄.
In fact, it is always possible to find an automorphism of g, under which h is stable, in

such a way that Λ̄ = c
∑

i∈I γ
± p(i)

2 xih
′
i for any c ∈ C

∗ and any choice of the relative

phase γ±
p(i)
2 . The choice of the relative phase is however immaterial. Indeed, under

the transformation γ
p(i)
2 → γ−

p(i)
2 the right hand side of (3.7) represents a different

element in the Cartan subalgebra h′ which is however conjugated to Λ̄. Hence, their
spectra coincide.

The decomposition (3.7) allows one to compute the spectrum of Λ using the
Perron-Frobenius eigenvector of the incidence matrix B. We will also need the
following:

Lemma 3.3. Let αj, j ∈ I, be the positive roots of g with respect to the Cartan
subalgebra h′. Then Λ̄ satisfies

αj(γ
−

p(i)
2 Λ̄) = xjγ

p(j)−p(i)
2 (1− γ−2p(j)+1) , for all i, j ∈ I , (3.8)

where the xi are defined in (3.6). This implies that

Reαj(γ
−

p(i)
2 Λ̄) > 0 , if p(i) = p(j) ,

Reαj(γ
− p(i)

2 Λ̄) = 0 , if p(i) 6= p(j) .
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Proof. Since Bij 6= 0 if and only if p(i) 6= p(j), equation (3.6) implies that
∑

j∈I

γ−
p(j)
2 Bijxj = (γ−

1
2 + γ

1
2 )γ

p(i)−1
2 xi . (3.9)

Equation (3.9) and the decomposition (3.7) imply the thesis. �

Using the above lemma, together with equation (3.7), we compute the maximal
eigenvalue of Λ in the representations V (i),

∧
V (i), W (i) and M (i).

Proposition 3.4. Let i ∈ I. If g is a simple Lie algebra of ADE type, then the
following facts hold.

(a) For the fundamental representation V (i) there exists a unique maximal eigen-
value λ(i) of Λ. The eigenvalues λ(i), i ∈ I, satisfy the following identity:

∑

j∈I

Bijλ
(j) = (γ−

1
2 + γ

1
2 )λ(i). (3.10)

We denote by ψ(i) ∈ V (i) the unique (up to a constant factor) eigenvector of Λ
corresponding to the eigenvalue λ(i) .

(b) For the representation M (i), we have that
∑

j∈I Bijλ
(i) is a maximal eigenvalue

of Λ. Moreover,

ψ
(i)
⊗ =

⊗

j∈I

ψ(j)⊗Bij

∈M (i)

is the corresponding eigenvector.

(c) For the representation
∧2 V

(i)
1
2

, we have that (γ−
1
2 +γ

1
2 )λ(i) is a maximal eigen-

value of Λ. Moreover,

γ−
1
2hψ(i) ∧ γ

1
2hψ(i) ∈

2∧
V

(i)
1
2

is the corresponding eigenvector.

(d) The elements γ−
1
2hψ(i) ∧ γ

1
2hψ(i) ∈

∧2
V

(i)
1
2

and ψ
(i)
⊗ ∈M (i) belong to the sub-

representation W (i). Hence, for the representation W (i) there exists a maximal
eigenvalue µ(i) of Λ, given by

µ(i) =
∑

j∈I

Bijλ
(i) = (γ−

1
2 + γ

1
2 )λ(i) ,

and the relation

mi

(
γ−

1
2hψ(i) ∧ γ

1
2hψ(i)

)
= cψ

(i)
⊗

holds for some c ∈ C∗.

Proof. Recall that the weights appearing in the representation L(ωi) are of the
following type:

ωi, ωi − αi, ωi − αi − αj − ω ,

where in the latter case the index j is such that Bij 6= 0 and ω is an integral non-

negative linear combination of the positive roots. Clearly for any h̃ ∈ h′ such that
Reαj(h̃) ≥ 0, ∀j ∈ I we have

Reωi(h̃) ≥ (ωi − αi)(h̃) ≥ (ωi − αi − αj − ω)(h̃) .

Therefore for any such h̃ the eigenvalues with maximal real part is ωi(h̃), followed

by (ωi − αi)(h̃), (ωi − αi − αj)(h̃), and so on.
We use this simple argument to study the maximal eigenvalues of Λ in the

representation V (i). By definition of Λ and Λ̄, and using equation (3.2), the action

of Λ on V (i) coincides with the action of γ
p(i)
2 (−1+adh)Λ̄ on L(ωi). By Lemma 3.3,

16



αj(γ
− p(i)

2 Λ̄) ≥ 0, for every j ∈ I, and αi(γ
− p(i)

2 Λ̄) = xi(1 − γ1−2p(i)). It follows

that in the representation V (i), Λ has the maximal eigenvalue

ωi(γ
− p(i)

2 Λ̄) = xi .

Therefore, by definition of the xi’s, the λ(i) satisfy equation (3.6).
Moreover we have

ψ(i) = γ
p(i)
2 hv′i (3.11)

and

f ′
iψ

(i) = cγ−hψ(i) , (3.12)

for some c ∈ C∗. This completes the proof of part (a). Part (b) follows directly from
part (a). To prove part (c), we follow the same lines we used to prove part (a). In

fact, the action of Λ on V
(i)
1
2

coincides with the action of γ
p∗(i)

2 (−1+adh)Λ̄ on L(ωi),

where p∗(i) = 1 − p(i). By equation (3.8) we have Reαi(γ
p∗(i)

2
(−1+adh)Λ̄) = 0,

while Reαj(γ
p∗(i)

2 (−1+adh)Λ̄) > 0 if p(i) 6= p(j). It follows that the two eigenvalues
with maximal real part correspond to to the weights ωi and ωi − αi. By equation
(3.8), these eigenvalues are xiγ

1
2 and xiγ

− 1
2 , and the corresponding eigenvectors

are γ∓
1
2hψ(i). Therefore

∧
V (i) has a unique maximal eigenvalue (γ

1
2 + γ−

1
2 )xi,

with eigenvector

γ−
1
2hψ(i) ∧ γ

1
2hψ(i) = cγ

(1+p(i))
2 h(v′i ∧ f

′
iv

′
i) , (3.13)

for some c 6= 0. Here we have used equations (3.11) and (3.12).

Let us prove (d). By equation (3.11) and Lemma 1.2, it follows that ψ
(i)
⊗ ∈W (i),

whereW (i) is seen as a subrepresentation ofM (i). Therefore the maximal eigenvalue
of W (i) and M (i) coincide. Finally by equations (3.11), (3.13) and Lemma 1.1, we

have that γ−
1
2hψ(i) ∧ γ

1
2hψ(i) ∈ W (i) and mi(γ

− 1
2hψ(i) ∧ γ

1
2hψ(i)) = cψ

(i)
⊗ , c ∈ C∗,

thus proving part (d) and concluding the proof. �

Remark 3.5. We note that we can always choose a normalization of the eigenvectors
ψ(i) ∈ V (i), i ∈ I, such that

mi

(
γ−

1
2hψ(i) ∧ γ

1
2hψ(i)

)
= ψ

(i)
⊗ , (3.14)

for every i ∈ I. From now on, we will assume that Proposition 3.4(d) holds with
the normalization constant c = 1.

By Proposition 3.4(a), for any fundamental representation V (i), i ∈ I of ĝ, there
exists a maximal eigenvalue λ(i) with eigenvector ψ(i). Therefore, by Theorem 2.4

there exists a unique subdominant solution Ψ(i)(x,E) : C̃ → V (i) of the differential
equation (2.1) in the representation V (i) with asymptotic behavior

Ψ(i)(x,E) = e−λ(i)S(x,E)q(x,E)−h
(
ψ(i) + o(1)

)
, in the sector | argx| <

π

2(M + 1)
.

(3.15)
Using Proposition 3.4 we can prove the following theorem establishing the Ψ-system
associated to the Lie algebra g.

Theorem 3.6. Let g be a simple Lie algebra of ADE type, and let the solutions

Ψ(i)(x,E) : C̃ → V (i), i ∈ I, have the asymptotic behavior (3.15). Then, the
following identity holds:

mi

(
Ψ

(i)

− 1
2

(x,E) ∧Ψ
(i)
1
2

(x,E)
)
= ⊗j∈IΨ

(j)(x,E)⊗Bij , for every i ∈ I . (3.16)
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Proof. Due to Proposition 3.4(b) and Theorem 2.4, the unique subdominant solu-
tion to equation (2.1) in M (i) is

⊗j∈IΨ
(j)(x,E)⊗Bij = e−µ(i)S(x,E)q(x,E)−h

(
ψ
(i)
⊗ + o(1)

)
, for x≫ 0 .

Moreover, by equation (2.8), Corollary 2.7 and Proposition 3.4(c) we have that

Ψ
(i)

− 1
2

(x,E) ∧Ψ
(i)
1
2

(x,E) = e−µ(i)S(x,E)q(x,E)−h
(
ψ
(i)

− 1
2

∧ ψ
(i)
1
2

+ o(1)
)
, for x≫ 0 .

The proof follows by equation (3.14) and the uniqueness of the subdominant solu-
tion. �

Example 3.7. In type An, equation (3.16) becomes

mi

(
Ψ

(i)

− 1
2

∧Ψ
(i)
1
2

)
= Ψ(i−1) ⊗Ψ(i+1) , for i = 1, . . . , n ,

where we set Ψ(0) = Ψ(n+1) = 1.

Example 3.8. In type Dn, equation (3.16) becomes

mi

(
Ψ

(i)

− 1
2

∧Ψ
(i)
1
2

)
= Ψ(i−1) ⊗Ψ(i+1) , for i = 1, . . . , n− 3 , (3.17)

mn−2

(
Ψ

(n−2)

− 1
2

∧Ψ
(n−2)
1
2

)
= Ψ(n−3) ⊗Ψ(n−1) ⊗Ψ(n) , (3.18)

mn−1

(
Ψ

(n−1)

− 1
2

∧Ψ
(n−1)
1
2

)
= Ψ(n−2) = mn

(
Ψ

(n)

− 1
2

∧Ψ
(n)
1
2

)
, (3.19)

where we set Ψ(0) = 1.

Remark 3.9. The Ψ-system in Example 3.8 is a complete set of relations among
the subdominant solutions. The analogue system of equations obtained in [32,
Eqs. (3.19,3.20,3.21)] lacks of the equation (3.18) for the node n− 2 of the Dynkin
diagram. Note that equations [32, Eqs. (3.19,3.20)] are equivalent to (3.17) and
(3.19) of the present paper. Indeed, it follows from the direct sum decomposition 3.1

that mi ◦ ι = 1V (n−2) , for i = n− 1, n, where ι is the embedding V (n−2) ι
→֒
∧2 V

(i)
1
2

(in fact, V (n−2) ∼=W (n−1) ∼=W (n) in this particular case). The further identity [32,
Eq. (3.21)], which can be obtained from (A.4), requires the introduction of another
unknown and therefore equations [32, Eqs. (3.19,3.20,3.21)] are an incomplete
system of n equations in n+ 1 unknowns.

Example 3.10. In type En, n = 6, 7, 8, equation (3.16) becomes

mi

(
Ψ

(i)

− 1
2

∧Ψ
(i)
1
2

)
= Ψ(i−1) ⊗Ψ(i+1) , for i = 1, . . . , n− 4 ,

mn−3

(
Ψ

(n−3)

− 1
2

∧Ψ
(n−3)
1
2

)
= Ψ(n−4) ⊗Ψ(n−2) ⊗Ψ(n−1) ,

mn−2

(
Ψ

(n−2)

− 1
2

∧Ψ
(n−2)
1
2

)
= Ψ(n−3) ,

mn−1

(
Ψ

(n−1)

− 1
2

∧Ψ
(n−1)
1
2

)
= Ψ(n−3) ⊗Ψ(n) ,

mn

(
Ψ

(n)

− 1
2

∧Ψ
(n)
1
2

)
= Ψ(n−1) ,

where we set Ψ(0) = 1.

4. The Q-system

In this section, for any simple Lie algebra of ADE type, we define the generalized
spectral determinants Q(i)(E; ℓ), i ∈ I, and we prove that they satisfy the Bethe
Ansatz equations, also known as Q-system. The spectral determinants are entire
functions of the parameter E, and they are defined by the behavior of the functions
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Ψ(i)(x,E) close to the Fuchsian singularity. More precisely, Q(i)(E; ℓ) is the coeffi-
cient of the most singular term of the expansion of Ψ(i)(x,E) in the neighborhood
of x = 0.

In the case of the Lie algebra sl2, the spectral determinant Q(E; ℓ) was originally
introduced in [14, 3], while the generalization to sln has been given in [10, 34]. An
incomplete construction for Lie algebras of BCD type can be found in [9, 32]. The
terminology generalized spectral determinants is motivated by the sl2 case. Indeed,
for the Lie algebra sl2, the linear ODE (2.1) is equivalent to a Schrödinger equation
with a polynomial potential and a centrifugal term, and the spectral determinant
Q(E; ℓ) vanishes at the eigenvalues of the Schrödinger operator.

Before proving the main result of this section, we briefly review some well-known
fundamental results from the theory of Fuchsian singularities. Here we follow [22,
Chap. III].

Remark 4.1. In this Section we assume that the potential p(x,E) = xMh∨

is ana-
lytic in x = 0, namely Mh∨ ∈ Z+. With this assumption, the point x = 0 is simply
a Fuchsian singularity of the equation. The case of a potential with a branch point
at x = 0 can formally be treated without any modification – see [3] for the case A1

– but the mathematical theory is less developed.

4.1. Monodromy about the Fuchsian singularity. For any linear ODE with
Fuchsian singularity at x = 0, namely of the type

Ψ′(x) =

(
A

x
+ B(x)

)
Ψ(x) , (4.1)

where A is a constant matrix and B(x) is a regular function, the monodromy
operator is the endomorphism on the space of solutions of (4.1) which associates
to any solution its analytic continuation around a small Jordan curve encircling
x = 0. More concretely, if we fix a matrix solution Y (x) of the linear ODE (4.1)
with non-vanishing determinant (i.e. a basis of solutions), then the monodromy
matrix M is defined by the relation

Y (e2πix) = Y (x)M .

Here, Y (e2πix) is the customary notation for the analytic continuation of Y (x) .
We are interested in the invariant subspaces of the monodromy matrix M . By the
general theory, the algebraic eigenvalues of the monodromy matrix M are of the
form e2πia, for any eigenvalue a of A.

We said that an eigenvalue a of A is non-resonant if there exists no other eigen-
value of a′ such that a− a′ ∈ Z. In this case the eigenvalue e2πia has multiplicity
one and there exists a solution of equation (4.1) which is an eigenvector of the
monodromy matrix M with eigenvalue e2πia. Such a solution has the form

χa(x) = xa
(
χa +O(x)

)
(4.2)

for any χa eigenvector of A with eigenvalue a. If the eigenvalues a1, . . . , ak are reso-
nant, meaning that ai−aj ∈ Z for i, j = 1 . . . , k, then the eigenvalue e2πia1 = · · · =
e2πiak has multiplicity k. The matrix M , in general, is not diagonalizable when
restricted to the k-dimensional invariant subspace corresponding to this eigenvalue.
The corresponding solutions do not have the form (4.2) due to the appearance of
logarithmic terms.

We are interested in the linear ODE (2.1), which has a Fuchsian singularity with
A = −ℓ, ℓ ∈ h. For any representation V (i), i ∈ I, the eigenvalues for the action
of ℓ on V (i) have the form λ(ℓ), where λ ∈ P is a weight of the representation
V (i). Note that for a generic choice of ℓ ∈ h and for distinct weights λ1 and λ2, the
corresponding eigenvalues λ1(ℓ), λ2(ℓ) are non-resonant. Indeed, generically, two
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eigenvalues are resonant if and only if they coincide, and therefore they correspond
to a weight of multiplicity bigger than one.

4.2. The dominant term at x = 0. Let ω ∈ P+, and let us denote by

l∗ = max
λ∈Pω

Reλ(ℓ) .

Let also λ∗ ∈ P be such that l∗ = Reλ∗(ℓ). If λ∗ is a weight of multiplicity one
in L(ω), then – by the discussion in Section 4.1 – the most singular behavior at
x = 0 of a solution to equation (2.1) is x−l∗ . In this section, for any irreducible
representation L(ω) of g and a generic ℓ ∈ h, we characterize the weight λ∗ ∈ P
maximizing λ(ℓ) ∈ Z. Moreover, we show that it has multiplicity one. These facts
will be used to define the generalized spectral determinant Q(i)(E; ℓ).

It is well-known from the general theory of simple Lie algebras (see [19, Appendix
D]), that given a generic element ℓ ∈ h, we can decompose the set of the roots R of
g in two distinct and complementary sets (of positive and negative roots)

R+
ℓ = {α ∈ R | Reα(ℓ) > 0} , R−

ℓ = {α ∈ R | Reα(l) < 0} .

Consequently, we can associate to this ℓ ∈ h a Weyl Chamber Wℓ, as well as an
element wℓ of the Weyl group (it is the element which maps the original Weyl cham-
ber into Wℓ) and a (possibly new) set of simple roots ∆ℓ = {wℓ(αi) | i ∈ I}. The
weight wℓ(ω) is the highest weight of L(ω) with respect to the new set of simple
roots ∆ℓ, and due to the definition of R−

ℓ , the action of any negative simple root
wℓ(−αi), i ∈ I, decreases the value of Rewℓ(ω)(ℓ). Therefore, λ∗ = wℓ(ω) is the
unique weight maximizing the function Reλ(ℓ), λ ∈ Pω. This weight has multiplic-
ity one since it lies in the Weyl orbit of ω.

In the case of a fundamental representation L(ωi), i ∈ I, the weight wℓ(ωi − αi)
belongs to Pωi

, and it has multiplicity one. Moreover, it is possible to show that all
the weights in Pωi

different from wℓ(ωi) are obtained from wℓ(ωi−αi) by a repeated
action of the negative simple roots wℓ(−αi). We conclude that wℓ(ωi − αi) is the
unique weight maximizing Reλ(ℓ) on Pωi

\ {wℓ(ωi)}. We have thus proved the
following result:

Proposition 4.2. Let ℓ ∈ h be a generic element, and let wℓ the associated element
of the Weyl group. Then the weight wℓ(ω) ∈ Pω, ω ∈ P+, has multiplicity one and

Rewℓ(λ)(ℓ) > Reλ(ℓ) ,

for any weight λ ∈ Pω, λ 6= wℓ(ω). In the case of a fundamental weight ω = ωi,
i ∈ I, the weight wℓ(ωi − αi) ∈ Pωi

has multiplicity one and

Rewℓ(ωi)(ℓ) > Rewℓ(ωi − αi)(ℓ) > Reλ(ℓ) ,

for any λ ∈ Pωi
, λ 6= wℓ(ωi), wℓ(ωi − αi).

Let χ(i), ϕ(i) ∈ L(ωi) be weight vectors corresponding to the the weights wℓ(ωi)
and wℓ(ωi −αi) respectively. As done in Lemmas 1.1 and 1.2 it is possible to show

that L(ηi) is a subrepresentation of
∧2

L(ωi) (respectively
⊗
L(ωi)

⊗Bij ) and that
χ(i) ∧ ϕ(i) ∈ L(ηi) (respectively ⊗j∈Iχ

(j)⊗Bij ∈ L(ηi)). Moreover, χ(i) ∧ ϕ(i) and

⊗j∈Iχ
(j)⊗Bij

are highest weight vectors (with respect to ∆ℓ) of the subrepresen-
tation L(ηi). Hence, we can identify these vectors (up to a constant) using the
morphism mi defined in equation (1.4). From now on we fix the normalization of
χ(i), ϕ(i), i ∈ I, in such a way that

mi(χ
(i) ∧ ϕ(i)) = ⊗j∈Iχ

(j)⊗Bij . (4.3)
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4.3. Decomposition of Ψ(i). From the above discussion, and in particular form
Proposition 4.2 and equation (4.2), we have that for any evaluation representa-

tion V
(i)
k , i ∈ I and k ∈ C, there exist distinguished (and normalized) solutions

χ
(i)
k (x,E) and ϕ

(i)
k (x,E) of the linear ODE (2.1) such that they have the most

singular behavior at x = 0 and they are eigenvectors of the associated monodromy
matrix. Explicitly, these solutions have the asymptotic expansion

χ
(i)
k (x,E) = x−wℓ(ωi)(ℓ)

(
χ(i) +O(x)

)
,

ϕ
(i)
k (x,E) = x−wℓ(ωi−αi)(ℓ)

(
ϕ(i) +O(x)

)
.

Since the parameter E appears linearly in the ODE (2.1) and the asymptotic be-
havior at x = 0 does not depend on E, by the general theory [22] it follows that

χ
(i)
k (x,E; ℓ) and ϕ

(i)
k (x,E; ℓ) are entire functions of E.

Using equation (1.17) and comparing the asymptotic behaviors we have that

ω−khχ
(i)
k′ (ω

kx,ΩkE) = ω−kwℓ(ωi)(ℓ+h)χ(i)(x,E)k+k′

ω−khϕ
(i)
k′ (ω

kx,ΩkE) = ω−kwℓ(ωi−αi)(ℓ+h)ϕ(i)(x,E)k+k′ ,
(4.4)

for every k, k′ ∈ C. For generic ℓ ∈ h, the eigenvalues −wℓ(ωi)(ℓ), and −wℓ(ωi −
αi)(ℓ) are non-resonant and therefore we can unambiguously define two functions

Q(i)(E; ℓ) and Q̃(i)(E; ℓ) as follows. We write

Ψ(i)(x,E, ℓ) = Q(i)(E; ℓ)χ(i)(x,E) + Q̃(i)(E; ℓ)ϕ(i)(x,E) + v(i)(x,E) , (4.5)

where v(i)(x,E) belongs to an invariant subspace of the monodromy matrix corre-

sponding to lower weights. We call Q(i)(E; ℓ) and Q̃(i)(E; ℓ) the generalized spectral
determinants of the equation (1.13). Since Ψ(i)(x,E, ℓ), χ(i)(x,E) and ϕ(i)(x,E)

are entire functions of the parameter E, then also Q(i)(E; ℓ) and Q̃(i)(E; ℓ) are
entire functions of the parameter E.

Finally, the Ψ-system (3.16) implies some remarkable functional relations among
the generalized spectral determinants. Indeed, we have the following result.

Theorem 4.3. Let ℓ ∈ h be a generic element. Then, the spectral determinants

Q(i)(E; ℓ) and Q̃(i)(E; ℓ) are entire functions of E and they satisfy the following

QQ̃-system:
∏

j∈I

Q(j)(E; ℓ)Bij = ω− 1
2 θiQ(i)(Ω− 1

2E; ℓ)Q̃(i)(Ω
1
2E; ℓ)

− ω
1
2 θiQ(i)(Ω

1
2E; ℓ)Q̃(i)(Ω− 1

2E; ℓ) ,

(4.6)

where θi = wℓ(αi)(ℓ + h).

Proof. We already showed that Q(i)(E; ℓ) and Q̃(i)(E; ℓ) are entire functions of the

parameter E. By the definition of Ψ
(i)

± 1
2

(x,E; ℓ) given in (2.8) and from equations

(4.5) and (4.4) we have that

Ψ
(i)

± 1
2

(x,E; ℓ) = ω± 1
2wℓ(ωi)(ℓ+h)Q(i)(Ω± 1

2E; ℓ)χ
(i)
1
2

(x,E)

+ ω± 1
2wℓ(ωi−αi)(ℓ+h)Q̃(i)(Ω± 1

2E; ℓ)ϕ
(i)
1
2

(x,E) + ṽ(i)(x,E) .
(4.7)

Here we used the fact that, since V
(i)

− 1
2

= V
(i)
1
2

, then χ
(i)
1
2

(x,E) = χ
(i)

− 1
2

(x,E) and

ϕ
(i)
1
2

(x,E) = ϕ
(i)

− 1
2

(x,E). Note that ṽ(i)(x,E) belongs to an invariant subspace of

the monodromy matrix corresponding to lower weights. Equation (4.6) is then
obtained by equating the component in W (i) in the ψ-system (3.16) by means of
equations (4.5), (4.7) and the normalization (4.3). �
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We now derive the Q-system (Bethe Ansatz) associated to the Lie algebras of
ADE type. Let us denote by Ei ∈ C any zero of Q(i)(E; ℓ). Evaluating equation

(4.6) at E = Ω± 1
2Ei we get the following relations

∏

j∈I

Q(j)(Ω
1
2E; ℓ)Bij = −ω

1
2 θiQ(i)(ΩEi; ℓ)Q̃

(i)(Ei; ℓ) ,

∏

j∈I

Q(j)(Ω− 1
2E; ℓ)Bij = ω− 1

2 θiQ(i)(Ω−1Ei; ℓ)Q̃
(i)(Ei; ℓ) .

(4.8)

Assuming that for generic ℓ ∈ h the functions Q(i)(E; ℓ) and Q̃(i)(E; ℓ) do not have
common zeros, and taking the ratio of the two identities in (4.8), we get, for any
zero Ei of Q(i)(E; ℓ), the Q-system

n∏

j=1

ΩβjCij

Q(j)
(
Ω

Cij
2 E∗

)

Q(j)
(
Ω−

Cij

2 E∗
) = −1 , (4.9)

where C = (Cij)i,j∈I
is the Cartan matrix of the Lie algebra g, and

βj =
1

2Mh∨

∑

i∈I

(C−1)ijθi =
1

2Mh∨
wℓ(ωj)(ℓ + h) , j ∈ I .

Remark 4.4. The construction of the QQ̃ system (4.6) works for any affine Kac-
Moody algebra. However, formula (4.9) holds only in the ADE case. In order to
define the analogue of equation (4.9) for the Cartan matrix of a non-simply laced
algebra g, one has to consider, as suggested in [17], a connection with values in the
Langlands dual of the affine Lie algebra ĝ.

4.4. The case ℓ = 0. The case of ℓ = 0 is not generic and thus the Q functions
cannot be defined as in Section 4. It is however straightforward to generalize the
generic case to ℓ = 0, either directly or as the limit ℓ → 0. Indeed, we can take
the limit ℓ → 0 along sequences such that the element of the Weyl group wℓ = w
is fixed. In this way, the limit solutions χ(i)(x,E, ℓ = 0), ϕ(i)(x,E, ℓ = 0) of (2.1)
satisfy the Cauchy problem

χ
(i)
k (x,E, ℓ = 0) = vwi , ϕ

(i)
k (x,E, ℓ = 0) = fw

i v
w
i . (4.10)

Here vwi and fw
i are respectively the highest weight vector of V (i) and the negative

Chevalley generator corresponding to the element w of the Weyl group. Equations
(4.10) define uniquely the two solutions. Then the spectral determinants Q(i), Q̃(i)

are exactly the coefficients of Ψ(i)(x = 0, E) with respect to the basis element
vwi , f

w
i vi. Note that this implies a certain freedom in the choice of the spectral

determinants Q(i), Q̃(i). In fact, the freedom in the choice of Q(i) corresponds to
the elements of the orbit of ωi under the Weyl group action, while the freedom
in the choice of Q̃(i) corresponds to the elements of the orbit of the ordered pair
(ωi, αi) under the same group action.

For any choice of wℓ = w, the functions Q(i), Q̃(i) satisfy (4.8) with ℓ = 0, wℓ = w
and the corresponding Bethe Ansatz equation (4.9), provided they do not have
common zeros.

5. g-Airy function

We consider in more detail the special case of (2.1) with a linear potential
p(x,E) = x and with ℓ = 0, which is particularly interesting because the sub-
dominant solutions and the spectral determinants have an integral representation.
Since in the sl2 case the subdominant solution coincides with the Airy function, we
call the solution obtained in the general case the g-Airy function. The classical Airy
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function models the local behavior of the subdominant solution of the Schrödinger
equation with a generic potential close to a turning point [16]; we expect the g-Airy
function to play a similar role for equation (2.1).

5.1. Q functions. In the special case of (2.1) with a linear potential p(x,E) = x
and with ℓ = 0, it is straightforward to compute the Q functions. By the discussion
in Section 4.4, in order to define theQ functions we need to chose an element w of the
Weyl group and thus the distinguished element vwi of the basis of V (i). The spectral

Q(i)(E) is then defined as the coefficient with respect to vwi of Ψ(i)(x = 0, E). Due
to the special form of the potential we have

Ψ(i)(x = 0, E) = Ψ(i)(−E, 0) .

and thus, using formula (3.15), we get

Q(i)(E) = e−λ(i) h∨

h∨+1
|E|

h∨+1
h∨

Ci

(
1 + o(1)

)
as E → −∞ , (5.1)

where Ci is the coefficient of the vector |E|−hψ(i) with respect to the basis vector
vwi . It is important to note that the asymptotic behavior of the functions Q(i) is

expressed via the eigenvalues Λ(i) which coincide with the masses of the (classical)
affine Toda field theory, as we proved in Proposition 3.4. This is precisely the same
behavior predicted for the vacuum eigenvalue Q of the corresponding Conformal
Field Theory [31].

We conclude that the ODE/IM correspondence depends on the relation among
the element Λ ∈ ĝ, the Perron-Frobenius eigenvalue of the incidence matrix B and
the masses of the affine Toda field theory.

Remark 5.1. Note that formula (5.1) does not coincide with the asymptotic behavior
conjectured in [9, Eq 2.6] for a general potential. In fact, J. Suzuki communicated
us [33] that the latter formula is conjectured to hold only for potentials such that
M+1
Mh∨ < 1, in which case the Hadamard’s product [9, Eq 2.7] converges. Clearly in

case of a linear potential M+1
Mh∨ = h∨+1

h∨ > 1.

Remark 5.2. A connection between generalized Airy equations and integrable sys-
tems appears, among other places, in [23], where the the orbit of the KdV topolog-
ical tau–function in the Sato Grassmannian is described. We note that an operator
of the form (1.13) – specialized to the case of algebras of type sln and for ℓ = −h/h∨,
M = 1/h∨ – also appears in that paper. It would be interesting to obtain a more
precise relation between these results and those of the present paper.

5.2. Integral Representation. Given an evaluation representation of ĝ, we look
for solutions of the equation

Ψ′(x) +
(
e + xe0

)
Ψ(x) = 0 , (5.2)

in the form

Ψ(x) =

∫

c

e−xsΦ(s)ds , (5.3)

where Φ(s) is an analytic function and c is some path in the complex plane. Dif-
ferentiating and integrating by parts we get∫

c

e−xs
(
− s+ e+ e0

d

ds

)
Φ(s)ds+ e−xse0Φ(s)

∣∣
c

= 0 , (5.4)

where the last term is the evaluation of the integrand at the end points of the path.
We are therefore led to the study of the simpler linear equation

(
− s+ e+ e0

d

ds

)
Φ(s) = 0 , (5.5)

which we solve below for two important examples.
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5.3. An−1 in the representation V (1). In this case equation (5.2) is already
known in the literature as the n-Airy equation [16]. Using the explicit form of
Chevalley generators ei, i = 0, . . . , n − 1, which is provided in Appendix A.1, and
denoting by Φi(s) the component of Φ(s) in the standard basis of Cn, we find the
general solution of (5.5) as

Φ1(s) = κ e
sn+1

n+1 , Φi(s) = si−1Φ1(s) , i = 2, . . . , n ,

where κ is an arbitrary complex number. If we choose the path c as the one

connecting e−
πi

n+1∞ with e
πi

n+1∞, then the integral formula (5.3) is well-behaved,
and the boundary terms in (5.4) vanish. Thus, the sln-Airy function has the integral
representation

Ψj(x) =
1

2πi

∫ e
+ πi

n+1 ∞

e
−

πi
n+1 ∞

sj−1e−xs+ sn+1

n+1 ds , j = 1, . . . , n . (5.6)

In case n = 2, the latter definition coincides with the definition of the standard
Airy function. By the method of steepest descent we get the following asymptotic
expansion of Ψ for x≫ 0:

Ψj(x) ∼

√
1

2πn
x

2j−1−n
2n e−

n
n+1x

n+1
n
, j = 1, . . . , n . (5.7)

Due to Theorem 2.4, the sln-Airy function coincides with the fundamental solution
Ψ(1) of the linear ODE (5.2). In fact the asymptotic behavior of the Airy function
coincides with the asymptotic behavior of the function Ψ(1) (for this computation
one needs to use the explicit formula for h which is given in equation (A.1) ). The

solutions Ψ
(1)
k , k ∈ Z, are obtained by integrating (5.3) along the contour obtained

rotating c by e
2kπi
n+1 .

5.4. Dn in the standard representation. The second example is the Dn-Airy
function in the representation V (1). Using the Chevalley generators ei, i = 0, . . . , n,
as described in Appendix A.2, and denoting Φj the jth-component of Φ in the
standard basis of C2n, we find that the general solution of (5.5) reads

Φ1 = κ s−
1
2 e

s2n−1

2n−1

Φj = sj−1Φ1(s) , j ≤ n− 1 ,

Φn =
sn−1

2
Φ1(s) , Φn+1 = sn−1Φ1(s) ,

Φn+j = sn+j−2Φ1(s) , j ≤ n− 1 ,

Φ2n =

(
s2n−2

2
+

1

4s

)
Φ1(s) .

where κ ∈ C is an arbitrary constant. Let c be the path connecting e−
πi

2n−1∞ with

e
πi

2n−1∞. Then along c the integral formula (5.3) is well-behaved and it thus defines
a solution of (5.2) that we call Dn-Airy function. Moreover, the boundary terms
in (5.4) vanish. As in the case An, the standard method of steepest descent shows
that such solution is exactly the fundamental solution Ψ(1) to equation (5.2). The

solutions Ψ
(1)
k , k ∈ Z, are obtained by integrating (5.3) along the contour obtained

rotating c by e
kπi

2n−1 .

Appendix A. Action of Λ in the fundamental representations

In this appendix we give an explicit description of the maximal eigenvalues of Λ
in the fundamental representations and of the corresponding eigenvector.
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A.1. The An case. The simple Lie algebra of type An, n ≥ 1, can be realized as
the algebra of (n+ 1)× (n+ 1) traceless matrices

g = sln+1 = {A ∈ Matn+1(C) | TrA = 0} ,

where the Lie bracket is the usual commutator of matrices. The dual Coxeter
number of g is h∨ = n+ 1. Let us consider the following Chevalley generators of g
(i ∈ I = {1, . . . , n}):

fi = Ei+1,i , hi = Eii − Ei+1,i+1 , ei = Ei,i+1 ,

where Eij denotes the elementary matrix with 1 in position (i, j) and 0 elsewhere.
It is well-known that the representation L(ω1) is given by the natural action of g
on L(ω1) = Cn+1. Moreover, we have that

L(ωi) =

i∧
L(ω1) , i ∈ I .

We denote by uj, j = 1, . . . , n+1, the standard basis of Cn+1, and by vi, i ∈ I, the
highest weight vector of the representation L(ωi). Then, we have:

vi = u1 ∧ u2 ∧ · · · ∧ ui .

The set of Chevalley generators for ĝ is obtained by adding to the Chevalley gen-
erators of g the following elements:

f0 = E1,n+1t
−1 , h0 = 2c− E11 + En+1,n+1 , e0 = En+1,1t .

The element h ∈ h satisfying relations (1.14) is

h = diag
(
−
n

2
,−

n− 1

2
, . . . ,

n− 1

2
,
n

2

)
. (A.1)

Recall that Λ = e0+e1+· · ·+en and, from Example 1.3, that V (i) =
∧i

L(ω1)
(1)
i−1
2

,

for i ∈ I. In particular, V (1) = Cn+1, and we set

ψ(1) =

n+1∑

j=1

uj ∈ V (1) . (A.2)

Then, it is easy to check that Λψ(1) = ψ(1). By Proposition 3.4(a), ψ(1) ∈ V (1) is
the unique (up to a constant) eigenvector corresponding to the maximal eigenvalue
λ(1) = 1. Furthermore, using equation (3.10), we can check that for every i ∈ I,

λ(i) =
sin
(

iπ
n+1

)

sin
(

π
n+1

) , (A.3)

is a maximal eigenvalue of Λ in the representation V (i). Using equations (3.3) and
(3.2), the corresponding eigenvector is easily checked to be

ψ(i) = ψ
(1)

− i−1
2

∧ ψ
(1)

− i−3
2

∧ · · · ∧ ψ
(i)
i−3
2

∧ ψ
(1)
i−1
2

∈ V (i) .

A.2. The Dn case. Let n ∈ Z+, and consider the involution on the set {1, . . . , 2n}

defined by i → i′ = 2n + 1 − i. Given a matrix A = (Aij)
2n
i,j=1 ∈ Mat2n(C) we

define its anti-transpose (the transpose with respect to the antidiagonal) by

Aat =
(
Aat

ij

)2n
i,j=1

, where Aat
ij = Aj′i′ .

Let us set

S =

n∑

k=1

(−1)k+1 (Ekk + Ek′k′) .
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Following [15], the simple Lie algebra of type Dn can be realized as the algebra

g = o2n = {A ∈ Mat2n(C) | AS + SAat = 0} ,

where the Lie bracket is the usual commutator of matrices. The dual Coxeter
number of g is h∨ = 2n− 2. For i, j ∈ I = {1, 2, . . . , n}, we define

Fij = Eij + (−1)i+j+1Ej′i′ , F̃ij = Eij′ + (−1)i+j+1Eji′ ,

and we consider the following Chevalley generators of g:

fi = Fi+1,i , hi = Fii − Fi+1,i+1 , ei = Fi,i+1 , i = 1, . . . , n− 1 ,

fn = 2F̃n′,(n−1)′ , hn = Fn−1,n−1 + Fn,n , en =
1

2
F̃n−1,n .

It is well-known that the representation L(ω1) is given by the natural action of g
on L(ω1) = C2n. Moreover we have that

L(ωi) =

i∧
L(ω1) , i = 1, . . . , n− 2 ,

while L(ωn−1) and L(ωn) are the so-called half-spin representations of g. We denote
by uj , j = 1, . . . , 2n, the standard basis of C2n, and by vi, i ∈ I, the highest weight
vector of the representation L(ωi). It is well-known that

vi = u1 ∧ u2 ∧ · · · ∧ ui , i = 1, . . . , n− 2 .

The set of Chevalley generators for ĝ is obtained by adding to the Chevalley
generators of g the following elements:

f0 = 2F̃(2n)′,(2n−1)′t
−1 , h0 = 2c− F11 − F22 , e0 =

1

2
F̃2n−1,2nt .

Recall that Λ = e0+ e1+ · · ·+ en and, from Example 1.3, that V (i) =
∧i

L(ω1)
(1)
i−1
2

,

for i = 1, . . . , n − 2, V (n−1) = L(ωn−1)n
2

and V (n) = L(ωn)n
2

are the evaluation

representations at ζ = (−1)n of the half-spin representations. In particular, V (1) =
C2n, and we set

ψ(1) =

n−1∑

j=1

(uj + un+j) +
1

2
(un + u2n) .

Then, it is easy to check that Λψ(1) = ψ(1). By Proposition 3.4(a), ψ(1) ∈ V (1) is
the unique (up to a constant) eigenvector corresponding to the maximal eigenvalue
λ(1) = 1. Furthermore, using equation (3.10), we can check that for every i =
1, . . . , n− 2,

λ(i) =
sin
(

iπ
2n−2

)

sin
(

π
2n−2

) ,

is the maximal eigenvalue of Λ in the representation V (i), and the corresponding
eigenvector is easily checked to be

ψ(i) = ψ
(1)

− i−1
2

∧ ψ
(1)

− i−3
2

∧ · · · ∧ ψ
(i)
i−3
2

∧ ψ
(1)
i−1
2

∈ V (i) ,

as follows from equations (3.3) and (3.2). For the fundamental representations
V (n−1) and V (n) (see [19] for the definition), it is easy to check, using again equation
(3.10), that

λ(n−1) = λ(n) =
1

2 sin
(

π
2n−2

) .

Finally, we note that there is another important irreducible representation for the

Lie algebra g, which we denote by U (n−1) =
∧n−1

V
(1)
n
2

. It is not hard to show
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that λ̃(n−1) = 2λ(n−1) is the maximal eigenvalue for the action of Λ on U (n−1). Its
corresponding eigenvector is

ψ̃(n−1) = ψ
(1)

−n−2
2

∧ ψ
(1)

−n−3
2

∧ · · · ∧ ψ
(i)
n−3
2

∧ ψ
(1)
n−2
2

.

Moreover, the following isomorphism of representation (see [19])

V (n−1) ⊗ V (n) ∼= U (n−1) ⊕ V (n−3) ⊕ . . . ,

implies that there exists a morphism of representations m̃ such that

m̃
(
ψ̃(n−1)

)
= ψ(n−1) ⊗ ψ(n) . (A.4)

A.3. The E case. In Table 2 we give the explicit form of the eigenvalues λ(i)’s,
obtained from (3.10). The corresponding eigenvectors are computed in a GAP [21]
file available upon request to the authors.

E6 E7 E8

λ(1) 1 1 1

λ(2)
sin(π

6 )
sin( π

12 )
sin(π

9 )
sin( π

18 )
sin( 2π

30 )
sin( π

30 )

λ(3)
sin(π

4 )
sin( π

12 )
sin(π

6 )
sin( π

18 )
sin( π

10 )
sin( π

30 )

λ(4)
sin(π

4 )
sin( π

12 )
sin( 2π

9 )
sin( π

18 )
sin( 2π

15 )
sin( π

30 )

λ(5)
sin(π

6 )
sin( π

12 )
sin( 2π

9 )
sin(π

9 )
sin(π

6 )
sin( π

30 )

λ(6) 1
sin( π

9 ) sin(
2π
9 )

sin(π
6 ) sin(

π
18 )

sin(π
6 )

sin( π
15 )

λ(7)
sin( 2π

9 )
sin(π

6 )
sin(π

6 ) sin(
π
15 )

sin( π
10 ) sin(

π
30 )

λ(8)
sin(π

6 )
sin( π

10 )

Table 2: Maximal eigenvalues for simple Lie algebras of E type
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