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Abstract

We consider a Frobenius structure associated with the digpdess Kadomtsev
— Petviashvili equation. This is done, essentially, by gipgl a continuous analogue
of the finite dimensional theory in the space of Schwartz fions on the line. The
potential of the Frobenius manifold is found to be a loganithpotential with quadratic
external field. Following the construction of the princifpéérarchy, we construct a set
of infinitely many commuting flows, which extends the claaktKP hierarchy.

Introduction

The relation between Frobenius manifolds and hierarcHi@st@grable dispersionless sys-
tem, first described by Dubrovinl[7, 8], has been subjecterdit twenty years of an intense
research (see 11, 12] and references therein). The coonéstobtained by considering a
class of integrable quasilinegr+1) PDEs, of the form

up = Vi (u) ul,

which are known as hydrodynamic type systems. To every Riabemanifold, one can
associate a hierarchy of infinitely many commuting systeftsydrodynamic type, whose
number of components is equal to the dimension of the mahifidhis hierarchy goes under
the name of principal hierarchy, and the explicit knowledfthe members of the hierarchy
provides the general solution of any of its flows, by a procedumown as generalized hodo-
graph method. In this setting, the knowledge of a Frobeniasifold is therefore a useful
tool for the integration of these systems. The converselpnojnamely to find a Frobenius
manifold starting from a system of hydrodynamic type, i©ieatmore difficult, for one has
to provide a suitable decomposition of the mafvixin terms of structure constants of an
algebra. If one is able to specify the Frobenius manifoldnttihe flows of the corresponding
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principal hierarchy provide a complete set of symmetriestle original system, and the
hodograph method can be applied. In this paper, we are stéetén infinite dimensional
Frobenius manifolds, to be associated wWith-1)—equations.

The first complete example of an infinite dimensional Frobemhanifold has been pro-
vided by Carlet, Dubrovin and Mertens in the recent papenjBlere they have related the
dispersionlesgD Toda hierarchy to a Frobenius manifold constructed on theepf pairs
of functions analytic inside and outside the unit circlepexgively, and with prescribed sin-
gularities at zero and at infinity. The purpose of the prepaper is to produce a Frobenius
structure for the pair of commuting flows

fy =0fo — AL Ly, (0.1a)
fi= @+ Ao — (Alp+ A fp, (0.1b)

which are two examples of kinetic equations of Vlasov typerd#* = f_’L;O p* f dp are the
moments off with respect to the variablg, and subscripts denote partial derivatives. The
above pair of equations is strictly related with {l2e-1)—equation

Oy (A} — A°AD) = A) (0.2)

vy’

which is known in the literature adispersionless Kadomtsev—Petviash{dKKP) equation.
More precisely, the first moment® satisfies[(0.2) provided is a solution of[(0.11). Equa-
tion (0.2) can be derived as the dispersionless limit of thddntsev—Petviashvili equation
[20], and it also appears in nonlinear acoustics under theenaf Khokhlov—Zabolotskaya
equation[[42, 33].

Despite the fact that the dKP and the dispersiond3sToda equations present many
similarities, the procedure established ih [3] for consting a Frobenius manifold seems to
be less suitable, as it stands, for the dKP case. The pregprdaxh is thus different, and
based on a method introduced in|[17] for equations of typ#)(0The crucial point is to
interpret these systems as a sort of systems of hydrodyrngpacof the form

o) = [ V) ayin

whereV is a suitable kernel, and to construct from these systemslaeRius structure by
applying a direct generalization of the finite dimensionadez There are two important
features we want to emphasize: first, although the clasthealy of Frobenius manifolds
is usually easier described in the so-called flat coordfmate prefer in this paper to use
a different set of coordinates — given essentially by thefion f(p) — which turns out to
be more suitable for our purpose. In addition, in order tegivecise sense to the objects
involved in the Frobenius structure, we assufrie be a Schwartz function of the variables
andp. Correspondingly, the Frobenius structure is thus praieconsidering (multi)linear
maps on suitable vector subspaces of the Schwartz spacesashaal space, the space of
tempered distributions.

The choice of taking in the Schwartz class implies that the first moméht- which is
the solution of the dKP equation — is a Schwartz function evriablex. Within this ap-
proach, the behaviour of® for largey is left arbitrary. In this paper, we do not consider the
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Cauchy problem for the dKP equation (se€ [26, 27, 28], wher@nakind of inverse scatter-
ing transform has been introduced for solving the dKP equatiith localized initial data);
however — following the construction of the principal hietay of the Frobenius manifold —
we produce a hodograph-type formula, which provides sahgtof dKP in an implicit form.

The paper is organized as follows: in Secfibn 1 we review thitefdimensional theory of
Frobenius manifolds, and the relation with hydrodynampetgystems. Sectidn 2 is devoted
to the Lax representation of the dKP hierarchy, to its Hamiln formulation, and to the
kinetic representation of its flows, which can be written d@s@v equations. In Sectidn 3,
we set up the analytical background, we describe the spa&ehavartz functions (on the line
and on the plane), and the corresponding dual space of teshgestributions. Furthermore,
we review the classical results concerning Schwartz fonstitheir Hilbert transform, and
scalar Riemann—Hilbert problem on the real axis.

Sectiori 4 is devoted to the construction of the Frobeniusfoldn Using the continuous-
index approach, we first show how to write systems of typ€) (8sLhydrodynamic type
systems, we rewrite in this picture the metrics associatedeodKP Poisson brackets, and
we determine suitable structure constants, the unity atel kactor fields, and the potential
of the Frobenius manifold. The latter turns out to be a ldbaric potential with external
field, of the form

=3 [[1osb-afeir@ado+ 5 [0

In Sectiori b, we follow the procedure of the principal hiehgrof a Frobenius manifold,
and we construct an infinite set of commuting flows, which galnees the classical dKP hi-
erarchy. We then introduce an analogue of the hodograpsftnan, and discuss the validity
of this formulation in the infinite dimensional setting.

As already mentioned, the construction of the Frobeniusifoldrns done in this paper
without using flat coordinates. For completeness, in thesktion we describe the flat coor-
dinates for the Frobenius manifold, as well as the canogimatdinates, which diagonalize
the flows of the principal hierarchy. The construction ofstaeoordinate sets corresponds
to the procedure followed by Carlet, Dubrovin and Mertenthancase of the dispersionless
2D Toda hierarchy.

1 Finite dimensional Frobenius manifolds

In this section we briefly review the theory of Frobenius nmialds, as well as their connec-
tion with integrable hierarchies. The main purpose here itthe notation and to explicitly
write down the formulae we want to generalize later to thenitdidimensional case. For a
complete exposition on Frobenius manifolds and its reladpats we refer to [8, 11].



1.1 Frobenius manifolds

A Frobenius algebras a pair(A, < , >), where A is a commutative, associative algebra
with unity over a fieldk (= R,C), and< , > is ak—Dbilinear, symmetric, non-degenerate
form, which is required to be invariant, in the sense that

< XoY Z>=<X,YolZ >, VXY ZeA

A Frobenius structuref charged on a differentiable manifold1 is the structure of a Frobe-
nius algebra on every tangent spdce\Vt, depending smoothly on € M. Moreover, for
every vector fieldX, Y, Z, W on M, the following conditions are required:

1. The pseudo-metric
n(X,Y) =< X,Y >

on M is flat.
2. Denoting byV the Levi-Civita connection of the metrig then the (totally symmetric)
tensor
¢(X,Y,Z):=n(XoY,Z),
must satisfy

Ve (X,Y,Z) = Vxe(W,Y, Z) .

3. The unity vector fiela is flat:
Ve =0.

4. There exists a vector fieldl on M, calledEuler vector field, satisfying

VVE =0,
[E,XoY]|—[E,X]oY —Xo[E,Y]=Xo0oY.
EmX.Y))=n(E,X]Y)—n(X,[E,)Y]) = 2-d)n(X,Y).

The above definition gives to a Frobenius manifold a very gebmetrical structure, which
has been object of intense studies in the last twenty yeaikl[8 In particular, one of the
most important results is the existence of a funcitgrcalled thepotentialof the Frobenius
manifold, satisfying, in any local coordinate $ét. . ., u”, the conditions

cijr(u) = ViV;ViF(u). (1.1)
Remark 1 By using flat coordinates for the metrigsayh!, . .., hY, condition(.1)reduces
to
O3F(h)
ch) = Fanons



and the associativity equations for the algebra can be amitin these coordinates, as
PFE(h) . PF(h)  PF(h) . °F(h)
Ohiohiohs | OhrORORE  OWFORIOhs | Ohrohlohi

These equations are known as WDVV equations, and play arrtampaoole in two dimen-
sional topological field theory [40, 5]

We denote by’ the components of the inverse metyic', so that the quantities
Cik = 0" Csjs

are the structure constants of the algebra. Another irttegefeature for a Frobenius man-
ifold is that, in addition to the flat metrig, it is possible to introduce a second flat metric,
denoted by, whose contravariant components are given by

17 k_is 7J
g” = E"n*c,,

where £ is the Euler vector field. This metric is usually called th&ersection fornof the
Frobenius manifold, its flateness can be deduced from thgepties ofE, n andc, and it has
the important property that every linear combination offthren

Nij + @ Gij, o = const.,

defines a metric with zero curvature tensor. The metrasdg are thus said to beompatible
flat metrics or to form aflat pencil of metric49].

Finally, we recall the notion of semisimple Frobenius maluif A pointz on a Frobenius
manifold M is said to besemisimplef the corresponding tangent spdfeM is semisimple
(that is, it has no nilpotents). A Frobenius manifald is said to besemisimplef a generic
point of M is semisimple. In a neighborhood of a semisimple point ofadEnius manifold,
one can introduce local coordinates. . ., 7"V such that

cj-k(r) = 5;-5,1.

Such coordinates are callednonical coordinatest can be shown that in these coordinates
the metric and the intersection form take diagonal form, elgm

Nij (r) = %(7’)5@-, gij(r) = gn(r)@j,

for suitable functionsy;;, g;;.

1.2 Integrable hierarchies and Frobenius manifolds

In (1 + 1) dimensionsystems of hydrodynamic typee systems of quasilinear PDEs of the
form ' ‘ .
uy = Vi (u)ul, i=1,...,N, (1.2)



whereV; are differentiable functions of thé(x, ), and the independent variablesandt
are real. We also require the boundary conditions

lim u'(x,t) =0, i=1,...,N, (1.3)

|z|—~o00

to hold. Within these hypotheses, if we consiaér. .., «" as local coordinates on a dif-
ferentiable manifold\, we can interpret systems of type (|1.2) as dynamical systentise
loop space

LM)={v: R M| ~(z)= (u'(2),...,u" ()},

of smooth curves on the manifolti.
A system of type[(1]2) is said to lshagonalizablef there exist coordinates', ..., r"
such that the system is diagonal, thafiig(r) = v*(r)d?, or, equivalently,
=il (1.4)

Such coordinates are call&lemann invariantsand thev’ characteristic velocitiesDue to
a result of TsareV [38], solutions of a systedm [1.4) can bergin an implicit way by the
Hodograph formula

r 4+t =, (1.5)

where thew' are solutions of the linear system

3 vl
ow _ o
ori vl =t

(wj — wi) , i # 7. (1.6)

This system provides the characteristic velocities of firemaetries of[(1.4); hydrodynamic
type systems for which (1.6) is compatible are known in ttexditure asemi-Hamiltonian
Every semi-Hamiltonian systems possesses, besides thaedyi@s solutions of (116), in-
finitely many conserved quantities.

Let us now move to the relation between Frobenius manifotdsheydrodynamic type
systems. This can be described by introducing a Poissoctsteuon the loop spade(M).
Thus, we letu!, ..., u" depend one, we impose the boundary conditiois {1.3), and — fol-
lowing Dubrovin and Novikovi[10] — we defiffeinctionals of hydrodynamic type be func-
tionals of the form .

H{u) :/ h(u)dz, (1.7)
whereh is a differentiable function, depending on thebut not on theirr—derivatives. A
Poisson bracket of hydrodynamic typetwo functionals = [ hdx andK = [ kdz of
type (1.7) is defined as

(H,K} = / 5;”({:5 ) (nij(u)% +r§j(u)u’;) 5;{(;)61:6, (1.8)



where thep/ are the contravariant components of a flat metric\dnandl’y = —*T7,,
with I/, the Christoffel symbols of the metrigc For functionals of typd (117), the variational
derivative involved in the formula is given by

0H  Oh
Sui(z)  Oul’
It is thus clear that Hamiltonians of type (IL.7) generate Hamequations

ui = {ui, H} = (ni’kavjh) u;,

(1.9)

which are systems of hydrodynamic type. Since a Frobeniusfold admits two compatible
flat metrics, the loop space of a Frobenius manifold admiigarbiltonian structure, whose
flows generated by Hamiltonians of the forlm (1.7) are systefhydrodynamic type.

An alternative approach for constructing a hydrodynampetgystem starting from a
Frobenius manifold is to consider a vector fiefdon M, and to associate t& the hydro-
dynamic type system ' '

uy = (Vi) ul, (Vx); = ¢ XF, (1.10)
wherec is the product of the Frobenius manifold. By combining thiege approaches, one
can construct an infinite set of commuting flows, known aspthecipal hierarchyof the

Frobenius manifold [11]. This can be defined by means of tbersive relations

VXl =0, (1.11a)
VXl = XE n=0,1,2,..., (1.11b)
wherea = 1,..., N, andV is the covariant derivative of the metrgsee for instance [25],

where the above construction has been considered for a reaea class of systems). df
andn satisfy the conditions of a Frobenius manifold, then sysferl) is compatible, and
the flows

(Vo) = i X5 (1.12)

i a,n?

ou’ ; ou’

Otom <va’n)j Ox’
which form the principal hierarchy, pairwise commute. Intgalar, when the flat vector
fields X, o are chosen as in [11], the corresponding PDEs are cpliedary flowsof the
hierarchy. The flows of the principal hierarchy are semi-litebmian hydrodynamic type
systems, and therefore they possess infinitely many coedeuwantities of hydrodynamic
type, whose densities are solutions of the system

< ViVih = ¢, V;Vh, (1.13)
see, for instance, [11].

Remark 2 The flows{I.12) of the principal hierarchy are Hamiltoniari [11], as shown by
the following considerations. One defines theforms 0" := 7, X, which are proved

to be closed by usinf.11)together with the flatness of the metric. Therefore, therallyp
exist functiond,, ,, such tha; H, ,, = 6;"", and from(L.11b)we have

(va,n); = nikvkija,n—i—l;
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which gives the Hamiltonian form of the flo@@&s12) Moreover, it has been proved in [11],
that in the semisimple case the functidiis,, satisfy a completeness property, in the sense
that they form a complete set in the space of conserved densit the hierarchy(1.12)
which are polynomial with respect to one of the flat coordasat

If the Frobenius manifold is semisimple, then in canonicardinates the flows of the prin-
cipal hierarchy become diagonal:
ort - ot

=X =1,...,N =0,1,....
ata,n a,n8x7 04 ) ) ) n y

In other words, canonical coordinates on a Frobenius miginéiee Riemann invariants for
the flows of the principal hierarchy, and the componeXifs, of the vector fields are the
characteristic velocities of the corresponding flows. Wgthe hierarchy in canonical coor-
dinates, we can then apply the hodograph formuld (1.5) taimlsblutions of the principal
hierarchy. Alternatively, one can consider the system

e tVi= W,

which is an invariant formulation of the hodograph formldg). If V' = Vx, W = V4 asiin
(1.10), for some vector field, Y, then we get

(e +tXF YY) =0, (1.14)

which shows that the vanishing of the quantities in the beadkfines an implicit solution in
any coordinate set. This invariant formulation of the hadpé method in terms of critical
points of vector fields has been considered in [24].

Remark 3 We note that although the definition of Frobenius manifolgurees the non-
degeneracy of the bilinear form, the theory of hydrodynamic type systems turns out to
be less restrictive. In particular, a local Hamiltonian foaalism can be defined also in the
degenerate case (seel [6], Theorém4), and the principal hierarchy can be built as in
RemarKZ®, that is, by using differential forms in place ofteetields.

So far, we have considered the direct problem of determittiegprincipal hierarchy of

a given Frobenius manifold. The converse problem, of produa Frobenius manifold

starting from a given hydrodynamic type systém|(1.2) iseathore difficult, and even not
always solvable (see |[9] for further detail). We recall hdrat a necessary condition is
the existence for the system (I1.2) of a bi-Hamiltonian $tmecof type[(1.B); one has then to
find a decomposition of(1.2) of the forin (1]10) (as well asdbeesponding unity and Euler
vector fields) and to prove the axioms of a Frobenius maniftildne is able to determine
the Frobenius manifold, then the corresponding principainchy form a (complete) set of
symmetries of the original system.



2 dKP equation and Vlasov equations

2.1 dKP hierarchy

The Lax representation of the dispersionless KP hierar8hy i defined in terms of the
formal power series

A:p+§:p;P (2.1)
k=0

where the variabled” depend on an infinite set of independent variablesvith n > 0, as
well as on the spatial variable The Lax equations are given by

1
My = A Ay = (W) (2.2)
where the bracket is the canonical Poisson bracket,

{hvg}x7p = hp Gz — hx 9p, (23)

and( ), denotes the polynomial part of the argument. In this seteugry Lax equation can
be seen as the generating function of a system of hydrodynigyme with infinitely many
dependent variables®, with & € N.

Example 2.1 The first non-trivial casep = 2, gives
Aty = A — AN, (2.4)

This is equivalent to thBenney moment equation
Af = AT 4 EARTTAD Kk EeN, (2.5)

named after Benney|[1] who derived it from the study of longlinear waves on a shallow
perfect fluid with a free surface. Far= 3 we get

Mg = (0 + AN — (A p + ALy, (2.6)
to which corresponds the system
Af = ASP2 4 AOAR 4 (k4 1)AFAD + kAR AL keN. (2.7)
It is well known that the commutativity of the flows (2.2) ings the Zakharov-Shabat (or
Zero curvature) equations
Ot — 01, U = { Qs W}, »

which are systems of PDEs for (2 + 1) independent, and a finieb@r of dependent vari-
ables. In the casen = 2, n = 3, and after setting, = y andt; = ¢, one gets the dKP

equation[(0.R).



A Hamiltonian structure for the dKP hierarchy was found bypkKrshmidt and Manin
[22,[23]. Indeed, they wrote the Benney systeml(2.5) in thfo

1
Afz - {Ak7H2}17 H? = / 5 (A2 + (AO)2) de’, (28)
where the Poisson bracket is tkepershmidt—Manin bracket

oK d H
{K, 1}, :/m ((k+n)Ak+" 1d + nAkTn= 1) 6An(x)d9:. (2.9)

We notice that the above bracket is a hydrodynamic type btagkh infinitely many com-
ponents. In particular, the metric is given by

" (A) = (k +n) ARt (2.10)

All other flows of the dKP hierarchy are also Hamiltonian,iwitamiltonian densities given
by the coefficients of the series
p=A- Z )\k:-i-l’

which is obtained by inverting the serléﬂz.l) with respegt The first few of them are
Hy=A" H,=A', Hy= %A2 + % (A% Hy = %A‘"’ L AAL
Furthermore, the Benney equatidn (2.5) admits a second Itteniain formulation, given by
Ap ={A"Hi},, M= %/Hldx,

where the bracket is again of hydrodynamic type with infigitaany components, and it is
compatible with the Kupershmidt-Manin bracket. We giveehenly the metric, which is

n—1
g*"(A) = knA AT 4 (k4 n 4 2) AR 4 (ki) AR AT
1=0
n—2
(n—i—1)AF A2 (2.11)

Il
o

%

further detail can be found in[21, 17]. The other flows of tierdéwrchy are also Hamiltonian
with repect to this second Poisson bracket.

2.2 dKP and Vlasov equations

The use of the formal serids (2.1), introduced in the pres/grction, is to be understood as
an algebraic model for describing the underlying integrayistem in a more compact way.
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However, to describe the system in more detail we must impmse structure on. This has
been done —for instance— In |18, 19], wheres defined through the Hilbert transform on the
real axis of a suitable functiofi. We now briefly review this approach, without specifying
the functional class to whicli belongs. Later, in order to construct a suitable Frobenius
structure, we will takef in the Schwartz class. We thus define the analogue of the forma
series[(Z.11) to be the function

“+oo
Ap)=p +][_ pf(fq)qdq, p € R, (2.12)

where f dp denotes the Cauchy principal value integral. The funci®d?) possesses an
asymptotic expansion fgrat infinity of the form

)‘Np+Zk—+1’ (2.13)
k=0 p
where the coefficientd”, given by
+00
A= [Tt keN, (2.14)

are the moments of. Within this approach, the formal seriés (2.1) can be re@las the
asymptotic expansion fagr — oo of the function [(2.12). Moreover, due to the definition
(2.12) of the function\, to every flow of the dKP hierarchy we can now associate a €orre
sponding equation for the functigh[15,/44]. The following examples clarify the situation.

Example 2.2 The equation
ft2 = pf:v - Ag:fpa (215)

leads, under the definitio2.12) to the dispersionless Lax equati§@.4). Morever, the
moment equations d.15)are the Benney systef@.5). Analogously, equation

fro = (0" + A°) fo = (Adp + AL) [, (2.16)

induces the Lax equatig@.6)for A\, and the related moment equations turn out to be system
(2.7). One can prove that the flov@@.15)and (2.16)commute. Moreover, the dKP equation
(0.2) can be obtained directly from these flows as follows: weset vy, t; = t, and we
consider the first few moment equationg®@f15)and (2.18) that are

Ag = A, A; = A2+ A"AY A= A2 12440
Rearranging, we find the following system of equations

1 0
Al =40,
Al = A0 — 4040,

which is proved to be compatible, so théft satisfies the dKP equatid.2).
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Remark 4 Comparing equatio@.4)with (2.15)and (2.6) with (2.16), we notice thaf and

A are carried along the same characteristics with respechsftowst; and¢;. This result
can be generalized to all other flows of the dKP hierarchy, #redproof, for every fixed flow,
requires elementary manipulations only. However, to thbai’s best knowledge, a proof of
this fact for the complete hierarchy is still missing.

The relation between thgand the) pictures is not just at the level of the equations, but also
at the Hamiltonian level. This is shown by introducing fra@sson—Vlasov brack§29]:

@ [[ e (Gt s, 0 @A

where{-, -} is the canonical brackef (2.3}, # are functionals off, and the variational
derivatives are defined by the |dent|ty

(x,p)dpdr = i HIf + €], (2.18)
e=0
for every suitable test functioh. Hamilton’s equations for the bracket (2.17):
0
_{ = {f7 H}LP) (219)
or, equivalently,
of + f =0 (2.20)
ot w op '

are equations of kinetic type, and more precisely are a ofdglasov equationsvhich arise

in the theories of plasma physics and vortex dynamics. Tladoa between these equations
and the dKP hierarchy relies on the following result/[15wi restrict the brackef (2.117) to
functionals depending on the moments alone,

H=H[A" AL .. ],
then the Poisson—Vlasov bracket restricts to the Kupemhianin bracket (2]9), namely
{g> H}LP = {g> H}l .

As a consequence of this fact, every Vlasov equafion [2ri®)des a set ahoment equa-
tions given by
= {A* 1}, k=0,1,...,

where the functions!* are defined by (2.14).

Example 2.3 The Benney Hamiltonia2.8), leads to the Vlasov equatid@.18) Analo-
gously, the Vlasov equation obtained by the Hamiltonian

Hy = / (%Ai” + AoAl) dz.

12

is equation(2.16)



3 Schwartz functions and tempered distributions

This section is devoted to a brief review of the main properdf Schwartz functions and
tempered distributions, in which we can find a sufficientishrianalytical setting for the
construction of the Frobenius structure for the dKP equatindeed, by taking the function
f introduced above in the Schwartz class, we can be more precithe analytical properties
of the objects considered in the previous section. We wilhberested on Schwartz functions
of one and two variables only. At the end of the section, weskethe well known relation
between Schwartz functions of one variable and the Rienidifloert problem on the real
axis.

3.1 The spaceS(R)

Let ¢ be a function of the real variabje We say thatP belongs to the Schwartz claS$R)
if itis C>—differentiable and satisfies

sup| p* 9" ®(p) | < +o0,

peER
for everyk, m € N. The following properties of the spac®R) are well known; we refer
to the classical references [35,] 14) 32] for a more detaikstudption. The spac8(R)
is k—linear (¢ = R, C), and closed with respect to pointwise product and diffeation,
meaning thaty ¢, ¢' € S(R) if ¢,9 € S(R). Moreover, we haveS(R) C LP(R), for
1 < p < +oo. The dual spacé’(R) of S(R) is the space of tempered distributions, which
are defined through the pairing

“+oo
@ = [ wwepd,  weSE®, 2eS®),
The spaceS’'(R) can be characterized in the following way: a distributiotémpered if
and only if is a finite sum of (weak) derivatives of continudusctions growing at infinity
slower than some polynomial. The following examples of teneg distributions will be
useful later:

Example 3.4 Let O),(R) denote the set ai*°(R) functions which, together with all their
derivatives, grow at infinity slower than some polynomiag. WaveS(R) C Oy, (R) C S'(R),
which in particular shows that the Schwartz functions casden as tempered distributions.
The spac&,, is important for the following reasons: first, givére Oy, (R) and® € S(R)
thenh® € S(R). This allows one to define the product betwéea O,, andw € S’ by

< hw,® >=< w,h® >, for every® € S. Moreover, if one defines the convolution of a
tempered distribution with a function as

wen) )= [ wl@elp - s, weSE®), 2eSE)

oo

thenw*® € Oy, (R). The last resultis known in the literarure as regularizatiaf a tempered
distribution.
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Example 3.5 the delta function and its derivatives, which are definedhgydonditions

+oo
/ ®(q)5® (p — q)dg = @®(p),  k=0,1,2,...,

[e.e]

for every® € S(R), are tempered distributions. They satisfy the identities

0™ (p —q) = (=1)*0® (g - p), (3.1a)
®(q)0*) (p— q) = Z (lf) oW (p)s*(p - q). (3.1b)

We denotey (p — ¢) =61 (p — ¢), with similar notation for higher derivatives.

Example 3.6 The singular distribution p.;l;, defined by

<p.v% , q>> = ][_:O ?dp, (3.2)

see, for instancel [14, 31]. In order to simplify the notatithe symbap.v. will be dropped,
that is, we will write% in place Ofp.v.%. It will be clear from the context when this quantity
has to be understood in the distributional sense.

We now consider the functiofi introduced in the previous section, and tgke= S(R).
This assumption can be weakened, for instance, allowittgbe non-differentiable (or even
discontinuous) at some point; however, for simplicity sgeneralizations will not be con-
sidered in this paper.

The first consequence of considering a Schwartz functiomasall the moments (2.14)
are finite, so that the moment equations such as (2.5) make skraddition, the functioi
defined in[(2.1R) belongs 10,,(R). Indeed, the Cauchy integral appearindin (2.12) can be
read as the convolution gf with the distribution of Example_3.6. Due to the remark at the
end of Examplé 314 we obtake Oy, (R).

Remark 5 The Hilbert transform of a functiof® is defined as

oo = L 2@
Hilb, ] — ﬂ][_oo M0y (3.3)
Comparing(@.3) with (2.12), we get
A(p) = p — mHilb,[f]. (3.4)

The following classical formulae for the Hilbert transfomaill be useful later:

Hilb [Hilb [@] | = —, (3.5)
Hilb [, Hill [®,] + Hilb [®,] ®,] = Hilb [®,] Hilb [@,] — &, ®,. (3.6)
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These conditions hold on the whole real axis providgdand ®, belong toL?(R), p > 1,
and satisfy the Holder condition

|2(p) — 2(@)l| <Clp—ql”, O<a<l,
for some constand'. In particular, this is true for functions belonging &(R).

Remark 6 In the definition above, we might alloyvto be either real or complex-valued.
While the former choice leads to real-valued solutions efdKP hierarchy, the latter turns
out to be important when considering flat coordinates of th@Enius manifold. Unless
otherwise stated, the results of the present paper hold étin khe real and the complex-
valued case.

We now consider a class of functionals, depending dnut not on its derivatives; we allow
these functionals to be nonlocal, and to explicitly depeng.oGiven a functionalH[f] of
this type, its variational derivati f([;{)] is defined by the identity

5H S L 6
<5f(p)’q)(p)> = Geoo Tl el (3.7)

for every® € S(R). We restrict ourselves to functionals for which the abowniity makes
sense, so that the corresponding variational derivatianiglement ofS'(R). Note the
different notation between the variational derivative3ndj and the one in(2.18), due to the
fact that in the latter case the functionals depend on twabhlas. Later, and for a special
class of functionals, we will describe the relation betwterse two derivatives.

Example 3.7 Let H = H(A°, ..., A¥) be a differentiable function of the moments, and
therefore a (nonlocal, in general) functional $f We have
SH <~ 0H

7

/) &oAal

Being these functions polynomials, they belon@io(R).

Example 3.8 The tempered distributions of Example]3.5 can be written &srational
derivative as

5f(k) p
while for the distribution3.2) we have:
Ap) 1
of(a) p—q

Let us explain the last identity. From the definition of véinaal derivative(3.14), and re-
calling (3.4), we have

<§;_E’;§, cp(q)> = %k:o <p — mHilb, [f + e<I>]> :][:O %dq,

and this is exactly the definition of the singular distrilout{3.2).

15



3.2 The spaceS(R?)

From the definition of the Poisson—Vlasov bracket (2.17)d-the corresponding Hamilton
equations — it follows that we have to consider the analypoaperties off as a function of
bothz andp. Although the conditions for the dependencefathrough the variable are
less restrictive than the conditions prfwe actually need only to be smooth on thér, p)
plane and to decay to zero fpr| large), for the sake of simplicity we consider in this paper
f €S(R?), the space of smooth and rapidly decreasing functions opléme. All properties

of S(R) described above still hold fa$(R?) [35]; in particular, we can introduce the dual
spaceS’(R?) through the pairing

((w, D)) = //w(p,x)q)(p,x) dp dzx, PcS(R?), weS'(R?),

and we can define the spa€s,(R?) in analogy to the one-variable case. Furthermore, we
introduce a class of functionals, of the two independentbées: andp, as the simplest
generalization of the class of functionals in thevariable introduced above. Indeed, let
H|[f] be one of the above mentioned functionals: if weflelepend one, then alsoH [f]
becomes a function af, and we can define the functional

%m:/Hmm, (3.8)

provided the integral converges. These functionals are ltteal and translational invariant
with respect tor, while the dependence gnis allowed to be more general. Functionals of
the form [3.8) are the analogue, in this setting, of funalerf hydrodynamic typé (1.7).

Example 3.9 Let H(A°, ..., A¥) be the functional of Example_3.7. Then the associated
functional

Hif) = [ H s

is of the form(3.8). For a generic choice of the functiaid, the above functional is nonlocal
with respect tgp. Another example is provided by the integral

[ w2030 2)dpds,
whereh is any differentiable function of (such that the double integral converges), and
where\ is given by(2.12) Note that the choicé = const is not allowed, for the corre-

sponding integral diverges.

Within this construction, the Poisson—Vlasov bracket @ dan now be written as

0G 0H
{g7H}LP:<f7{§7W} >7
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where the variational derivative is defined by (2.18). Netite difference betweeln (8.7) and
(2.18), due to the fact that the former is computed fiked. It is not difficult to show that,
for functionals of the form[(318), the two variational dexiives are related by

SH  SH
5f(p,x)  6f(p)’

which is the analogue of (1.9). The Poisson—Vlasov bradR€if] of the functionals
and? is well defined provided the canonical Poisson bracket ofctireesponding varia-
tional derivatives belongs t8'(R?). This requirement is satisfied, for instance%t %—’Jf €

O (R?), and this is equivalent to say that the canonical Poissotkbtayives to0,,(RR?)
a Lie algebra structure, witth (3.9) playing the role of thecasated Lie-Poisson bracket.
However, the formula still makes sense if one of the argumesraty‘;—?, belongs taS’(R?) \

O (R?). The important choicg€ = f(q, 7), which gives Hamilton’s equationis (2]19), (2.20),
has variational derivative
f(q,7)

which is an element of’(R?) but does not belong t6;, (R?).

(3.9)

3.3 Riemann—Hilbert problem

The definition of the functior (2.12) in place of the formatiss (2.1), it is not only useful

from an analytical viewpoint, but leads also to a nice geoicedtconstruction, relating the
above quantities to the solution of a scalar Riemann-Hilpeyblem on the real axis. Here
all functions are considered affixed. Sincef € S(R) [, then the functions

®.(p) = Ff(p) +iHilb,[f]l, peR,

are the boundary values on the real axis of a complex fundkign, which is analytic for
p € C\ R. In our case, we thus have

©()=F/0) - = O\p) -5, pER

which, with A given by [2.1D), is the unique solution of the scalar Riemddilibert problem

D (p) —@_(p)=-2f(p), peR
Oy (p) — 0, P 0.

By slightly modifying the above problem, we now define the difunctions
b.(p) =Fnf(p)—iAp), PpER, (3.10)

which are solutions of a Riemann—Hilbert problem similathte former, but with a different
normalization at infinity. The advantage of this definitigrthat the funtiond(3.10) —being

lthe same result holds for weaker conditions, see for instf8@[37].
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linear combinations of and - satisfy equations (2.4) and (2.6) (compare with Rerhark 4).
In addition,®.. have the same asymptotic expansion (2.13), for layges\. The function
@, or, more precisely, the associated plane curvéR — R?, given by

v(p) = (=7f(p),=Alp)), peER, (3.11)

will be useful in Sectionl6, when considering canonical dauates for the Frobenius mani-
fold of dKP.

Remark 7 By considering yet another pair of functiong;. := i ®., we get

Y1 (p) = Ap) Fir f(p).

This is the classical decomposition, considered in refatigth the dKP hierarchy, for exam-
ple, in the papers [16, 19, 41]. In the case of reductions efdKP hierarchy, the analytic
continuation ofy, in the upper half plane is conformal map, solution of a systéohordal
Loewner equations.

Due to the above considerations, for the construction ofRtedenius manifold it is
possible to use — instead of the functipr- either) or one of the function®, . Although
this approach is closer to the one considered!in [3], theiwootis index approach provided
in this paper for the dKP equation is better suited for fhepicture.

4 A Frobenius manifold for dKP

4.1 Vlasov equation as hydrodynamic type system

We begin now the construction of a Frobenius manifold, wketwant to relate to a class of
Vlasov equationg (2.20), and in particular with equati@g%) and[(2.16), which give dKP.

Our approach is to consider these equations as a continindesed hydrodynamic type
system, and to proceed with the construction of the Frolsemianifold in full analogy with

the finite dimensional case. This procedure has already taesidered in[[17] where the
Haantjes tensor (or, better, its continuous indexed an@lplgas been computed for equation
(2.15), as well as for more general Vlasov equations. The isléo consider the variable
appearing in the functiori(p, x), as a continuous parameter, rather than as an independent
variable. In other words, we take the set

{f(p), p € R},

to formally play the role of the coordinates, ..., «" in the finite dimensional case. Hy-
drodynamic type systems take thus the form

o) = [ V) faya (4.1)
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where the kerne‘lf(f;) is a functional off. In order to remain closer to the notation of Section
[, the dependence anof the functionf and its derivatives will be omitted. More precisely,

we denote
_ 9f(x,p) Of (x,p)

f(p) = f(x,p), f): o f2(p) =

with similar notation for higher derivatives as well as faher functions. We remark that,
for every fixedr, the above functions all belong &R). Therefore, we can define equations
of type (4.1) by looking at a class of linear operators

V() : S(R) — S(R), (4.2)

thus identifying the vector spac®R) with the tangent space. The dual sp&eR) plays
therefore the role of cotangent space; we anticipate hatertlorder to give a precise mean-
ing to the objects involved in the construction of the Frabsrstructure, we will need to
consider suitable vector subspaces of B®{R) andS’(R).

Example 4.10 The simplest choice
V(7)) =dp—q), (4.3)

give rise to the systerfi(p) = f.(p), which is the first element of the dKP hierarchy. A more
interesting example is given by choosingdnl)

V() =pdp—a)— '), (4.4)

from which we get the Vlasov—-Benney equai®ri5) Another example is given by the
kernel

V() =@+ A% dp—a) — (p+a)f(p), (4.5)
which gives equatio@.16) We note that all these examples are of t{pa).

4.2 Compatible flat metrics

We have seen in Sectibh 2 that the Benney system has a bitdamail structure with respect
to two Poisson brackets of hydrodynamic type. Therefore,ttbo natural candidates to
become the first metric and the intersection form of the Fnaisemanifold are, respectively,
the flat metrics[(2.10) an@(2]11). We need to write theseiasdtr the continous formalism.
However, it is a result of [17] that the Poisson—Vlasov bead®.17), which is the form of
the Kuperschmidt—Manin brackét (2.9) written in thepicture, can be written as bracket of
hydrodynamic type with continuous indices, with the covdraant metric given by

n®? = —f'(p)d(p — q). (4.6)

This is the continuous form, in thg—picture, of the metric(2.10). Indeed, (4.6) defines a
bilinear map on the vector spach, (R) C S’(R) given by

n(h',h*) = / / hiynP O, dpdg = — (h', f'h%) (4.7)
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for everyh!, h? € Oy (R). This bilinear form is strictly related with the linear opéor

p:Ou(R) — SR),  p(h)(p) = f'(p)h(p),

so that we can write
n(h',n?) = (h', p(h?)).

Remark 8 The mayp is never onto and, in general, nbt-1 either. It is not difficult to show
that

ker p = {h € Oy (R) : p(supgh) Nsupdf’)) =0},

wherey, denotes the Lebesgue measureRorSince the elements 6f,,(R) are continuous
functions, we have that thieer p is non-trivial if and only if f/ = 0 on a set of positive
measure.

We denote) = Imp. This is a vector subspace S8{R), whose elements are of the form
X® = h(p)f'(p), for someh € Oy (R). On the spac®, we can define the inverse metric

of n, with components
1
mmVZ—ﬁ@f@—q% (4.8)

which acts on vectorX;, X, € V as follows:

X(p)X(P)
U(X1,X2) = // X1(p)77(p7q)X2(q)dpdq = —/de-

By construction, the above bilinear form is well definedlanFollowing [17], we now con-
sider an analogue of the finite dimensional, differentiamgetric objects, which is obtained
by replacing partial derivatives with variational one, auins over repeated indices with
integrals. Remarkably, this construction turns out to hesgsient with the rest of the theory.
For instance, we define the Christoffel symbols of the md#i8) by taking the usual finite
dimensional formula, and we obtaln [17]:

o1
L) = f'(q)

Since the metric[(4]18) is not constant with respecy tave thus say that thg(p) are not
flat coordinates for the metric. Furthermore, we denoté/bthe corresponding covariant
derivative, which we require to act on element3/ods

(g —p)o(g — ). (4.9)

S X @) 5 X @)
Vo X® = +/F P\ X gy — + (g —p)X®.
X =55 T ) s T

and onh € Oy (R) as

Ohq) , Oh(q) Ohyyp)
Vot = 5705 = | TGt = 575 o= 52
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The two actions can be proved to be consistent by putkingh f’ and using the properties
(3.1) of delta functions. The action & on more general tensor fields is defined in analogy
with the finite dimensional case; for instance, the well kndarmula

O7)(q,r ) .
V)ar) = 5f(gp)) N /F(pq)n(sﬂ")dr - /F(pr)n(q,s)dr =0,

holds in this continuous—index setting. The second me&itk) can also be written in this
formalism as

f(p)f'(q) = f(q)f'(p)

(ra) — ¢ ') —
g f'(0)f'(q) p—

+3(p =) (FONB) — FDAP). (4.10)

and the corresponding Christoffel symbols can be found #j, [vhere the metricd (4.6)
and [4.10) are also proved to have zero Riemann curvatusert@md to be compatible. In
particular, we will take[(4]6) to be the first metric of the Bemius manifold; in order to prove
that (4.10) is the intersection form, we will have to intrgdisuitable structure constants of
the algebra and the Euler vector field.

4.3 Structure constants of the algebra

The next step in the construction of the Frobenius manifotd consider a product of vectors
of the form

(X oY) //X P)Y Wdgds, (4.11)

where X, Y belong to). We consider the quantities

pY_dp-r) f@ia-r) dp-a N o
C(CN’)_ =7 Pl r—a o= i rhla-p) 412)

where)(p) is given by [2.1R) and, consequently,
+oo £/
—00 P—4

[e.e]

It is not difficult to show thafV is closed under the produd¢i (4111}, (4.12). Moreover, we
have the following

Theorem 1 The quantitieg4.12)give toV the structure of a symmetric, associative algebra,
which is compatible with the metr{d.6) and with its Levi-Civita connection. Namef,12)
satisfy the following conditions:

e Symmetry



e Associativity
/c b c g ds:/c b c y ds.
qs lr s qr

e Compatibility with the metric

q q
()= foc{ )

e Compatibility with the connection

P\ p
cu(z)-wur(2)

Proof The first three conditions are proved by using the ident{{geg) for the Dirac delta
function and its derivatives. For the last condition, ailemputing the quantity

Wue( 1) = o) [r(eias - [e(ez)an—[rG)ezyas

one can prove its symmetry with respect to the indicasdg by using similar methods as
in the first three conditions. O

As a consequence of the above theorem, the metri¢c (4.6) andtthcture constants
(4.12) satisfy the axioms appearing in the definition of aberous manifold. In order to
complete the construction, we still have to determine theywfi the algebra and the Euler
vector field.

Proposition 4.3.1 The vector field € V with coefficients
e” = —f'(p), (4.13)

is the unity of the algebr@.12) and it is flat with respect to the connecti@h9).

Proof By applyinge to the product(4.12), we get
/C(qpr)e(r)dr i 3(p —q) (/ S0 g X(p)) =d(p—q).
bp—q Pp—(q b—r

which shows that is the identity of the algebra. Moreover, we have

V. e?) = 0 e + 1"(”) OF = (p—q) —8(g—p) =0

and therefore is a flat vector field with respect to the connect\an O
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The bilinear operatof (4.11) with the structure constdhi2) acts on pair of vectors in
the spacé@’, which is a vector subspace 8{R). Hence, for everX’ € V we can define the
linear map

VXZV—>V,

by the formula
Vx(?) = / c(2)XTdr.

SinceX €V, itis of the formX ® = h, f'(p), for someh € O),(R). Hence, we have

hiyy — h hem £/ (7 /
Vx (7)) = wf’(p) +3(p—q) (/ %ﬁd)dr — hpyA (p)) ,

from which it follows that the operatdry makes sense when applied to any vectaf (iR).
We can thus extently to a map of typel(4]2), and in particular, we can apply it towbetor
f=(p) € S(R) \ V. The evolutionary equation

o) = [ V() o) (4.14)

is thus well defined, and, belongs taS(R). The following example shows that the product
(4.12) is associated with the flows of the dKP hierarchy.

Example 4.11 Consider the vector field
X® = —pf'(p) V. (4.15)

Then, we have:

V() 1= [ () xar
S B () R ( / pffw 0 _px(p))

p—q p—q
=—f'(p) —d(p—q) (/%dr—p)
=pd(p—q) — f'(p),

which is exactly{4.4). By a similar calculation, we can prove that the vector field

Y® = — (p* +24°) f'(p) € V, (4.16)
applied to(4.12)gives(4.5).
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4.4 Euler vector field

We now consider the Euler vector field associated with théd@&mais manifold. Since we
already have two compatible flat metrics, namglyl(4.6) antid¥ we look for a vector field
E satisfying the condition

S0 — / / EO®e( ) dsdr, (4.17)

thus assuming that the metyjas the intersection form. Expanding the right hand side ef th
above formula we find

"DVEWD — £'(q)E® . E@)
g = PO ZLUOEE 56— o) (Y0)B9 = ) [ 27
b—4q p—r
and, comparing witH (4.10), we find that the vector field
E® = f(p)—pf'(p), (4.18)

is a solution of[(4.1l7). Moreover, we have:

Theorem 2 The vector field4.18)satisfies the following conditions,

v,V,E" =0,
de(l) SE® SE® SE®
(s) _ s\ X o= (P p _ (P
/E 3f(s >ds / (qr) 5f(s)d$ +/5f(q) C(sr)ds +/5f(7“) C(qs)ds C(qr)’

on SE™ SE™)
Er Hea )dr+/ , —dr+/ ——dr =3 ,
/ 5]@( ) 77( (I) 5f(p) 77(1”1) 6]0((]) 77(2”1)

and it is therefore the Euler vector field of the Frobenius ifadd. Moreover, the Frobenius
manifold has chargd = —1.

Proof The above conditions are the continuous index versionseatdinditions for the Euler
vector field, written in components. They can all be verifigéllirect calculation, we prove
here only the last. Since we have

5E—(m_ _ _ ! . 577(10‘1)_ 1 / —r .
5f(q)—5(p q) —pd'(p —q), 5f(r)—f,<p)25(p )0(p — q),

substituting in the right hand side of the above formula wie ge

oy Y= —a) L s e N
/<f<r> Py =L [t = ) (6 =) =18 = ) d
1

f(p) —r)(0(r—q)—rd(r—q))dr

/" (p) 2 3 P4
TP PO T iy q”(f'(m f/<q>)5(p 2
3
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where we used the propertiés (3.1) of the delta function.ddeer, this calculation fixes the
charged of the Frobenius manifold to be equal+d. O

Corollary 4.1 The metricy given by(4.10)is the intersection form of the Frobenius mani-
fold.

Remark 9 For a generic choice of, we note that? € S(R) \ V, and therefore we cannot
define a flow of the forr@@.14)using the Euler vector field. This fact has a partial counter-
part in finite dimension, where the flow generated by the Evgetor field via(1l.10)is not

a member of a hydrodynamic type hierarchy, unless the whetarchy is degenerate.

4.5 Potential of the Frobenius manifold

Since the coordinates(p) are not flat coordinates for the metric (4.8), in order to fine t
potential of the Frobenius manifold we use the invarianmfaiation [1.1), written in the
continuous index form. We introduce the quantities

s 1
Clpqr) = /n(ps)c<qr)d8 = _f/<p) C(qpr)’

and we have the following

Theorem 3 The functional

F=5 [ gl =) @dpda+ 5 [ ) (4.19)

satisfies the condition
Vo ViV F' = cpgn),
and is therefore the potential of the Frobenius manifold.

Proof We verify the theorem by computing the third covariant datiixe of the functional
F. First, we get

_O0F B 1,
Vi F = 5F) /log\r alf(a)da + 57
Then,
6 S
ViVl = WWmF—/F(WW(r)FdS
= log|r —q| — ! o( —r)g</log| —a|f(a)da+12)
T ™ Vg ‘ 2
A(q)
=log|r —q| — (g —r),
glr—q| ) (q—r)



and, denotindg, . := V)V F', we obtain

50iqr . .
V@%wzw%”j/uﬁﬂm%—/fbﬁmﬂs

Ag) ,
fwyﬂq—ﬂéw—p)
pr)

a0,
T e e

d(g—r)  Ag) ,
q) P—q ﬂ@?ﬂq_ﬂé@_p)
L d(p—q) N
T o P )

5@—pﬁ@—r%%;?2&q—m5@—r)
p)

1 dp—r) Mg

f'i) p—a  f)f)
By using identities of delta functions, we finally get to

1 d6(g—r) 1 d(p—r)
Vi)VigVimF = -

@) p—a  fp) p—yq

1 dp—q) N o, .,
f'p) p—r +f’(p)25(q p)o(p )

which is exactlyc, 4. This completes the proof. O

~
~
Y

d(p—1)d'(qg—p).

If we take f < 0, that is if
du(p) = —f(p)dp,

Is a measure, absolutely continuous with respect to thedgelgemeasure, then the potential
F can be written as

Fe-t ( [ [0l = autranta) + [ pzdmp)) | (4.20)

The above function is an example of a logarithmic potentighwexternal field [[34]. In
particular, the quantity inside the bracket appears in@anthatrix theory[[4], when consid-
ering the equilibrium measure for the largelimit of the partition function for the Gaussian
Unitary Ensemble. The choice of the multiplication constaé is put here only for conve-
nience in the computation of the structure constants. Wewrethat we do not requiréu to
be a probability measure, and that the dependence on the t¢iftiee hierarchy is implicitly
contained in the measudkg:. As a consequence of the above theorem, we also note that the
identity P
F

waf) P @2

holds.
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Remark 10 The relation between dispersionless integrable systerdsamdom matrices
has already been considered, for instance, in Wiegmannyradab [39] and Elbau and
Felder [13], in relation with the dispersionless limit ofel2D Toda hierarchy. This sug-
gests the possibility of extending potentfdl19) to a wider class of external fields, and
to consider the corresponding Frobenius structure. Prelamy calculations show that the
structure constants obtained in this way are not compatibth the metrigf4.8), so that the
extension is not straightforward, but it requires a moreadetd study.

Remark 11 It would be interesting to compare the potentfdl19)with the one found by
Zabrodin in [43], where he considers the dKP hierarchy irateén with the growth of ‘fat
slits’on the upper complex half plane (see alsb [2]). In jpipie, and except for some tech-
nical difference, it should be possible to understand thlation in terms of the Riemann—
Hilbert problem associated to dKP. However, this approaebrss not so easy to apply at
this stage; further work is needed in this direction.

5 Principal Hierarchy

5.1 Flat vector fields

As explained in Sectidn 1, to every Frobenius manifold omeassociate a set of commuting
flows of hydrodynamic type, known as the principal hierarchiyis is done by considering
the flat vector fields for the first metric, and then applying tbcursive proceduré (1.11b).
In our case, the first step is thus to find flat vector fields ferrtietric [4.6). In analogy with
the finite dimensional case, one is expected to find in thie @afinitely many flat vector
fields, parametrized by a continuous real index; howevercavesider here a larger class,
parametrized by an arbitrary function of one variable. bdjdet us introduce hydrodynamic
type functionals of the form

Hio = [ 1) dp. 6.0
whereh is a function of one variable, and the integral

Hpo = /th dz, (5.2)
is supposed to converge. For instance, we might take thath(f) € S(R?). It is well

known that the functional§(3.2) are Casimirs of the LiesBon brackef(2.17); by using the
densitiesH), , we can introduce the vector fields

0H
X = / g = = () (). (5.3)

which belong toV, and prove the following
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Proposition 5.1.2 The vector field§5.3) are flat vector fields for the Levi-Civita connection
V of the metrigf4.8), that is, they satisfy the condition

V@Xﬁgzo'
Proof We have
sX® L
V(q)X}(LPS 5]0 S + h Odr
() f( ( q) = h(f(p))d'(p — q) — &'(a — p)h(f(a))
the last identity due to the properties of the delta functlenvatives. O

We note that the flat vector field obtained by choosirig) = f in (5.3) is the unitye®
of the algebral(4.12). We now introduce the primary flows ef phincipal hierarchy as the
PDEs

Oad ) = [Vio@)hada, Vo)) = [ e(2)X0) (5.4

We remark that in the classical construction of a princigatdrchy, the use of the term
‘primary flow’is more stringent that the one we consider héoe it is related to a special

choice of the flat vector fields. Nevertheless, since the fi@s) generate by recursion the
rest of the hierarchy, it is convenient to name these PDEsaryi flows.

Proposition 5.1.3 The flowg(’.4) are Hamiltonian of the form

Oty o £ ( —{ /thdx} , (5.5)

where the Poisson bracket is the Poisson—Vlasov brg2k&t) and the Hamiltonian is given
by
Hia = [ WD) 56)

Proof It is well known [11] that the primary flows of the principaldrarchy are Hamilto-
nian with respect to the first Poisson bracket, and with Hami&n density given —in our
formalism— by the formula

/Xh 05f

where the functional” si the potential(4.19) of the Frobenius manifold. Therefove have
, oy OF d OF
== [ KGO 05505 = [ W) Trsdn = [h0@)AG) b

where in the last identity we have uséd (4.21). Moreovetesin

5Hh,1 o . h(f(Q))
= M E)A) /p_q

one can directly prove that equatiohs {5.4) (5.5) cdmci O

dq,
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5.2 Recursive relation

Let us now consider the recursive relatibn (1]11b). Lookitidne construction of the primary
flows, and in particular at the functionals (5.1) ahd(5.6xeems reasonable to consider
functionals of the form

1
Hyn=— h(f(p))A(p)" dp, (5.7)
and to use these functionals in order to construct the véields. Thus, we have
6Hy, 1 1 / h(f(@)M(q)" !
— = Ap)" — dq,
5Fp) (f(0)A(P) =1 — q

and the corresponding vector field is defined as

0H
X(P) / h,n (qvp)d .
o ofg) T

Explicitly, we have

X0 = (ot | h(f(q’”(q’”_ldq—i,h'<f<p>>A<p>”)f'<p>, (5.9)

n—1)! pP—q n!

and therefore, by construction, these vector fields belong t
Theorem 4 The vector field$5.8) satisfy the recurrence relations
VX, = / c(P)X\),  neN, (5.9)
of the principal hierarchy. The corresponding commutingvéo
Oy, f (P) = / Vi () fe(@)dg,  Vin () = / c(2) X (5.10)
are Hamiltonian of the form

ath,nf<p) ={/, Hh,n+1}Lp,

where the bracket is the Lie—Poisson bradg&fi7) and the Hamiltonian is
%h,n-l—l = /Hh,n-l—ldxa

with Hj, ,,.1 given by(G.1).
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Proof We first evauaté, ,, and find

th(p) — f/(p) (( 1 / h(f(s)))‘(s)n_ ds — h/(f(p))A(p')n)

q p—q \(n—1)! p—Ss n!

W) (( 1 /h(f(s))Ms)“* b= 510

p—q \(n—1)! q—s n!
/f T)/h Als)" 1alsalr
f )W (f(r)A(r)
~sp-q) (( 2[RI g g X2 ) )

p—s n!

On the other hand, we have

o _OXiha (
V(Q)Xh{)n-i-l_ 5]0((]) +/F( )th+1d7’

6 (0Hnner N o0 OHini
=75 ( 57 ! (p)) =TS

! 52Hh,n+1 ﬁ 5Hh,n+1 .
AT eTTiE ( 57(0) )5< 2

Computing the second variational derivative, we get

52Hh,n+1 . 1 I B il ) ﬂ
@) ety VPP @A) h(f(p)) -

TNt L A :
)= <n—1>!/< " — >d

71‘2

+ mh(f(p))k(p)"‘%(p - ),

where the last term appears due to the idenfityl (3.6) forcjpal value integrals. On the
other hand, the second termin (5.11) gives

0 OMhnet _ LW (F@) A+ ()M N )

ap of(p)  (n+1)!
N R ON OO h(f(s)A(s)" TN (s)
n! p—s d (n—l)!/ p—s ds.

Substituting back intd (519), we have that this is satisfigthie vector fields[(5]8), provided
the following identity

/ h(ﬂs));(j):_lx(s)ds + 72 h(f ()M )" f ()
g [ RO IO RN,

p—Ss p—r r—s

(5.11)
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holds. However, this is exactly formula(8.6) foy = f' and®, = h(f)\"~!, and therefore
the vector fieldd(5]8) satisfy the recursion relation](5l8% now straightforward —using for
example[(5.11)- to find the Hamiltonian form of the flols (3.16deed, we have

6Hh,n+1
6f(p)

and the theorem is proved. O

8thnf<p) :/V(Q)Xi(z%)r)z-‘rlfiv(q)dq = - {f(p)7 } = {f(p>7Hh,n+1}Lp7

Remark 12 By choosindgi(f) = f, thatis, considering the functionals
i, = %/f(Q))\(Q)"d%
we get the classical flows of the dKP hierarchy. For instafhmep = 0 we have
i = [ g =,
which is the first of the classical conserved densities. aoge
i = [ fna@ds= [ £(0) (4 i, ])dg = 4",

where we used the fact that a function belonging t¢R) and its Hilbert transform are
orthogonal. By using similar identities, one can also pravat

=5 [ f@arda = [ r@)(a- b)) dg
1

_ A2 1 0)2 77_2/ 3
= ;A5 (A) + o [ f)dp,

which differs from the classical conserved density by tisé fiactor, which is a Casimir of
the Lie—Poisson bracket.

In the above construction of the pricipal hierarchy, we iwipyy assumed that the functionals
(5.7) are conserved densities of the dKP equation. Thewolig proposition fills the gap.

Proposition 5.2.4 Let h(u, v) and k(u, v) be functions of two variables, sufficiently differ-
entiable, and such that the integrals

= [[ oo podpds, K= [[ im0 Ap)dpiz 6.12)

with X\ given by(2.12) converge. Then{*,K},, = 0, and therefore the corresponding
Hamiltonian flows

L) ={f), " rp, @) ={f(p),K}p,

commute.
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Proof In order to prove the proposition, it is sufficient to provattthe condition

5
5f(a.y)

is identically satisfied for any admissibfeand for any choice of the functionai and/C of
the form [5.12). Equivalently, we can show that the quantity

oK
flq,y) / fp.z <5f (p.x )) O <5f(p, :6)) Ap . (513

is symmetric inH and/C. We have

57’[ . T ) — 82h(f<8,$),)\(8,$)) 3
o = () Apa)) — [ 2HIED AT

with analogous result fokC. Substituting back intd (5.13), expanding and computirg th
variational derivative, we obtain a (long) expression,akhis proved to be symmetric iH
and/C by using the definitior (2.12) of and the property (316) of the Hilbert transform.

O

{(H,K}pp =

Note that the above proposition is a direct result, in theseehat both its statement and
the proof do not depend on the construction of the Frobenarsfoid. The particular choice
k(p,v) = h(u)”n—T, shows that the functionals_(5.7) are conserved densitiéseoprincipal
hierarchy, and, consequently, that the flows of the priddigerarchy pairwise commute.
Moreover, by the above proposition, we have that the praidigerarchy can be embedded in
a bigger family of commuting Hamiltonian flows, with Hamittian of the form[(5.1R2). If the
density functiork(u, v) of the Hamiltonian is analytic with respect to the secondiargnt,
then by Taylor expanding we have that the correspondingsread densityC can be written
as a linear combination of densitiés (5.7). This fact remiofthe completeness property of
the principal hierarchy, proved in [11] and outlined herd&Riemark 2. However, we do not
state that all conserved densities of the hierarchy areeofdhm (5.12); the completeness
problem remains thus open.

We consider now the analogue, in this setting, of the hogdgfarmula [(1.5). Since the
coordinated (p) used here are not canonical coordinates, we make use of gkenfermula
(1.14), thus considering vector fields instead Iofl ) —tensors. Moreover, for simplicity, we
look for solutions of the dKP equatioh (0.2) only; generadian to other members of the
hierarchy can be determined —as usual— by adding the comdsyy times and vector fields.
Therefore, we set, = y, t3 = t, and we look for a simultaneous solutigfp, =, y, t) of the
flows (2.15) and[(2.16). Within these assumptions, the hajgformula[(1.14) takes the
form

/ e(?) (xf (r)+yrf/(r) +t (12 + 24%) £(r) +X,§fg) dr = 0, (5.14)

where we have used the unity vector (4.13), the vectors)(4id& [4.16) which correspond
to the flows [(2.1b) and_(2.16) respectively, and one of theordields X, ,, belonging to
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the principal hierarchy. Since the factff(p) appears in every member ¢f(5114), one can
further factorize the above formula, and look for a functfosatisfying

SH,
r4+yp+t(p*+24°) = -
vt 240 =570

(compare with the discussion at the end of Sedtion 1). Maeaue to Proposition 5.2.4,
one can extend the hodograph formilila (5.14) to a larger ofagsctor fields, of the form

(p) _ waoy 0K dg = — f' oK
X = [ 5" = sy

These vector fields define symmetries of the hierarchy, amtbtimula

K:/k(f,)\)dp.

z+yp+t(p*+24%) :%, (5.15)

seems thus the most convenient in order to look for solutdif®.15).

Remark 13 A formula similar to(5.15)appears — as a result of a completely different ap-
proach —in [28] (see alsd [26]), where the variational deaitive of the conserved density in
(5.159)is replaced by some spectral data obtained by solving a véatmlinear) Riemann—
Hilbert problem. It would therefore be interesting to olsta relation between these two
equations.

We have obtained conditioh (5]15) by considering — as dotleeimest of the paper — a con-
tinuous index analogue of the finite dimensional theory. \W& show that[(5.15) provides
solutions of the dKP equation. Indeed, the following reboltE: introducing the functional

My = / (A% + Aty + (424 (4)7) 2 - K) d, (5.16)

with K given as above, then the hodograph formlla (5.15) can béewrits the extremal

condition
O Hyx

of(p,x)

Due to this fact, we can prove the following

Proposition 5.2.5 A functionf (p, z, t, y) satisfying the hodograph formu(&.15)is a solu-
tion of the Vlasov equatior@.15)and (2.16)

Proof The functionf is obtained by the extremal condition for the functionaflj. In
addition, the latter is a constant of motion for the flolvs §}.4nd [(2.16), as shown by the
following considerations: the quantitig& = A%, H' = A', H2= A% + (A°)*, andK are

2] am grateful to Paolo Lorenzoni for this observation

33



conserved densities for every flow of the principal hiergyeimd in particular for the flows
(2.15) and[(2.16). Recalling th&t) = H}, HY = H?2, we obtain

ay’HK:/(H§x+H;y+H1+Hjt+Ky)dx
:/(H;x+H1+0x(...))dx:/81,(H1x+...)dx:0,
and, similarly,
8{HK:/(Htox+Ht1y+Ht2t+H2+Kt)dx
:/(H§x+H2+6m(...))dx:/&E(H2x—|—...)dxzo.

Consequently, a functiofi satisfying [(5.15) is a stationary point of a conserved gtyafdr
(2.15) and[(2.16), and it is therefore invariant along tHkses. O

As a consequence of the above proposition, we have that theghaph formula, intro-
duced above as a mere counterpart of the finite dimensioral paoduces solutions of the
dKP hierarchy, although in an implicit form. A more detailtddy of formula[(5.15) and of
solutions of the dKP equation will be considered in a futwblation. We finally remark
that the representation of the hodograph formula as a w@ratcondition is valid not only
for the dKP case, but for any semi-Hamiltonian system of Bgadype.

6 Special coordinate sets

6.1 Flat coordinates

An important feature in the theory of finite dimensional Fenlus manifolds is the existence
of the so called flat coordinates, in which the first mefri@)4as constant coefficients. In
the preceding sections, we have constructed all importaetts of the Frobenius manifold
of the dKP hierarchy by using the coordingtewhich is non-flat. Here —for completeness—
we consider flat coordinates. However, as it will be cleanftbeir definition, the existence
of flat coordinates together with the requirement of havingal, put severe restictions on
the admissible class of functions. We therefore consjdas complex valued and define a
new set of coordinates

{w(p)=f"(w}, (6.1)

which obey the following

34



Lemma 6.1 For the set of coordinate.1), we have

5f(p) _
Sw(n) =d(p — w(n)), (6.2)
ow(p)
) o(u— f(p))- (6.3)
Moreover, the following identity holds:
W) = W) _ 4 uysa() — w(w)) = 63— v). (6.4)

f'(w(p))

Proof Let us consider a test functidi(p), and takep = w( ). We have

W)
/K /K ) ——— 2w (v)dv
— /K(w ) (w(w))d(v — p)w'(v)dy = K(w(p))
I/K(p)5(p—w(u))dp,

and therefore (612) holds. The proof bf (6.3) is identicalotder to provel(614), we consider
a test functionk (i, v), setu = f(p), v = f(q), and compute

[ & st - v
= [[ KU 5@ 0050 - 07 015 @i dy
= [ K(/®). f0)f (p)dp = / R (1)
://ffw V)3(p — v)dp dv.

O

We prove now that the (6.1) are flat coordinates for the médig). Moreover, we give in
these coordinates the form of the structure constants)(all ®dther objects of the Frobenius
manifold can be computed in flat coordinates by similar datoons.

Proposition 6.1.6 In the coordinate€6.1), the metric(4.8) takes the form

N(p,q) [w] = —6(p —q).

Hence(6.1) are flat coordinates for the Frobenius manifold. Moreovhlg structure con-
stants(4.12)become

BTl — op—m)  dv-—n) op—v) w L s



where
de

w(p) —w(e)

Nwn) =1+ f

Proof By using the change of coordinate rules

// o ‘;i )

p) 0f(p) 6f(v)
/// ”” ¢) ow(q) dw(r) dedudv,
and using Lemmia 6.1, we obtain the thesis. O

We note that, although in the finite dimensional case the tiBat@oordinates simplifies
considerably the calculations, this is not the same in tfieiia dimensional example consid-
ered here. Indeed, the use of the coordinates$ (6.1) invdeks function identities similar
to the one appearing in Lemrha 6.1, which are more difficultandbe than the —picture
approach considered in this paper.

6.2 Canonical coordinates and Legendre transform

One of the remarkable results of the paper [3] is the detextioin, under suitable assump-
tions, of the canonical coordinates of the Frobenius m&hdbthe 2D Toda hierarchy. We
follow here their result to prove that a similar construstiwlds in the dKP case. In particu-
lar, it is convenient to consider the geometrical interien outlined at the end of Sectioh 3,
in relation with the Riemann-Hilbert problem. We thus calesithe curvel(3.11), and apply
to it an analogue of the Legendre transform of classical meics: we define the function

F(a,p) = —arf(p) + \p),

and, fixeda € R, we consider the extremal condition

OF

3y = o F'(p) + X(p) = 0. (6.5)

There are two distinct cases to be considered:
1. If f'(p) # 0, we introduce the function

mip) = 20

© f'(p)’
so that condition[(6]5) can be written as= m(p). We consider here only poinjs
where the curve is not self-intersecting, and such that the direction ofgvangent
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vector on the curve uniquely determines the point on theecuWe denote:(a) =
m~!(«) the inverse function, which —by construction— satisfies

% (o, k(@) =0,
dp
and define the Legendre transform-type function
r(a) = —amf(k(a)) + A(k(a)). (6.6)

2. If f'(p) = N(p) = 0, namely, ifp is a stationary point of;, then condition[(6)5) is
satisfied independently of. For any stationary point;, = 1,...,m, we then define
the function

rj = —amf(p;) + Ap;), (6.7)

wherea can be chosen to be any fixed real (or possibily complex) numbe

Remark 14 The case of reductions of the dispersionless KP equatiohdd® be charac-
terized by the existence of canonical coordinates of (@p& only. Moreover, by choosing in
(6.7) o = 7, we can take the canonical coordinates to be the criticaligalof the conformal
map, that is, the tip of the slits defining the solutions of $igtem of Loewner equations
[19].

Proposition 6.2.7 The set of dat#6.6), (6.4), are canonical coordinates for the Frobenius
manifold of the dKP hierarchy.

Proof We give the proof only for functions of type (6.6), the caséhwgingular points can
be treated in a similar way. In analogy with the finite dimensil caser(«) are canonical
coordinates if the structure constarts (4.12) take in thesedinates the form

o 1 )=t st~
Therefore, we require the coordinate change
onp0r(@) or(B) or(v)
[ sz = [ sta-msta-m3asiase,
to hold forr(«) given by [6.6), and we have
1 or(a) dr(a) d(g—s) f'p)or(e) , or(a) _ or(a) dr(a)
= (570~ 5) e s 90s) '
Computing the Jacobian
or(a) Candlo — k(o 1
T I R T

and substituting back, one gets to the condition

3(q =) (~amdlita) )+ —— ) (~an(s(a) + N(x(a) =

which is satisfied due t6 (8.6). 0

)
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