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Università di Milano-Bicocca

Via Roberto Cozzi 53, I-20125 Milano, Italy

paolo.lorenzoni@unimib.it

Abstract

We show how to construct the Hamiltonian structures of any reduction of the Benney
chain (dKP) starting from the family of conformal maps associated to it.

Introduction

The Benney moment chain [4], given by the equations

Ak
t = Ak+1

x + kAk−1A0
x, k = 0, 1, . . . ,

with Ak=Ak(x, t), is the most famous example of a chain of hydrodynamic type, which gen-
eralizes the classical systems of hydrodynamic type in the case when the dependent variables
(and the equations they have to satisfy) are infinitely many.

A n−component reduction of the Benney chain is a restriction of the infinite dimensional
system to a suitablen−dimensional submanifold, that is

Ak = Ak(u1, . . . , un), k = 0, 1, . . .

The reduced systems are systems of hydrodynamic type in the variables(u1, ..., un) that
parametrize the submanifold:

ui
t = vij(u)u

j
x, i = 1, . . . , n.
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Benney reductions were introduced in [11], and there it was proved that such systems are
integrable via the generalized hodograph transformation [20]. In particular, this method
requires the system to be diagonalizable, that is, there exists a set of coordinatesλ1, . . . , λn,

calledRiemann invariants, such that the reduction takes diagonal form:

λi
t = vi(λ)λi

x.

The functionsvi are calledcharacteristic velocities.

A more compact description of the Benney chain can be given byintroducing the formal
series

λ = p+
+∞
∑

k=0

Ak

pk+1
.

In this picture, as follows from [16, 17], the Benney chain can be written as the single equa-
tion

λt = pλx − A0
xλp,

which is the equation of the second flow of the dispersionlessKP hierarchy. This equation
related with the Benney chain also appears in [18].

Clearly, in the case of a reduction, the coefficients of this series depend on a finite number
of variables(u1, . . . , un). In this case, the series can be thought as the asymptotic expansion
for p 7→ ∞ of a suitable functionλ(p, u1, . . . , un) depending piecewise analytically on the
parameterp. It turns out [11, 12] that such a function satisfies a system of chordal Loewner
equations, describing families of conformal maps (with respect top) in the complex upper
half plane. The analytic properties ofλ characterize the reduction. More precisely, in the
case of ann−reduction the associated functionλ possessn distinct critical points on the real
axis, these are the characteristic velocitiesvi of the reduced system, and the corresponding
critical values can be chosen as Riemann invariants.

Some examples of such reductions, discussed below, have known Hamiltonian structures,
but the most general result is far weaker, all such reductions are semi-Hamiltonian [20, 11].

The aim of this paper is to investigate the relations betweenthe analytic properties of the
functionλ(p, u1, . . . , un) and the Hamiltonian structures of the associated reduction. As is
well known, such structures are associated to pseudo-riemannian metrics, and in particular,
local Hamiltonian structures are associated to flat metrics.

Our approach is general, in the sense that it applies to all Benney reductions. Conse-
quently, it reveals a unified structure for the Hamiltonian structure of such reduced systems.
The main result of the paper provides the Hamiltonian structures of a Benney reduction di-
rectly in terms of the functionλ(p, u1, . . . , un) and its inverse with respect top, denoted by
p(λ, u1, . . . , un). The Hamiltonian operator then takes the form

Πij = ϕi λ
′′

(vi)δij
d

dx
+ Γij

k λk
x +

1

2πi

n
∑

k=1

∫

Ck

∂p
∂λ

λi
x

(p(λ)− vi)2

(

d

dx

)−1 ∂p
∂λ

λj
x

(p(λ)− vj)2
ϕk(λ) dλ,

2



where

Γij
k λk

x =
ϕj λ

i
x − ϕi λ

j
x

(vi − vj)2
i 6= j,

Γii
k λ

k
x = ϕi

(

1

6

λ
′′′′

(vi)

λ
′′(vi)

− 1

4

λ
′′′

(vi)2

λ
′′(vi)2

)

λi
x +

1

2
ϕ

′

i λ
i
x −

∑

k 6=i

λ
′′

(vi)

λ
′′(vk)

ϕi λ
k
x

(vi − vk)2
.

Hereϕ1, . . . , ϕn are arbitrary functions of a single variable,Ck are suitable closed contours
on a complex domain, and

λ
′′

(p) =
∂2λ

∂p2
(p), λ

′′′

(p) =
∂3λ

∂p3
(p), . . .

The paper is organized as follows. In Section 1 we review the concepts of integrability
for diagonalizable systems of hydrodynamic type and the Hamiltonian formalism for these
systems, both in the local and nonlocal case. In Section 2 we introduce the Benney chain,
its reductions, and we discuss the properties of these systems. Section 3 is dedicated to the
representation of Benney reductions in theλ picture and to the relations with the Loewner
evolution. The study of the Hamiltonian properties of reductions of Benney is addressed in
Sections 4 and 5: in the former we use a direct approach, starting from the reduction itself,
in the latter we describe these results from the point of viewof the functionλ associated
with the reduction. In the last secion we discuss two examples where calculations can be
expressed in details.

1 Systems of hydrodynamic type

1.1 Semi-Hamiltonian systems

In (1+1) dimensions,systems of hydrodynamic typeare quasilinear first order PDE of the
form

ui
t = vij(u)u

j
x, i = 1, . . . , n. (1.1)

Here and below sums over repeated indices are assumed if not otherwise stated. We say
that the system (1.1) isdiagonalizableif there exist a set of coordinatesλ1, . . . , λn, called
Riemann invariants, such that the matrixvij(λ) takes diagonal form:

λi
t = vi(λ)λi

x. (1.2)

The functionsvi are calledcharacteristic velocities. We recall that the Riemann invariants
λi are not defined uniquely, but up to a change of coordinates

λ̃i = λ̃i(λi). (1.3)
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A diagonal system of PDEs of hydrodynamic type (1.2) is called semi-Hamiltonian[20] if
the coefficientsvi(u) satisfy the system of equations

∂j

(

∂kv
i

vi − vk

)

= ∂k

(

∂jv
i

vi − vj

)

∀i 6= j 6= k 6= i, (1.4)

where∂i = ∂
∂λi . The equations (1.4) are the integrability conditions bothfor the system

∂jw
i

wi − wj
=

∂jv
i

vi − vj
, (1.5)

which provides the characteristic velocities of the symmetries

ui
τ = wi(u)ui

x i = 1, ..., n

of (1.1), and for the system

(vi − vj)∂i∂jH = ∂iv
j∂jH − ∂jv

i∂iH,

which provides the densitiesH of conservation laws of (1.1). The properties of being diag-
onalizable and semi-Hamiltonian imply the integrability of the system:

Theorem 1 [20](Generalized hodograph transformation)

Let
λi
t = viλi

x (1.6)

be a diagonal semi-Hamiltonian system of hydrodynamic type, and let(w1, . . . , wN) be the
characteristic velocities of one of its symmetries. Then, the functions(λ1(x, t), . . . , λN(x, t))
determined by the system of equations

wi = vi x+ t, i = 1, . . . , N, (1.7)

satisfy (1.6). Moreover, every smooth solution of this system is locally obtainable in this way.

1.2 Hamiltonian formalism

A class of Hamiltonian formalisms for systems of hydrodynamic type (1.1) was introduced
by Dubrovin and Novikov in [6, 7]. They considered local Hamiltonian operators of the form

P ij = gij(u)
d

dx
− gisΓj

sk(u)u
k
x (1.8)

and the associated Poisson brackets

{F,G} :=

∫

δF

δui
P ij δG

δuj
dx (1.9)

whereF =
∫

g(u)dx andG =
∫

g(u)dx are functionals not depending on the derivatives
ux, uxx,...
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Theorem 2 [6] If det gij 6= 0, then the formula (1.9) with (1.8) defines a Poisson bracket if
and only if the tensorgij defines a flat pseudo-riemannian metric and the coefficientsΓj

sk are
the Christoffel symbols of the associated Levi-Civita connection.

Non-local extensions of the bracket (1.9), related to metrics of constant curvature, were
considered by Ferapontov and Mokhov in [19]. Further generalizations were considered by
Ferapontov in [9], where he introduced the nonlocal differential operator

P ij = gij
d

dx
− gisΓj

sku
k
x +

∑

α

ǫα (w
α)ik u

k
x

(

d

dx

)−1

(wα)jh u
h
x , ǫα = ±1. (1.10)

The indexα can take values on a finite or infinite – even continuous – set.

Theorem 3 If det gij 6= 0, then the formula (1.9) with (1.8) defines a Poisson bracket if
and only if the tensorgij defines a pseudo-riemannian metric, the coefficientsΓj

sk are the
Christoffel symbols of the associated Levi-Civita connection ∇, and the affinorswα satisfy
the conditions

[

wα, wβ
]

= 0,

gik(w
α)kj = gjk(w

α)ki ,

∇k(w
α)ij = ∇j(w

α)ik,

R
ij
kh =

∑

α

{

(wα)ik (w
α)jh − (wα)jk (w

α)ih

}

,

whereRij
kh = gisR

j
skh are the components of the Riemann curvature tensor of the metric g.

In the case of zero curvature, operator (1.10) reduces to (1.9). Let us focus our atten-
tion on semi-Hamiltonian systems. In [9] Ferapontov conjectured that any diagonalizable
semi-Hamiltonian system is always Hamiltonian with respect to suitable, possibly non lo-
cal, Hamiltonian operators. Moreover he proposed the following construction to define such
Hamiltonian operators:

1. Consider a diagonal system (1.2). Find the general solution of the system

∂j ln
√
gii =

∂jv
i

vj − vi
, (1.11)

which is compatible for a semi-Hamiltonian system, and compute the curvature tensor
of the metricg.
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2. If the non vanishing components of the curvature tensor can be written in terms of
solutionswi

α of the linear system (1.5):

R
ij
ij =

∑

α

ǫαw
i
αw

j
α, ǫα = ±1, (1.12)

then it turns out that the system (1.1) is Hamiltonian with respect to the Hamiltonian
operator

P ij = giiδij
d

dx
− giiΓj

ik(u)u
k
x +

∑

α

ǫαw
i
αu

i
x

(

d

dx

)−1

wj
αu

j
x, (1.13)

which is the form of (1.10) in case of diagonal matrices.

2 Benney reductions

A natural generalization ofn−component systems of hydrodynamic type (1.1) can be ob-
tained by allowing the number of equations and variables to be infinite. These systems are
known ashydrodynamic chains, and the best known example is the Benney chain [4]:

Ak
t = Ak+1

x + kAk−1A0
x, k = 0, 1, . . . . (2.1)

In this setting, the variablesAn are usually called moments. In [4] Benney proved that this
system admits an infinite series of conserved quantities, whose densities are polynomial in
the moments. The first few of them are

H0 = A0, H1 = A1, H2 =
1

2
A2 +

1

2

(

A0
)2

. . .

A n−component reductionof the Benney chain (2.1) is a restriction of the infinite di-
mensional system to a suitablen−dimensional submanifold in the space of the moments,
that is:

Ak = Ak
(

u1, . . . , un
)

, k = 0, 1, . . . (2.2)

whereui = ui(x, t) are the new dependent variables. These are regarded as coordinates on
the submanifold specified by (2.2), and all the equations of the chain have to be satisfied on
this submanifold. In addition, we require thex−derivativesui

x to be linearly independent1,
in the sense that

n
∑

i=1

αi(u
1, . . . , un) ui

x = 0 ⇒ αi(u
1, . . . , un) = 0, ∀ i. (2.3)

Thus, the infinite dimensional system reduces to a system with finitely many dependent
variables (1.1). It was shown in [11] that all Benney reductions are diagonalizable and pos-
sess the semi-Hamiltonian property, hence they are integrable via the generalized hodograph

1If this constraint is relaxed, solutions such as described in [15] may be obtained.
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method. On the other hand, we may consider whether a diagonalsystem of hydrodynamic
type

λi
t = vi(λ)λi

x, i = 1, . . . , n. (2.4)

is a reduction of Benney (note that we do not impose the semi-Hamiltonian condition). A
direct substitution in the chain (2.1) leads, after collecting theλi

x and making use of (2.3), to
the system

vi∂iA
k = ∂iA

k+1 + kAk−1∂iA
0, i = 1, . . . , n, (2.5)

where∂iA0 = ∂A0

∂λi . The consistency conditions

∂j∂iA
k+1=∂i∂jA

k+1, i 6= j, k = 0, 1, . . .

reduce to the3
2
n(n− 1) equations

∂iv
j =

∂iA
0

vi − vj
(2.6a)

i 6= j,

∂2
ijA

0 =
2∂iA

0∂jA
0

(vi − vj)2
(2.6b)

which are called theGibbons-Tsarev system. It has been shown that this system is in invo-
lution, hence it characterizes an-component reduction of Benney. Moreover, if a solution
of (2.6) is known, all the higher moments can be found, makingrecursive use of conditions
(2.5).

Theorem 4 [11] A diagonal system of hydrodynamic type (2.4) is a reduction of the Benney
moment chain (2.1) if and only if there exist a functionA0(λ1, . . . , λn) such thatA0 and the
v1, . . . , vn of the system satisfy the Gibbons-Tsarev system (2.6). In this case, system (2.4) is
automatically semi-Hamiltonian.

It was noticed in [11] that a generic solution of the Gibbons-Tsarev system depends onn
arbitrary functions of one variable. Essentially, this is due to the fact that in the system (2.6)
the derivatives

∂iv
i, ∂2

iiA
0 (2.7)

are not specified. This leads to a freedom of2n functions of a single variable, which reduces
to n allowing for the freedom of reparametrization (1.3) in the definition of Riemann in-
variants. Thus, for any fixed integern, the Benney moment chain possesses infinitely many
integrablen-component reductions, parametrized byn arbitrary functions of one variable.

In the next sections we will see how the knowledge of the‘diagonal’ terms (2.7) plays
an important role in determining the Hamiltonian structureof a Benney reduction. If these
terms are specified, the Gibbons-Tsarev system becomes a system of pfaffian type, and a
generic solution depends onn arbitrary constants.
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Example 2.1 The2−component Zakharov reduction [22], is obtained by imposingon the
moments the constraints

Ak = u1
(

u2
)k

, k = 0, 1, . . . ,

where(u1, u2) are the new dependent variables. The resulting classical shallow water wave
system, first solved by Riemann, is known to be the dispersionless limit of the2−component
vector NLS equation. Under the change of dependent coordinates

λ1 = u2 + 2
√
u1 λ2 = u2 − 2

√
u1,

the system takes the diagonal form (1.2), with velocities

v1 =
3

4
λ1 +

1

4
λ2 v2 =

1

4
λ1 +

3

4
λ2.

It is easy to check that these velocities satisfy the Gibbons-Tsarev system with

A0 =
(λ1 − λ2)2

16
.

3 The λ picture and chordal Loewner equations

3.1 Reductions in the λ picture

A more compact description of the Benney chain can be given byintroducing [16] a formal
series

λ(p, x, t) = p+
∞
∑

k=0

Ak(x, t)

pk+1
. (3.1)

It is well known that the moments satisfy the Benney chain (2.1) if and only ifλ satisfies

λt = pλx − A0
xλp =

{

λ ,
1

2

(

λ2
)

≥0

}

, (3.2)

where( )≥0 denotes the polynomial part of the argument, and{·, ·} is the canonical Poisson
bracket on the(x, p)space. Equation 3.2 corresponds to the Lax equation of the second flow
of the dispersionless KP hierarchy.

Remark 1 If we introduce the inverse of the seriesλ with respect top, and denote it as

p(λ) = λ+

∞
∑

k=0

Hk

λk+1
,

then it is easy to check that the following equation holds

pt = ∂x

(

1

2
p2 + A0

)

.
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Equivalently, its coefficients satisfy

Hk
t = ∂x

(

Hk+1
x − 1

2

k−1
∑

i=0

H iHk−1−i

)

,

which is the Benney chain written in conservation law form using the coordinate setHn. It
is easy to show that everyHk is polynomial in the momentsA0, . . . , Ak.

The use of the formal series (3.1) is to be understood as an algebraic model for describing
the underlying integrable system in a more compact way . However, to describe the system in
more detail we must impose more structure onλ. Following [12, 21], rather than considering
a formal series in the parameterp, we instead consider a piecewise analytic function for the
variablep. In particular, we letλ+ be an analytic function defined onIm(p) > 0, andλ− an
analytic function onIm(p) < 0. We also require the normalization

λ± = p+O

(

1

p

)

, p 7→ ∞. (3.3)

Let us define, on the real axis, the jump function

f(p, x, t) =
1

2πi
(λ−(p, x, t)− λ+(p, x, t)) ,

and supposef is a function of realp which is Holder continuous and satisfying the conditions
∫ +∞

−∞

pnfdp < ∞, n = 0, 1, . . . .

Then, using Plemelj’s formula for boundary values of analytic functions, we may take

λ±(p) = p− π

∫ +∞

−∞

f(p′)

p− p′
dp′ ∓ iπf(p).

What we obtained is that, with hypotheses above, the functionsλ+ andλ− are Borel sums
of the series (3.1) in the upper and lower half plane respectively. On the other hand,λ± will
have, atp 7→ ∞, the formal asymptotic series (3.1), where

An(x, t) =

∫ +∞

−∞

pnf(p, x, t)dp.

Thus, to any solution of Benney’s equations we can associatea pair of functionsλ±(p; x, t).
In particular, a real valuedf leads to real valued moments. In this case, using the Schwarz
reflection principle, we can restrict our attention to the functionλ+; this is the case studied
in [10, 21, 1, 2, 3].

On the other hand, it will be useful below to consider the analytic continuation ofλ+

into the lower half plane, in the neighborhood of specified points in the real axis. Such a
continuation may or may not coincide withλ−, the Schwarz reflection ofλ+. In particular
important examples such a continuation may be developed consistently, giving the structure
of a Riemann surface.
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Remark 2 Other normalizations, more general than(3.3) are allowed, based on the fact
that for any differentiable functionϕ of a single variable, the composed functionϕ(λ+)
remains a solution of(3.2), the associated reduction being the same. In concrete examples,
it is sometimes more convenient to make use a different normalisation.

Let us consider now the relations between solutions of (3.2)and Benney reduction. In
this case, we have thatλ+ is associated with an component reduction if and only if it depends
on the variablesx, t via n independent functions. As any reduction is diagonalizable, it is
not restrictive to take as these variables the Riemann invariants. Thus, we have

λ+(p, x, t) = λ+(p, λ
1(x, t), . . . , λn(x, t)), (3.4)

with
λi
t = viλi

x. (3.5)

Remarkably, the characteristic velocities of the reduction turn out to be the critical points of
the functionλ+ associated with it. More precisely, we have

Theorem 5 Letλ+, solution of (3.2), satisfy conditions (3.4) with (3.5). Let us denote

ϕi(λ1, . . . , λn) = λ+(v
i, λ1, . . . , λn), i = 1 . . . n,

and suppose that theρi are not constant functions. Then, the velocitiesvi satisfy

∂λ+

∂p
(vi) = 0, i = 1 . . . n,

and the corresponding critical valuesϕi can be chosen as Riemann invariants for the system
(3.5).

Proof Considering equation (3.2) atp = vi, we obtain the system ofn equations

ϕi
t = viϕi

x − A0
x

∂λ+

∂p
(vi).

As λ1, . . . , λn can be chosen as coordinates, by the chain rule we get

n
∑

j=0

∂ϕi

∂λj
λ
j
t = vi

n
∑

j=0

∂ϕi

∂λj
λj
x −

∂λ+

∂p
(vi)

n
∑

j=0

∂A0

∂λj
λj
x,

and this, after substituting (3.5) into it, is equivalent to

∂ϕi

∂λj

(

vj − vi
)

+
∂λ+

∂p
(vi)

∂A0

∂λj
= 0 i, j = 1 . . . , n, (3.6)

due to the independence of theλj
x. Particularly, fori = j the system above reduces to

∂λ+

∂p
(vi)

∂A0

∂λi
= 0. (3.7)
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Further, ifA0 does not depend onλi, the functionλ+ is also independent of the sameλi. In
this case, the associated system (3.5) reduces to an−1 reduction. On the other hand, if the
system is a propern−component reduction then∂iA0 6= 0 and the characteristic velocities
are critical points forλ+. Substituting back (3.7) into (3.6), we obtainϕi = ϕi (λi). Thus,
if the critical valuesϕi are not constant functions, it is possible to choose them as Riemann
invariants.

The converse of the Theorem above is also true: ifλ+ is a solution of (3.2) satisfying

λ+(p, x, t) = λ+(p, λ
1(x, t), . . . , λn(x, t)), (3.8)

and withn distinct critical pointsv1, . . . , vm, then by evaluating equation (3.2) atp = vi we
obtain the diagonal system

ϕi
t = vi ϕi

x,

whereϕi = λ+(v
i). Thus, critical points are characteristic velocities. Moreover, the exis-

tence of a functionλ associated with a reduction selects a natural set of Riemanninvariants,
the critical values ofλ. Unless otherwise stated, these are the coordinates we willconsider
below.

Remark 3 It might happen that the functionλ+ possessesm critical points, withm > n.
This is the case, for instance, in Remark 2, where critical points of the functionϕ have to be
added. Then, substituting the critical points into(3.2) we obtain anm component diagonal
system. However, in this case we have thatm−n of the critical values have trivial dynamics
for they are independent ofx, t. Consequently, them component system reduces to ann

component one.

Example 3.2 Considerui = ui(x, t), i = 1, 2. The function

λ+ = p+
u1

p− u2
, (3.9)

rational in p, satisfies equation (3.2) if and only ifu1, u2 satisfy the2 component Zakharov
reduction of Example 2.1.

3.2 Reductions and Loewner equations

It was shown in [13, 21] that the solution of the initial valueproblem of ann reduction
is given by a Inverse Scattering Transform procedure (whichleads to a particular form of
Tsarev’s generalized hodograph formula (1.7)), provided that

∂λ+

∂p
(p) 6= 0, Im(p) > 0.
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It is thus necessary thatλ+(p) be anunivalent conformal mapfrom the upper half plane
to some image region. In [11, 12] it was proved that these conformal maps have to be
solutions of a system of so called chordal Loewner equations. In fact, if a solution of equation
(3.2) is associated with an−component reduction of Benney, then conditions (3.4) holds.
Substituting into equation (3.2), ifvi are the characteristic velocities associated with the
reduction, we obtain

N
∑

i=1

(

(vi − p)
∂λ+

∂λi
+

∂A0

∂λi

∂λ+

∂p

)

λi
x = 0. (3.10)

As theλi
x are independent, then it follows that

∂λ+

∂λi
=

∂iA
0

p− vi
∂λ+

∂p
, i = 1, . . . , n. (3.11)

This is a system ofn chordal Loewner equations (see for example [8]). When the function
λ+ is chosen with the normalization (3.3), this system describes the evolution of families of
univalent conformal maps from the upper complex half plane to the upper half plane with
n slits, when the end points of the slits are allowed to move along prescribed mutually non
intersecting Jordan arcs. Using the implicit function theorem it is possible to show that the
inverse functionp satisfies an analogous system

∂p

∂λi
= − ∂iA

0

p− vi
, i = 1, . . . , n. (3.12)

v1

×
v2

×
vn

×

p

×
λ+(v

1) × λ+(v
2)

× λ+(v
n)

λ+

Figure 1: n−slit Loewner evolution on the upper half plane.
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For n > 1, the consistency conditions of (3.11) (or (3.12) equivalently) turn out to be the
Gibbons-Tsarev system. On the other hand, and more generally, we can consider a set ofn
Loewner equations,

∂λ+

∂λi
=

ai

p− bi
∂λ+

∂p
, i = 1, . . . , n, (3.13)

for arbitrary functionsai, bi. The consistency conditions

∂2λ+

∂λi∂λj
=

∂2λ+

∂λj∂λi

are then equivalent to the set of equations

∂iaj = ∂jai (3.14)

∂iaj =
2aiaj

(bi − bj)2
(3.15)

∂ib
j =

ai

bi − bj
, (3.16)

wherei 6= j. The first of these equations implies locally the existence of a functionA0(λ1, . . . , λn)
such that

ai = ∂iA
0.

Consequently, equations (3.15), (3.16) become the Gibbons-Tsarev system (2.6), withbi =
vi. So, to any solution of a system ofn chordal Loewner equations there corresponds a
n-component reduction of the Benney chain.

Example 3.3 The dispersionless Boussinesq reduction, which is a2−component Gelfand-
Dikii reduction, is given by

A0
t = A1

x

A1
t = −A0A0

x,

can be described in theλ picture using the polynomial function

λ+ = p3 + 3A0p+ 3A1.

The characteristic velocities are

v1 = −
√
−A0, v2 =

√
−A0,

and the Riemann invariants are given by

λ1 = λ+(v
1) = 3A1 + 2(−A0)

3

2 , λ2 = λ+(v
2) = 3A1 − 2(−A0)

3

2 .

After the renormalization

λ̃(λ+) =
3
√

λ+ = 3
√

p3 + 3A0p+ 3A1

we obtain a family of Schwarz-Christoffel maps as in Figure 3.3. It is easy to verify that the
critical points of the functioñλ(λ+)(p) are the same asλ+(p), while the corresponding new
Riemann invariants arẽλi =

3
√
λi.
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v1

×
v2

×

p

× λ̃1

× λ̃2

λ+

Figure 2: The dispersionless Boussinesq reduction.

As a consequence of the Loewner system (3.11) satisfied by a Benney reduction, it fol-
lows immediately that the critical points ofλ+(p) are simple. Indeed, taking the limit of the
i−th equation of the system, forp → vi gives

1 =
∂2λ+

∂p2
(vi) ∂iA

0, (3.17)

where we used the identity

∂λ

∂λi
| p=vi =

dλi

dλi
− ∂λ

∂p
| p=vi

∂vi

∂λi
= 1.

Thus,
∂2λ+

∂p2
(vi) 6= 0,

hence thevi are simple.

Suppose now thatλ+ admits an analytic continuation in some neighborhood ofvi. Hence-
forth, to simplify the notations, the subscript+ will be dropped fromλ+, and we will denote
both the analytic functionλ+ and its analytic continuation simply byλ. Moreover, we will
write

λ
′

(p) =
∂λ

∂p
(p), λ

′′

(p) =
∂2λ

∂p2
(p), . . .

Then, the functionp(λ) has the series development nearλ = λi,

p(λ) = vi +

√
2

√

λ
′′(vi)

√

λ− λi +O
(

λ− λi
)

, (3.18)
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which becomes a Taylor expansion in the complex local parameter t =
√
λ− λi. Further-

more, we have

1

λ
′(p)

=
1

λ
′′(vk)

1

p− vk
− 1

2

λ
′′′

(vk)

λ
′′(vk)2

(3.19)

+

(

1

4

λ
′′′

(vk)2

λ
′′(vk)3

− 1

6

λ
′′′′

(vk)

λ
′′(vk)2

)

(p− vk) +O
(

(p− vk)2
)

.

This expansion will be useful in Section 5. Finally, we introduce two sets of contours, in the
p andλ plane respectively, that we will need later for describing the Hamiltonian structure
of the reductions. We defineΓi as a closed and sufficiently small contour in thep−plane
aroundvi, andCi as the image ofΓi according to the analytical continuation ofλ. Thus,Γi

andCi are well defined; in particular, it follows from expansion (3.18) thatλi – the tip of the
slit – is a square root branch point forp(λ), henceCi encircles it twice.

3.3 Symmetries of the Benney reductions

A well-known method [13] of obtaining a countable set of symmetries of the Benney reduc-
tion is based on the Lax representation of the dKP hierarchy,

λtn = {λ , hn} = (hn)p λx − (hn)x λp, n = 1, 2, . . .

wherehn = 1
n
(λn)≥0. We assume, unless otherwise stated, thatλ is normalized as in (3.3).

If the solutionλ possessesn critical values(v1, . . . , vn) , the hierarchy can be reduced to

λi
tn = wi

nλ
i
x, i = 1, . . . , n, n = 1, 2, . . . ,

with

wi
n =

(

∂hn

∂p

)

| p=vi
. (3.20)

These are, by construction, components of the symmetries ofthe reductions, the first few of
them being

wi
1 = 1, wi

2 = vi, wi
3 = (vi)2 + A0 . . . i = 1, . . . , n.

Further, the above characteristic velocities can be obtained as the coefficients of the ex-
pansion atλ = ∞ of the generating functions

W i(λ) =
1

p(λ)− vi
. (3.21)

Proposition 3.1 The functionsW i(λ) are solutions of the linear system

∂jW
i(λ)

W j(λ)−W i(λ)
=

∂jv
i

vj − vi
. (3.22)
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Moreover, expandingW i(λ) at λ=∞ we get

W i(λ) =

∞
∑

n=1

wi
n

λn
, (3.23)

where the coefficients of the series are the symmetrieswi
n given in(3.20).

Remark 4 The first condition(3.22)holds in any normalization, but the expansion(3.23)
assumes the normalization(3.3).

Proof In order to prove (3.22), knowing that

∂p

∂λi
=

∂iA
0

vi − p
,

we can write

∂jW
i(λ) = ∂j

(

1

p− vi

)

=
−1

(p− vi)2

(

∂p

∂λj
− ∂vi

∂λj

)

= − ∂jA
0

(p− vi)2

(

1

vj − p
− 1

vj − vi

)

=
∂jA

0

(p− vi)(p− vj)(vj − vi)
.

On the other hand

W j(λ)−W i(λ) =
(vj − vi)

(p− vi)(p− vj)
.

and so
∂jW

i(λ)

W j(λ)−W i(λ)
=

∂jA
0

(vj − vi)2
=

∂jv
i

vj − vi
.

In order to prove (3.23), chosen the normalization (3.3), wehave

wi
n =

1

n
lim
p→vi

d

dp

[

(p− vi)
2 (λn)+
(p− vi)2

]

=
1

n
res
p=vi

(

(λn)+
(p− vi)2

dp

)

.

The function (λn)+
(p−vi)2

has poles only atp = vi andp = ∞ and therefore

res
p=vi

(

(λn)+
(p− vi)2

dp

)

= − res
p=∞

(

(λn)+
(p− vi)2

dp

)

= − res
p=∞

(

(λn)

(p− vi)2
dp

)
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where the last identity is due to

res
p=∞

(

(λn)−
(p− vi)2

dp

)

= 0.

Changing variable we obtain

− res
p=∞

(

(λn)

(p− vi)2
dp

)

=− 1

2πi

∫

Γ∞

λn dp
dλ

(p(λ)− vi)2
dλ

=
n

2πi

∫

Γ∞

λn−1

p(λ)− vi
dλ,

whereΓ∞ is a sufficiently small contour aroundp = ∞. Thus,

wi
n =

∫

Γ∞

W i(λ)λn−1 dλ,

varyingn we obtain the coefficients of the expansion (3.23).

�

Remark 5 It will be useful below to consider, as a generating functionof the symmetries,

wi(λ) =
∂p
∂λ

(p(λ)− vi)2
= −

∞
∑

n=1

n wi
n

λn+1
, (3.24)

which is nothing but theλ− derivative of(3.21).

We finally observe that, due to linearity of (3.22), the functions

zi =

n
∑

k=1

∫

Ck

wi(λ)ϕk(λ)dλ

still satisfy the system for the symmetries and therefore, applying the generalized hodograph
method, we can write the general solution of the Benney reduction in the implicit form

zi = vix+ t, i = 1, . . . , n.

The inverse scattering solutions found in [10, 21] are of this form.

4 Hamiltonian structure of the reductions

As it was shown in [11], any reduction of Benney is a diagonalizable and semi-Hamiltonian
system of hydrodynamic type. However, very little is known about the Hamiltonian structure
of these systems, whether local or nonlocal. A few examples are known explicitly. These
include the Gelfand-Dikii and Zakharov reductions, which arise as dispersionless limits of
known dispersive Hamiltonian systems.

In this section, we use Ferapontov’s procedure sketched in Section 1.2 for semi-Hamiltonian
diagonal systems in order to determine the metric associated with a generic reduction.
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Theorem 6 The general solution of the system (1.11) in the case of Benney reductions is

gii =
∂iA0

ϕi(λi)
(4.1)

where the functionsϕi(λ
i) aren arbitrary functions of one variable, the functionsλ1, . . . , λn

being the Riemann invariants of the system.

Proof. From the system (1.11), and making use of both the Gibbons-Tsarev equations (2.6),
which hold for any Benney reduction, we obtain

∂j ln
√
gii =

∂jv
i

vj − vi
=

∂jA0

(vj − vi)2
= ∂j ln

√

∂iA0 (4.2)

from which we obtain the general solution (4.1).

�

In the caseϕi = 1 the rotation coefficients

βij :=
∂i
√
gjj√
gii

(4.3)

are symmetric:

βij =
1

2

∂i∂jA0
√

∂iA0∂jA0

=

√

∂iA0∂jA0

(vi − vj)2
. (4.4)

We now focus our attention on this case, that is we consider the Egorov (potential) metric

gii = ∂iA0. (4.5)

Remark 6 We notice that the choice of potential metric is not restrictive, as any other metric
(4.1) can be written in potential form under a change of coordinates

λi 7−→ ϕi(λ
i), (4.6)

which is exactly the freedom we have in the definition of the Riemann invariants. On the other
hand, the choice of the Riemann invariants determines a unique metric which is potential in
those coordinates.

In order to find the Christoffel symbols and the curvature tensor of the metric (4.5),
one could compute these objects – as usual – starting from their definitions. However, for a
Benney reduction, this procedure can be shortened. Indeed,using the Gibbons-Tsarev system
(2.6), the connection and the curvature can be written as simple algebraic combinations of
the quantities

vi, ∂iA
0, δ(vi), δ(log

√

∂iA0), i = 1, . . . , n,
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where we introduced the shift operator

δ =
n
∑

k=1

∂

∂λk
.

We have

Proposition 4.2 The symbols

Γij
k = −gisΓj

sk = −1

2
gisgjl

(

∂sglk + ∂kgls − ∂lgsk

)

,

whereΓk
ij are the Christoffel symbols associated to the diagonal metric gii = ∂iA0, for a

Benney reduction are given by

Γij
k = 0, i 6= j 6= k (4.7a)

Γij
i = −Γji

i =
1

(vi − vj)2
, i 6= j (4.7b)

Γii
k = −∂kA0

∂iA0

1

(vk − vi)2
, i 6= k (4.7c)

Γii
i =

∑

k 6=i

∂kA
0

∂iA0

1

(vi − vk)2
− δ(ln

√
∂iA0)

∂iA0
. (4.7d)

Proof For the metricgij = δij∂iA0, we get

Γij
k = −1

2

1

∂iA0∂iA0

(

δjk∂ikA
0 + δij∂kjA

0 − δik∂jkA
0
)

,

and equations (4.7) are obtained from these by substituting, whenever is allowed, the Gibbons-
Tsarev equations (2.6b).

�

In particular, the curvature can be expressed solely via theshift operatorδ, acting onvi and
ln
√
∂iA0.

Proposition 4.3 The non vanishing components of the curvature tensor of the metric (4.5)
for a Benney reduction can be written in terms of the quantitiesδ(vi), δ(ln

√
∂iA0). More

precisely, we have the following identity

R
ij
ij =

δ(ln
√
∂iA0) + δ(ln

√

∂jA0)

(vi − vj)2
− 2

δ(vi)− δ(vj)

(vi − vj)3
. (4.8)
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Proof Since the rotation coefficients of the metric (4.5) are symmetric, it is easy to check
that

R
ij
ij = δ (βij) .

Using the Gibbons-Tsarev system (2.6) we get (4.8). Moreover, it is well known that for a
semi-Hamiltonian system the other components of the Riemann tensor are identically zero.

�

Formula (4.8) presents a compact way of describing the curvature tensor of the Poisson
structure (1.13) associated with a Benney reduction. However, we should notice here that
the knowledge of the curvature is not sufficient to write the Poisson bracket. Indeed, what
we need is a decomposition (1.12) of the curvature in terms ofthe symmetries of the system.
From formula (4.8) this decomposition looks non-trivial; we will address this problem in the
next section using a different approach.

5 Hamiltonian structure in the λ picture

The purpose of this Section is to derive an explicit formulation for the Hamiltonian structure
of a reduction of Benney in terms of the functionλ(p), which defines the reduction itself. In
particular, we will show how the differential geometric objects associated with Ferapontov’s
Poisson operator of type (1.13) can be expressed, in the caseof a Benney reduction with
associatedλ, in terms of the set of data

vi, λ
′′

(vi), λ
′′′

(vi), λ
′′′′

(vi), i = 1, . . . , n,

wherevi, the characteristic velocities of the reduction, are the critical points ofλ. Moreover,
we will describe the quadratic expansion of the curvature associated with the metric.

Let us consider a Benney reduction with associated functionλ(p). In this case, as already
mentioned, a set of Riemann invariants is naturally selected, the critical values ofλ(p). From
(3.17) and (4.1), it is immediate to check that the components of the metric which is potential
in those coordinates can be expressed in terms ofλ as

gii = ∂iA
0 =

1

λ
′′(vi)

= res
p=vi

(

dp

λ
′(p)

)

. (5.1)

This result was already known in the case of dispersionless Gelfand-Dikii [5] reductions.
However, it holds for all Benney reductions.

5.1 Completing the Loewner system

We move now our attention from the metric to the Christoffel symbols and the curvature
tensor, looking for a way to describing these objects in terms of λ and its critical points.
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However, this step is not immediate. Indeed, from equations(4.7) and (4.8) we need to find
an expression in theλ picture for the quantities

δ(vi), δ(log
√

∂iA0),

we will see that the right object to look at is

F (p) =
∂p

∂λ
+

n
∑

i=1

∂p

∂λi
, (5.2)

obtained from the inverse function ofλ with respect top, that is

p = p(λ, λ1, . . . , λn). (5.3)

The functionF is thus determined once the functionλ(p, λ1, . . . , λn) is known. Before
discussing the Christoffel symbols and the curvature, we will consider the properties of this
function in detail. First of all, using the Loewner equations (3.12) and the expression (3.17),
we can writeF (p) in the following form:

F (p) =
1

λ
′(p)

−
n
∑

i=1

∂iA
0

p− vi

=
1

λ
′(p)

−
n
∑

i=1

res
p=vi

(

1

λ
′(p)

)

1

p− vi
. (5.4)

From its expansion (3.19), the function1
λ′ (p)

in vi has a simple pole, therefore,F (p) is

analytic atp = vi. Using this fact, we can prove the following

Theorem 7 Let λ(p, λ1, . . . , λn) be a solution of equation (3.2), and letv1, . . . , vn be its
critical points. Defining the functionF (p) as above (5.2), we have

F (vi) = δ(vi) (5.5)

∂F

∂p
(vi) = δ(ln

√

∂iA0). (5.6)

Proof We have already shown thatF (p) is analytic atp = vi. In order to prove (5.5) and
(5.6), we consider the system ofn + 1 differential equations

∂p

∂λi
=

∂iA
0

vi − p
i = 1, . . . , n

(5.7)

∂p

∂λ
=

n
∑

k=0

∂kA
0

p− vk
+ F (p).
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The conditions
∂2p

∂λi∂λj
− ∂2p

∂λj∂λi
= 0 i 6= j (5.8)

give nothing but the Gibbons-Tsarev system, hence are satisfied for any reduction. So, we
concentrate our attention on the remainingn consistency conditions

∂2p

∂λ∂λi
− ∂2p

∂λi∂λ
= 0, (5.9)

which – by construction – are satisfied, to obtain some information aboutF (p). Expanding
both sides we obtain

∂2p

∂λ∂λi
=

∂iA0

(p− vi)2
∂p

∂λ

=
∂iA0

(p− vi)2

[

F (p) +

n
∑

k=1

∂kA0

p− vk

]

,

∂2p

∂λi∂λ
=
∂F

∂p

∂p

∂λi
+

∂F

∂λi
+

n
∑

k=1

[

∂k∂iA0

p− vk
+

∂kA0

(p− vk)2

(

∂ivk −
∂p

∂λi

)]

=
∂F

∂p

∂iA
0

vi − p
+

∂F

∂λi
+

n
∑

k=1

[

∂k∂iA0

p− vk
+

∂kA0

(p− vk)2

(

∂ivk +
∂iA

0

p− vi

)]

,

substituting the Gibbons-Tsarev equations (2.6) in the above formulae and rearranging (5.9),
we find that

F (p)− δ(vi)

(p− vi)2
+

∂F
∂p
(p)− 2δ(log

√
∂iA0)

p− vi
− 1

∂iA0

∂F (p)

∂λi
= 0. (5.10)

Multiplying by (p− vi)2 and taking the limit forp → vi, we get

F (vi) = δ(vi).

Then, taking the residue of the right hand side of (5.10) atp = vi gives

∂F

∂p
(vi) = δ(log

√

∂iA0).

�

Thus, specifying the functionF turns out to be the analogue, in theλ picture, of com-
pleting the system (2.6), from which we were able to express the Christoffel symbols and the
curvature tensor of the metric.

It follows from its definition, thatF (p) is obtained from 1
λ′(p)

by subtracting off its singu-

larities atp = vi. The importance of this function is that it describes the invariant properties

22



of the reduction. For instance, if a reduction admits a function λ associated with it such that
F (p) = 1, then the reduction is Galilean invariant. The caseF (p) = p corresponds instead
to the scaling invariance of the system. As seen in example below, the functionF , hence
these invariances, are strongly related with the curvatureof the Poisson bracket.

Example 5.4 The2−component Zakharov reduction is known to possess both Galilean and
scaling invariance. Using the technique above, the former can be explained by saying that,
for the functionλ(p) given in Example 3.2, it followsF (p) = 1. Thus, we get

δ(vi) =

n
∑

k=1

∂vi

∂λk
= 1,

where the Riemann invariants are the critical values ofλ(p). For the scaling invariance,
one can proceed as follows: define the functionϕ(p) = lnλ(p), whereλ(p) is the same as
before. This new function has the same critical pointsvi asλ, plus the poles ofλ(p), which
play no role in the deerivation of the reduction (see Remark 3). Hence, it is associated with
the Zakharov reduction, and in this caseF (p) = p. Thus

δ(vi) =
n
∑

k=1

∂vi

∂ϕk
= vi, (5.11)

where theϕi = lnλi are the natural Riemann invariants associated withϕ(p), i.e. its critical
values. It is elementary to show that(5.11)corresponds to the scaling invariance with respect
to theλi.

Remark 7 System (5.7) was considered for the first time in connection with a Benney reduc-
tion by Kokotov and Korotkin [14], in the particular case of theN−component Zakharov
reduction, whereF (p)= 1.

In the next section, we will use the functionF to describe the Christoffel symbols and
the curvature in terms ofλ. Nevertheless, the latter can be expressed directly in terms ofF
using the following residue formula

Proposition 5.4 In terms of the functionF , the non vanishing components of the Riemann
tensor satisfy the following identity:

R
ij
ij =

∑

k=i,j

res
p=vk

(

F (p)

(p− vi)2(p− vj)2
dp

)

=
1

2πi

∫

Γi∪Γj

F (p)

(p− vi)2(p− vj)2
dp (5.12)

whereΓi andΓj are two sufficiently small contours aroundp = vi andp = vj.

Proof. From (4.8) and Theorem 7 it follows immediately that

R
ij
ij =

1

(vi − vj)2

[(

∂F

∂p
(vi) +

∂F

∂p
(vj)

)

− 2
F (vi)− F (vj)

vi − vj

]

(5.13)
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It is easy to check the chain of identities:

1

(vi − vj)2

[(

∂F

∂p
(vi) +

∂F

∂p
(vj)

)

− 2
F (vi)− F (vj)

vi − vj

]

=

lim
p→vi

d

dp

[

F (p)

(p− vj)2

]

+ lim
p→vj

d

dp

[

F (p)

(p− vi)2

]

=

lim
p→vi

d

dp

[

(p− vi)2
F (p)

(p− vj)2(p− vi)2

]

+ lim
p→vj

d

dp

[

(p− vj)2
F (p)

(p− vi)2(p− vj)2

]

=

res
p=vi

(

F (p)

(p− vi)2(p− vj)2
dp

)

+ res
p=vj

(

F (p)

(p− vi)2(p− vj)2
dp

)

.

In the last identity we used the fact thatF (p) is regular atp = vi, for all i.

�

5.2 Christoffel symbols and Curvature tensor

5.2.1 Potential metric

We are now able to complete the description of the Poisson bracket associated with a Benney
reduction, in the case where the metric is potential in the coordinate used.

Proposition 5.5 The Christoffel symbols(4.7) of the potential metric(5.1) can be written,
in terms of the functionλ, as

Γij
k = 0, i 6= j 6= k (5.14a)

Γij
i = −Γji

i =
1

(vi − vj)2
, i 6= j (5.14b)

Γii
k = − λ

′′

(vi)

λ
′′(vk)

1

(vk − vi)2
, i 6= k (5.14c)

Γii
i =

1

6

λ
′′′′

(vi)

λ
′′(vi)

− 1

4

λ
′′′

(vi)2

λ
′′(vi)2

, (5.14d)

The curvature tensor(4.8)of the potential metric(5.1)can be written, in terms of the function
λ(p) as

R
ij
ij =

3

(vi − vj)4

(

1

λ
′′(vi)

+
1

λ
′′(vj)

)

+
1

(vi − vj)3

(

λ
′′′

(vi)

λ
′′(vi)2

− λ
′′′

(vj)

λ
′′(vj)2

)

+
1

(vi − vj)2

(

1

4

λ
′′′

(vi)2

λ
′′(vi)3

− 1

6

λ
′′′′

(vi)

λ
′′(vi)2

+
1

4

λ
′′′

(vj)2

λ
′′(vj)3

− 1

6

λ
′′′′

(vj)

λ
′′(vj)2

)

+
∑

k 6=i,j

1

λ
′′(vk)

1

(vi − vk)2(vj − vk)2
. (5.15)
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Proof Starting from the definition (5.2) ofF , and using (3.19), we can write

F (vi) = −1

2

λ
′′′

(vi)

λ
′′(vi)2

−
∑

k 6=i

1

λ
′′(vk)

1

vi − vk
, (5.16)

∂F

∂p
(vi) =

1

4

λ
′′′

(vi)2

λ
′′(vi)3

− 1

6

λ
′′′′

(vi)

λ
′′(vi)2

+
∑

k 6=i

1

λ
′′(vk)

1

(vi − vk)2
. (5.17)

Then, by Theorem 7, and substituting the above expressions for F into (4.7) and (4.8), we
obtain (5.14) and (5.15) respectively.

�

Remark 8 We note that(5.14d)is a constant multiple of the Schwarzian derivative ofλ
′

(p),
evaluated atp = vi.

Recalling the expression (5.1) for the the metric, form the Proposition above we find that
the whole Poisson operator associated with a Benney reduction of symbolλ depends only on
the critical points ofλ and on the value of its second, third and fourth derivatives evaluated
at these points.

We have now all we need to write the nonlocal tail of the Hamiltonian structure associated
to the metricgii = ∂iA0.

Proposition 5.6 The non-vanishing components of the Riemann tensor of the metric (5.1)
admit the following quadratic expansion

R
ij
ij =

1

2πi

∫

C

wi(λ)wj(λ)dλ. (5.18)

whereC = C1 ∪ · · · ∪ Cn with Ci described as above, and the functions

wi(λ) =
∂p
∂λ

(p(λ)− vi)2
,

are the generating functions of the symmetries(3.24). Consequently the non local tail of the
Hamiltonian structure associated to the metricgii = ∂iA0 is given by

1

2πi

∫

C

wi(λ)λi
x

(

d

dx

)−1

wj(λ)λj
xdλ.

Proof We prove the Proposition showing that the integral in (5.18)is the same as the right
hand side of (5.15). First, writing the integral

1

2πi

∫

C

wi(λ)wj(λ)dλ
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in terms of the variablep we obtain

R
ij
ij =

1

2πi

∫

Γ

1
λ′ (p)

(p− vi)2(p− vj)2
dp =

n
∑

k=1

res
p=vk

(

1
λ′ (p)

(p− vi)2(p− vj)2
dp

)

. (5.19)

Using (3.19), the integrand can be expanded, fork = 1. . . . , n, as

1

(p− vi)2(p− vj)2

(

1

λ
′′(vk)

1

p− vk
− 1

2

λ
′′′

(vk)

λ
′′(vk)2

+

(

1

4

λ
′′′

(vk)2

λ
′′(vk)3

− 1

6

λ
′′′′

(vk)

λ
′′(vk)2

)

(p− vk)+. . .

)

.

Thus, fork 6= i, j we get

res
p=vk

(

1
λ′ (p)

(p− vi)2(p− vj)2
dp

)

=
1

λ
′′(vk)

1

(vk − vi)2(vk − vj)2
,

while

res
p=vi

(

1
λ′(p)

(p− vi)2(p− vj)2
dp

)

=
3

(vi − vj)4
1

λ
′′(vi)

+
1

(vi − vj)3
λ

′′′

(vi)

λ
′′(vi)2

+
1

(vi − vj)2

(

1

4

λ
′′′

(vi)2

λ
′′(vi)3

− 1

6

λ
′′′′

(vi)

λ
′′(vi)2

)

,

res
p=vj

( 1
λ′(p)

(p− vi)2(p− vj)2
dp

)

=
3

(vj − vi)4
1

λ
′′(vj)

+
1

(vj − vi)3
λ

′′′

(vj)

λ
′′(vj)2

+
1

(vj − vi)2

(

1

4

λ
′′′

(vj)2

λ
′′(vj)3

− 1

6

λ
′′′′

(vj)

λ
′′(vj)2

)

,

From these, formula (5.15) for the curvature tensor follows. The last statement of the Propo-
sition is a consequence of the general theory of Ferapontov.

�

Remark 9 Alternatively, one can prove the above result using starting from the functionF ,
namely deforming the integral

1

2πi

∫

Γi∪Γj

F (p)

(p− vi)2(p− vj)2
dp

which is shown in Proposition 5.4 to be equal to the curvature, into (5.18). In order to do so,
it is sufficient to verify the following identity

− 1

2πi

∫

Γi∪Γj

∑n
k=1

∂kA0

p−vk

(p− vi)2(p− vj)2
dp =

1

2πi

∫

Γ−(Γi∪Γj)

1
∂λ
∂p

(p− vi)2(p− vj)2
dp,

26



that can be proved by straightforward computation. Indeed,since the left hand side is the
sum of residues atp = vi andp = vj of a function having a pole of order 3 atp = vi, vj we
obtain

l.h.s = −
(

lim
p→vi

+ lim
p→vj

)

1

2

d2

dp2

n
∑

k=1

[

(p− vi)∂kA0

(p− vj)2(p− vk)

]

=
∑

k 6=i,j

∂kA0

(vi − vj)2

[

2

(vi − vj)(vi − vk)
+

1

(vi − vk)2
− 2

(vi − vj)(vj − vk)
+

1

(vj − vk)2

]

=
∑

k 6=i,j

∂kA0

(vi − vk)2(vj − vk)2
.

On the other hand the right hand side is the sum of residues atp = vk, for k 6= i, j of a
function having simple poles atp = vk:

r.h.s. =
∑

k 6=i,j

lim
p→vk

(p− vk) 1
∂λ
∂p

(p− vi)2(p− vj)2
=
∑

k 6=i,j

∂kA0

(vi − vk)2(vj − vk)2
= l.h.s.

Recalling the results above, we have the following

Theorem 8 The reduction of Benney associated with the functionλ(p, λ1, . . . , λn) is Hamil-
tonian with the Hamiltonian structure

Πij = λ
′′

(vi)δij
d

dx
+ Γij

k λk
x +

1

2πi

∫

C

∂p
∂λ

λi
x

(p(λ)− vi)2

(

d

dx

)−1 ∂p
∂λ

λj
x

(p(λ)− vj)2
dλ, (5.20)

where

Γij
k λk

x =
λi
x − λj

x

(vi − vj)2
i 6= j,

Γii
k λ

k
x =

(

1

6

λ
′′′′

(vi)

λ
′′(vi)

− 1

4

λ
′′′

(vi)2

λ
′′(vi)2

)

λi
x −

∑

k 6=i

λ
′′

(vi)

λ
′′(vk)

λk
x

(vi − vk)2

andC = C1∪· · ·∪Cn. Here, thevi are the critical points ofλ, and theλi the critical values.
In this coordinates, the metricgij = δij

λ′′ (vi)
is potential.

5.2.2 The general case

As we pointed out previously, any metric (4.1) associated with a reduction can be put in
potential form, after a suitable change of the Riemann invariants. However, it is often con-
venient to write the expression of the Poisson operators generated by these metrics in terms
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of the Riemann invariants selected byλ. Thus, we consider the metrics

gii =
∂iA

0

ϕi(λi)
=

1

ϕi(λi)λ′′(vi)
, (5.21)

whereϕi=ϕi(λ
i) are arbitrary functions, and we proceed as before.

Proposition 5.7 The Christoffel symbols appearing in the Hamiltonian structure are given
by

Γij
k = 0, i 6= j 6= k

Γij
i =

ϕj

(vi − vj)2
, i 6= j

Γij
j = − ϕi

(vi − vj)2
, i 6= j

Γii
k = − λ

′′

(vi)

λ
′′(vk)

ϕi

(vk − vi)2
, i 6= k

Γii
i = ϕi

(

1

6

λ
′′′′

(vi)

λ
′′(vi)

− 1

4

λ
′′′

(vi)2

λ
′′(vi)2

)

+
1

2
ϕ

′

i.

Here we denote

ϕ
′

i =
dϕ

dλi
(λi).

The nonlocal tail appearing in the Hamiltonian structure isthen given by

1

2πi

n
∑

k=1

∫

Ck

∂p
∂λ

λi
x

(p(λ)− vi)2

(

d

dx

)−1 ∂p
∂λ

λj
x

(p(λ)− vj)2
ϕk(λ) dλ. (5.22)

Proof The proof of the formula for theΓij
k is a straightforward computation. Let us prove

the second statement. Since nothing new is involved in such computations we will skip the
details. For the metric (5.21), the non vanishing components of the curvature tensor are

R
ij
ij =

3

(vi − vj)4
(

ϕi ∂iA
0 + ϕj ∂jA

0
)

− 2

(vi − vj)3
(

ϕi ∂iv
i − ϕj ∂jv

j
)

+
1

(vi − vj)2

(

ϕi ∂i ln
√

∂iA0 + ϕj ∂j ln
√

∂jA0
)

+
∑

k 6=i,j

ϕk ∂kA
0

(vi − vk)2(vj − vk)2
+

1

2

ϕ
′

i + ϕ
′

j

(vi − vj)2
. (5.23)
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Expression (5.23) can be written, in terms ofλ, as

R
ij
ij =

3

(vi − vj)4

(

ϕi

λ
′′(vi)

+
ϕj

λ
′′(vj)

)

+
1

(vi − vj)3

(

ϕi
λ

′′′

(vi)

λ
′′(vi)2

− ϕi
λ

′′′

(vj)

λ
′′(vj)2

)

+
1

(vi − vj)2

(

ϕi

(

1

4

λ
′′′

(vi)2

λ
′′(vi)3

− 1

6

λ
′′′′

(vi)

λ
′′(vi)2

)

+ ϕj

(

1

4

λ
′′′

(vj)2

λ
′′(vj)3

− 1

6

λ
′′′′

(vj)

λ
′′(vj)2

))

+
∑

k 6=i,j

1

λ
′′(vk)

ϕk

(vi − vk)2(vj − vk)2
+

1

2

ϕ
′

i + ϕ
′

j

(vi − vj)2
, (5.24)

The equivalence between (5.22) and the right hand side of (5.24) can be obtained by rewriting
the integrals above in thep−plane,

1

2πi

n
∑

k=1

∫

Γk

ϕk(λ(p))
1

λ′ (p)

(p− vi)2(p− vj)2
dp. (5.25)

and using the same arguments of the main theorem, except thatfor everyk, in the integral
aroundΓk we have to consider also the contribution of the functionϕk(λ(p)) which expands,
atp = vk, as

ϕk(λ(p)) = ϕk +
ϕ

′

k

2
λ

′′

(vk) (p− vk)2 + . . .

�

It follows from the above that we have

Theorem 9 The reduction of Benney associated with the functionλ(p, λ1, . . . , λn) is Hamil-
tonian with the family of Hamiltonian structures

Πij = ϕi λ
′′

(vi)δij
d

dx
+ Γij

k λk
x

+
1

2πi

n
∑

k=1

∫

Ck

∂p
∂λ

λi
x

(p(λ)− vi)2

(

d

dx

)−1 ∂p
∂λ

λj
x

(p(λ)− vj)2
ϕk(λ) dλ, (5.26)

with

Γij
k λk

x =
ϕj λ

i
x − ϕi λ

j
x

(vi − vj)2
i 6= j,

Γii
k λ

k
x = ϕi

(

1

6

λ
′′′′

(vi)

λ
′′(vi)

− 1

4

λ
′′′

(vi)2

λ
′′(vi)2

)

λi
x +

1

2
ϕ

′

i λ
i
x −

∑

k 6=i

λ
′′

(vi)

λ
′′(vk)

ϕi λ
k
x

(vi − vk)2
,

whereϕ1, . . . , ϕn are arbitrary functions of a single variable. Here, thevi are the critical
points ofλ, the coordinatesλi the corresponding critical values, and theCk are the contours
defined above.
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6 Finite nonlocal tail: some examples

In the expression (5.26) for the Poisson operator, the components of the curvature are ex-
pressed as integrals of functions around suitable contoursin a complex domain. A natural
question to ask is whether this integral can be reduced to a finite sum, and we will show
now some examples where this is possible. For simplicity, wewill consider the case when
ϕ1(λ) = · · · = ϕn(λ) = λk, for k ∈ Z. In this case the curvature can be expressed as

R
ij
ij =

1

2πi

∫

C

(

∂p
∂λ

)2
λk

(p(λ)− vi)2(p(λ)− vj)2
dλ, k ∈ Z.

Essentially, the finite expansion appears whenever is possible to substitute the the contourC
with a contour a roundλ = ∞ and a finite number of other marked points. We illustrate this
special situation in two simple examples.

6.1 2-component Zakharov reduction

In this case (see examples 2.1, 3.2), sinceλ is a single-valued rational function ofp, it is
convenient to work in thep-plane. In order to calculate the curvature, the non vanishing
components of the Riemann tensor are given by

R12
12 =

2
∑

i=1

res
p=vi

(

λ(p)k 1
λ′(p)

(p− v1)2(p− v2)2
dp

)

, k ∈ Z.

The abelian differential
λ(p)k 1

λ′ (p)

(p− v1)2(p− v2)2
dp

has poles at the pointsp = v1, p = v2, as well as:

if k > 2

p = ∞, p =
A1

A0
(poles ofλ)

if k < 0

p = s1 =
1

2

A1 + (A2
1 − 4A3

0)
1/2

A0

, p = s2 =
1

2

A1 − (A2
1 − 4A3

0)
1/2

A0

(zeros ofλ),

while for k = 0, 1, 2 there are no other poles. Since the sum of the residues of an abelian
differential on a compact Riemann surface is zero, we can substitute the sum of residues at
p = v1, v2 with, respectively

- zero if k = 0, 1, 2,
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- minus the sum of residues atp = ∞, p = A1

A0
if k > 2

- minus the sum of residues atp = s1, p = s2, if k < 0.

Summarizing, we have

R
ij
ij = 0, k = 0, 1, 2,

R
ij
ij = −

(

res
p=∞

+ res
p=A1

A0

)

λ(p)k 1
λ
′
(p)

(p− vi)2(p− vj)2
dp, k > 2,

R
ij
ij = −

(

res
p=s1

+ res
p=s2

) λ(p)k 1
λ′ (p)

(p− vi)2(p− vj)2
dp, k < 0.

Moreover, as a counterpart in theλ-plane of the above formulae we have

R
ij
ij = 0, k = 0, 1, 2,

R
ij
ij = −2 res

λ=∞

(

w1(λ)w2(λ)λk dλ
)

, k > 2,

R
ij
ij = −2 res

λ=0

(

w1(λ)w2(λ)λk dλ
)

, k < 0,

and this shows that the residues have to be computed around marked points, which not de-
pend on the dynamics of the reduction. Expandingw1(λ) andw2(λ) nearλ = ∞, we get

w1(λ) = −
∞
∑

k=1

k w1
k

λk+1
=

− 1

λ2
− 2 v1

λ3
− 3(2A3

0 + A2
1 + 2A1A

3

2

0 )

A2
0

1

λ4
− 4(A3

1 + 6A1A
3
0 + 3A

9

2

0 + 3A2
1A

3

2

0 )

A3
0

1

λ5
+ . . .

w2(λ) = −
∞
∑

k=1

k w2
k

λk+1
=

− 1

λ2
− 2 v2

λ3
− 3 (2A3

0 + A2
1 − 2A1A

3

2

0 )

A2
0

1

λ4
− 4 (A3

1 + 6A1A
3
0 − 3A

9

2

0 − 3A2
1A

3

2

0 )

A3
0

1

λ5
+ . . .
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and nearλ = 0

w1(λ) =

∞
∑

h=0

z1−h λ
h = − 2A2

0(−
√

A2
1 − 4A3

0 + A1)
(

A1 −
√

A2
1 − 4A3

0 + 2A
3

2

0

)2
√

A2
1 − 4A3

0

+

−
8A3

0

(

√

A2
1 − 4A3

0(A
3
0 −A2

1) + A3
1 − 3A1A

3
0 + 2A

9

2

0

)

(A2
1 − 4A3

0)
3

2

(

A1 −
√

A2
1 − 4A3

0 + 2A
3

2

0

)3 λ+ . . .

w2(λ) =
∞
∑

h=0

z2−h λ
h = − 2A2

0(−
√

A2
1 − 4A3

0 + A1)
(

A1 −
√

A2
1 − 4A3

0 − 2A
3

2

0

)2
√

A2
1 − 4A3

0

+

−
8A3

0

(

√

A2
1 − 4A3

0(A
3
0 −A2

1) + A3
1 − 3A1A

3
0 − 2A

9

2

0

)

(A2
1 − 4A3

0)
3

2

(

A1 −
√

A2
1 − 4A3

0 − 2A
3

2

0

)3 λ+ . . .

and taking into account that the coefficients of the expansion are characteristic velocities of
symmetries, we easily obtain the quadratic expansion of theRiemann tensor. Fork > 2 we
have

R12
12 =

∑

i+j=k−1

(

w1
iw

2
j + w1

jw
2
i

)

,

while for k < 0, we obtain

R12
12 =

∑

i+j=k+1

(

z1i z
2
j + z1j z

2
i

)

,

which can be put in the canonical form (1.12) after a linear chenge of basis of the symmetries.
The expressions of these expansions in the Rieman invariants can be found by using formulae
given in Example 2.1.

6.2 Dispersionless Boussinesq reduction

The case of the dispersionless Boussinesq reduction can be treated in a similar way. From
Example 3.3, we will consider a functionλ which is polynomial inp,

λ = p3 + 3A0p+ 3A1,

thus meromorphic on the Riemann sphere. The choice of a different normalisation reflects
in the expansions below, where we have to consider an expansion in the local parameter
t = λ− 1

3 . For simplicity let us consider only the casek ≥ 0. We observe that, apart from the
poles atp = v1 andp = v2, we have only an additional pole at infinity (starting fromk = 2).
Following the same procedure used in the Zakharov case we obtain

R
ij
ij = 0, k = 0, 1,

R
ij
ij = 3 res

t=0

(

w1(t)w2(t) t−(3k+4) dt
)

, k > 2.
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The expansions ofw1(t) andw2(t) neart = 0 are given by

w1(t) =

∞
∑

k=0

k w1
k tk+4 = t4 + 2 (−A0)

1

2 t5 + 4
(

A1 − (−A0)
3

2

)

t7

+ 5
(

2A1(−A0)
1

2 −A2
0

)

t8 + . . .

w2(t) =

∞
∑

k=0

k w2
k tk+4 = t4 − 2 (−A0)

1

2 t5 + 4
(

A1 + (−A0)
3

2

)

t7

+ 5
(

−2A1(−A0)
1

2 − A2
0

)

t8 + . . .

From these formulas we immediately get the quadratic expansion of the Riemann tensor:

k = 0 : R12
12 = 0,

k = 1 : R12
12 = 0,

k = 2 : R12
12 = 3(v1 + v2) = 0,

More generally, we have

R12
12 =

3

2

∑

i+j=k−1

(w1
3iw

2
3j + w1

3jw
2
3i) k > 2.

The expression in the Riemann invariants can be obtained from Example 3.3.
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