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Summary

This thesis describes a connected component of the space of numerical stability
conditions of certain CY3 triangulated categories using the period map of a
meromorphic differential on a family of elliptic curves. The motivation for this
result comes from studying meromorphic quadratic differentials on Riemann
surfaces. On the one hand, a meromorphic quadratic differential on a Riemann
surface defines a double cover, its spectral curve, together with a meromorphic
abelian differential on it known as the Seiberg-Witten differential. On the other
hand certain strata of meromorphic quadratic differentials determine a CY3
triangulated category such that the periods of the Seiberg-Witten differential
define the central charge of a stability condition on the category.

The simplest examples of this construction involve two-dimensional strata
of meromorphic quadratic differentials on the Riemann sphere in which case
the spectral curves are elliptic curves. There are 10 such strata in bijective
correspondence with the Painlevé equations whose families of spectral elliptic
curves include the original examples of Seiberg-Witten curves and certain de-
generations thereof. In these cases the periods of the Seiberg-Witten differential
satisfy a hypergeometric differential equation, so that its period map is described
by the Schwarz triangle theorem. In all but one of these examples this period
map can be lifted to a map to a canonical connected component of the space of
numerical stability conditions of the associated category.
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Chapter 1

Introduction

1.1 Context

This thesis explores a small corner of the landscape of mathematics which has
arisen from string theory. Whilst the main body of the thesis can be read
without any background in physics, we nevertheless give an overview of the
physical motivations in order to put the results into their appropriate context.
The reader who wishes to start with a mathematical description of the content
of the thesis is advised to skip to Section 1.2.

String theory is an attempt to unify the theories of quantum mechanics and
gravity. It postulates that classical particles which are point-like objects in the
observable space-time are in fact higher-dimensional objects called branes in
some extended version of space-time. One assumes that the extra dimensions of
space-time are given by a compact manifold whose volume is so small as to not
be directly observable. However the way in which the branes interact depends
on the geometry of the extra dimensions.

String theory is far from realising the goal of describing a grand unified the-
ory of the observable universe. Nevertheless theoretical physicists have studied
more idealistic string theories which has given rise to a lot of interesting math-
ematics. The relevant context for the mathematics in this thesis is provided by
the study of so-called type II supersymmetric string theories in 10 dimensions.
The simplifying assumption of N = 2 supersymmetry means that the extra di-
mensions are a compact six-dimensional manifold X which admits a very special
sort of geometry [Ler97]: that of a Calabi-Yau threefold.

There are two dual models of type II string theory, known as the A- and
B-models, for which there exists a good mathematical description of the set of
branes. They are the objects of a pair of triangulated categories D4(X) and
Dp(X) whose morphisms determine their interactions. The physical duality of
these two models manifests itself in Kontsevich’s homological mirror symmetry
conjecture [Kon95] which postulates a duality X <+ XV on the set of Calabi-
Yau threefolds such that the triangulated categories Da(X) and Dp(XV) are
equivalent.

The triangulated categories D4(X) and Dp(X) depend only on the Kahler
and complex geometry of the Calabi-Yau threefold X respectively. One may
ask what is the physical significance of the remaining moduli of X, for example
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the complex moduli of X in the A-model. It was found that a choice of complex
structure on X determines a distinguished subset P C D4 (X) of the objects of
the triangulated category D4 (X) corresponding to the physically stable branes.
This subset P can jump on codimension 1 walls of the moduli space M¢(X) of
complex structures on X along which stable branes can decay according to the
triangulated structure of D4 (X).

For the A-model this can be understood using II-stability of Douglas [Dou02]
by considering the periods of the holomorphic volume form Qx specified by a
complex structure on X. To a first approximation objects L of D4(X) can
be represented as Lagrangian submanifolds of X for which one can define a

so-called central charge
Z(L) = / Qx
L

An object L is said to be semistable if it satisfies the BPS condition that its
volume |Z(L)| is minimal amongst all submanifolds representing the same ho-
mology class. The class P of semistable objects is the class of special Lagrangian
submanifolds, along which the volume form Q2x has a well-defined phase. The
set P of semistable objects can jump along the loci in M (X) where the phases
of two special Lagrangian submanifolds coincide.

Bridgeland [Bri07] has abstracted II-stability to the notion of a stability
condition (Z,P) on an arbitrary triangulated category D. The set of stability
conditions Stab(D) is a complex manifold modelled on the complex vector space
of central charges Hom(K(D),C). It admits actions of the autoequivalence
group Aut(D) and the complex numbers C which act by rescaling the central
charge. In the above context we expect to find an embedding

Mec(X) — C\ Stab(Da(X))/ Aut(DA(X))

A certain subset of stable branes persist in the so-called field theory limit
where the effects of gravity become negligible to define BPS states of a gauge
theory in four dimensions. It is remarkable that Seiberg and Witten [SW94] were
able to describe the BPS states of the four-dimensional N = 2 supersymmetric
SU(2) Yang-Mills theories by purely field theoretic arguments. They did so by
considering the periods of a meromorphic differential on an auxiliary family 3 of
elliptic curves parameterised by the vacuum moduli space of the gauge theory.

With the advent of branes in string theory it was natural to try to find
a string theoretic interpretation for the family of Seiberg-Witten curves and
the Seiberg-Witten differential [Ler97]. For this one must first “geometrically
engineer” the gauge theory by finding a Calabi-Yau threefold on which, in an
appropriate limit in its moduli space, type II sting theory realises the gauge
theory. For the Seiberg-Witten SU(2) gauge theories the desired Calabi-Yau
threefold in the A-model has a description as a K3 fibration over the projective
line.

In the field theory limit, the generic fibre becomes a non-compact K3 surface
isomorphic to the resolution of the Kleinian singularity associated with the gauge
group SU(2). The fibre degenerates to the singular surface over certain points of
the projective line where the 2-sphere given by the exceptional divisor vanishes.
The branes are Lagrangian 3-spheres which are fibrations over an open or closed
curve in the projective line by the exceptional divisor of the K3 fibre.
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One can obtain the Seiberg-Witten description of the BPS states by reducing
the K3 fibre to a pair of points. The K3 fibration X — P! becomes the double
cover ¥ — P! expressing the Seiberg-Witten elliptic curve as a double cover
over the projective line. The Lagrangian 3-spheres in X correspond to 1-cycles
on the Seiberg-Witten curve X, and the holomorphic volume form Qx on X
reduces to the meromorphic Seiberg-Witten differential A on 3.

The BPS states have the interpretation as geodesics of the metric induced by
either the holomorphic volume form €2 on X or the Seiberg-Witten differential
A on ¥ on the complement of their zeroes and poles on the projective line. A
homology class v in H3(X,Z) or Hy(X,Z) supports a BPS state precisely when
there exists a geodesic in P! whose interior is disjoint from the zeroes of € or
A, which can be lifted along the projections X — P! and ¥ — P! to a cycle
representing .

Given the fundamental role of the work of Seiberg and Witten played in the
understanding of the phenomenon of wall-crossing in the physics literature, it is
somewhat surprising that it has not yet been interpreted in the mathematical
formalism of stability conditions on an associated triangulated category. The
main obstacle is finding a tractable description of the triangulated category D
of BPS states; for a recent summary of approaches to this problem we refer to
[yCDM™"13]. Following [BS13] we will describe D as a CY3 triangulated cate-
gory Do w associated to a mutation-equivalence class of quivers with potential
@ w).

The idea of associating a mutation-equivalence class of quivers with potential
to a certain four-dimensional SU(2) N = 2 gauge theories is implicit in the
work of Gaiotto, Moore and Neitzke [GMNO09]. They study a class S of such
theories which can be indexed by the set of marked surfaces with boundary,
thereby making contact with cluster algebras associated to these surfaces. In the
literature on cluster algebras it has recently been understood how to construct
mutation-equivalence classes of quivers with potential from triangulations of
marked bordered surfaces and how the mutation is “categorified” in Dg w .

The vacuum moduli space of a theory of class S is given by the vector space
of meromorphic quadratic differentials on the compactification C' of the marked
surface with boundary with fixed orders of poles determined by the marking. By
considering the square root of such a quadratic differential u we obtain a spectral
curve ¥ — C as a double cover of C and a meromorphic differential A = y/u on
Y. For certain marked bordered surfaces whose compactification C' = P! is the
projective line, this recovers the Seiberg-Witten curves and differential.

Bridgeland and Smith give a description of a distinguished component of
the space of stability conditions Stab(Dg w) of the CY3 triangulated category
Dq,w by studying the geodesics of the metric on C induced by a quadratic
differential. In particular they interpret a quadratic differential as a stability
condition on Dg w and prove a bijection between a certain class of geodesics
on the curve C and the set of semistable objects of the corresponding stability
condition.

In this thesis we will give another description of the space of stability condi-
tions of the CY3 categories Dg w associated to the Seiberg-Witten gauge theo-
ries and certain degenerations thereof. In doing so we recover the description of
Bridgeland and Smith in these special cases, but via a different method which
is logically independent of their results on geodesics of quadratic differentials.
The method, which we outline in the next section, is in the spirit of the original
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paper of Seiberg and Witten, studying the period map of the Seiberg-Witten
differential on the family of Seiberg-Witten curves.

1.2 Content

The goal of the thesis is to describe a distinguished connected component of the
space of numerical stability conditions of CY3 triangulated categories associated
to seven mutation-equivalence classes of quivers. Each mutation-equivalence
class contains an acyclic quiver whose underlying graph is either a finite or
affine root system.

2
e
1—0 1—0¢«—2 1—0
N
3
1—»0 N/ 7 0
1 1—3 7N,

We consider the derived categories Dg of finite-dimensional modules over the
dg algebra which is the 3-Calabi-Yau completion in the sense of Keller [Kelll]
of the path algebra of the quiver Q. This dg algebra is known as the Ginzburg
algebra of the quiver @ following its construction in [Gin07] in the more general
context of quivers with potential. The category Dg has a canonical t-structure
whose heart is the abelian category of finite-dimensional modules over the path
algebra of Q.

The categories Dg have been used to categorify the operation of mutation at
a vertex of the quiver @ as defined in the literature on cluster algebras [FZ02].
Keller and Yang construct a pair of equivalences from Dg to the derived category
of finite dimensional modules of the dg Ginzburg algebra of the mutated quiver
equipped with a suitable potential. Moreover the images of the heart of the
natural ¢-structure on Dg under this pair of equivalences are the left and right
tilts of the heart with respect to the simple module associated to the vertex of
the quiver at which we mutate.

The space of stability conditions Stab(Dg) of the triangulated category Dg
is a finite dimensional complex manifold modelled on the vector space of central
charges Hom(K (Dg), C) where the Grothendieck group K (Dg) is a free abelian
group of rank the number of vertices of the quiver ). The heart of the natural
t-structure defines a domain in Stab(Dg) for which the central charges of the
classes of its simple objects belong to the upper-half plane. The codimension
one boundary components of this domain are labelled by its simple tilts whose
domain shares the corresponding boundary component.

A well-studied family of mutation-equivalence classes of quivers is constructed
by considering ideal triangulations of marked surfaces with boundary [FSTO0S].
Each ideal triangulation of a given marked bordered surface defines a quiver
whose vertices are the edges of the triangulation and arrows given by the ad-
jacency matrix of its edges. The triangulation obtained by flipping one of its
edges defines the mutation of the original quiver at the corresponding vertex.
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Gaiotto, Moore and Neitzke [GMNOQ9] have shown how to construct the
ideal triangulations of marked surfaces with boundary by considering mero-
morphic quadratic differentials on the natural compactifiaction of the surface.
They observe a wall-and-chamber structure on a certain stratum of the space of
meromorphic quadratic differentials with simple zeroes and fixed orders of poles
determined by the marking. The quadratic differentials in a given chamber de-
fine a so-called WKB ideal triangulation of the marked surface with boundary,
and the WKB triangulations of two chambers sharing a wall differ by a flip.

Via the categorifcation of mutation by tilting in the category Dg w the wall-
and-chamber structure on this stratum is reminiscent of the wall-and-chamber
structure on its space of stability conditions. Bridgeland and Smith [BS13,
Thm 1.3] show how a quadratic differential in this stratum defines a stability
condition on Dg w up to the action of autoequivalences of Dg . Moreover
they show [BS13, Thm 11.6] that the semistable objects of Dg w correspond to
certain geodesics of a natural metric determined by the quadratic differential
called saddle connections which connect two zeroes of the differential.

In this thesis we shall compute the distinguished connected component of
the slice of numerical stability conditions of D¢ for the above seven quivers.
A stability condition is numerical if its central charge Z : K(D) — C factors
through the numerical Grothendieck group N (D) obtained as the quotient of
K (D) by the radical of the Euler form of D. When D is a CY3 category the
Euler form is antisymmetric and so the rank of the numerical Grothendieck
group is even.

The central charge of a numerical stability condition on D¢ determined by
a quadratic differential u is given by considering the periods of a meromorphic
1-form A = y/u, called the Seiberg-Witten differential, on the spectral curve of
the quadratic differential. The spectral curve is the double cover defined by /u
inside the twisted cotangent bundle, so that it is branched at the simple zeroes
and poles of odd order. The Seiberg-Witten differential on the spectral curve is
the restriction of the canonical differential on the cotangent bundle.

The dual graph of the WKB triangulation of a quadratic differential can be
embedded in the surface as a graph of saddle connections whose edges connect
a pair of simple zeroes of the quadratic differential. Each saddle connection
lifts to a cycle on the spectral curve which is anti-invariant with respect to the
involution on the spectral curve exchanging the two sheets of the double cover.
This gives an identification of the numerical Grothendieck group N(Dg) with
the anti-invariant part of the first homology lattice of the spectral curve.

In particular a quadratic differential defines a numerical stability condition
if and only if its Seiberg-Witten differential has zero residues so that its periods
define a numerical central charge. For the above seven quivers the numerical
Grothendieck group N(Dg) is of rank two and so the dimension of their space
of numerical stability conditions is two. They correspond to all but one of the
strata of residueless quadratic differentials on the projective line of dimension
two whose orders of poles we list above.

There is a natural C*-action on the space of (residueless) quadratic differ-
entials by multiplication which makes the map from quadratic differentials to
stability conditions into an equivariant map. We find that the quotient of each
two-dimensional stratum of residueless quadratic differentials by the C*-action
is the complement of a finite collection of points A in a weighted projective line
P(r, s) listed in the table below. Furthermore the sum of the number of orbifold
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points and points in A is precisely three and so the fundamental group of the
complement of A in P(r, s) is Z, * Zs, adopting the convention that Z; = Z

Q Ay A3/D3 Dy A Ay A3/Dy Dy
(rs) 1(2,3) (1,2) (1,3)](21) (3,1) (2,1) (1,1)

The compactified spectral curves have first homology group of dimension
two, and so we obtain a one-dimensional family of elliptic curves. The period
map of the meromorphic differential A has precisely three singularities, at the
orbifold points and points of A, and so its image can be described using the
classical Schwarz triangle theorem. Our main theorem asserts that the period

map can be lifted to the universal cover Stab”(Dg)/C a connected component
of the space of numerical stability conditions.

Theorem 1.1. There is a biholomorphic map

—_~—

Stab®(Dg)/C

&

PHom(N(Dg),C)

lifting the period map p of the meromorphic differential \ of the family of spectral
elliptic curves. It is equivariant with respect to the actions of Z, x Zs on the left
by deck transformations, and on the right by autoequivalences up to shift.

Furthermore in all but one case, that of Ay, we find that Stab®(D)/C is in
fact simply connected and so we do not need to pass to a universal cover. In
this case the group Z, * Zs is isomorphic to the monodromy group of the family
of elliptic curves, which is a congruence subgroup I'°(N) < PSL(2,Z) for some
N < 4.
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1.3 Outlook

There is an interesting perspective on the above result through meromorphic
SL(2,C) Hitchin integrable systems M — B. This integrable system has base
B, the vacuum moduli space of the gauge theory on R*, and becomes visible on
compactification of one of these four directions to a circle. The fibres are Prym
varieties of the spectral curves 3, and the pushforward of the Seiberg-Witten
differential A\, under the Abel-Jacobi map has the property that its exterior
derivative agrees the holomorphic symplectic form on M [DM96a].

The base of an integrable system inherits an affine structure. One expects
to find the more refined structure of an (almost) Frobenius manifold on spaces
of stability conditions [Bri09a, Section 7]. In the Ay case this almost Frobenius
structure is considered further in joint work in progress with Bridgeland and
Qiu [BQS], the periods of the Seiberg-Witten differential defining the so-called
twisted periods of the Frobenius structure.

The N = 2 supersymmetry of the gauge theory means that the total space
M of the Hitchin integrable system carries a hyperkahler metric. The main
aim of the paper [GMN10] is to give a description of the hyperkahler metric
via a family of Darboux coordinates for the holomorphic symplectic forms Q(¢)
on M parameterised by the twistor sphere ]P’% for each u € B. These Darboux
coordinates are required to have prescribed discontinuities along rays in C¢ for
which there is a stable object of phase arg(() with respect to u, and asmyptotic
behaviour as ¢ — 0 governed by the central charge map.

Gaiotto, Moore and Neitzke conjecture that the Fock-Goncharov cluster X-
coordinates [FG09] on M have the required transformation law and asymptotics.
The conjecture has not yet been verified in even the simplest examples; only a
local model of the metric around the simplest singularity of the Hitchin system
has been constructed. Recent work of Iwaki and Nakanishi [IN14] would appear
using the WKB approximation to prove the desired asymptotics of the clus-
ter coordinates for those local systems which can be represented as projective
connections.

As a holomorphic symplectic manifold, (M, ©(¢)) is isomorphic to a moduli
space of SL(2, C)-local systems on C\P with appropriate Stokes data at each
point of P. In the above examples the moduli space of local systems admits a
description as an affine cubic surface [vdPS09]. It would appear, with the help
of the recursion of [KS11] in the affine case, that the three coordinates on the
cubic surface can be expressed in terms of cluster X-coordinates. It would be
interesting to see if this could be used to explicitly verify the GMN conjecture
in these simplest examples.
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Chapter 2

Background material

In this chapter we review some results about triangulated categories and stabil-
ity conditions on them. In particular we study t-structures and how they relate
to each other via tilting, which gives a certain combinatorial understanding of
the space of stability conditions. We consider quivers with potential and their
mutations, and state a result of Keller and Yang which categorifies this muta-
tion procedure to a tilting equivalence of the derived categories of the Ginzburg
dg algebras of the quivers with potential. In particular the derived category
depends up to equivalence only on the mutation-equivalence class of the quiver
with potential.

2.1 Triangulated categories, t-structures, torsion
pairs and tilting

Triangulated categories were introduced by Verdier [Ver96] to axiomatise the
properties of derived categories.

Definition 2.1. A triangulated category is an additive category D together
with an invertible shift functor [1] : D — D and a collection of distinguished

triangles
X->Y—=>Z-X[1]

satisfying the following axioms

1. The triangle X X 50 X 1] is distinguished

2. The rotation Y — Z — X[1] — Y[1] of a distinguished triangle is distin-
guished

3. Any morphism X L,y can be completed to a distinguished triangle whose
third object we call a cone of f

4. The octahedral axiom [BBD&2, Section 1.16]: given morphisms X Ly
and Y % Z, this asserts the existence of cones Z’, Y’ and X' of f, g- f and
f respectively forming a distinguished triangle Z’ — Y’ — X’ — Z'[1]
such that the four distinguished triangles fit into an octahedron-shaped
commuting diagram.
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The motivating example is the bounded derived category D’(A) of an abelian
category A . The bounded derived category is the localisation of the homotopy
category K(A) of chain complexes of objects in .4 with only finitely many non-
zero cohomologies at the class of quasi-isomorphisms. Thus morphisms in D?(A)
are obtained by formally inverting all morphisms of K(.A) which induce isomor-
phisms on the homology of the chain complex. The shift functor is the functor
which moves everything in the chain complex one position to the left, and the
distinguished triangles are those which are isomorphic to a mapping cone in the
homotopy category.

One can draw analogies between the structure of a triangulated category
and that of an abelian category. In fact we can view an abelian category A
as embedded in its bounded derived category D’(A) as the full subcategory of
complexes concentrated in degree zero. Then a distinguished triangle whose
three objects X,Y and Z all lie in A is precisely a short exact sequence in A.
In this case the octahedral axiom reduces to the third isomorphism theorem for
A.

By analogy to the Grothendieck group K (.A) of an abelian category, we can
define a similar group for a triangulated category.

Definition 2.2. The Grothendieck group K (D) of a triangulated category is
the free abelian group on isomorphism classes [X] of objects X of D modulo the
relation

Y= [X]+17]
whenever X — Y — Z — X][1] is a distinguished triangle.

If the triangulated category D is Hom-finite, that is the graded vector space
Hom,(X,Y) = &, Homp(X, Y[n]) is finite dimensional for all X and Y, then
K (D) is a lattice with the Fuler pairing

X(X,Y) =" dim Homp (X, Y[n))

This is the case for the bounded derived category D°(A) of an abelian category
A. The natural embedding A < D’(A) then induces an isomorphism K (A) —
K (D) whose inverse is given by the alternating sum of the isomorphism classes
of the cohomologies of the chain complex.

The embedding A < D’(A) is the prototypical example of a heart of
bounded t-structure on a triangulated category. The notion of a t-structure
on a triangulated category D was introduced in [BBD8&2], and determines coho-
mology functors H* on D whose images belong to an abelian category known
as the heart of the t-structure.

Given a full subcategory B of a category C, we denote by B+ the right
orthogonal of B in C, that is the full subcategory of C consisting of all objects
C € C such that Home(B,C') =0 for all B € B.

Definition 2.3. A t-structure on a triangulated category D is a full additive
subcategory T, stable under shift, such that for all E € D there is a distinguished
triangle

T—E—F—T[]

with T € T and F € T+,
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We call the full subcategory A = T N T*[1] the heart of the t-structure.

Proposition 2.4. [BBD82, Théoreme 1.3.6] The heart A of a t-structure is an
abelian category.

We say that a t-structure is bounded if every object of D belongs to 7[—n]N
T+[n] for some n, that is the degree of the cohomology of any object with
respect to the t-structure is bounded. We have the following characterisation of
the additive subcategories of a triangulated category which occur as hearts of a
bounded t-structure.

Proposition 2.5. [Bay/ A full additive subcategory A C D is the heart of a
bounded t-structure on A if and only if the following two conditions are satisfied

e Hom% (A1, Ag) = 0 for all objects A1, As € A and alln <0

e Fuvery object E € D has a filtration

n-1—————— &

O\Fl/El \ /

such that the F; € Alk;] with kv > ... > ky,.

Indeed the F; are precisely the non-zero cohomology objects of E with re-
spect to the t-structure.

We can construct new t-structures from old ones by considering torsion pairs
inside the heart of the t-structure.

Definition 2.6. A torsion pair (7, F) in an abelian category A is a pair of full
additive subcategories (7, F) such that F = 7=, and for all A € A there is a
short exact sequence

0T —->A—=-F—=0

We note the similarity of this definition with that of a ¢t-structure, in that
both t-structures and torsion pairs give ways of decomposing an object in a
triangulated and abelian category respectively into parts lying in a subcategory
and its orthogonal complement.

Definition 2.7. The left and right tilts of the heart of a bounded t-structure
A C D at a torsion pair (T, F) of A are the full subcategories AT and A~ of D
consisting of objects EF whose only non-zero cohomologies are

H°E)e F,H(E)eT and HYE)eT,H Y(E)cF
respectively.

This is a slight abuse of terminology in that the definition does not coincide
with the left and right tilts of an abelian category in the sense of [HRO96].
The problem is that a heart A of a bounded t-structure on D is not necessarily
faithful, that is the morphism spaces Ext’ (A, B) and Homp(A, B[n]) are not
necessarily isomorphic for all pairs of objects A, B of A. Nevertheless we have
the following analogue of their result.
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Proposition 2.8. [HRO96] The left and right tilts of a heart A are again hearts
of bounded t-structures on D.

We will be particularly interested in the left and right simple tilts Ag and
Ag, that is when 7 or F respectively is the full subcategory of A consisting
of direct sums of copies of the simple object S. We can compute the simple
objects in the heart Afgt when S is rigid, that is Ext’ (S, S) = 0.

Proposition 2.9. Suppose S is a simple object of A satisfying Exti‘(S, S)=0.
For a simple object S; of A, denote by Sj' and S; the universal extensions

0— S — S — Exty(S,8)®8 =0

and
0 — Ext4(S;,8)®8 =S, = S; =0

respectively. Then the simple objects of the simple tilts Agﬁ of A are S[¥1] and
SijE for all simple objects S; of A not equal to S.

Proof. We show only the statement for the simple objects of the left tilt Ag,
the proof for the right tilt being similar. Associated to any short exact sequence
0—-X—>Y—=>272—0in Ag, we have a long exact sequence in cohomology
with respect to the original t-structure which is concentrated in degrees 0 and
1.

0— HY(X)— H°(Y) = H(Z) - HY(X) = H(Y) = HY(Z) = 0

The object Y is a simple object of Ag if and only if for every such short exact
sequence, either X = 0 or Z = 0. Consider the object Y = S[—1] whose coho-
mology is concentrated in degree 1. Then we have a four term exact sequence

0— HZ) = HX)—=S—HY2) =0
Then as S is simple in A, H'(Z) is either S or 0. In the first case we have

HY(X) = H%Z) e TNF = {0}; thus X = 0 and Z = S[—1]. On the other
hand if H(Z) = 0 then we have a short exact sequence

0— H'Z) = H'(X) =S =0

whose last two terms belong to 7 and so H(Z) € TNF = {0}. Thus X = S[—1]
and Z = 0 and we deduce that S[—1] is simple in AZ.

Now consider the universal extension ¥ = Sj' , whose cohomology is concen-
trated in degree zero. We have the four-term exact sequence

0— H'X)— S = HZ) - H'(X)—0

The possibilities for H°(X) are the subobjects of S; in A, namely S;°, S;
(supposing it is distinct from S;) and 0. In the first case, we have H(X) =
HY(Z)e TNF={0} and so X = S;” and Z = 0. In the second case, we have
an injection ExtY(S,S;) ® S < H°(Z) € F, which is a contradiction. Thirdly
if H%(X) = 0 then we have a short exact sequence

0— S — HZ)— HY(X)—=0

But then H'(X) = 0 as Ext4(S;",S) = 0,50 X =0 and Z = S;". Thus S is
simple. O
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2.2 Stability conditions

In this section we consider the space of stability conditions Stab(D) of a tri-
angulated category D introduced in [Bri07]. It is a complex manifold carrying
an action of the autoequivalence group Aut(D) of D, covered by domains U(A)
of stability conditions supported on a given heart of a t-structure. In the case
where a heart A has a finite length, the domain U(.A) has a simple description,
and we study how the closure U(A) intersects U(A’) for hearts A’ obtained
from A by tilting. We find a wall-and-chamber structure whose chambers are
the U(A) and whose walls are given by simple tilts.

We first define the notion of a stability function on an abelian category .A.
This is an axiomatisation [Rud97] of notions of stability used to construct nice
moduli spaces of objects in abelian categories, such as slope-stability of coherent
sheaves on a curve [HN75].

Definition 2.10. A stability function on an abelian category A is an additive
function Z : K(A) — C such that

e For all non-zero objects A € A, the phase

#(4) = ~ arg(Z(14)

lies in the interval (0, 1], i.e Z([A]) belongs to the half-closed upper half
plane h = Hh U R .

e 7 satisfies the Harder-Narasimhan property: say an object A in A is
semistable if it has no non-zero subobjects S satisfying ¢(S) > ¢(A).
Then every A in A has a filtration

OZA()CAl...CAn:A
such that the quotients A;/A4;_1 have decreasing phase and are semistable.

We note that the semistable objects are precisely those with a trivial Harder-
Narasimhan filtration. Thus a stability function gives a way of decomposing any
object of A into its semistable parts ordered by their phases. We observe that
the set of semistable objects can jump along codimension 1 loci in the space of
stability functions where the phases of semistable objects align. Such loci are
called walls of marginal stability or walls of the first kind inside the space of
stability functions.

In the same way that t-structures and torsion pairs complement each other,
so do the filtration of Proposition 2.5 and the Harder-Narisimhan filtration.

This leads to a notion of stability condition on a triangulated category following
[Bri07].

Definition 2.11. A stability condition on a triangulated category D is a pair
(A, Z) where A is the heart of a bounded t-structure on D, and Z : K(A) — C
is a stability function on A.

Remark 2.12. This is equivalent to the original definition of a stability condition
[Bri07, Definition 1.1] in terms of slicings of D by [Bri07, Proposition 5.3].
Indeed if A is the heart of a bounded ¢-structure, then the natural map K(A) —
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K (D) is an isomorphism, so a stability function on A defines a central charge
Z : K(D) — C. The Harder-Narasimhan filtration of an object E € D is then
a splicing of the filtration of E by its cohomology objects in Proposition 2.5
and the Harder-Narasimhan filtration of the cohomology objects given by the
stability function on A.

The set Stab(D) of all stability conditions satisfying a technical condition
called local finiteness [Bri07, Definition 5.7] has a metric topology described in
[Bri07, Section 8]. Supposing further that K (D) has finite rank, Stab(D) is
in fact a complex manifold via the forgetful map to the complex vector space
Hom(K (D), C) of central charges.

Theorem 2.13. [Bri07, Theorem 1.2] Suppose that K (D) has finite rank. Re-
stricted to any connected component of Stab(D), the forgetful map Z : Stab(D) —
Hom(K (D), C) is a local homeomorphism onto its image, a linear subspace of
Hom(K (D), C)

We say a stability condition on D is supported on a heart A if it is of the form
(A, Z) and write U(.A) for the set of stability conditions supported on A. We
have a simple description of the space of stability conditions supported on a heart
A of finite length, for the Harder-Narasimhan property is then automatically
satisfied by any function K(A) — C.

Proposition 2.14. [Bri09a, Lemma 5.2] Suppose a heart A has finite length
n =rk(K(A)), i.e. it has precisely n simple objects Sy, ...Sy. Then U(A) = b",

where h = h UR-q is the half closed upper-half plane as in Definiton 2.10.

In particular we observe that the connected component of the space of sta-
bility conditions containing such a heart is locally homeomorphic to C" for the
image of the forgetful map Z must be the entire vector space Hom(K (D), C). In
this case we can also describe what happens on the codimension-one boundary
components of U(A) where the phase of a single simple object of A becomes 0
or 1.

Proposition 2.15. [Bri09a, Lemma 5.5] Suppose that A has rigid simple ob-
jects S1,...,Sn. Then the codimension 1 boundary components of U(A) are
labelled by the pair of a simple object Sk of A and a sign + or —, and consist
of stability conditions for which ¢(Sy) = 1 or ¢(S,) = 0 respectively. If o=
is contained in a unique such codimension one boundary component (Sk,+) of
U(A), then a neighbourhood of o* is contained in U(A) U U(.A?k) where Afsck
is the left or right simple tilt of A at Sy respectively.

If the tilted heart is again of finite type, this process can be iterated, giving
a wall-and-chamber structure on a subset of the space of stability conditions.
We call these walls through which the supporting heart of a stability condition
changes walls of the second kind. If the heart A has only finitely many inde-
composables then Woolf [Woo10, Thm 2.17] has shown that the subset covered
in this way is the entire connected component of Stab(D) containing U(.A).
However this is not true in general as walls of the second kind can accumulate.

We will mainly be interested in the subset of the space of stability condi-
tions which are numerical. Define the numerical Grothendieck group to be the
quotient of the Grothendieck group by the left radical of the Euler form on D.
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Definition 2.16. The numerical Grothendieck group N(D) = K(D)/K(D)*
where K (D)- = {[E] € K(D) | x([E], [F]) = 0F € K (D)}

We note that the Euler form restricts to a non-degenerate bilinear form on
the numerical Grothendieck group N (D).

Definition 2.17. A stability condition is numerical if the central charge Z :
K (D) — C factors through the numerical Grothendieck group N(D).

We note that the numerical central charges Hom(N(D),C) form a linear
subspace of Hom(K (D),C). Thus Theorem 2.13 holds with the appropriate
modification, and provided that the heart A supports a numerical stability
condition, we have that U(A) = h*™*(V(P)) by Proposition 2.14.

Finally we recall two natural group actions on the space of stability con-
ditions (cf [Bri07]) which preserve the space of numerical stability conditions.
Firstly the group of autoequivalences Aut(D) acts naturally on Stab(D) via the
map

(I)(Aa Z) = ((I)(A)v Z - ¢71)

where ¢ : K(D) — K(D) denotes the automorphism of the lattice K (D) induced
by the automorphism .

As we are only interested in the action of the autoequivalence group on the
space of stability conditions in this thesis, we will consider autoequivalences
modulo the equivalence relation identifying two autoequivalences if they act
trivially on the space of stability conditions. From now on we understand all
references to the group of autoequivalences to refer to t/h\l_s/ quotient group.

There is also an action of the universal cover GLT(2,R) of the group of
orientation preserving maps of the plane, which acts on the central charge by
postcomposition with the corresponding orientation preserving map of the plane
R? = C. This action is not always free for the image of the central charge map
can be contained in a line. However there is a free action of the subgroup

C < GL'(2,R) which acts on the central charge via C = G =20, - by
rescaling.

Definition 2.18. A projective stability condition & is an orbit of a stability
condition o under the free C-action.

A projective stability condition & € Stab(D)/C is a pair consisting of an
equivalence class of hearts A under the C-action, and a projectivised central
charge Z € PHom(K (D), C). By Theorem 2.13, it is a complex manifold mod-
eled on the projective space P Hom(K (D), C). We note that an element n of the
subgroup Z C C acts as the autoequivalence [n]. Thus the space of projective
stability conditions Stab(D)/C inherits an action of Aut(D)/Z[1].

2.3 Quivers with potential

In this section we introduce quivers with potential and their mutations.

A quiver @ is a directed graph. We will write Q¢ for the set of vertices of the
underlying graph and @); for the set of arrows. We then have a pair of natural
maps s,t : Q1 = Qo called the source and target maps sending an arrow to
the vertex at its tail and head respectively. A path of length [ in @ is a word
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aj ...a; in @q such that s(a;) = t(a;—1). It is convenient to include the lazy
paths e; of length 0 at each vertex. The source and target maps then extend
naturally to the set of all paths in Q.

Definition 2.19. The path algebra CQ of a quiver ) has underlying vector
space the set of all paths of length > 0. The composition of two paths is their
concatenation if the target of the first path is the source of the second, and zero
otherwise. A module over the path algebra is called a representation of Q.

The lazy paths e; define a complete set of orthogonal idempotents for A =
CQ, so A = ®Ae; decomposes as a direct sum of projective modules P; = Ae;.
Every module M over A then has a projective resolution

0— EButeAet(a) ® es(a)M BEAN @iEQgAei KeM — M —0

The abelian category A = mod(CQ) of finite-dimensional representations of Q)
is thus a hereditary category, i.e. Ext’y(M,N) = 0 unless ¢ = 0,1. The Euler
form x(—,—) on K(A) can be computed to be the Ringel form

(M, N) = dim Hom (M, N) — dim Ext* (M, N)

= Z dim(e; M) dim(e; N) — Z dim(eg(q)y M) dim(eyq)N)
1€Qo ac€Q

where the map is given by multiplication by the arrow a.

In particular if the quiver @ is acyclic, i.e. contains no oriented cycles,
then the simple modules in 4 are the precisely one-dimensional representations
S; = Ce; at each vertex. The projective and simple modules then define dual
bases of K(A) with respect to the Euler form. The quiver @ can be recovered
as the Ext-quiver of its category of representations.

Definition 2.20. Suppose A is a C-linear abelian category of finite length.
Then the Ext-quiver of A has vertices indexed by the set {S;} of simple objects
in A and dimc ExtY(S;, S;) arrows from S; to S;.

There is a mutation rule for quivers developed by Fomin and Zelevinsky in
their work on cluster algebras [FZ02].

Definition 2.21. Let @ be a quiver without loops or 2-cycles. The mutation
1k (Q) of a quiver @ at the vertex k is defined as follows

1. For every path i — k — j of length two in @, add an arrow j — 4
2. Reverse all arrows incident to k
3. Remove a maximal disjoint collection of 2-cycles

Consider an ordering of the set of vertices of a quiver @ with n vertices.
There is a canonical bijection between the vertices of two quivers with potential
related by a mutation at a given vertex. Thus the set of ordered quivers @,
with n vertices has the structure of a homogeneous space for the action of the
mutation group M,,.

Definition 2.22. The n-mutation group M, is the semi-direct product of the
free group Fj, with the symmetric group S, acting by permutation on the
generators of .S,.
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We note that if the vertex k is a source or a sink of @, then mutation
at k underlies an equivalence of the derived categories of the path algebras of
the quiver [Hap88]. Indeed there are a pair of derived equivalences given by
tilting modules of [BGP73] such that the images of the standard heart A =
mod(CQ) are the left and right tilted hearts Agk = mod(Cpux(Q)) and Ag =
mod(Cpuy(Q)) respectively.

Theorem 2.23. [Hap88] Suppose k is a source or a sink of @ and let A =
mod(CQ). Then there are a pair of derived equivalences <I>§k : DY(A) —

DY(AF).

More general mutations of quivers can be categorified by introducing a po-
tential. This concept originated in the string theory literature (e.g. [DM96b])
where it is important in describing the relationship between “dual” theories de-
scribed by quivers related by a mutation. It was used in [Gin07] in describing
Calabi-Yau algebras and their mutations, and a general theory of mutations for
quivers with potential was described in [DWZ08].

Definition 2.24. A potential W on a quiver @ is a C-linear combination
of cycles of @ up to cyclic equivalence, that is up to the relation a;...a; ~
Q;...aq1a1 ...04;_1.

A choice of potential defines a quotient of the path algebra CQ of @ by
the cyclic derivatives OW/0a of W with respect to arrows a € Q1. The cyclic
derivative is defined to be the sum of words in C@) obtained by deleting a from
all words beginning with a in the cyclic equivalence class of words in W.

Definition 2.25. The Jacobi algebra of a quiver with potential (Q, W) is
cQ

JQW) = Zwi—F~
(Gala € Q)

where (CQ denotes the completion of the path algebra of ) with respect to
path-length. We say a quiver is Jacobi-finite if J(Q, W) is finite-dimensional.

Note that if the quiver @ is acyclic then the only potential on @ is the
zero potential. The Jacobi algebra is then isomorphic to the uncompleted path
algebra CQ of the quiver Q.

We consider quivers with potential up to the notion of right-equivalence.

Definition 2.26. Two quivers with potential (Q,W) and (Q’, W’) are right-
equivalent if they have the same vertex set and there is an algebra isomorphism
CQ — CQ’ which is the identity on vertices and maps W to W'.

The Jacobi algebras of two right-equivalent quivers with potential are iso-
morphic [DWZ08]. Up to right-equivalence, a quiver with potential can always
be decomposed according to the following splitting theorem by “integrating out”
quadratic terms in the potential.

We say a quiver with potential is reduced if the potential contains no 2-cycles.
A quiver with potential is trivial if its Jacobi algebra is trivial. This is the case
if and only if the arrows of the quiver come in pairs forming 2-cycles and the
potential is the sum of quadratic terms given by these 2-cycles [DWZ08].
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Theorem 2.27. [DWZ08, Theorem 4.6] Any quiver with potential (Q, W) is
right-equivalent to the direct sum of a reduced and trivial quiver with potential.
Moreover the two quivers with potential in the decomposition are unique up
to right-equivalence, and the Jacobi algebras of (Q,W) and its reduction are
isomorphic.

We note that the trivial part of a quiver with potential is not necessarily a
maximal collection of 2-cycles, so the reduced part of the quiver with potential
may contain 2-cycles.

Definition 2.28. The mutation pu(Q,W) of a quiver with potential (Q, W)
without loops or 2-cycles at the vertex k is defined to be the reduced part of
the quiver with potential obtained from (Q, W) as follows:

1. For every path i = k LN j of length two in @, add an arrow j ﬂ 1 and
replace all occurrences of ab in W by [ab]

2. Replace every arrow a incident to k with its opposite a*, and add a term
b*a*[ab] to the potential

We note that this is not a strict generalisation of the notion of quiver mu-
tation of Fomin-Zelevinsky, for whether the mutation pu(Q, W) contains any
2-cycles depends on the potential.

Definition 2.29. A potential W on @ is non-degenerate if no iterated mutation
of (@, W) contains a 2-cycle.

The non-degeneracy condition holds outside a collection of hyperplanes in
the space of potentials [DWZ08]. If a quiver with potential (Q, W) is non-
degenerate then the underlying quiver of all of its iterated mutations agrees
with the iterated mutations of the quiver ) in the sense of Definition 2.21.
In the next section we will categorify mutation of quivers with potential using
tilting of hearts in a triangulated category Dg w. In particular we will see how
to lift the M,,-action to the set of ordered hearts of the category D¢ w .

2.4 Ginzburg algebras

In this section we define a Calabi-Yau-3 triangulated category Dg w associated
with a quiver with potential (@, W) following Ginzburg [Gin07] whose space
of stability conditions we study in this thesis. We will show how mutation of
quivers with potential is categorified by tilting in D¢ w .

Given its string theoretic origin [DM96b], one might expect that the category
mod(J(Q,W)) is a Calabi-Yau-3 (CY3) category, that is there are functorial
isomorphisms

Ext" (M, N) = Ext3~" (N, M)*

Indeed there is a natural candidate for a projective resolution of the simple ob-
ject S; which is a complex whose terms are symmetric with respect to exchanging
the degree r component with the 3 — r component.

P Y @ppsi P RAZLICON Darisj Py~ P — S;
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This is indeed a complex, as the two compositions are equal to the cyclic deriva-
tives OW /0b and OW/0a. However in general this complex is not exact; for
example if the potential is zero. In this case the category is the category of
finite dimensional modules over the path algebra, which is hereditary and so
certainly not CY3.

One can however view the Jacobian algebra as an approximation of a dg alge-
bra T'(Q, W) introduced by Ginzburg in [Gin07] in the sense that H(T'(Q, W)) =
J(Q,W). This dg algebra is the CY3 completion of J(Q, W) in the sense of
Keller [Kelll] and Koszul dual to the cyclic completion of Ed Segal [Seg08] of
the A, completion of the algebra

Ext"(®S;, ®S;) ® EXt?’_T(@Si, ®S;)

Indeed the definition is engineered such that for every arrow i — j of Q,
which gives rise to an extension between simple objects .S; and S, there is
a reverse arrow giving rise to an element of ExtQ(Sj, S;). Similarly for every
vertex ¢ of @ there is the identity morphism S; — S; which is dual to a class in
Ext3(S;, S;) induced by a loop at the vertex.

Definition 2.30. The complete Ginzburg dg algebra I'(Q, W) of a quiver with
potential (@, W) has underlying graded algebra the completion of the graded
path algebra of @) with respect to path length where Q is constructed from Q
as follows:

e In degree 0, the arrows of )
e In degree —1, the arrows a* : j — i for each arrow a : 7 — j of Q
e In degree —2, the arrows t; : i — i for each vertex i of Q

The differential is uniquely determined by the fact that it is linear, satisfies the
Leibniz rule, and takes the following values on the arrows of Q:

d(a) =0 d(a*) = 0W/da d(t;) = Z eila, a*le;

a€Q1

We now consider the derived category Dsq(I'(Q, W)) of the dg category of
finite dimensional dg modules over the dg algebra I'(@, W) in the sense of Keller
[Kel94].

Proposition 2.31. [Gin07] The triangulated category Do w = Drqa(T(Q, W))
is CY3, that is there are functorial isomorphisms

Hom(E, F) = Hom(F, E[3])*

As the Ginzburg algebra is concentrated in degrees less than or equal to
zero, it has a standard bounded t-structure [Kell2, Sect 4.2] whose heart .A°
is isomorphic to the category mod J(@, W) of nilpotent modules over the Ja-
cobi algebra of the quiver with potential. If (Q, W) is Jacobi-finite, the simple
modules of the heart A° are the simple modules S; of the Ginzburg algebra
corresponding to each vertex. The S; are so-called 3-spherical objects of the
category Dq w .

Definition 2.32. An object E € D is n-spherical if Homp,(E, E) = H*(S™, C).
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In a Calabi-Yau-n category, there is always an embedding H*(S™,C) —
Hom, (E, E) for any object E, so the spherical objects have the simplest possible
Hom-complex. They provide autoequivalences of the category D.

Theorem 2.33. [ST01, Thm 1.2] For E € D spherical, there erists an autoe-
quivalence Twg of D called the spherical twist at E, such that

Twg(X) = Cone(Hom(E, X) ® E =% X)

We will write Sph(Dg w ) for the group of spherical twists of Dg w generated
by the twists Tws, at the simple objects of the standard heart A°. When the
underlying graph of @ is a Dynkin diagram, Seidel and Thomas show that the
spherical twists satisfy the corresponding braid relations.

Definition 2.34. Let A be a Dynkin diagram. Define the braid group Br(A)
to be the group generated by o; where i runs over the vertices of A subject to
the relations

0i0j...=0404...

where the words on both sides have length m;; given by

if 7 and j are not connected

if 7 and j are connected by a single edge
if ¢ and j are connected by a double edge
if 4 and j are connected by a triple edge
oo if i and j are connected by a pair of edges

E
o
I
= IR

Suppose now that A is simply laced, that is has only single edges. A A-
collection is a set of spherical objects {S;} for each vertex of A such that for
distinct ¢ and j, Homp(S;,S;) is non-zero only if ¢ and j are connected by a
edge in which case it is one-dimensional and concentrated in either degree one or
two. In particular the simple objects of the standard heart in the CY3 category
Dg = Dg for some orientation of A define a A-collection of spherical objects
in DQ.

Theorem 2.35. [ST01, Thm 1.2] A A-collection of spherical objects in D de-
fines a weak Br(A) action on D.

It is conjectured that this action is faithful, and this was proved in [STO01,
Thm 1.3] for Dynkin diagrams of type A.

We can now give the result of Keller and Yang which categorifies mutations
of quivers with potential via tilting in Dg w for a non-degenerate potential W.
We first compute the simple objects of the simple tilts Af of the standard heart
A°.

Lemma 2.36. [Kell1, Sect 4.3] The simple objects of A are Si[—1], the simple
objects S; of A with zero Ext'(Sy, S;) and the spherical twists Twg, (S;) of the
remaining simple objects. The simple objects of A, are obtained by applying
Twg, to the simple objects of A} .

(a3

Proof. As the potential is non-degenerate, only one of the groups Ex‘cl(S;€7 S;) &
Ext?(S;, Sp)* and Ext'(S;, Si) = Ext?(Sk, S;)* is non-zero. Thus the universal
extensions of the simple objects .S; in the statement of Proposition 2.9 are either
Twg, (S;) or S; according to whether the first or second group is non-zero. [
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The simple objects {S;"} of the tilted heart A} give a new basis of K(D)
which by Proposition 2.9 is given by

(Sl =—[Sk]  [S]=[8i] + [x([Sil, [SkD)]+[Sk]

where [z]; denotes the positive part of z, i.e the minimum of 0 and z. The
Ext-quiver of A$ is the mutation of the Ext-quiver of @ at k.

Theorem 2.37. [KY11, Thm 8.2] There are a pair of equivalences
®; : Do.w — Dy

such that Twskq)gk and <I>j§k are isomorphic. Moreover <I>j§k (.AO) = Agk and
o5, (A% = As, are the right and left simple tilts of A% at Sy.

We note that the Keller-Yang equivalences give a canonical bijection between
the simple objects of the standard heart A° and the simples of the tilted heart
Ai. Equivalently they give a canonical bijection of the vertices of the quivers
Q= Q(A% and 1 (Q) = Q(A?k). We can lift the M,,-action on ordered quivers
to an M,-action on the set of ordered hearts of D¢ w obtained from an ordering
of the standard heart A° by a finite sequence of tilts.

Definition 2.38. A heart A of D¢ w is reachable if it can be obtained from
the standard heart A° by a finite sequence of simple tilts.

In other words reachable hearts are precisely the hearts which are images
of the standard heart A° under a composite of Keller-Yang equivalences of
Theorem 2.37. An ordering of a reachable heart is an ordering of its simple
objects or, equivalently, an ordering of the vertices of its quiver.

Definition 2.39. The set of ordered hearts H of a non-degenerate quiver with
potential (Q, W) is the M,-set of ordered reachable hearts of Dg w with M,-
structure given by simple tilts and permutations.

We note that autoequivalences ® of Dg y which preserve the set of reach-
able hearts necessarily preserve the M,-structure on H. We will study such
autoequivalences via the induced automorphism ® € Autyy, (H) of H.

Definition 2.40. An autoequivalence ® € Aut(Dg,w) is called reachable if the
image ®(A°) of the standard heart is obtained from A" by a finite set of simple
tilts.

We note that any reachable autoequivalence of D¢y w necessarily preserves
the quiver of a heart and so acts on H in a manner preserving the fibres of
the map H — @,. Examples of reachable autoequivalences are given by the
spherical twists of the category Do w, for Lemma 2.36 implies that Twg, (A°) =
(<I>;fk)2(./40). By Proposition 2.35, this yields an action of the braid group Br(Q)
on the M,,-set of ordered reachable hearts H of Dg w .

Remark 2.41. The above approach to categorification of mutations arose origi-
nally in the literature on cluster algebras. In particular the quotient of the set
of ordered hearts H by the braid group action Br(Q) is isomorphic [Kel12, The-
orem 5.6] to the M,,-set C of clusters with the cluster mutation rule of [FZ02].
The automorphism group Autys, (C) has recently been studied by King and
Pressland in [KP13].
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In the sequel we will study the distinguished connected component of the
space of stability conditions of Dg w which contains all stability conditions
supported on the standard heart Ag, and hence all stability conditions supported
on reachable hearts.

Definition 2.42. The distinguished connected component Stab*(Dg,w ) of the
space of stability conditions of Dg w is the connected component of Stab(Dg w )
containing the subset consisting of stability conditions supported on the hearts
in H.

As we will study only the connected component Stab®(Dg w) we will only
be interested in the autoequivalences which preserve this component. Moreover
we will factor out any autoequivalences which act trivially on Stab®(Dg w ).

Definition 2.43. The group Aut®(Dg,w) is the subquotient of the autoequiv-
alence group Aut(Dg w) consisting of those autoequivalences preserving the
distinguished connected component Aut®(Dg,w) modulo those acting trivially
on it.

We note that reachable autoequivalences define elements of Aut*(Dg w)
as they preserve H and so the distinguished component Stab®(Dg w). This
element is non-trivial if and only if it induces the trivial automorphism of H,
for an autoequivalence fixing the simple objects of the standard heart A° acts
trivially on Stab®(Dg w). In the next chapter we will outline a description
of Stab®(Dg,w) and Aut*(Dg w) for almost all mutation-finite quivers with
potential.



Chapter 3

Quadratic differentials

3.1 Mutation-finite quivers with potential

In this section we consider quivers with potential whose mutation-equivalence
class is finite. We show, up to a small list of exceptions, that the set of finite
mutation-equivalence classes is in bijection with the set of marked surfaces with
boundary and that each quiver with potential corresponds to a unique ideal
triangulation of the marked surface.

The almost bijection between mutation-finite quivers with potential and tri-
angulations of marked surfaces with boundary has its origin in the theory of
cluster algebras [FST08]. We begin by recalling the definition of a marked sur-
face with boundary.

Definition 3.1. A marked surface with boundary (S, M) is a pair consisting
of a smooth oriented surface S with possibly non-empty boundary 95, together
with a non-empty set M of marked points of S such that each component of
the boundary 9S contains at least one point in M.

We will construct quivers with potential from triangulations of marked sur-
faces with boundary (S, M) whose vertices belong to the set of marked points
M. The associated quiver with potential will only depend on the combinatorial
type of the triangulation determined by the adjacency of its edges at vertices,
and so is insensitive to an orientation-preserving diffeomorphism of the surface
S which preserves the set of marked points M. This motivates the following
slightly non-standard definition which is an equivalence class of ideal triangula-
tions in the sense of [FST08] modulo the mapping class group MCG(S, M).

Definition 3.2. An ideal triangulation 7 of (S, M) is an equivalence class mod-
ulo orientation-preserving diffeomorphisms of S preserving M of a maximal set
of edges: real closed curves « : [0,1] — S with endpoints in M satisfying

e The interiors of the collection of edges do not intersect and are disjoint
from M.

e Each edge is not null-homotopic relative to its endpoints in S\ M

e Each edge is not homotopic relative to its endpoints to a subset of the
boundary 95 whose interior is disjoint from M.

23
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We note that the faces of an ideal triangulation are certainly three-sided for
otherwise the collection of edges is not maximal. However it is possible that
two of the edges bounding a given face coincide. The faces of a general ideal
triangulation thus consist, in addition to usual triangles, of so-called self-folded
triangles pictured below.

Figure 3.1: A self-folded triangle containing a double edge.

Definition 3.3. An ideal triangulation is non-degenerate if it contains no self-
folded triangles.

Remark 3.4. In this chapter we will often work in the setting of non-degenerate
ideal triangulations even though we require the extension of these ideas to en-
compass degenerate ideal triangulations. As in the literature on cluster algebras
[FSTO8] this is achieved by considering so-called tagged triangulations. Where
the exposition is simplified in this manner we make remarks regarding the cor-
rect generalisation and give references to the literature.

To an ideal triangulation we can associate an adjacency matrix recording
how the edges of the ideal triangulation meet at vertices.

Definition 3.5. The adjacency matrix B(7) of a non-degenerate ideal triangu-
lation 7 is given by the sum

B(r)=)»_ B*
A

over faces /\ of the ideal triangulation 7 of the antisymmetric matrices B2 with
entries

1  if the edges ¢ and j are edges of A in the clockwise order
(b®);j =4 —1 if the edges i and j are edges of A in the anti-clockwise order
0 otherwise

Remark 3.6. For degenerate ideal triangulations we can apply the above defi-
nition having replaced each double edge of a self-folded triangle with the edge
which encloses it.

An antisymmetric matrix B determines a quiver Q(B) without loops or 2-
cycles whose vertex set labelled by the rows (or columns) of B, and with b;;
arrows from 7 to j whenever b;; is positive.

Definition 3.7. The quiver Q(7) of an ideal triangulation 7 is the quiver
Q(B(7)) associated to its adjacency matrix B(7).

The flip at an edge e of ideal triangulation 7 is the unique ideal triangulation
distinct from 7 which contains all the edges of 7 except e.
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Figure 3.2: A flip of an ideal triangulation 7 and mutation of the corresponding
quiver Q(7).

Lemma 3.8. Suppose T is a non-degenerate ideal triangulation of a marked
surface with boundary with associated quiver Q(71). Then the quiver associated
to the flip of T in one of its edges is the mutation of Q(7) at the corresponding
vertex.

Remark 3.9. Flipping the double edge of a self-folded triangle in a degenerate
ideal triangulation 7 results in the same triangulation. On the other hand from
Remark 3.6 the quiver Q(7) associated to 7 has a involution exchanging the
vertices corresponding to the self-folded edge and the edge which encloses it.
Thus the mutation of the quiver at the self-folded edge is equal to the quiver
associated with the flip of the triangulation at the edge which encloses it. To
extend the above Lemma to degenerate triangulations it is necessary to consider
tagged triangulations, which treat the double edge and its enclosing edge on an
equal footing.

As any two ideal triangulations are related by a sequence of flips we observe
that the triangulations of any marked surface with boundary produce all quivers
in an associated mutation-equivalence class. In fact almost all finite mutation-
equivalence classes of quivers can be realised in this way.

Proposition 3.10. [FST08] Suppose that a mutation-finite quiver has more
than 2 vertices and is not mutation-equivalent to one of 11 exceptional quivers
listed in [FSTO08]. Then its mutation-equivalence class is the set of quivers
associated to a marked surface with boundary.

In order to make use of the categorification of this mutation via tilting in
CY3 triangulated categories outlined in Chapter 2 it is necessary to endow the
quivers Q(7) with a non-degenerate potential. With the exception of a finite
number of marked surfaces with boundary this has been achieved by work of
Labardini-Fragoso.

Theorem 3.11. Suppose that (S, M) is not a closed genus zero surface with
fewer than six punctures. There exists a non-degenerate Jacobi-finite quiver with
potential associated to an ideal triangulation T of (S, M) whose reduced part has
the quiver Q(T).

If the ideal triangulation is non-degenerate the above quiver with potential
can be constructed as follows:

e The quiver @ has arrows given by inscribing a clockwise-oriented triangle
inside each face A of the triangulation and removing those incident to the
boundary.

e The potential W is given by the sum

W=> Wa=> W,
A P
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where Wa and W, are the clockwise and anticlockwise oriented cycles
of the quiver @) contained in the face A and surrounding the puncture p
respectively.

We observe that the quiver @ is the same as the quiver Q(7) provided that
it contains no 2-cycles, which can arise if there are only two edges of the tri-
angulation which are incident to a given puncture p. In this case there is a
quadratic term W, in the potential W so that the reduced quiver is equal to
Q(7). The non-degeneracy of the potential follows from showing that the quiver
with potential associated to the flip of a triangulation is equal to the mutation
of the quiver with potential at the corresponding vertex.

As mutation of quivers with potential is categorified via tilting of hearts in
the CY3 categories Dy w, we deduce that Dg w depends only on the mutation-
equivalence class of (@, W) for (almost all) finite mutation classes. Moreover
we can use the relation to triangulations of marked surfaces with boundary to
study the autoequivalence group Aut*(Dg w) for (almost all) mutation-finite
quivers with potential. Indeed two hearts are related by an autoequivalence of
Dg.w if and only if they have the same quiver [GLFS13, Theorem 1.4], which
occurs (with the exception of finitely many marked surfaces with boundary) if
and only if they define the same triangulation [BS13, Proposition 8.5].

Bridgeland and Smith use the relation to the theory of cluster algebras to
compute the group Aut®(Dg w). Indeed the quotient of the set of reachable
hearts H by the action of the braid group Br(Q) by spherical twists is the set
of clusters C'. King and Pressland show that the automorphisms of the M,,-
set C' which preserve the quiver () is isomorphic to the group of direct cluster
automorphisms. In the case of a quiver associated to a triangulation of a marked
surface (S, M) with boundary, this is known to be an extension of the mapping
class group MCG(S, M).

Theorem 3.12. [BS13, Thm 9.9] Suppose that (S, M) is an amenable marked
surface with boundary in the sense of [BS13, Definition 9.3], i.e. it does not
belong to a finite list of exceptional cases. Let (Q, W) be a quiver with potential
associated to an ideal triangulation of the marked surface with boundary (S, M).
There is a short exact sequence

1 — Sph*(Dg.w) — Aut*(Dg.w) — MCCGE(S, M) — 1

where MCGi(S, M) is the signed mapping class group: the semi-direct product
of the usual mapping class group MCG(S, M) acting on the group ®,Zo via its
action on the set of punctures.

Remark 3.13. The extension MCGi(S7 M) of the mapping class by a permu-
tation group in two letters at each puncture is natural in the context of tagged
triangulations. Indeed a tagged triangulation may be viewed as an equivalence
class of signed triangulations consisting of the data of a ideal triangulation to-
gether with a choice of sign at each puncture. Two signed triangulations are
equivalent if they differ by changing the sign at punctures contained in self-
folded triangles [BS13, Lemma 8.2], which may be thought of as exchanging the
role of the double edge and the edge which encloses it.

Remark 3.14. King and Pressland [KP13, Corollary 7.3] show that for a mutation-
finite quiver ), the automorphisms of C which preserve the quiver @) are a sub-
group of index 2 in Autyy, (C). The full group of automorphisms Aut,y, (C) is
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isomorphic to the group of indirect cluster transformations which preserve the
quiver up to reversing the orientation of all its arrows. It is isomorphic to the
extended signed mapping class group of (S, M) whose elements are the isotopy
classes of (not necessarily orientation-preserving) diffeomorphisms of (S, M) to-
gether with a choice of sign at each puncture.

Correspondingly one could consider Aut*(Dg ) as an index two subgroup
of the group of (anti-)autoequivalences of the category Dg w which in addi-
tion contains equivalences Dg w — Dgor wor where (Q°P, W°P) is the opposite
quiver with potential obtained by reversing all arrows. An anti-autoequivalence
acts as a reflection on N(Dg,w) and by —1 on the Euler form of Dg w. This
point of view is sometimes helpful in considering the autoequivalences of the
Painlevé quivers as in Chapter 2.

3.2 Trajectories of quadratic differentials

In this section we consider the stratum of the space of meromorphic quadratic
differentials on the natural compactification C' of the marked surface with bound-
ary (S, M) having poles specified by the marking M and only simple zeroes. We
show how the trajectories of a generic quadratic differential on C' in this stratum
define an ideal triangulation of the associated marked bordered surface.

A holomorphic quadratic differential on a Riemann surface is a section of
the second tensor power of its canonical line bundle. Holomorphic quadratic
differentials on Riemann surfaces are much studied objects for, by Serre duality,
they define cotangent vectors to the moduli space of complex structures on
the underlying smooth surface. In this thesis we will consider meromorphic
quadratic differentials with fixed orders of poles at specified marked points of
the Riemann surface.

More precisely we will consider smooth oriented surfaces C' endowed with an
integer-weighted marking P: a collection of points p; € C together with positive
integers m; € N. The data of a meromorphic quadratic differential on (C, P)
will include a choice of complex structure on the surface C' with the marked
points p;. Having chosen such a complex structure it will be convenient to let P
denote the effective divisor ZZ m;p; on the Riemann surface which we continue
to denote by the letter C.

Definition 3.15. A meromorphic quadratic differential v on (C, P) is a pair
of a complex structure on (C,P) together with a holomorphic section u €
HO(C,KE*(P)).

Viewing the set of meromorphic quadratic differentials on (C, P) as a vector
bundle over the moduli space of complex structures Mc, p on the pair (C, P),
it has the structure of a complex orbifold of dimension

dim M¢ p + dim H(C,KE*(P)) = (3g(C) — 3+ |P]) + (3g(C) — 3 + deg(P))
=69(C) — 6+ |P| + deg(P)

This space is stratified by the orders of the zeroes and poles of the mero-
morphic quadratic differential on (C, P). We will be interested in the unique
top dimensional stratum consisting of meromorphic quadratic differentials on C'
with poles of order precisely m; at the marked points p; and simple zeroes. It is
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known that the top-dimensional stratum is connected by [KZ03| and it inherits
the orbifold structure defined above.

Definition 3.16. The complex orbifold Quad(C, P) is the top-dimensional stra-
tum of the space of meromorphic quadratic differentials on (C, P), for which the
section u € HO(C,KS?(P)) has only simple zeroes which are disjoint from the
set of marked points P.

We now associate to a marked surface with boundary (S, M) a pair (C, P)
for which quadratic differentials in the stratum Quad(C, P) will be used to
construct ideal triangulations of (S, M). We note that all points in P have
weight at least two, so that the quadratic differentials in Quad(C, P) never have
any simple poles.

Definition 3.17. The smooth oriented surface C' with integer-weighted mark-
ing P associated with a marked surface with boundary (S, M) is the compact-
ification of S obtained by contracting each boundary component to a point,
together with the weighted marking consisting of:

e The punctures of (S, M) with weight two.

e The points of C corresponding to the boundary components S with weight
two plus the number of marked points on the corresponding boundary
component.

Our goal is to construct a triangulation of the marked surface (S, M) with
boundary from a generic quadratic differential in the stratum Quad(C, P). Any
meromorphic quadratic differential u on C' determines a Riemannian metric on
C away from its zeroes and poles by considering the absolute value of the bilinear
form u : TC ® TC — C. Geodesics for this metric necessarily have a constant
phase with respect to the quadratic differential w.

Proposition 3.18. A trajectory of a meromorphic quadratic differential u on
C' is a mazimal horizontal geodesic v : (0,1) — C\P with respect to the metric
defined by u on the complement of its zeroes and poles on C.

We call the foliation of the surface C by trajectories the horizontal foliation
of the meromorphic quadratic differential v on C. It is regular away from the
zeroes and poles of the quadratic differential on whose complement the induced
metric is defined. Some motivation for considering the stratum of quadratic
differentials Quad(C, P) on C associated to (S, M) is provided by considering
the local structure of the trajectories at these critical points.

Proposition 3.19. [BS13, Section 3.53] Suppose that u is a meromorphic quadratic
differential on C' with a zero or pole at p and let z be a local coordinate centred
at p. The quadratic differential u has the form

dz®?

Z’I’L

h(z)

for some holomorphic function h and integer n given by the order of vanishing
of u at p, so that u has a zero or pole of order |n| according to whether n is
negative or positive. Then the horizontal foliation of u at p has the following
properties.
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n < 2 There are 2 —n trajectories of u incident to p whose asymptotic directions
differ by multiples of i—ﬂn

n =2 There are either no trajectories incident to p or infinitely many according
to whether h(0) is real or not.

n > 2 There are infinitely many trajectories incident to p along n—2 asymptotic
directions whose angles differ by %

Recall that a boundary component of a marked surface with boundary
(S, M) gives rise to a point p in the associated pair (C, P) with weight m > 2.
Moreover the number of marked points on the boundary component is equal
to the number of asymptotic directions of trajectories incident to p identified
in the above Proposition. In particular we can draw the horizontal foliation of
a quadratic differential u € Quad(C, P) on the marked surface with boundary
(S, M). We draw each trajectory with endpoint a pole of order greater than two
being drawn as incident to the marked point on the corresponding boundary
component associated to its asymptotic direction.

For meromorphic quadratic differentials v € Quad(C, P) belonging to the
stratum associated to a marked surface with boundary (S, M) the only critical
points of the foliation belonging to the first case of the Proposition are the
simple zeroes, for there are no simple poles. The Proposition shows that there
are precisely three trajectories of the quadratic differential v incident to each
simple zero. For a generic quadratic differential in Quad(C, P) we will see
that the zeroes are faces of a triangulation for which the three vertices are the
endpoints of the three trajectories leaving the zero.

From this point forward we assume that (C, P) arises from a marked surface
(S, M) with boundary so that the critical points of the horizontal foliation u €
Quad(C, P) are all simple poles or poles of order greater than two. We will say
that a trajectory - of a meromorphic quadratic differential v has a left or right
endpoint respectively if the limits of 7(¢) ast — 0 and ¢ — 1 exist. By definition
such endpoints must belong to the set of zeroes and poles of the meromorphic
quadratic differential w.

Definition 3.20. A trajectory of a meromorphic quadratic differential v €
Quad(C, P) is called

e finite if its endpoints are both zeroes.
e separating if its endpoints are a zero and a pole.
e infinite if its endpoints are both poles.

We note that finite trajectories have finite length with respect to the met-
ric induced by the quadratic differential u, whereas the separating and infinite
trajectories have infinite length, for poles of order greater than two are at in-
finite distance in the metric. A priori there is no reason to expect that both
endpoints of a given trajectory exist. Gaiotto, Moore and Neitzke [GMNO09,
Section 6.3] discovered the strong restriction on the global structure of the hor-
izontal foliation that in the absence of finite trajectories all trajectories have
both endpoints.
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Figure 3.3: The foliation of a non-degenerate face of the dimer model where o
is a marked point and X is a zero.

Proposition 3.21. [BS13, Lemma 3.1] Suppose a quadratic differential v €
Quad(C, P) has no finite trajectories. Then it has only infinite and separat-
ing trajectories, and the separating trajectories divide the marked surface with
boundary (S, M) into cells of two types:

e Horizontal strips: A quadrilateral of separating trajectories connecting a
pair of (possibly coincident) zeroes to a pair of distinct marked points as
in Figure 3.2.

e Half-planes: Bounded by two separating trajectories connecting a zero to
two consecutive marked points on a boundary component of S.

We will say that a quadratic differential is generic if it has no finite trajecto-
ries. This terminology is justified as the set of quadratic differentials with finite
trajectories is a real codimension 1 locus in Quad(C, P). Indeed a given finite
trajectory does not persist if the quadratic differential u is rotated to e*u for
small values of the angle 6. We will study the components of this real codimen-
sion 1 locus and the jumps the graph of separating trajectories can undergo in
the next section.

The graph of separating trajectories of a quadratic differential u € Quad(C, P)
on (S, M) is a bipartite graph with vertex set the set of zeroes of the quadratic
differential u together with the set of marked points M of the surface S. We
note that the horizontal strips only intersect the boundary of S in the set of
marked points M, whereas the half-planes contain a component of dS\M. It
is convenient to consider the subgraph which does not contain these boundary
faces.

Definition 3.22. The dimer model of a generic quadratic differential u €
Quad(C, P) is the bipartite graph on (S, M) given by the subgraph of its graph
of separating trajectories consisting of those edges contained in at least one
horizontal strip.

The faces of the dimer model are all quadrilaterals although it is possible
that the edges of a face might not all be distinct, for it is possible that the two
zeroes in a horizontal strip coincide. In this case we say that the horizontal strip
is self-folded.

Definition 3.23. The dimer model of a quadratic differential is degenerate if
it contains a self-folded face.

Using Euler’s formula it is easy to calculate the number of horizontal strips
of a generic quadratic differential v € Quad(C, P). It is remarkable that the
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number of faces of the dimer model is equal to the dimension of this stratum of
the space of quadratic differentials.

Lemma 3.24. [BS13, Lemma 3.2] The number of horizontal strips of a generic
quadratic differential u € Quad(C, P) is 6g(C) — 6 + |P| + deg(P).

We can define the so-called WKB triangulation of the surface S with vertices
in M by considering the graph whose edges are given by choosing a single infinite
trajectory inside each horizontal strip. The fact that the zeroes are trivalent
vertices of the graph of separating trajectories ensures that the faces of this
graph are indeed triangles. Moreover the fact that the number of edges of the
WKB triangulation is equal to the number of horizontal strips can be used to
show that it is in fact an ideal triangulation.

Proposition 3.25. [BS13, Lemma 10.1] The WKB triangulation of a generic
quadratic differential w € Quad(C, P) is an ideal triangulation of the marked
surface with boundary (S, M). Moreover it is degenerate if and only if the dimer
model of u is.

By Theorem 3.11 there is a quiver with potential (Q, W) associated to the
WKB triangulation. If the WKB triangulation and dimer model are non-
degenerate, the quiver () coincides with the dual graph to the dimer model
equipped with a natural orientation so that the cycles are oriented clockwise
around every zero and anti-clockwise around every puncture. The dual of the
whole graph of separating trajectories including its boundary faces is the quiver
obtained by inscribing a clockwise-oriented 3-cycle inside each face of the trian-
gulation.

One can also consider the dual graph to the WKB triangulation which we
shall call the ribbon graph. Its vertices are the zeroes of the quadratic differential
and two zeroes are connected by an edge if and only if there is a horizontal strip
which contains them both. There is a natural embedding of the ribbon graph
in the surface C' where each edge is mapped to the unique (non-horizontal)
geodesic of the metric induced by the quadratic differential contained in the
given horizontal strip. If the triangulation is non-degenerate then the ribbon
graph contains no loops.

In summary we have defined four graphs on the surface (S, M) associated
to a generic quadratic differential u € Quad(C, P): the dimer model, quiver,
(WKB) triangulation and ribbon graph. Moreover if the dimer model is non-
degenerate then they form two pairs of dual graphs in the rows of the following
diagram. We have also indicated on the dashed arrows the bijections between
vertices, edges and faces which exist between the corresponding graphs.

Dimer model ——  Quiver
» LS -7 +
T
_-"¢

|
el & e ~ le

Triangulation «—— Ribbon graph

3.3 Quadratic differentials as stability conditions

In this section we show how to interpret quadratic differentials as stability condi-
tions following Bridgeland and Smith [BS13]. We consider the wall-and-chamber
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structure on the stratum Quad(C, P) whose walls are given by the codimension
1 loci along which the graph of separating trajectories jumps. Each chamber
defines a quiver with potential (Q,W), and therefore a heart of the category
Dg.w up to an element of the autoequivalence group Aut®(Dg w). Given a
u € Quad(C, P) the lengths and phases of the geodesic embedding of the edges
of the ribbon graph define a stability condition up to autoequivalence which is
supported on the corresponding heart.

We have seen in the previous section that the number of horizontal strips
of a generic quadratic differential v € Quad(C, P) is equal to the dimension
of this stratum of meromorphic quadratic differentials as a complex orbifold.
In fact there is a system of local coordinates on Quad(C, P) associated to any
ideal triangulation of (S, M) given by the spans of each horizontal strip of the
corresponding dimer model.

Definition 3.26. The span of a horizontal strip is given by the integral

/e\/ﬁeh

along the geodesically-embedded edge e of the ribbon graph contained in the
horizontal strip of the square root of the quadratic differential u, where the sign
is chosen such that the width belongs to b

We can choose a local coordinate z on C' on which u restricted to the interior
of the horizontal strip has the canonical form dz®2. Moreover by transformations
of the form z — 42z + cst to which dz®? is insensitive we can arrange that the
two zeros contained in the boundary of the horizontal strip occur at z = {0, w}
where w € b is the span of the horizontal strip. Bridgeland and Smith [BS13,
Proposition 4.9] show how to construct a quadratic differential v € Quad(C, P)
with a given dimer model and arbitrary spans of the horizontal strips.

As the imaginary part of the span of a horizontal strip goes to zero, the hor-
izontal strip degenerates onto the line &(z) = 0 whose span necessarily becomes
a finite trajectory as the two zeroes cannot coincide. This finite trajectory con-
nects the two zeroes which are the endpoints of the edge e of the ribbon graph
contained in the degenerating horizontal strip. The non-generic quadratic dif-
ferentials containing a finite trajectory connecting a pair of zeroes belong to the
real codimension 1 locus in Quad(C, P) given by the condition

/e\/z]e]R

Gaiotto, Moore and Neitzke [GMNOQ9, Section 6.6] classify the real codi-
mension 1 components of the locus of non-generic quadratic differentials in the
stratum Quad(C, P) into three types of wall: flips, pops and juggles. If the
triangulation of a generic u € Quad(C, P) is non-degenerate then the wall cor-
responding to the above degeneration belongs to the class of flips. It is so-called
because generic quadratic differentials on the other side of the wall have triangu-
lations which differ by a flip in the edge contained in the degenerating horizontal
strip.

In the degenerate case we must also consider pop walls where a self-folded
horizontal strip degenerates to a finite trajectory which is a loop e from the
unique zero of the horizontal strip to itself. The quadratic differentials on both
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Dimer model Quiver  Triangulation Ribbon graph
Urban renewal Mutation Flip Whitehead move

Table 3.1: Jumps in the four graphs of a generic quadratic differential associated
to a flip wall in Quad(C, P)

sides of a pop wall define the same degenerate WKB triangulation. Indeed
we have already observed in Remark 3.9 that the flip of the double edge of a
self-folded triangle does not change the ideal triangulation.

Any point on a juggle wall contains an open neighbourhood which contains
infinitely many flip walls. Moreover Bridgeland and Smith show that removing
the set of juggle walls from Quad(C, P) does not disconnect the space. In
particular the flip walls define a wall-and-chamber structure on the connected
dense open subset of Quad(C, P) given by the complement of the juggle walls.
Within each chamber the generic quadratic differentials define the same WKB
triangulation which undergoes a flip on passing through any of its walls. The
jump in the other graphs defined by the quadratic differential is given in Table
3.1.

Bridgeland and Smith further show that a quadratic differential u € Quad(C, P)
defines a stability condition in the distinguished connected component Stab™(Dg w )
up to an element of the autoequivalence group Aut*(Dg,w). The chambers
in Quad(C,P) are labelled by the quivers with potential in the mutation-
equivalence class of (Q, W) and so define a heart of Dg w up to an autoequiv-
alence. The spans of the horizontal strips of the quadratic differential define a
central charge, associating to each vertex of the quiver the number

/e\/ﬂeb

Theorem 3.27. [BS13, Theorem 1.3] Suppose that (Q, W) is a quiver with
potential associated to the marked surface with boundary (S, M). Then there is
an isomorphism of orbifolds

Quad(S, M) — Stab*(Dg.w)/ Aut* (Do)

where Quad(S, M) is the completion of the stratum Quad(C, P) by admitting
quadratic differentials with either simple or double poles at the punctures of
(5, M).

Bridgeland and Smith further describe the set of semistable objects of the
category Do w with respect to the stability condition associated to a generic
quadratic differential v € Quad(C,P) C Quad(S, M). The stable objects in
Dg,w of a given phase 6 correspond to the finite length geodesics of phase 6
of the metric on C\ P induced by the quadratic differential v whose endpoints
are zeroes of u. This can be viewed as a mathematical formulation of the
string-theoretic description of the BPS states of the gauge theories of class S in
[GMNOQ9).

As with the simplest gauge theories of this class considered by Seiberg and
Witten, it is convenient to encode the lengths and phases of the geodesics in
terms of the periods of a meromorphic differential on an auxiliary Riemann
surface.
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Definition 3.28. The spectral curve ¥, of a quadratic differential u € Quad(.S, M)
is the double cover ¥, — C

W = u} € Ke([L])

where [£] =3, [%]p;.

The twisting of the cotangent bundle by (%1 ensures that the function y has
only simple zeroes on ¥, located at the branch points of the double cover given
by the simple zeroes and odd-order poles of u. In particular the spectral curves
¥, are smooth and topologically equivalent for u € Quad(S, M).

There is a natural decomposition of the homology of the spectral curve X
into the positive and negative eigenspaces of the induced action of the involution
¢t : 2 — X which exchanges the two sheets of the spectral curve

H\(2,Z) = Hi(X,2)" @ Hi(3,Z)

The edges e of the ribbon graph of a quadratic differential v € Quad(C, P)
lift to define 1-cycles 7. on the spectral curve ¥ which are anti-invariant with
respect to the involution ¢. The edges of the ribbon graph are in bijection
with the vertices of the associated quiver with potential (Q, W) which label the
simple objects S, of the standard heart of the category Dg w. We can therefore
define a map K(Dg,w) — H1(X,Z)~ which sends the basis of the Grothendieck
group K (Dg,w), given by the classes of the simple objects [S.] of the standard
heart, to the homology classes [7.].

One can show that this map is independent of the bases determined by
the choice of quadratic differential and respects the two antisymmetric bilinear
forms given by the Euler form on Dg w and the non-degenerate intersection
form on H{(3,Z)".

Proposition 3.29. The map K(Dgw) — Hi1(X,Z)~ factors through the nu-
merical Grothendieck group N(Dgw) inducing an isomorphism N(Dgw) —
Hi(S,Z)".

There is a canonical 1-form on the spectral curve X, obtained by restriction
of the tautological 1-form on the twisted cotangent bundle K¢ ([5]) of C. This
1-form on ¥, has the propery that its square agrees with the pullback of the
quadratic differential v along the double cover ¥, — C.

Definition 3.30. The Seiberg-Witten differential A, on the spectral curve ¥,
is the meromorphic 1-form defined by /u.

We note that the integrals of the Seiberg-Witten differential \,, = \/u around
the cycles 7. of ¥, are equal to the spans of the corresponding horizontal strips.
Thus a quadratic differential defines a numerical stability condition if and only
if its Seiberg-Witten differential has zero residues, so that the period map

/M;m@zr%c

is well-defined.

Definition 3.31. A quadratic differential u € Quad(S, M) is residueless if its
Seiberg-Witten differential A, has zero residues.
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We will denote by Quad®(C,P) C Quad(S, M) the subset of residueless
quadratic differentials. As the residue of the Seiberg-Witten differential A\, has
opposite residues at the pre-images of the poles of even order of the quadratic
differential u, the dimension of Quad®(C, P) is

69(C) — 6 + | P|oga + deg(P)

In Chapter 1 we will study the spaces of residueless quadratic differentials
of dimension two.
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Chapter 4

Picard-Fuchs equations of
families of elliptic curves

4.1 Differential equations

In this section we consider linear homogeneous second-order differential equa-
tions on the complex plane with only regular singularities. At a non-singular
point there exists a neighbourhood in which the solutions of the differential
equation are analytic. A singular point is regular if the solutions grow at most
polynomially in a neighbourhood of the singular point with rate of growth speci-
fied by the so-called characteristic exponents. We study the relation between the
characteristic exponents, the monodromy of the solutions and their behaviour
under pullback by a rational map.

Definition 4.1. A second-order linear homogeneous differential equation in the
complex plane is an equation of the form
4> f df

for some meromorphic functions r and s of ¢.

A point ty in the complex plane at which the functions r and s do not
have poles is called a non-singular point of the differential equation. We can
find power series solutions of the differential equation with arbitrary f(to) and
f/(to) which converge in a neighbourhood of ¢y to holomorphic functions. Such
solutions can be analytically continued into at least the complement of the finite
set S of singular points in P} where at least one of r and s has a pole.

A general solution to the differential equation in P}\S can be written as a
linear combination of a pair of solutions f; and f; if the vectors

( J1(to) > < Jf2(to) >

fi(to) f3(to)

are linearly independent for some and hence all ¢, € P}\S. This is equivalent
to the non-vanishing of the Wronskian

W(f1, f2) _det< 2 jccz )

37
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on PI\S. A pair {fi, f2} satisfying this condition is called a fundamental set of
solutions of the differential equation and provides a basis for the rank 2 local
system of solutions to the differential equation over P1\S.

Definition 4.2. Given a fundamental set of solutions to a second-order differ-
ential equation, the monodromy matrix at a singular point ¢y € S is the matrix
M (tg) representing the monodromy around tg in the local system of solutions
with respect to this basis.

A regular singularity of the differential equation is characterised by the fact
that the solutions are bounded by some fixed power of the local coordinate. In
order to give a definition of regular singularity based solely on the differential
equation itself, it is convenient to rewrite the differential equation using the
differential operator 1¥; = t%.

Pf+pdf+qf =0

We note that this differential operator has the advantage that it is invariant
under the transformation ¢ — 1/t and so we obtain a uniform characterisation
which includes the point at infinity.

Definition 4.3. A point ty € S is regular if both coefficients p and ¢ are analytic
at to.

The asymptotic behaviour of a fundamental set of solutions at a singular
point tq is governed by the characteristic exponents. The second-order differen-
tial equation can be rewritten in matrix form

()= (o) ()

At a regular singular point ¢y we can evaluate the matrix A of coefficients at ¢
to obtain a matrix with complex entries called the residue matrix at tg.

Definition 4.4. The characteristic exponents at a regular singular point to € S
are the eigenvalues of the residue matrix A(ty).

The characteristic exponents A; and Ao determine the growth rates of a
fundamental set of solutions at tg. Indeed, as in e.g. [Yos87, Section 2.5], given
a characteristic exponent A\ one can postulate a solution of the form

(t —to) Z a;(t — to)’'
i=0

As X is an eigenvalue of the residue matrix A(¢g), this satisfies the differential
equation up to terms of higher order than A in the local coordinate ¢t — ¢y for
arbitrary ag. The coefficients a; satisfy a linear recursion which can be solved
to determine the remaining coefficients uniquely.

The solutions of the above form associated to the two characteristic expo-
nents are linearly independent provided A\; and Ay do not differ by an integer.
In the so-called non-resonant case where the monodromy matrix M (tg) and the
matrix differential operator ¥ — A can be diagonalised, a fundamental set of
solutions is given by

(t —to) () (t — to) 2 hy(2)
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for some holomorphic functions h;(¢) which do not vanish at ¢g.

In the resonant case where M (ty) is not diagonalisable, the matrix differen-
tial equation cannot necessarily be diagonalised in a neighbourhood of ¢y as the
two power series solutions are not necessarily linearly independent. In this case
a fundamental set of solutions has the form

(t —to)  ha(t)log(t —to)  (t —to)**ha(t)

where )\1 2 AQ.

We can also study the monodromy in the local system of solutions at a
regular singular point t; € S. Define the monodromy matrix M (ty) to be
the matrix associated with the change in basis in the local system given by
transporting the fundamental set of solutions around .

Proposition 4.5. [Y0s87, Section 9.1] The eigenvalues of the monodromy oper-
ator M (to) are the exponentials €>™* and e®™* 2 of the characteristic exponents
()\1 } )\2)

We note that the eigenvalues of the monodromy matrix are equal precisely
when the characteristic exponents differ by an integer. In this case there is
resonance if and only if the monodromy matrix cannot be diagonalised.

In the following chapters we will often pull back a differential equation along
a map PL — P}. The characteristic exponents at a point ug in the preimage of
a singular point to can be computed from the degree of ramification at ug. *

Lemma 4.6. [Dor01, Lemma 4.2] Suppose f : PL — P} has degree of ram-
ification d at a point ug in the preimage of a reqular singular point ty of a
differential equation on P}. Then ug is a regular singular point of the pulled-
back equation and the characteristic exponents at ug are obtained by multiplying
the characteristic exponents of the original equation by d.

Via Proposition 4.5 this agrees with the monodromy of the pullback of the
local system of solutions to the differential equation, for the monodromy at ug
is the dth power of the monodromy at tg. The pulled-back differential equation
has additional singularities at points w in the preimage of the non-singular locus
P}\S of the original differential equation with order of ramification greater than
1. Such singular points are necessarily apparent singular points around which
the monodromy is the identity.

It is useful to think of a non-singular point tq € P!\ S as having characteristic
exponents 0 and 1 as one can check that the differential equation has matrix

form
O 19(19ff>:((t20)2r (ttj)sﬂ)(ﬁff)

for some 7 and s holomorphic at tg. The eigenvalues of the coefficient matrix
evaluated at ¢y are then 0 and 1. Adopting this convention, we can apply Lemma
4.6 equally to the apparent singularities in the preimage of a non-singular point,
which thus have characteristic exponents 0 and d.

It is convenient to encode all of the data concerning the singularities of a
differential equation with only regular singularities in the so-called Riemann
scheme. This is a table listing the points ¢(*) in the singular set S together with

their characteristic exponents )\(11‘)7 )\g)

1Qur convention is that the degree of ramification of the map = — z® at the origin is d as
opposed to d — 1 which we call the degree of excess ramification.
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t @)
A AR A
AT AP Al

Table 4.1: The Riemann scheme of a second-order differential equation with
regular singularities

The criterion for the existence of a differential equation with a given Riemann
scheme is the Fuchs identity concerning the sum of the characteristic exponents.
We notice that we can add any number of non-singular points with characteristic
exponents 0 and 1 to the Riemann scheme without violating the identity.

Proposition 4.7. [Yos87, Section 2.6] The table 4.1 is the Riemann scheme of
a second-order linear homogeneous differential equation with only regular singu-
larities if and only if the Fuchs identity

n

Y+ A =n -2
=1

is satisfied.

In general there are continuous families of differential equations with a given
Riemann scheme. In the above situation the differential equation depends ad-
ditionally on n — 3 so-called accessory parameters. We note the special case
n = 3 where the differential equation is determined uniquely by its Riemann
scheme. We shall study second-order differential equations with exactly three
regular singularities in more detail in Section 4.4.

4.2 Elliptic surfaces

In this section we study families of elliptic curves over the projective line P*.
Examples will be provided by spectral curves of one-dimensional families of
quadratic differentials from the previous chapter. The j-invariant of a fibre of
such a surface yields a j-map from the projective line to itself which determines
the elliptic surface up to a so-called quadratic twist. We show how to determine
the singular fibres of an elliptic surface using only the branching of the j-map
and quadratic twists.

By a family of elliptic curves over the projective line, we mean a morphism
E — P! whose generic fibre is a smooth elliptic curve over the field of rational
functions in one variable. The total space of such a family is known in the
literature as a Jacobian elliptic surface over the projective line, which we call
simply an elliptic surface. In particular there is a section of the morphism
E — P! given by the distinguished point o of the generic fibre.

The birational class of an elliptic surface determines and is determined by its
generic fibre. Within each birational class there is, up to isomorphism respecting
the fibration, a unique minimal model [Mir90, Cor II1.1.3] with the following
relative minimality property.

Definition 4.8. An elliptic surface £ — P! is minimal if it contains no (—1)-
curves in its fibres.
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In particular there is a bijection between isomorphism classes of minimal
elliptic surfaces and elliptic curves over the field of rational functions.

In order to understand when an elliptic surface is minimal we globalise the
Weierstrass presentation of an elliptic curve.

Proposition 4.9. [Mir90, Sect I1.2] Given an elliptic curve (E,0) over a field
of characteristic zero there exist sections

z € H(Og(20)) y € H°(Og(30)) a € HY(Og(40)) bec H°(Og(60))

satisfying the Weierstrass equation

V=2 4az+0b
Moreover such sections are unique up to multiplication by the second, third,
fourth and sizth power of a unit of the base field.

An elliptic curve (F,0) in Weierstrass form is singular if and only if its
discriminant
A(E) = 4a® + 270*

vanishes. We note that this condition is independent of the choice of Weierstrass
form as the discriminants of two such choices differ by multiplication by the
twelfth power of a unit.

On an elliptic surface the Weierstrass representations of the individual fibres
can be combined into a global Weierstrass representation as explained in [Mir90,
Sect IL.5]. One can construct sections of tensor powers of the so-called funda-
mental line bundle L, the dual of the normal bundle to the section o, which
specialise to the sections y, z, @ and b on each fibre. Such sections are unique
up to multiplication by a non-zero regular function on the base P!, namely a
non-zero complex number.

In particular the discriminant A defines a holomorphic section of L&'? and
so has degree twelve times the degree of the line bundle L. The vanishing locus
of the discriminant A is precisely the set of points over which singular fibres
of the elliptic surface lie. Contracting a (—1)-curve in a fibre E,, of the elliptic
surface E — P! has the effect of twisting the fundamental line bundle L by
O(—p) and decreasing the order of vanishing of the discriminant section A at p
by twelve.

Conversely given an elliptic curve E over the function field C(t) of P}, there
exists a unique relatively minimal compactification of E to a minimal elliptic
surface E — P}. This compactification has the property that the degree of the
fundamental line bundle is minimal amongst all possible compactifications.

Given an elliptic surface E — P} the global Weierstrass construction yields
a Weierstrass family W — P} given by the equation

y? = 2%+ a(t)z + b(t)

However the two surfaces E and W are not in general isomorphic. The Weier-
strass fibration is by irreducible elliptic curves, whereas the original elliptic
surface may have reducible fibres. On the other hand, whereas the original el-
liptic surface E is supposed to be smooth, the surface W may have singularities.
In fact W is obtained from E by contracting all components of the reducible
fibres which do not meet the section o.
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The following proposition describes various equivalent characterisations of
minimality of an elliptic surface E — P*.

Proposition 4.10. [Mir90, Sect II1.3] The following are equivalent:
1. The elliptic surface E — P! is minimal.

2. The degree of the fundamental line bundle L is minimal amongst all bira-
tionally equivalent elliptic surfaces.

3. The associated Weierstrass family W — P! has only Kleinian singulari-
ties.

The discriminant of an elliptic surface whose fundamental line bundle is
of degree zero is a (non-vanishing) constant function and so is a product of
an elliptic curve and the projective line. We will primarily be interested in
the next simplest case, that of minimal elliptic surfaces with fundamental line
bundle of degree 1. Such an elliptic surface is a rational elliptic surface and can
be obtained by blowing up nine possibly infinitely near points in the projective
plane [Duil0, Thm 9.1.3].

The possible singular fibres of a minimal elliptic surface have been classified
by Kodaira. As suggested by the above theorem, this resembles an ADE clas-
sification, although there is some repetition for there are two non-isomorphic
irreducible singular curves with a node and cusp respectively. The dual graph
of the components of any singular fibre intersect is of affine type ADE, with
the extending affine vertex corresponding to the unique component meeting the
section.

The singular fibres of a minimal elliptic surface are determined by the mon-
odromy in the local system given by the relative integer first homology of E. As a
smooth elliptic curve is topologically a torus, the first homology H;(FE,Z) = 72
is a rank 2 unimodular lattice I' with a skew-symmetric bilinear form given
by Poincaré duality. The monodromy around a singular fibre gives a conju-
gacy class of the automorphism group SL(2,Z) of the lattice I, which can be
represented by a matrix with determinant one.

In Table 4.2 we give Kodaira’s notation for each type of singular fibre
[Kod63], along with the ADE type, the order of vanishing of the discriminant
and a representative of the conjugacy class of the monodromy in I'. We note
that the singular fibres come in *-pairs, listed above in the same columns. The
monodromy around the two singular fibres differs by —1I, the negative of the
identity matrix, and so in particular are equal in PSL(2,7Z). It is convenient to
denote a smooth fibre by Ip, so that the singular fibre I§j with monodromy —I
also has a #-partner.

The singular fibres can be grouped into two types according to whether the
contraction of the components not meeting the section o is a nodal or cuspi-
dal curve on which the group law degenerates to the action of an additive or
multiplicative group respectively. The additive singular fibres are I%*) and have
monodromy operator of infinite order. The remaining multiplicative singular
fibres of types II®), III™) TV have finite-order monodromy.

The isomorphism class of an elliptic curve is determined by its J-invariant

J(E) = 4a®/A
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(L) (=1} i 11 v
A, Ap Aq Ay

n 2 3 4

1 n 0 1 0 1 -1 1
1) (1) (%) (20)
(1) (n>0) v * I
Dty Es E; Eg
n+6 8 9 10

(v ) (P ) G

Table 4.2: Kodaira’s list of singular fibres

The definition is independent of the Weierstrass representation as both the
numerator and denominator scale by the twelfth power of a unit. An elliptic
curve in Weierstrass form is singular precisely when the discriminant is zero, so
irreducible singular elliptic curves satisfy J(F) = co.

The affine line is a coarse moduli space of (smooth) elliptic curves but there is
no universal family lying over it. Indeed any elliptic curve has an automorphism
of order two which acts on the section y by multiplication by —1, exchanging
the two sheets of the double cover E — Pl given by the Weierstrass equation.

Furthermore there are two isomorphism classes of elliptic curves with addi-
tional symmetry represented by the following Weierstrass equations

y2:Z3+Z y2:z3+1

The former has J-invariant 0 and automorphism group of order four; the latter
has J-invariant 1 and automorphism group of order six.

Throughout the rest of the thesis we find it more convenient to work with
a different coordinate j on the projective line ]P’IJ obtained by performing the
fractional-linear transformation

. J B 4a3
T 21T o

which is a more immediate invariant of an elliptic curve written in Weierstrass
form. The special elliptic curves with automorphism group of order four and
six occur at 5 = oo and j = 0, and the singular irreducible elliptic curves have
j=1

Definition 4.11. The j-map of an elliptic surface £ — P} is the map P} — IP’}
sending a point ¢ to the value of the j-invariant of the fibre Ej.

Although there is no universal family of elliptic curves over P}\{l}, there
are elliptic surfaces with identity j-map which have (reducible) singular fibres
over the special points co and 0.

Example 4.12. Consider the following “universal Weierstrass family” of elliptic
curves over C;
=23 —3j2+25
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It clearly has trivial j-map, and discriminant
A =1085%(5 — 1)

It can be compactified to a minimal Weierstrass family whose discriminant van-
ishes to order 12—2—1 =9 at j = co. Resolving the singularities at j = oo and
j = 0 we obtain a rational elliptic surface U — P! with precisely three singular
fibres. Over j = 1 the surface U has an additive singular fibre already present in
the Weierstrass family which in Kodaira’s list is denoted by I;. The monodromy
around this fibre is given by the unipotent matrix given by the Picard-Lefschetz
formula for the monodromy in terms of the vanishing cycle

(o 1)

The multiplicative singular fibres around 7 = oo and j = 0 of types III* and
type II respectively have monodromy which generates the automorphism group
of the special elliptic curves with these j-invariants

(5e) (40)

Given a family of elliptic curves E — P} and a rational map f : P — P} we
can consider the pulled back family f*E — PL. The fundamental line bundle
of f*E is L®? where L is the fundamental line bundle of E and d is the degree
of the map f. Similarly the order of vanishing of the discriminant section at a
point ug in PL is obtained by multiplying the degree of ramification of f at ug
by the order of vanishing of the discriminant ¢ty = f(uo) at its image in P}.

The monodromy in the pullback f*I" of the local system of first homology
T" is also determined by the branching of the map f. The conjugacy class in
SL(2,Z) giving the monodromy around wuy is the dth power of the conjugacy class
corresponding to the monodromy at tg = f(ug). As the monodromy determines
the type of singular fibre in a minimal elliptic surface, the singular fibres of the
minimal model (f*E)™") — P! can be computed from the branching of f.

We remark that the pull-back of a minimal elliptic surface is not necessarily
again minimal. The fibre at a point in the preimage of an I, or I} fibre with
ramification degree v is indeed of type I,, or I}, respectively. However the
multiplicative singular fibres all have monodromy of finite-order and so the
pulled-back surface can have trivial monodromy at a point in the preimage.
Such a surface cannot be minimal as the discriminant section does not vanish
at a smooth fibre.

Passing to the minimal model of f*FE by contracting any (—1)-curves in the
fibres reduces the order of vanishing of the discriminant section by a multiple
of twelve. Supposing the multiplicative singular fibre at a point p in F has type
given in the table below, the type of the singular fibre at a point in its preimage
with ramification degree v is that corresponding to v ord,(A) modulo twelve.

ord(A) (mod12) |0 2 4 6 8 10
Fibre type I, II IV I IV® II*

ord(A) (mod 12) | 0 3 6 9
Fibre type | I, III Iy III*
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One can consider pulling back the “universal” family U — ]P’} along the j-
map of an elliptic surface E — P}. The pulled-back family has the same j-map
as F but is not necessarily birational to E. Indeed the j-map of an elliptic
surface E — P} is identical to the j-map of the corresponding Weierstrass
family. The j-map is clearly left unchanged by rescaling a and b by the second
and third power respectively of a rational function ¢ in t. The elliptic surface

y* =2 +a(t)q(t)’z + b(t)q(t)®

is birational to E — P} if and only if ¢ is a square in C(¢). Indeed Weierstrass
representations of the generic fibre are unique up to multiplication of a and b
by a fourth and sixth power of a rational function respectively.

Definition 4.13. Two elliptic surfaces differ by a quadratic twist by a rational
function ¢ if their generic fibres are isomorphic over at most a quadratic field
extension of the field of rational functions C(t).

Such a quadratic field extension is necessarily generated by the square root of
a rational function ¢q. Note that if ¢ is a square the field extension is trivial and
so the two elliptic surfaces are birational. In studying the birational class of the
resulting elliptic surface we may therefore assume that ¢ has only simple zeroes
and poles. Over C(t)(,/q) the elliptic curves with Weierstrass presentations

v =2"4+az+b y? =22+ faz + ¢%b

are isomorphic by rescaling the sections by the appropriate powers of /g and
so the corresponding elliptic surfaces differ by a quadratic twist. Conversely
if the generic fibres of two elliptic surfaces are isomorphic over quadratic field
extension of C(¢) then there exist Weierstrass presentations of the generic fibres
of the above form for some generator ¢ of the extension.

The above discussion gives the following characterisation of elliptic surfaces
with the same j-map.

Proposition 4.14. Two elliptic surfaces have the same j-map if and only if
they differ by a quadratic twist.

In particular we see that the “universal” family U — IP’; is universal up
to quadratic twists. We note that we have already seen how to compute the
singular fibres and monodromy of the pull-back j*U — ]P’Jl of the universal family
along the j-map of the elliptic surface. Therefore understanding the effect of
a quadratic twist on the singular fibres (or equivalently the monodromy) of an
elliptic surface would give an effective way of computing the singular fibres (or
monodromy) of an arbitrary elliptic surface.

Lemma 4.15. Suppose two minimal elliptic surfaces differ by a quadratic twist
by a rational function q. Then the local systems given by their relative first
homology T differ by the transformation (—I)°"%9). Equivalently, the fibres of
the elliptic surfaces differ by replacing a fibre with its *-partner wherever q has
a zero or pole.

An important corollary of this is that the image of the monodromy of an
elliptic surface under the natural map SL(2,Z) — PSL(2,Z) is determined by
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its j-map for quadratic twists only change the monodromy by powers of the
matrix —1.

As an example of the above ideas we study a family of elliptic curves as a
quadratic twist of a pullback of the “universal” family U — ]P’jl- along its j-map.

Example 4.16. Consider the Weierstrass family over C,
yr=2—3242

It has discriminant A = b? — 1 and has two nodal I; singular fibres at b = +1.
Its minimal completion is a rational elliptic surface ¥, — P; with a type IT*
singular fibre at oo.

The j-map of the surface ¥ — P} is given by j = b2, a degree two map
ramified to order two at b = 0 and b = co. The surface j*U — P} also has two
nodal I; singular fibres at b = £1, the preimages of j = 1. The unique point in
the j-map preimage of j = 0is b = oo, where 7*U has a singular fibre of type IV
as the discriminant vanishes to order 2 x 2 = 4. Similarly the minimal model of
j7*U has a singular fibre of type I at b = 0 as the discriminant of j*U vanishes
to order 2 x 9 = 18 there.

Thus we have a pair of elliptic surfaces ¥ and (*U )™ over IP’% with identical
j-map j = b? and singular fibres

b oo 1 -1 b o 0 1 -1
Sp | IIF L I (j*U)})Ilin v I I L

The two families differ by a quadratic twist by ¢ = b, which exchanges the
smooth fibre 3y with its x-partner If and the fibre of type II* at co with its
x-partner IV.

The two families U — ]P’Jl and ¥ — ]P% will serve as running examples in the
next section where we consider differential equations satisfied by the periods of
differentials on families of elliptic curves.

4.3 Picard-Fuchs equations

In this section we consider the Picard-Fuchs differential equation satisfied by
the periods of the holomorphic differential on families of elliptic curves over the
projective line. We see that the periods satisfy a second-order differential equa-
tion with respect to a generator of the function field with regular singularities
precisely at the points over which singular fibres lie. We show how to compute
the characteristic exponents of the Picard-Fuchs equations, which characterise
the asymptotic behaviour of solutions at the singular points, by understanding
how they change under pullback and quadratic twist.

We recall how the periods of a meromorphic residueless differential 1 on
a family of elliptic curves E — P} satisfy a second-order differential equa-
tion in ¢ with regular singularities. We will see that meromorphic residueless
differentials provide representatives of classes in the complex de Rham coho-
mology group H}r(E,C) of a smooth elliptic curve, which is isomorphic to
H'(E,C) = Hom(H,(E,Z),C) by taking their periods. The natural connection
in the holomorphic vector bundle with fibre H}p(E}),C) over P}\S induced by
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the local system H;(E,Z) extends with regular singularities over the singular
set.

The de Rham theorem asserts a quasi-isomorphism between the constant
sheaf Cx on a smooth manifold X and its de Rham complex (Q, d) of sheaves
of complex-valued differential forms with the exterior derivative. In other words,
defining the de Rham cohomology H;,(X) to be the hypercohomology with
respect to the de Rham complex, the map

Hp(X) — H'(X,C)

O'F—>/O'

given by evaluating the differential i-form o along codimension ¢ cycles is an
isomorphism.

On the other hand one can show that a residueless meromorphic 1-form
on a Riemann surface X differs from a complex valued 1-form by the exterior
derivative of a meromorphic function. This yields an isomorphism between
Hj,(X) and the vector space of residueless meromorphic differentials on X
modulo those which are exact, which is at the origin of the algebraic de Rham
theory. In the sequel we will we will be interested in representing cohomology
classes by meromorphic 1-forms.

We now consider a family of elliptic curves 7 : E — P} with singular set S.
The first higher direct image of the constant sheaf Cg defines a locally constant
sheaf of vector spaces on P!\S with fibre H!(E;,C). The induced connection
in the holomorphic vector bundle H over P} with fibre H}p(X) is known as the
Gauss-Manin connection. It will not extend as a holomorphic connection to the
whole of P! due to the monodromy in the relative cohomology bundle.

It is important that the Gauss-Manin connection extends with regular sin-
gularities over the singular set S, that is

Vou : H— Ho QR (logS)

Thus given a choice of extension of the holomorphic structure on H to the
whole of the projective line, we have a regular endomorphism of H obtained by
contracting Vs with the vector field (¢t — ¢9)0;—¢, for tg € S. In an analogous
way to a regular singularity of a differential equation, we can then define the
characteristic exponents of Vo) whose exponentials agree with the eigenvalues
of the monodromy of the connection.

We now consider the covariant derivatives of a section 7; of the relative coho-
mology bundle represented by a family of residueless meromorphic differentials
on the fibres Fy. As H'(E;,C) is a two-dimensional vector space, the vectors
e, Ve (t0r)(n:) and VZ,,(t0t)(n;) are linearly dependent in each fibre, which
is a two-dimensional vector space. We have three linearly dependent sections
of the holomorphic vector bundle H over P}\S which can be paired with a
homology class v € Hi(E,Z) to give linearly dependent functions

t N t 70 t
. dt |, dt? J,

over the function field C(¢). Thus the periods of 7 are solutions to a second-
order differential equation of the form

P +pif+q=0
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for some rational functions p and ¢ in ¢t. The Riemann bilinear relations show
that the periods of 7 with respect to a basis of the homology lattice I" have
non-vanishing Wronskian and so are a fundamental set of solutions for this
differential equation.

Definition 4.17. The Picard-Fuchs equation of a residueless abelian differential
n on a family of elliptic curves E — P} is the second-order linear homogeneous
differential equation satisfied by the periods of 7.

The regularity of the extension of the Gauss-Manin connection implies that
Picard-Fuchs equations have only regular singularities.

Proposition 4.18. The Picard-Fuchs equation of a residueless differential n on
a family E — P} has only regular singularities.

Proof. We can rewrite the Picard-Fuchs equation in the matrix form

()= (05 ) ()

vf qa p vf

The coefficient matrix agrees with the matrix of the endomorphism Vg (¢0;)
with respect to the basis {n, Vaar (t0:)n} of H. As the extension of Vs over

the singular points S has regular singularities, so the differential equation has
only regular singularities. O

There is a distinguished line H°(E,wg) C H'(E,C) spanned by the unique
non-zero holomorphic differential w on the elliptic curve E up to scale. In a
Weierstrass representation for F it is given by the expression

dz
w=—
Yy

For an elliptic surface E — P! this lifts to a section of the dual L* of the
fundamental line bundle which restricts to a non-vanishing holomorphic differ-
ential w; on each fibre. We call the Picard-Fuchs equation for the holomorphic
differential w on an elliptic surface E — P} simply the Picard-Fuchs equation.

We would like to compute the exponents of the Picard-Fuchs equation of
the families £ — P} of elliptic curves. Our strategy will be to pull back the
Picard-Fuchs equation of the “universal” family U — IP); along the j-map, using
Lemma 4.6 to compute the exponents of the Picard-Fuchs equations of the pull-
back family j*U — P}. This family is related to E — P} by a quadratic twist
whose effect on the exponents of the Picard-Fuchs equations is easy to compute.

To perform this programme it is necessary to understand the ramification
of the j-map. Over j = 1 the branching is determined by the singular fibre
over a point in the preimage; the ramification degree is n precisely when there
is a singular fibre of type I,, over the preimage. Over j = oo or j = 0 the
type of singular fibre, or equivalently the monodromy, determines the degree of
ramification only modulo 2 and 3 respectively, the orders in PSL(2,7Z) of the
monodromy operator of the universal family at these points. The j-map might
also be branched to arbitrary degree over the complement of {co0,0,1} which
cannot be detected by considering the monodromy.
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Definition 4.19. The j-map of a minimal elliptic surface £ — P} is minimally
ramified if it is branched only over {c0,0,1} and has degree of ramification at
singular points according to the singular fibre in the following table.

j | o | 0 |1
M/I0 I/5 | /v VT I/ | L,/T%
1 2 1 2 3 n

We observe that the Picard-Fuchs equation of an elliptic surface is an invari-
ant of its birational class and so we are free to work with the minimal model. In
this case Duistermaat has computed the exponents of the Picard-Fuchs equa-
tions at each type of singular fibre given the ramification degree of the j-map
at this point. We recall the special case below where the j-map is minimally
ramified.

Lemma 4.20. [Duil0, Lemma 6.2.38] Suppose the minimal elliptic surface
E — P} has minimally ramified j-map and ty € S does not belong to the support
of the divisor of the fundamental line bundle L. Then the exponents of the
Picard-Fuchs equation of E — P4 are determined by the type of singular fibre at
to according to the following table (c¢f Table 6.2.39 in [Duil0])

I, II I IV
o 1 1 1
6 4 3

1 1 1

0 -5 -1 —3
I IV I I

o1 J1 1

i 3 4 8

2 3 4 6

If a point tg € S belongs to the support of the divisor of the fundamental line
bundle L then the section w of L* viewed as a function on P} has a zero or pole
at tg. Thus if L = Opi(nty) then the exponents of the Picard-Fuchs equations
differ from those in the table by adding n to both exponents. If the j-map is not
minimally ramified then the exponents differ from those in the table by adding
the degree of excess ramification to the top exponent in the table.

Example 4.21. Consider the “universal” family of elliptic curves already con-
sidered in example 4.12 with singular fibres IIT*, II, I; at {o0,0,1}. Its j-map
is the identity and so is clearly minimally ramified and has fundamental line
bundle L = Op1(00).

The Riemann scheme of the Picard-Fuchs equation can thus be read off from
the table of Lemma 4.20, adding one to the exponents at oo where the section
w of L* = Op, (—o0) viewed as a function has a simple zero.

J|

ol O
O O =

1

6

el B

We note that this is a Riemann scheme of a second-order linear homogeneous
differential equation with regular singularities as the exponents sum to one and
so satisfy the Fuchs relation of Proposition 4.7. Furthermore as the differential
equation has precisely three singularities, there are no accessory parameters and
so the equation is determined by the Riemann scheme.
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Using the Picard-Fuchs equation for the “universal” family U — IP’} we want
to compute the Riemann scheme of an arbitrary elliptic surface by pulling back
along its j-map and performing a quadratic twist. It remains to understand
how performing a quadratic twist by the square root of a rational function ¢
changes the characteristic exponents.

Lemma 4.22. Suppose two elliptic surfaces differ by a quadratic twist by \/q.
Then the exponents at a point to € Pt differ by the addition of —% ordy, (q)-

Proof. The quadratic twist by ¢ rescales the section w of L* by the inverse of
V4 O

The number of singular points of the Picard-Fuchs equation can be changed
by a quadratic twist. Indeed a quadratic twist can send a fibre of type I§ at which
the exponents are both half-integer to its *-partner Iy, a smooth fibre at which
the exponents are both integer. If these exponents are 0 and 1 then this is a
non-singular point of the resulting Picard-Fuchs equation. An example in which
this phenomenon occurs is in the calculation of the Picard-Fuchs equations of
the elliptic surface considered in Example 4.16.

Example 4.23. We compute the exponents of the Picard-Fuchs equation of
the family 3, — IP’; whose singular fibres were computed in Example 4.16. The
j-map of this family is the degree 2 map j = b~2, which is ramified to degree 2
at b = oo and b = 0. Thus the Picard-Fuchs equation of the pull back j*U — P}
of the universal family has Riemann scheme

b‘ co 1 -1
1

: 0 0
Lo o0

=l O

3

The family ¥, — P} is obtained from the pulled-back family by the quadratic
twist by ¢ = b. This quadratic twist has the effect of decreasing the exponents
at b =0 by % and increasing the exponents at b = oo by the same amount. The
exponents of the Picard-Fuchs twisted surface X, — P} at b= 0 are 0 and 1 and
so b = 0 is a non-singular point. Thus the Picard-Fuchs equation of the family
Xy — ]P’é has Riemann scheme

bloo 1 -1
50 0
0 o
6

It is easy to see that in this case the j-map of the minimal elliptic surface
¥, — P} is minimally ramified. Thus having already computed the singular
fibre types in Example 4.16 we can also read off the exponents from the table
in Lemma 4.20. Indeed the section wy of L* has only a simple zero at b = oo
are those in the table corresponding to the singular fibres IT*,I; and I, shifted
by one at b = co. This agrees with the Riemann scheme given above.

The Picard-Fuchs equations of the two families U — ]P’} and ¥ — P} both
have precisely three regular singularities and so are determined by their Riemann
scheme. The next section studies such differential equations in more detail and
in particular the map to the projective line given by the ratio of a pair of
independent solutions to the differential equation. This provides a geometric
description of the so-called period map of the Picard-Fuchs equations of these
families of elliptic curves.
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4.4 Hypergeometric equations and Schwarz tri-
angles

In this section we study the second-order differential equations on the projective
line with precisely three regular singularities. Such differential equations are
rigid in the sense that they are determined by their characteristic exponents
and so their global monodromy is determined by the local monodromy at the
three singular points.

We show that any such differential equation is projectively equivalent to a
hypergeometric equation, which serves as a normal form for properties of the
differential equation which are invariant under rescaling the dependent variable
by a rational function. In particular we discuss the Schwarz triangle theorem,
which describes the image of the ratio of a pair of linearly independent solutions
of the hypergeometric equation via a curvilinear triangle, with angles given by
the differences in characteristic exponents at the three singular points.

Definition 4.24. A quasi-hypergeometric differential equation is a second-order
linear homogeneous differential equation on the projective line with precisely
three regular singularities.

Local systems on the complement of three points in the projective line are
rigid in the sense that they are determined by the local monodromy at the three
singular points. Correspondingly a quasi-hypergeometric differential equation
is determined, up to a Mdobius transformation in the dependent variable, by the
characteristic exponents at the three singular points. This lack of additional
so-called accessory parameters was known to Riemann, who introduced the fol-
lowing projective normal form for quasi-hypergeometric differential equations.

Definition 4.25. The Riemann hypergeometric differential equation with pa-
rameters a,b,c € C is the unique differential equation on P} with Riemann

scheme
t ‘ 00 0 1

a 0 0
b 1—c¢c c—a-—0»

This equation is given by
tW—a)(P=b)f=90—c+1)f

The sum of the characteristic exponents in the above Riemann scheme is
equal to 1 as required by the Fuchs identity of Proposition 4.7. It is clear that
the set of parameters is in bijection with the set of possible values of the four
characteristic exponents which are not fixed to be zero. The reason for param-
eterising Riemann hypergeometric equations in this way is that the classical
Gaussian hypergeometric series F'(a, b, ¢, t) is a solution in a neighbourhood of
t = 0 of the hypergeometric differential equation with the corresponding param-
eters.

We notice that the Riemann scheme of the Riemann hypergeometric equation
is distinguished amongst quasi-hypergeometric differential equations in that it
has singular points {00,0,1} and a zero characteristic exponent at 0 and 1. In
the sequel we will consider quasi-hypergeometric differential equations with a
singular point at oo which have a zero characteristic exponent at each of the two
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remaining singular points tg and t;. We abuse terminology slightly by calling
such differential equations hypergeometric; they can be transformed into the
usual Gauss hypergeometric equation by a harmless linear transformation of
the dependent variable t.

Definition 4.26. A quasi-hypergeometric equation is called hypergeometric
with parameters a, b, ¢ € C if it has Riemann scheme of the form

t|oo o t
a 0 0
b 1—c ¢c—a-—2>

A quasi-hypergeometric differential equation can be transformed into a hy-
pergeometric equation by multiplying f by an appropriate rational function in
t whose divisor is supported on the three singular points {co, tg, 1 }. Explicitly
we have the equality of Riemann schemes

t|oo to t t| 00 to t
(t—to) P (t—t) ™ ar 1o o= a1+ B1+m 0 0
az B2 7 as+pPi4+m Po—PB1 r—m

This transformation does not change the ratio of a fundamental set of so-
lutions to the differential equation. Two differential equations are said to be
projectively equivalent if they differ by such a transformation.

Proposition 4.27. The projective equivalence class of a quasi-hypergeometric
differential equation is labelled by a triple (o, 8,7) of differences in characteristic
exponents at the three singular points.

In particular the projective equivalence class of a quasi-hypergeometric dif-
ferential equation contains 24 hypergeometric differential equations.

Theorem 4.28. [Neh52, p.207] (Schwarz triangle theorem) Suppose we have a
quasi-hypergeometric differential equation with real exponent differences («, 8,7).
Consider the map s : P1\{c0,0,1} — P! given by the ratio of two linearly in-
dependent solutions to the quasi-hypergeometric differential equation. Then s
maps any copy of the upper-half plane h C P1\{oc0,0,1} conformally onto the
interior of a curvilinear triangle with angles (wa, w3, 7). Furthermore s is a
biholomorphism onto its image if and only if o, 8,7 € 1/NU {0}

Example 4.29. The classical example of such a quasi-hypergeometric differ-
ential equation is the Picard-Fuchs equation of the “universal” family U — ]P’]l
whose Riemann scheme is given in Example 4.21. The differences in the charac-
teristic exponents at the singular points j = {o0, 0,1} are 1, % and 0 respectively.
The image of the period map of w is the hyperbolic plane b which is tiled by
reflections of the Schwarz triangle with angles (7/2,7/3,0).

An important property of the hypergeometric equations is that they can be
easily integrated. In fact the derivative of any solution to a hypergeometric
differential equation with parameters (a, b, ¢) is itself a solution to the shifted
hypergeometric differential equation with the shifted parameters (a+1,b+1,c+

1).
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Proposition 4.30. Suppose that the derivative Df satisfies the hypergeometric
differential equation with parameters (a,b,c). Then the function f satisfied the
hypergeometric differential equation (a —1,b—1,¢—1).

As an example of the above Proposition we consider the meromorphic dif-
ferential A = y dz on an elliptic curve in Weierstrass form. The differential
A has the property that its covariant derivative Vgar(9p)A is the holomorphic
differential w. Thus the periods of the meromorphic differential A satisfy the
integral of the Picard-Fuchs equation with respect to b.

Example 4.31. We compute the differential equation satisfied by the periods
of the meromorphic differential A; on the “universal” family U — ]P’Jl The
meromorphic differential A\; pulls back to the meromorphic differential A\; on
¥ — P} whose periods satisfy the integral of the hypergeometric equation in
4.23 with respect to b. It has Riemann scheme given by

b | -1
1

8
O ==

o|TO [+

The Riemann scheme of the differential equation satisfied by the periods of A;
can now be obtained by performing a quadratic twist to get j*U — IP% and
pushing down along the j-map j : P} — IP’; given by j = b~2. As the Seiberg-
Witten differential defines a section of the fifth power of the fundamental line
bundle L, the effect of the quadratic twist by b~! is to shift the characteristic
exponents at 0 and oo by —g and % respectively. Thus the periods of the
Seiberg-Witten differential A on j*U — P} satisfy the differential equation with
Riemann scheme

b| 0 oo 1 —1

_3 T 1 1

R
2 3
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Chapter 5

Stability conditions for the
As quiver

In this chapter we compute a connected component Stab*(Da,) of the space of
stability conditions for the category D(As) associated to the pole divisor P =
(7o) on P! as in [Sutll]. The quotient Stab®(Da,)/Sph*(Da,) is isomorphic
to the space of cubic polynomials of the form 23 + az + b which have simple
zeroes, that is the complement of the discriminant locus A = {a? = b3} inside
Cc2.

This will serve to illustrate some of the methods of the following Chap-
ters 1 and 2 where we compute a connected component of two-dimensional
spaces of numerical stability conditions associated to the Painlevé pole divisors
on P'. Our method is to work modulo the natural C*-actions on the spaces
Quad(P!, (700)) and Stab*(Da,)/ Aut*(D,,) considered in the previous chap-
ter. We show that we can lift the period map of %eiberg—Witten differential

on the family of spectral elliptic curves over (C2\A)/C* to a biholomorphism
onto Stab™(Dy,)/C.

5.1 Autoequivalences

We begin by computing the group of Keller-Yang equivalences Aut*(D4,). The
marked bordered surface associated to the pair (P!, (700)) is the pentagon, that
is a disc with five marked points on the boundary. We draw one of the five
triangulations of the pentagon and the associated quiver with potential, the
Ay quiver, in Figure 5.1. The five triangulations all differ by an element of
the mapping class group MCG(0) = Z5 which consists of the rotations of the
pentagon.

From Proposition 3.12 and the faithfulness of the action of the braid group
on D4, by spherical twists, we have a short exact sequence

1 — Sph(Da,) = Aut*(Da,) - MCG™(0) — 1
As there are no punctures, the signed mapping class group is isomorphic to

%)
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Figure 5.1: The Ay quiver associated to a triangulation of the pentagon

Z/5Z. Further, by Theorem 2.35 we have an isomorphism

Brs — Sph(Da,)
o1 — (I)S
g9 — (I)T

where S and T are the objects of D4, given by the simple representations of A
corresponding to the vertices at the head and tail of the arrow respectively.

The centre of the braid group is freely generated by the element u = (o102)
by [KTO08]. We use this to compute the centre of Sph(Da,).

3

Lemma 5.1. The centre of Sph(Da,) is generated by [—5].

Proof. Tt suffices to compute the images of the simple objects S and T for an
autoequivalence acting trivially on the simple objects of a heart of finite length
also acts trivially on the space of stability conditions. Denote by E and X
the unique up to isomorphism non-trivial extensions of S by 7" and T by S[1]
respectively. Then

S = X — T[-1] +~ T[-3] — E[-3] —~ S[-3] ~ 5[5
T — T[-2] — E[-2] —» S[-2] —» S[-4] —~ X[-4 — T[-5]
as required. O

We claim that the group of Keller-Yang equivalences Aut*(D4,) is also iso-
morphic to the braid group Brs. Indeed we prove that the braid group fits into
the following exact sequence. As the braid relation is homogeneous in the gen-
erators o1 and o9, there is a well-defined word-length map on the braid group
BI‘3.

Lemma 5.2. There is a short exact sequence
1—>Br3—>Br3L>Z5—>1
where the map | is the word-length map in the generators o1 and oo modulo 5.

Proof. Tt is clear that the map [ is surjective, so it remains to prove that its
kernel K is isomorphic to the braid group Brs. The kernel is generated by words
of length five in the generators o1, o5. We claim that K is in fact generated by
the two words of length five

Jflu = 0901020102 aglu = 0102010901
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Indeed as u is central any word of length five can be expressed as a word in the
elements o 'u, oy 'u and u® and their inverses. Furthermore

5 6

u’ = ubu"t = ub(010901090102) 7! = (07!

u)(og ) (o u) (o3 u)(oy )0y M)
so K is in fact generated by oy 'u and oy "u. As u is central it is clear that the
generators o, 'u and o, 'u of K satisfy the braid relations. We claim that the
map Brg — K given by these generators is in fact an isomorphism. Suppose w
is a word in the generators of K which is equal to the identity element. Then
as u is central, we can express the word w = u™w’ where m is the length of
the word w, and w’ is the corresponding word in the generators o, ', o5 * of the
original braid group.

If the length m of the word w is zero, then w = w’ is itself a word in the
generators o1 and oy of the braid group and so is trivial if and only if it can be
made trivial by applying the braid relations. If the length m is non-zero, then
w’ = u~™ and so the word w’ belongs to the centre of the braid group, which
is freely generated by u=! = (010201020102) 7!, which is a word of length six
in the generators o1 and o,. This is a contradiction as u=! # w6, O

To compute the autoequivalence group we consider the images of the stan-
dard heart A" under the simple tilts.

Lemma 5.3. The Keller-Yang autoequivalences associated to simple tilts of the
standard heart A° satisfy

(@5)71(A%) = TwsTwr[2)(A") = &7 (A")

and
5 (A% = TwrTwsTwr[3](A”) = (25) (A%

Proof. The actions of the composites TwgsTwr and TwrTwgsTwyr of spherical
twists on the simple objects S and T is given in the proof of Lemma 5.1. The
action of the simple tilts on the simple objects S and T of (AY) can be computed
by Lemma 2.36 and one observes that the images of the simple objects agree. [

Thus we see that Aut™(D,a,) is generated by the elements ¥ = ®gP7[2] and
Y = op0gPr[3).

Lemma 5.4. The generators ¥ and Y of Aut*(Da,) satisfy the relation %3 =
1] = T12.

Proof. As the shift functor commutes with spherical twists, we have that

Y3 = (®5P7)?[6] = Y2
Furthermore by Lemma 5.1 we have that (®s®7)3[6] = [—5][6] = [1]. O
In fact
(@, 8]0 =5

is an alternative presentation of the braid group on three strings [KT08]. The
original generators of the braid group are given in terms of the new generators
as 01 = Bla and 0 = @B~ !. Thus Aut*(Dy,,) is alternatively generated by

the generators ®g[1] = 7T and ®7[1] = TE ™! which can immediately be
seen to satisfy the braid relations.
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Lemma 5.5. The map f : Bry — Aut*(Da,) sending (o1,02) to (®g[1], Dr[1])
is an tsomorphism.

Proof. We show that the diagram

1 Brj Brs Zs 1

| | |

1 —— Sph(D4,) —— Aut*(Da,) —— MCG™(0) —— 1

is commutative, whence the result follows from the five lemma. The second

square is commutative as the maps Brg — Z5 and Aut*(Dy,) - MCG™(0) =

Zs both send the respective generators (o1, 02) and (®g[1], ®7[1]) to 1 € Zs.
O

As we will work primarily with the projective stability conditions, we will
consider the quotient group Aut™(Dy,)/Z[1] by the free subgroup generated by
the shift functor [1] = (®g[1]@7[1])3. The isomorphism of the previous lemma
identifies this subgroup with the centre of the braid group Z C Brs.

Proposition 5.6. The quotient on the braid group Brs by its centre Z. is iso-
morphic to PSL(2,Z).

Proof. In the alternative presentation of the braid group Brs, the central element
is generated by a? = 3. The result is then immediate from the standard
presentation of PSL(2,Z)

PSL(2,Z) = (A,B| A*> =1 = B%)

where

O

We now give an alternative way of computing the autoequivalence group
Aut*(Da,)/Z[1] modulo the shift functor which reflects the methods used in
Chapter 2. Recall that we have an isomorphism K(Dga,) = Z[S] & Z[T], and so
we have a map ¢ : Aut*(Dy,) — PSL(2,Z) sending an autoequivalence to its
action on the lattice Z2. This map factors through the quotient of Aut*(Da,)
by the group generated by the shift functor as [1] acts on K(D4,) by —1I, the
identity in PSL(2,7Z).

By Lemma 5.4, the group Aut*(D,,) is generated by the autoequivalences T
and ¥ whose second and third powers respectively are equal to the shift functor.
Thus we have a map Zy * Zz — Aut™(Da,)/Z[1] and a commutative triangle

Zo s —— Aut*(Da,)/Z[1]

o

PSL(2,7)
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whose third arrow Zg x Zs — PSL(2,Z) is given by the composition of the other
two. It is an isomorphism giving the standard presentation of PSL(2,Z) by
generators and relations in the proof of Proposition 5.6, for the generators T
and X of Aut™(Dy4,)/Z act on K(Da,) = Z[S] ® Z[T)] as the matrices A and B.
Thus we deduce that the other two maps are isomorphisms, and in particular
there is an isomorphism Aut*(Dg,)/Z[1] — PSL(2,Z).

5.2 V-domains

In this section we construct a fundamental domain for the action of Aut™(D)/Z
on Stab®(D)/C. We have seen in the previous section that the set of reachable
projective hearts is a torsor for the group Aut*(D)/Z. We will define when a
projective stability condition is supported on a projective heart so that the V-
domain consisting of those projective stability conditions supported on a given
projective heart is a fundamental domain for the action.

The following slightly non-standard definition makes precise the desired
properties of a fundamental domain. In particular we prefer to work with closed
domains.

Definition 5.7. Suppose a group G acts on a topological space X. We say a
closed set V' C X is a fundamental domain for the action of G on X if

e The G-translates of V cover X

e The G-translates of the interior of V are disjoint

Recall that a projective heart A is an equivalence class of hearts with respect
to the action of the subgroup of the autoequivalence group generated by the shift
functor. The notion of a stability condition being supported on a heart does
not immediately descend to a projective stability condition being supported on
a projective heart as there are non-projectively equivalent hearts which support
a lift of a given projective stability condition. We will choose the projective
heart on which the cone spanned by the stable objects of the projective heart
has minimal angle.

Definition 5.8. The width w of a stability condition o = (A, Z) is the difference
between the phases of the semistable objects of A of maximal and minimal phase.

Given a projective stability condition & we note that the width of a stability
condition in the C-orbit of & depends only on the projective equivalence class
A of its heart. As the set of phases supporting a semistable object with respect
to a projective stability condition is not dense in the circle, the infimum of the
widths of all lifts of & is achieved by the lifts supported on some projective
equivalence class of hearts A.

Definition 5.9. A projective stability condition & is supported on a projective
heart A if the width of a lift of & to a stability condition supported on a lift of
A is minimal amongst all lifts of 7.

As the minimal width can be potentially achieved on more than one projec-
tive heart, so a projective stability condition can be supported on more than
one projective heart. We say that a projective stability condition is strictly
supported on a projective heart if it is the unique heart which realises this
minimum.
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Definition 5.10. The V-domain V(A) C Stab™(D)/C of a projective heart A
consists of all projective stability conditions supported on A.

We will call a strict V-domain the subset of a V-domain consisting of those
projective stability conditions strictly supported on the projective heart.

We wish to describe the V-domain of the standard projective heart A
We first consider walls of marginal stability in the space of stability conditions
Stab™ (D) which are characterised by the fact that the image of the central charge
map is contained in a line. This condition descends to give walls of marginal
stability in Stab®(D)/C which all have image contained in the great circle W in
P Hom (K (D), C) along which Z is real. Within each chamber the set of hearts
supporting a stability condition in the C-orbit of a given projective stability
condition is constant.

The V-domain V(A") intersects a unique wall of marginal stability, along
which Z(S) and Z(T') are contained in the same ray and the extension E desta-
bilises. The locus described by this wall of marginal stability W(XO) (along
which Z € R) divides the V-domain into two regions in which E is stable
and unstable respectively. The set of projective hearts supporting a lift of a
projective stability condition in the unstable and stable regions is {XO,T(ZO)}
and {ZO,E_l(ZO),i(XO)} respectively.

We note that in order to describe the unstable and stable regions of the
V-domain of the standard heart it suffices to describe their respective images in
PHom (K (D), C). Indeed every projective stability condition contained in such
a region has the same set of stable objects and so such a projective stability con-
dition is determined by its projective central charge. The images of the unstable
and stable regions are contained in the hemispheres h~ and b respectively of
the decomposition

PHom(K (D)) =h~ UWUHT

To the hemispheres h~ and hT we can associate a root system R_ and R
consisting of the classes in K (D) of stable objects. In the unstable region h~
the root system is of type A; x Ay with roots {£S,+T}. In the stable region
hT the root system is of type Ay consisting of the classes of the simple objects S
and T of ZO, their stable extension of class [E] = [S] + [T] and their negatives.
We note that any projective heart supporting a lift in the unstable or stable
region determines a choice of simple roots in the corresponding root system.

The two simple objects S and T of the heart A° each determine a pair of
simple tilts of A%, with precisely one tilted heart supporting a lift of a sta-
bility condition in the stable region and one supporting a lift in the unstable
region. We consider the codimension one locus consisting of projective stability
conditions whose widths of the lifts to .4° and one of its simple tilts are equal.

Lemma 5.11. Suppose the width of & € Stab™(D)/C is minimised on the hearts
A and p% (A) for some simple object X of A. Denote by Y_ and Yy = puk(Y_)
denote the other simple object of A and p% (A) respectively. Then the projective
central charge Z of @ lies on the orthogonal circle to W passing through the
points where Z([X]) and Z([Yy] + [Y_]) vanish.

Proof. Consider a lift of & for which the phase of X is equal to 1. The condition
that the widths are equal is that ¢(X) —d(Y_) = ¢(Yy) — d(X][—1]) so ¢(Y_) +
oY) = 1. As Y, is the universal extension of Y_ by X, this implies that the
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lengths of Z(Y_) and Z(Y;) are equal. Thus the vectors Z(X) and Z(Y_) +
Z(Y,) are orthogonal

Z(Y_) + Z(Yy)

O

Thus within the unstable and stable half-planes h_ and h+ we have arcs of
the circles Wg', W, and W; , W;f associated to the simple tilts. We denote by
V'~ and V7 the intersection of the closed half-planes bounded by these circles
containing the wall of marginal stability W,, with the half planes h~ and hT
respectively. Thus V'~ and V' consist of projective stability conditions whose
width in ZO is less than or equal to the width in any of its simple tilts.

As inversion in a circle preserves any orthogonal circle, inversion in the
circles Wg , W and W; , W; preserves the unstable and stable half-planes h~
and hT respectively. Moreover as each pair of circles meets in twice the Coxeter
angle of the corresponding root system R_ and R., the domains V'~ and V*
are fundamental domains for the corresponding action of the index 2 rotation
subgroups Zo < W(R™) and Zs < W(R™) of the Weyl groups generated by the
Coxeter elements w_ and w, respectively.

Lemma 5.12. The action of the groups generated by w_ and wy on h~ and
bF agrees with the induced action of the subgroups of Aut™(D)/Z generated by
the elements Y and ¥ respectively.

Proof. This is immediate from the induced action of T and ¥ on the lattice
K(D). O

This yields a description of the V-domain within the unstable and stable
half-planes.

Lemma 5.13. The intersections V+ (XO) of the V-domain V(ZO) with the un-
stable and stable half-planes h~ and b+ are equal to V= and V.

Proof. By definition the intersections V+ (XO) of the V-domain with h~ and h+
are contained in V'~ and V*. Conversely h~ and h™ are covered by the closed
domains V‘(Tﬁo) = in‘(XO) and V"‘(Eijo) = in*‘(jO) respectively.
As V* are fundamental domains for the action on h* of the rotation groups
generated by wy we have V* C Vi(jo) and hence equality. O

As a consequence we have an explicit description of the standard V-domain
as the disjoint union

VA =vtuwluv-
where W C W is the arc of the equator along which Z is real and negative. We

note that the V-domain V(./Tlo) projects isomorphically onto its image ¢ under
Z which we have drawn in Figure 5.2 on the decomposition P' = h* UWuUbh~.
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Figure 5.2: The projection ¢ under Z of the fundamental domain V(ZO) for the
action of Aut™(D)/Z on Stab*(D)/C.

Proposition 5.14. The V-domain V(XO) is a fundamental domain for the
action of Aut*(D)/Z on Stab®(D)/C.

Proof. The V-domain V(,Tlo) is closed in Stab®(D)/C as it is defined as the
(infinite) intersection of closed sets. To see that the Aut*(D)/Z-translates of

V(ZO) cover the connected component Stab®(D)/C we must show that any
& € Stab*(D)/C is supported on a projective heart A = 5(710) for some

® € Aut*(D)/Z. As the reflection hyperplanes of RT are locally finite we

can find a path from a point in V(A4") to & passing through finitely many walls
corresponding to simple tilts. The composite of the relevant Keller-Yang equiv-
alences then gives the desired autoequivalence.

The interior of the V-domain is contained in the strict V-domain. The local
(indeed global) finiteness of the reflection hyperplanes of R* exhibits the strict
V-domain as the intersection of finitely many open half-planes. Thus the interior
of the V-domain is equal to the strict V-domain and so its Aut* (D) /Z-translates
are clearly disjoint. Furthermore the boundary of the V-domain is contained in
the reflection hyperplanes Wsi, W% and so is of codimension one. O

A fundamental domain for the action of a group with finitely many codi-
mension one faces determines a finite presentation of the group according to
the identifications of points in the boundary of the fundamental domain. The
above fundamental domain yields the presentation Aut(D)/Z = Zo * Z3 given
by the generators T and ¥ which identify the two sides of V(.ZO) inh~ and hT
respectively. Moreover the intersections of the two side pairs are stabilised by
the subgroup generated by this pair of generators.

Lemma 5.15. Let D = V(XO) be the standard fundamental domain for the
action of Aut*(D)/Z on Stab*(D)/C. Suppose x and y belong to D and let
g € Awt™(D)/Z. Then x = gy if and only if one of the following occurs:

e x =1y and g s the identity

o =y =2o_ and g belongs to the subgroup generated by T
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e =1y =20, and g belongs to the subgroup generated by X
e 2,ycdDNh™\G~ and z =Ty
e 1,ycdDNH\GT andz =%y orz zifly

Proof. The first statement is clear. There is no g € Aut*(D)/Z for which = € h*
and y € hT. Moreover if 7,y € h~ then g € (T) and if 2,y € h+ then g € ().
The second and third statements follow from the fact that ™+ is fixed by w*.
If 2 and y belong to 9O Nh*\F* and g is not the identity then z and y belong
to distinct components of 9O N bi\ﬁi. These two components are mapped onto
each other by w*. As w* does not fix any point in d N hF\a* the last two

claims follow. O

The fact that the codimension 1 boundary components of V(ZO) are paired
by the generators ¥ and T is a manifestation of the fact that the anti-autoequivalence
T : Dg — Dger acts on V(ZO) identifying the paired sides. The quotient A has
three sides corresponding to the anti-autoequivalences T, q);: and <I>§F which act
on N(D) by reflections. Thus A C P! is a Schwarz triangle with monodromy
group given by Aut®(Dy,)/Z.

5.3 Families of spectral curves

In this section we study the family of spectral elliptic curves parameterised by
the two-dimensional family of quadratic differentials on the projective line with
a single pole of order 7 at the point co. We find a double cover of the C*-
action on the space of quadratic differentials by rescaling, which lifts to the
total space of the family. The quotient by this C*-action is the universal family
W — P(4,6)\0 of elliptic curves.

We compute the space of quadratic differentials Quad(PP!, 7(c0)) on the Rie-
mann sphere with simple zeroes and a single pole of order 7. There is a four
dimensional space of sections of the bundle K3*(700) = Op:1(300) given by

(A+ Bz + C2? + D2*) dz®?

There is a two dimensional group of conformal automorphisms of the Riemann
sphere fixing the marked point co, given by the M&bius maps z +— pz + ¢ fixing
the point co. We use this freedom to fix the coefficients of 2% and 22 to be 1 and
0 respectively. Thus we have a two-dimensional space of quadratic differentials

Uap = (22 + az +b) dz®?

parameterised by the vector space C7.,. The discriminant locus A = {4a® =
27b2} is given by the vanishing of the discriminant of the cubic polynomial. The
link of the singularity of A at the origin is the trefoil knot. The fundamental
group of (Ci’b\A is thus the braid group on three strings Brs, the knot group of
the trefoil. From the description at the end of the previous chapter, we should
identify this with the group of spherical twists Sph(Da4,) = Brs.

There is a C*-action on the space of quadratic differentials parameterised
by (Cz’b\A by (2,a,b) = (Cz,(%a,¢3b) which rescales the quadratic differential
by ¢°. In particular there is a residual freedom in this parameterisation as the
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Z/5Z-orbits define the same quadratic differential. Thus the space of quadratic
differentials Quad(P!, 7o0) is given by
Cis\A

1 —
Quad(P, 700) = 7/5%

The group Z/57Z is precisely the mapping class group of the pentagon. Thus
the fundamental group of the space of quadratic differentials fits into the exact
sequence

1 — Bry — m (Quad(P', 700)) — Z/5Z — 1

and can be identified with the autoequivalence group Aut*(Dy,).

The quotient of Quad(P*, 700) = (C2 ,\A)/(Z/5Z) by this C*-action is the
complement of a point §, the image of A, in the weighted projective line P(2, 3).
We consider the coordinate j = (—4a®)/(27b%) on the P(2,3) so the orbifold
points x and * of order 2 and 3 are at the points j = oo and j = 0 respectively,
and the point ¢ is at j = 1.

We expect the fundamental group of the quotient P(2, 3)\d to be given by the
quotient of 71 (Quad(P!, 700)) = Brs by the free subgroup generated by central
element given by a loop around the discriminant A. Of course this can only
hold if we consider the orbifold fundamental group which takes into account
the stabiliser groups Zs and Zs at the two orbifold points x and *. We can
compute the (orbifold) fundamental group directly using an orbifold version of
van Kampen’s theorem.

Lemma 5.16. The map Zo * Zs — w1 (P(2,3)\d) sending the generators to
clockwise loops around the orbifold points X and * is an isomorphism.

We now consider the family of compactified spectral curves given by the
family of quadratic differentials over (Ci,b' This is a family of genus 1 curves
branched over the three simple zeroes and the odd-order pole at infinity given
by

V=22 4az+0b

2
a,b’

elliptic curves W — Ci)b which is nothing but the Weierstrass family. Moreover
the discriminant of this family is equal to the discriminant A of the space of
cubic polynomials 23 4+ az + b.

There is a C*-action on the total space of the Weierstrass family given by

C(yv Z,a, b) — (<3y7 4227 C4aa Cﬁb)

whose quotient is the universal family of elliptic curves W — P(4,6)\d. We
note that this C*-action is a double cover of the C*-action on Ci,b given by
the rescaling action on quadratic differentials considered above whose quotient
is P(2,3). The automorphism group Zs, of this cover gives rise to the generic
stabiliser of P(4, 6) and acts on the spectral curves by exchanging the two sheets.

In particular we note the smooth family W — Cib\A does not descend along
the C*-quotient with weights 2 and 3 to a smooth family of elliptic curves over
the quotient P(2,3)\d. However the projectivisation of the local system given
by the first homology of the fibres of W does indeed descend to P(2,3)\d and
whose monodromy defines a subgroup of PSL(2,Z). We thus have a monodromy
map m fitting into the commutative diagram

The point at infinity gives a section of this family over CZ ,, giving a family of
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ZQ * Z3 — 7T1(]P)(27 3)\5)

Jm

PSL(2,7)

whose diagonal arrow gives the standard presentation of PSL(2,7Z) and therefore
has all arrows isomorphisms.

5.4 Period maps and stability conditions

In this section we complete the proof of the main theorem in the case of the A,
quiver.

We wish to find a family of elliptic curves £ — IP’} over the projective line
with precisely three singular fibres at j = {00,0,1} whose period map agrees
with that of the universal family W — P(4,6)\d. In this way we can study
the periods of the holomorphic and Seiberg-Witten differentials of the universal
family using the methods of Chapter 4. As the isomorphism class of an elliptic
curve is determined by its j-invariant, the family F must have identity j-map.

As W — P(4,6)\¢ is the universal family of elliptic curves such a family is
obtained by pulling-back this family along a section T : }P’} — P(4,6) of the map
P(4,6) — IE”} from the base of the universal family to its coarse moduli space.
There are natural choices of section of the form

[(—3))7 : (25)7] : P} — P(4,6)
where x and y are integers satisfying the condition
3p—2q=1
There are infinitely many solutions to such an equation of the form
p=1+2n g=14+3n

for some integer n. The minimal solution for which p and g are both positive is
p = q =1 giving the family

yr=23—3j2+25

which we recognise as the “universal” family U — ]P’} of Example 4.12.

In studying the period map of a differential on the universal family of elliptic
curves W — P(4,6)\¢ we can use the period map of the differential on the
“universal” family U — IP’}. Indeed the coarse moduli map P(4,6) — ]P’Jl and
the section [—3j : 2j] : Pj — P(4,6) intertwine the two multivalued period
maps. Moreover these maps and the respective period maps both factor through
P(2,3)\0 by forgetting the generic stabiliser and the same section [—3j : 2j] :
P} — P(4, 6) respectively.
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P(4,6)\

[—35:2j] P(2,3)\0 p!

1
P;

Denote by A = Z2 the symplectic lattice equipped with a standard basis
e1, ey for which the pairing (e1,es) = 1. There is a standard coordinate on
P! = PHom(A,C) given by the ratio [f(e1) : f(ez)] of the evaluations of a
homomorphism f € Hom(A,C) on the two basis elements e; and es. This
coordinate is independent of the change of basis achieved by multiplying by —1
and so depends only on the underlying projective local system.

Choosing a symplectic basis {a, §} of the local system H; (W, Z) gives an
identification of PHom(H; (W, Z)) = P Hom(A, C) at each point on the universal
cover P(2,3)\d. Thus the periods of the Seiberg-Witten differential A define a
map

p= MA:/BA} . P(2,3)\6 — PHom(A, C)

Proposition 5.17. Consider the fundamental domain D for the action of the
fundamental group on the universal cover of the orbifold P(2,3)\0 obtained by
making branch cuts along the line j € R connecting the two orbifold points to J.
The period map of the Seiberg- Witten differential of the universal family W —
P(4,6)\6 maps D biholomorphically onto the double & of the Schwarz triangle
with angles (w/2,7/3,7) at the vertices (i, p,00) along the edge connecting the
first two vertices.

Proof. The period map p of the Seiberg-Witten differential of W — P(4,6)\¢
agrees with the period map of the “universal” family U — ]P’}. By the Schwarz
triangle theorem (Theorem 4.28) the image of p restricted to the upper half-
plane h C D is a Schwarz triangle with angles determined by the differences
(1/2,1/3,1) in the characteristic exponents in Example 4.31. The triangle has
angles /2 and 7/3 at the images i = p(co) and p = p(0) of the two orbifold
points and angle 7 at p(d) = oo where the period of A with respect to the cycle
« vanishes.

Moreover we can analytically continue the map p restricted to h C D to the
entire fundamental domain such that its image ¢ is the reflection of the Schwarz
triangle in the edge connecting the vertices ¢ and p. O

We can also identify the local system K (D) with A at every point of Stab* (D) /C
by using the basis of simples in the heart on which the projective stability
condition is supported. With this identification we notice that the domain
¢ C PHom(A, C) is the bijective image of both:

e~ e~

e The fundamental domain D of the action of 71 (P(2,3)\d) on P(2,3)\d
under the period map p
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e The fundamental domainl/(jo) for the action of Aut™(D)/Z on Stab™(D)/C
under the forgetful map Z

Our strategy in the proof of the main theorem will be to extend this identifi-
cation of fundamental domains to a map 1 (P(2,3)\d) — Stab®(D)/C equivari-
antly with respect to the Z,*Zs-actions summarised in the following proposition.

Proposition 5.18. There is a commutative diagram of groups

T (P(2,3)\8) —— Aut*(Da,)/Z

I

PSL(2,7)

whose vertices are all isomorphic to Zgo x 7.3 and whose arrows are all isomor-
phisms, identifying the following pairs of generators

o The loops v, v« around the two orbifold points x and x of P(2,3)\0
e The autoequivalences Y, % of Aut*(D)/Z
e The matrices A and B of the standard presentation of PSL(2,Z).

Proof. We define the map ¢ : m1(P(2,3)\0) — Aut*(Da,)/Z by mapping the
generators vy, v« to T, . The maps m and ¢ are taken to be those appearing in
the commutative diagrams at the end of Sections 5.3 and 5.1 respectively under
which the generators are mapped to the matrices A and B as desired. O

We are now in a position to prove the main result.
Theorem 5.19. There is a biholomorphic map

—_~

P(2.3)\6 — 1 Stab*(Da,)/C

L

PHom(K(Da,),C)

lifting the period map p of the Seiberg-Witten differential \ of the family of
spectral elliptic curves W — P(4,6)\0. It is equivariant with respect to the
actions of Zs * Zs on the left by deck transformations, and on the right by
autoequivalences up to shift.

—_~—

Proof. Denote by D the fundamental domain for the action of m; (P(2,3)\d) on
the universal cover obtained by making branch cuts along the line j € R between

0 and the two orbifold points. Let D’ = V(AO) be the fundamental domain for
the action of Aut*(D)/Z on Stab®(D)/C considered in Proposition 5.14.

By Proposition 5.17 the period map p maps D bijectively onto the double
of the Schwarz triangle with angles (w/2,7/3,7) at (i,p,00) along the edge
connecting the first two vertices. This agrees with the image of D’ under Z
which restricts to a bijection on D’. Thus we can define f : D — D’ by

Z_Dl, - pp which by definition makes the above diagram commute.
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—_—~—

We can extend the above f to the desired map f : P(2,3)\d — Stab™(D)/C
by equivariance with respect to the Zs * Zs-actions by deck transformations and
autoequivalences up to shift respectively. These two actions are intertwined by
the map ¢ of Lemma 5.18 which identifies the natural pairs of generators on
both sides: the clockwise loops around the two orbifold points x and * and the
autoequivalences Y and 3.

We claim that the map f is well-defined, for which it suffices to show that
the map f : D — D’ respects the identification of the points on the boundaries
with respect to the two group actions identified via the map . The branch cuts
giving rise to the domain D are so chosen such that the identif

As the map ¢ : m(P(2,3)\d) — Aut*(D)/Z is an isomorphism the map

f : P(2,3)\d — Stab*(D)/C is bijective. As ¢ commutes with the maps m

and ¢ it follows that f commutes with the local isomorphisms p and Z. We

conclude that f is a biholomorphism and it has the desired equivariance property
by construction.

O

Remark 5.20. This description of the space of stability conditions is a conse-
quence of the main theorem of [BS13] and this particular example is discussed in
Section 12.1 of loc.cit. A proof that Stab™(D)/C 22 h also appears in an early ver-
sion of [Qiul1] which relies on deforming the description given in [Bri09b, Tho06]
of the distinguished connected component of the space of stability conditions of
the CY2 category associated to the Ay singularity.

Remark 5.21. Tt is possible to reformulate the above theorem to include the
missing order 2 symmetry of the heart groupoid which exchanges the order of
the two simple objects S and T'. In this case one must extend the group of deck
transformations by the order 2 reflection along the real axis in P(2,3). The
modular group PSL(2,Z) should be replaced by the extended modular group,
which contains the order 2 element

(Vo)

which exchanges the order of the basis elements of the lattice.

The relevant fundamental domains with respect to the extended groups
project to the Schwarz triangle A(%’%’l) C P!. The extended modular group
can be interpreted as the group generated by reflections in the three edges of
the Schwarz triangle.

Remark 5.22. One could attempt to reformulate this theorem by considering
the universal cover of the base P(4,6)\0 of the Weierstrass family of elliptic
curves. In this case one should construct a commutative triangle of groups

71 (P(4,6)\0) —— Aut*(Da,)/Z[2]

lifting the commutative triangle of Lemma 5.1. By this we mean that we recover
the diagram in Lemma 5.1 on taking the quotients of the three groups by the
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respective subgroups of order 2 generated by the generic stabiliser of P(4,6),
the shift functor [1] and the negative —I of the identity matrix.

The natural candidate for the map ¢ is given by sending the two generators of
w1 (P(4,6)\0) X Zy %z, Zs to the generators T and ¥ lifting the map in Lemma
5.1. Taking m to be the monodromy of the universal family W — P(4,6)\0
and ¢ to be given by the induced action of an autoequivalence on the lattice
A = K (D) we find the surprising conclusion that the triangle does not commute.
In particular the actions of monodromy around x and the autoequivalence T
on the lattice A agree only up to sign.

0 -1
(1)

(50)

One remedy to this problem is to take m to be the monodromy of the elliptic
surface U — IE”;. As U has the starred fibre III* over j = oo, the monodromy
around j = oo differs from that of the universal family by multiplication by —1I.
However this is unnatural in the context of [BS13] for the universal family arises
directly as a quotient of the family of spectral elliptic curves over Quad(PPL, 700)
by a C*-action, whereas the family U — IP’; admits no immediate interpretation
in terms of quadratic differentials.

One might speculate that this is a manifestation of the phenomenon of ori-
entation data in the theory of invariants of CY3 categories. In particular one
might expect to find a quadratic refinement ¢ : A — Zy which intertwines the
monodromy of the two families of elliptic curves U and WW. We will return to
this in Chapter 2.
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Chapter 6

Painlevé divisors

In this chapter we focus on a class of examples of construction in the previous
section given by certain pole divisors P on P! which we call the Painlevé di-
visors. These are the pole divisors P on P! for which the space Quad’ (C,P)
of residueless quadratic differentials has dimension two. This condition means
that the numerical Grothendieck group N(D) of the associated category has
rank two, isomorphic as a lattice to the homology of the spectral elliptic curve.

There is a natural action of C* on these two-dimensional spaces of residueless
quadratic differentials by rescaling, and the quotient is (a gerbe over) a weighted
projective line. We show that the periods of the Seiberg-Witten differential A
satisfy a quasi-hypergeometric differential equation over its coarse moduli space.
The classical Schwarz triangle theorem then gives us a complete understanding
of the image and monodromy of the period map of A.

6.1 The Painlevé pole divisors

As we computed in Chapter 3, the dimension of the space of residueless quadratic
differentials Quad®(P!, P) on P! with poles in P is —6 + deg(P) + | P|oqq. From
this formula we can list the ten pole divisors whose space of residueless quadratic
differentials has dimension two, which we call the Painlevé divisors.

We arrange the ten divisors in the following diagram, where the columns
from left to right contain the divisors P for which the space of quadratic differ-
entials has 4,3,2,1 and 0 residue parameters (cf Proposition 2.13) at its poles
respectively. We draw a line between two pole divisors if one can be viewed
as the degeneration of the other in the following sense: either two poles of
the quadratic differentials coincide, or a zero coincides with an even-order pole
leaving a pole of order 1 fewer. Each of these operations reduces the number of
residue parameters by one.

Using the techniques of the Chapter 3, we can construct a mutation equiva-
lence class of quivers with potential associated to each pole divisor. There is a
unique root system which is the underlying graph of a quiver in each mutation
equivalence class, which is either finite, affine or elliptic. We give the corre-
sponding Painlevé diagram of mutation classes in Figure 6.2, labelled by the
root system in each class. Note that the columns now have the interpretation
of the dimension of the kernel of the Euler form of the root system. The de-
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(4,4) (3,4) —— (3,3)
(2,2,2,2) (4,2,2) (3,2,2)>< 8) — (1)
(6,2) (5,2)

Figure 6.1: Degenerations of four regular singularities on the Riemann sphere

S

| /
\

Figure 6.2: Degenerations of the Painlevé diagrams

generation arises from deleting a vertex of some quiver in the original mutation
class.

Two pairs of pole divisors give identical diagrams, namely the pair (8) and
(5,2) and the pair (4,4) and (3,2,2). We nevertheless give the corresponding
diagrams the distinct labels A3 and D3 and A3 and D3. Indeed the diagrams A,,
and D, can be realised by the pole divisors (n + 5) and (n + 2,2) respectively.
The quivers given by the alternating orientation of edges of the cyclic graph A,,

are realised by the pole divisors (|2 ], [241]), whereas those with underlying

graph D, are realised by (n,2,2).

We fix a labelling of the vertices and orientation of the arrows of each of the
Painlevé diagrams to give a labelled Painlevé quiver in each mutation equiva-
lence class. The finite quivers Aa, A3/D3 and D, are drawn in Figure 1.3, the
afﬁne quivers Al, Ag7 As / D5 and Dy in Figure 1.4 and the sole elliptic quiver

D4 in Figure 1.5.

Remark 6.1. We call these diagrams the Painlevé diagrams as they are related
to the Painlevé equations which describe isomonodromic deformations of mero-
2

b
\3

1—0 1—0¢«—2 1—0

Figure 6.3: The finite Painlevé quivers
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2
1—»0 N/ l
1

Figure 6.5: The elliptic Painlevé quiver

morphic flat SL(2, C)-connections on the Riemann sphere. Indeed the divisors
P are precisely those for which the connections whose determinant 1-form is a
quadratic differential with poles in P have a 1-dimensional family of isomon-
odromic deformations. The ten corresponding Painlevé equations were consid-
ered in [0006, vdPS09], and in the notation of [vdPS09] we have the corre-
sponding diagram of Painlevé equations in Figure 1.1. The columns correspond
to the number of parameters of the Painlevé equation, and the degeneration
procedure is known as confluence [MR12].

To each Painlevé divisor, we associate in this Chapter the following data:

e A two-dimensional family of quadratic differentials u = u, ,(2)dz®? with
poles in P, zero residues and simple zeroes parameterised by the com-
plement of a discriminant locus A in (Cz,b of a polynomial p, (z) (Table
1.1)

e A family of spectral elliptic curves &€ — C2?\A given by y? = p,(z) in
Table 1.1 with a C*-action with weights (2r,2s) on (a,b) lifting the C*-
action above on the base C?\A. The quotient is a family of elliptic curves
E — P(2r,25)\0.

e A map m (P(r,s)\A) 2 Z, * Z; — T'(£), the monodromy group of the

PI(I%O) PI(Z7) P(Ds)
/ B
Py Py Py Py / Py
Pry PEN

Figure 6.6: Degenerations of the Painlevé equations
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family of elliptic curves & — P(2r, 2s)\A which is a finite index subgroup
of PSL(2,Z) given in Table 1.1.

e A Schwarz triangle, the image of the upper-half plane b C P(r, s)\A under
the period map p of the Seiberg-Witten differential on the family £, the
angles of which are given in Proposition 1.8.

6.2 Quadratic differentials

In this section we study the family of spectral elliptic curves & — (Ci, »\A given
by a family of residueless quadratic differentials over P! with a Painlevé pole
divisor P parameterised by (C?Lb with discriminant locus A. We define a C*-
action with even integer weights 2r and 2s on the family whose quotient is
a family & — P(2r,2s)\d over the complement of finitely many points in the
weighted projective line, generalising the construction of the Weierstrass family
of elliptic curves in Chapter 5. We study the monodromy I'(£) of this family
which is a finite index congruence subgroup of the modular group PSL(2,Z).

Recall that a quadratic differential u € HO(P', K5?(P)) with poles in P and
simple zeroes can be viewed as a holomorphic section of the square of the line
bundle K[pl([gb with only simple zeroes. We note that for the Painlevé pole
divisors P the degree of the divisor fgl is always four. Thus we can view a
quadratic differential u € Quad®(P!, P) as defining a section of O(4) with only
simple zeroes, which we represent as a polynomial p of degree at most four with
only simple zeroes. These zeroes occur at the odd-order poles and simple zeroes
of w.

In Table 1.1 we give a family of polynomials p, (z) parameterised by (Ci}b for
each Painlevé quiver Q. In the complement of the discriminant locus A  C2

these polynomials define residueless quadratic differentials u € Quado(]P’l,P)
with simple zeroes. We denote by r and s the coprime integers whose ratio is
the ratio of weights of a and b under the C*-action on (Cib\A associated to the
rescaling action on quadratic differentials.

The compactified spectral curve associated to a residueless quadratic differ-
ential on P! with simple zeroes and poles in P is given by the double cover

y* =p(z)

inside the total space of the line bundle K}([4]). It is branched over the odd-
order poles of P and the simple zeroes of the quadratic differential specified by
p. For the Painlevé pole divisors P, the polynomials p, ;(2) for (a,b) € C*\A
define a family of smooth genus 1 curves € as double covers of P! branched over
the points where the quadratic differential has a zero or an odd-order pole.

There is a C*-action on the total space of the family of spectral elliptic curves
£ — C2 ,\A with weights 2r and 2s on a and b. The quotient is a family of
elliptic curves & — P(2r,2s)\d over the complement of finitely many points ¢ in
the weighted projective line P(2r, 2s).

We have already seen an example of this construction in the As case in
Chapter 5. The family of cubic polynomials p, p(z) = 2%+ az+b over C?\{4a® =
27b%} defines a family of quadratic differentials uq p(2) = (2% +az +b) dz®? with
three simple zeroes and a single pole of order 7 at z = co. The rescaling action
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Q D TS A r'¢E)
Ay 23 —3az +2b 2 3 a’ — b? To(1)
Az 24 +2a22 + b 1 2 ba®-b)?2 Ty?2)
Ds 2((z +a)? —b) 1 2 ba®-b)?2 Ty?2)
Dy z((z+a)?(z+4a) —4b) 1 3 bla®—0)> Ty(3)
Ay 2% +b2% + az 2 1 a?(®—a) Ty(2)
A 22% —3b2% +a 3 1 a®—a) To(1)
As 24022 +a 2 1 ab®—a)? Ty(2)
Ds (z +b)(2? — a) 2 1 ab®—a)?® Ty(2)
D, (22 —a)(2% —b) 1 1 ab(b—a)* Toy(4)
Du bz(z —1)(z — a) 0 1 a’(a—1)%* T(2)

Table 6.1: Families of quadratic differentials for the Painlevé quivers

has weights 2 and 3 on a and b and the quotient family of spectral curves is just
the universal family of elliptic curves W — P(4,6)\d.

We may choose the coefficients of the polynomials p, (z) carefully such that
the discriminant A has a nice form: it is a constant multiple of the function
given in Table 1.1. This function descends to a function § on P(r,s) whose
zero set belongs to the set ¢ = {0, 1,00} with respect to the natural choices of
coordinate ¢t = [a® : b"] or its reciprocal t = [b" : a®]. Moreover these three
points are precisely the union of the orbifold points of P(r, s) and the zero set
of §, i.e. § vanishes at ¢t = 0, co precisely when the corresponding r or s is equal
to one.

The set § is precisely the preimage of the point j = 1 under the j-map of
the family &€ — P(2r,2s)\d. The points of § are known as cusps of the base of
the family & — P(2r,2s)\d. Their number is equal to the number of distinct
irreducible factors of the discriminant A. The multiplicity of a factor is known
as the width of the corresponding cusp.

Finally in Table 1.1 we have listed the subgroup I'(£) of the modular group
PSL(2,7Z) whose congruence class corresponds to the monodromy of the family
of spectral elliptic curves £ — P(2r,25)\d0. The monodromy groups are all
of index at most six in the modular group PSL(2,Z) and are all congruence
subgroups of level N at most four, meaning that they contain the kernel T'(IV)
of the homomorphism PSL(2,Z) — PSL(2,Z/NZ).

Apart from D, for which the monodromy is the principal congruence sub-

group I'(2), the monodromy groups are all given by the preimage I'g(IV) of the
unipotent matrices in PSL(2,Z/NZ) under the map PSL(2,Z) — PSL(2,Z/N7Z),i.e.

To(N) = {( o > €PSL(2,Z):c=0 (mod N)}

The congruence class in PSL(2,Z) of the monodromy of £ — P(2r, 2s)\d can
be determined from the discriminant A in Table 1.1 with the help of a table of
subgroups of the modular group PSL(2,Z) as, for example, in [CP03, Tables 2
and 4]. We will compute the monodromy by considering the j-map of the family
& — P(2r,2s)\d, which factors through the map

7 P(r,$)\d — P(2,3)\{1}
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As we have seen in Chapter 5 the map m (P(2,3)\{1}) — PSL(2,Z) given
by the monodromy of the universal family W of elliptic curves is an isomor-
phism. Thus the monodromy map of the family £ — PSL(2,Z) is given by the
pushforward of the fundamental group along the j-map

Jx T (P(r, 8)\0) = m1(P(2,3)\{1}) = PSL(2,Z)

We can now study the monodromy through the branching of the j-map. We
show that with the exception of As, the families of elliptic curves £ — P(2r, 25)\d
have unramified j-map.

Lemma 6.2. With the exception of Ay, the j-map j : P(r,s)\6 — P(2,3)\{1} of
the families of elliptic curves € — P(2r,25)\d specified by Table 1.1 is a regular
covering map.

Proof. We can compute the degree of the j-map by considering its extension
j : P(r,s) — P(2,3) over the preimage of the point j = 1. The preimage
consists of the set of cusps § with ramification degree the width of the cusp,
which are determined by the factorisation of the discriminant given in Table
1.1. The degree d of the j-map is obtained as the sum of all the cusp widths. It
is now remains to check that the equality x(P(r, s)\d) = dx(P(2,3)\{1}) holds;
we omit the necessary computation. O

The Galois correspondence asserts that the map
Je s m(B(r, s)\6) = m(P(2,3)\{1})

is the embedding of a normal subgroup of index the degree of the map j. We
conclude that, with the exception of the Ay family, the monodromy group of the
families of elliptic curves &€ — P(2r,2s)\¢ is a subgroup of PSL(2,Z) of index
the degree of the j-map. Together with the cusp widths, i.e. the branching over
j =1, this is enough to determine the subgroup in the list [CP03, Table 2].

Example 6.3. We study the monodromy of the A, family & — P(6,2)\0.
There are two cusps, both of width one, and so the degree of the j-map is two.
However we can compute

X(B(3,1\0) = x(F) ~ 1] ~ (1 - 5) =2 -2 - > =2

which is not equal to 2y(P(2,3)\{1}) = 2(—¢) = —%. The j-map is ramified to
degree 2 at the orbifold point of order 3 and so the degree of excess ramification

of the j-map is % accounting for the above discrepancy.

The monodromy map is given by sending the generators v, yo of m1 (P(3,1)\) =

Zs3 x 7 to the elements B? and (BA)~! of PSL(2,Z) where A and B denote the
generators of order 2 and 3 of PSL(2,Z) as given in the proof of Proposition
5.6. This is clearly a surjective map and has a non-trivial kernel, containing the
element (yoovp 1)2.

We can summarise the above computation of the monodromy groups in the
following Proposition, which for the Ay family yields the commutative triangle
at the end of Section 5.3.
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Proposition 6.4. For each Painlevé quiver there is a commutative triangle of
groups

Ly xLs — 1 (P(r, 5)\0)

I

(&)

whose diagonal map is given as the composition of the presentation of w1 (IP(r, s)\9)
and the monodromy map m. Moreover, with the exception of As, all the arrows
are isomorphisms.

6.3 Seiberg-Witten curves

In this section we study the period map of the Seiberg-Witten differential A
on the families of elliptic curves &€ — P(2r,2s)\d associated to each of the
Painlevé quivers in the previous section. We construct a rational elliptic surface
E — P! with the same period map over the coarse moduli space of P(2r,2s)
with precisely three singular fibres at the orbifold points and the points of §.
The period map is then completely determined by computing the characteristic
exponents of the Picard-Fuchs equation of A on E — P!,

We recall from Chapter 3 that the Seiberg-Witten differential A on the spec-
tral elliptic curve is given by the restriction of the tautological 1-form on the
total space of the twisted cotangent bundle Ty ([£]). We can also characterise
A as the differential form on the family of spectral elliptic curves & — (Ci}b\A
whose covariant derivative with respect to the Gauss-Manin connection along
the vector field 0, is the holomorphic differential w.

Proposition 6.5. The Seiberg-Witten differential X satisfies VEM () (\) = w.

Proof. The Seiberg-Witten differential on the family of spectral elliptic curves
& — C2 ,\A has the form
Y
A= ——dz
f(2)

where f(z) € H°(Opi ([£]) is the unique, up to scale, holomorphic section of
the line bundle Op: ([£]). It is easy to verify that f(z) is the coefficient of b in
the expression p, 4(z) in Table 1.1. Thus we have

G _ pop(2) dz _dz_
V(@) () = FEIER =

O

In order to study the period maps of the holomorphic and Seiberg-Witten
differentials on the families £ — P(2r,25)\0 of spectral elliptic curves we con-
struct an auxiliary family of elliptic curves E — P! over the coarse moduli
space. By construction the j-maps of these rational elliptic surfaces £ — P!
can be identified with the j-maps of the families of spectral curves. Thus the
period maps of a given differential form on these two families £ and £ can also
be identified, so we can study the periods of w and A\ on E instead.
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We will construct the rational elliptic surface E — P! by pulling back the
elliptic surface &€ — P(2r,2s5)\0 along a section 7 of the natural coarse moduli
map P(2r,2s) — P! forgetting the stacky structure. We note that there are
a pair of reciprocal natural coordinates [a® : b"] and [b" : a®] on the coarse
moduli space P! for which the set of orbifold and singular points of the family
E — P(2r,2s)\0o is {00,0,1}. Our choice of section will also determine a choice
t of one of these two coordinates.

The forgetful map ¢ : P(2r,2s) — P} and its section 7 intertwine the j-
maps of the families £ and & of elliptic curves which, as we have previously
observed, factor through P(r,s). We have an identical diagram expressing the
relationship between the period maps of differential forms on E and £ whose
restriction to the generic fibre is identical. In the sequel we will denote such
differential forms on F and £ by the same symbol so that in particular w and A
denote the holomorphic and Seiberg-Witten differentials.

P(2r,25)\6

As in Section 5.4 we consider sections 7 : P! — P(2r,2s)\d of the form
a=1tP b=t

for some non-negative integers p, ¢ and one of the two natural coordinates ¢ on
P!. There is a section of this form precisely when the equation

ps —qr = =1

is satisfied with the sign determined by the choice of coordinate t.

We choose the section 7 for which the sum p 4 ¢ is minimal. As r and
s are coprime there is a unique such minimal solution to the equation which
thereby fixes a choice of coordinate ¢t on P'. We observe that the choice of ¢ is
in fact determined by whether the associated Painlevé quiver is isomorphic to
its opposite or not. If @ = Q°P, we have t = [a® : b"], whereas if Q 2 Q°P we
have t = [b" : a®].

Pulling back the family of spectral elliptic curves £ — P(2r,2s)\0 along
7 : P} — P(2r,25)\d gives an elliptic curve E over the ring of integers C[t] of
the function field C(¢) of the form

y2 =pi(2)
where p,(z) is given by substituting a = ¢° and b = t" in the expression p, ()

in Table 1.1. We list the coordinate ¢, the polynomial p;(z) and its discriminant
A in Table 1.2.
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Q p t A Eoo EO El
Ay 23— 3tz + 2t [@®:0?] (t-1) 11" 1II 1
As A 42224t b:a?] tt—12 HOI* I, I
Ds 2((z+1)2 1) b:a?] tt—1)2 OI* I, I,
Dy 2((z+1)*(z+4)—4t) [b:a®] tt—-13 IV" I, Iz
A 234222+ 12 [@:0?] 2(t—1) II* I, T,
A2 22’3 — 32’2 +t [a : bs] t(t - 1) II* Il Il
Az 244222 4t [a:b%] tt—1)2 1I* I, Iy
Dj (22 —=t)(z+1) [a:v?] t(t—1)2 HOI* I Iy
Dy (22 —=1)(2%2 -1) [a:b]  tt—1* It I Iy
Dy 2z —1)(z — 1) a:1 2t—-12 I L I

Table 6.2: The families E — P} and their singular fibres

The elliptic surface E — P} is defined to be the minimal compactification of
the curve E over C(t). As E is in fact defined over the ring of integers C[t], the
discriminant A is a polynomial in ¢ which by inspection has degree less than
twelve. Thus the minimal compactification is a rational elliptic surface with
fundamental line bundle L = Op: (00) whose singular fibres we also list in Table
1.2.

As the j-map of E — P} can be identified with that of & — P(2r,2s)\4,
the monodromy group of the elliptic surface E — P} is given by the subgroup
I'(€) < PSL(2,Z) in Table 1.1. Furthermore it follows from the study of the
ramification of the j-map of the family of spectral curves £ that the j-map of
E' is minimally ramified in the sense of Definition 4.19.

Proposition 6.6. The rational elliptic surfaces E — P} are minimally ramified.

Proof. We compute the ramification of the j-map P} — P} from its factorisation
through the j-map P(r,s) — P(2,3) via the section 7 : P} — P(r,s) and the
forgetful map f : P(2,3) — IP);.

P! 5 P(r,s) & P(2,3) & P}

By Lemma 1.2 the restriction of the j-map j : P(r,s)\0 — P(2,3)\{1} to
the complement of the discriminant locus ¢§ is an orbifold covering map, with
the sole exception of the A, family. In the latter case we have seen in Example
1.3 that the sole ramification point of the map is the unique preimage of the
Zs-orbifold point where the ramification degree is equal to the degree of the
map which is two.

It is clear that the map P} — IP’} is not ramified outside j = {00,0,1} for
the branching of the maps 7 and f occurs only at the orbifold points which are
in the preimage of j = {c0,0} and the map P(r, s) 2 P(2, 3) is unramified over
the point j = 1. Furthermore the ramification of P} — P} over points in the
preimage j = {00, 0} is as follows:

7 = oo The ramification degree is 1 at any singular point and 2 at any regular
point.



80 CHAPTER 6. PAINLEVE DIVISORS

J = 0 The ramification degree is 1 at any singular point with the exception of
the As case where it is 2, and 3 at any regular point.

Referring to the singular fibres of the surface E — P} given in Table 1.2 we
see immediately that it is minimally ramified. O

It follows that from Lemma 4.20 the Picard-Fuchs equation for the holomor-
phic differential w on E — P} is quasi-hypergeometric with singularities only
at t = {00,0,1}. The period map of w is thus specified by the differences in
the characteristic exponents at the three singular points, which we list in the
following Proposition.

Proposition 6.7. The differences in the characteristic exponents of the Picard-
Fuchs equation for the holomorphic differential w on E — P} at the points
t ={00,0,1} are as follows

.A2 A3/D3 D4 Al A~2 Ag/Dg D4 D4

(%7%70) (%’O»O> (%a070) (%70’0) (%7070) (%70’()) (0,0,0) (0,0,0)

Proof. The fact that the j-map is minimally ramified shows that the Picard-
Fuchs equation for w has no apparent singularities. The characteristic exponents
at the three singular points can be read off from Lemma 4.20, remembering to
add 1 to the exponents at oo for w € H%(Ops (—00)) viewed as a function on P;
has a simple zero there. The Riemann schemes of the Picard-Fuchs equations
are given in the first column of Table A.1 from which the differences in exponents
are easily computed. O

We have drawn the Schwarz triangles of the Picard-Fuchs equations for w
on the families £ — P} associated to each Painlevé quiver in Table A in the
Appendix.

We note that with the exception of the As-case the differences in exponents
are all reciprocals of elements of the set NU{co}. Thus by the Schwarz triangle

theorem, the period map P(r,s)\d — P! of the holomorphic differential w is a
bijection onto its image, the upper half-plane h C P!. This also follows from
applying the modularity condition for an elliptic surface in [Dor01] which states
that the period map of the holomorphic differential is orbifold-uniformising pre-
cisely when its j-map is minimally ramified and it contains no fibres of type II*
or IV.

In the A, case the elliptic surface has a singular fibre of type II* at t = co
where the difference in exponents is % Thus the analytic continuation of the pe-

riod map to the universal cover P(3,1)\d — P! is not injective for the reflections
of the Schwarz triangle overlap each other. This is another manifestation of the
non-injectivity of the monodromy map m (P(3,1)\d) — PSL(2,Z) observed in
Example 1.3.

We now compute the characteristic exponents of the Picard-Fuchs equation
of the Seiberg-Witten differential A on E — P}. A priori we know that the mon-
odromies of the Picard-Fuchs equations for A and w agree, and so the differences
in the characteristic exponents of the equations can differ only by integers. In
order to compute the exponents however, it is necessary to exploit the relation-
ship between A and w established in Proposition 1.5, as we did in Chapter 4 for
the As family U — ]P’%.
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Proposition 6.8. The differences in the characteristic exponents of the Picard-
Fuchs equation for the Seiberg-Witten differential X on E — P} at the points
t = {00,0,1} are as follows

A A3/Ds Dy A Ay A3/ D3 D, Dy

(1,31 (3.1, (3,1,1) (3,0,1) (3,0,1) (4,0,1) (0,1,1) (0,0,0)

2

Proof. We consider the rational elliptic surfaces 3 — ]P’I%, the minimal compact-
ification of the slice of the family of spectral elliptic curves £ — Ci,b\A given by
setting a = 1. As the generic fibre is defined over C[b] it is easy to see that these
are also rational elliptic surfaces with fundamental line bundle L = Op: (c0).

We have a t-map IP’% — P} given by t = b according to the expression of
the t-coordinate given in Table 1.2. The family of elliptic curves ¥ — ]P’; thus
differs by a quadratic twist from the pull-back of the family E — P} along the
t-map, as shown in the diagram below. The quadratic twist g can be determined
explicitly by, for example, considering the ratio of the determinants of the two
surfaces ¥ — ]P% and t*E — ]P’é.

Z«—g——> tV'E —— F

]

P} PL—' P!

We now proceed as follows:

e We compute the characteristic exponents of the Picard-Fuchs equation of
the holomorphic differential w on ¥ — P} by pulling back those on E — P}
along the t-map t = b*" and performing a quadratic twist.

e We compute the characteristic exponents of the Picard-Fuchs equation of
the Seiberg-Witten differential A on ¥ — P} from those for the holomor-
phic differential w using the relationship V& (9y)(\) = w.

e We compute the characteristic exponents of the Picard-Fuchs equation of
the Seiberg-Witten differential A on E — P} by performing a quadratic
twist and pushing forward along the map given by ¢t = b*7.

The first step is an easy application of Lemma 4.6 to pull-back the exponents
of the Picard-Fuchs equation of w on E — P} along the t-map ¢t = b whose
ramification is easy to compute. The two elliptic surfaces ¥ — IP% and t*F —
P} differ by a quadratic twist by ¢, whose effect is to shift the characteristic
exponents by —degT(q), for w is a section of the dual of the fundamental line
bundle L = O(1). In other words the holomorphic differential w has weight —1
with respect to the C*-action on the family of spectral elliptic curves.

The third step is nothing but the reverse of this process. It is easy to compute
the weight w of the Seiberg-Witten differential A\ with respect to the C*-action
from the explicit form given in Lemma 1.5. Thus the shift in the characteristic
exponents when reversing the quadratic twist is given by %eg(q). Finally
we push forward the Picard-Fuchs equation for the Seiberg-Witten differential
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A along the t-map, dividing the characteristic exponents by the degree of its
ramification.

The second step involves integrating the Picard-Fuchs equation for w with
respect to the coordinate b to obtain the Picard-Fuchs equation for A. If, as for
the Ay family, the Picard-Fuchs equation for w on ¥ — P} is hypergeometric,
we can integrate it using Lemma 4.30. There are only two exceptional cases
where the Picard-Fuchs equation of the holomorphic differential w on ¥ — ]P’g
is not hypergeometric:

A, The family ¥ — P} has four singular fibres and the Picard-Fuchs equation
for w has an additional apparent singular point at b = 0. We will show
how to integrate this Picard-Fuchs equation in Example 1.9.

D, The family ¥ — IP’; is isotrivial with only two singular fibres of type Ij at
b = co. Moreover the preimage of the Riemann sphere P} under b = t° is
just a point. In this case the family £ — P} is independent of b and so the
holomorphic and Seiberg-Witten differentials agree up to scale. Thus the
differences in the characteristic exponents of the Picard-Fuchs equations
for w and A are the same.

For convenience we collect the Riemann schemes for the four Picard-Fuchs
equations associated to each quiver in Table A.1. The differences in the char-
acteristic exponents of the Picard-Fuchs equation for A on £ — P} can be read

off from the last column.
O

We have drawn the Schwarz triangles for the Picard-Fuchs equations for

A in Table A in the Appendix. We note that with the exception of Dy they
are not identical to those for the holomorphic differential w, and are no longer
contained in the half-plane h C P!. A description of the relationship between
the two Schwarz triangles is given in [Yos05].

Example 6.9. We show how to compute the characteristic exponents of the
Picard-Fuchs equation of the Seiberg-Witten differential A on the rational ellip-
tic surface £ — P} associated to A,. As the j-map of the surface is minimally
ramified, the Picard-Fuchs equation of the holomorphic differential has the Rie-
mann scheme

8

O O O

t]

[ =252
o O

To compute the Riemann scheme of the Picard-Fuchs equation of w on ¥ — P}
we must pull-back E — P} along the map ¢t = b3, The resulting differential
equation has five singular points: one at b = oo, the unique preimage of ¢t = 0,
three at cube roots of unity, the preimages of ¢ = 1, and an apparent singularity
at the b = 0, the unique preimage of t = co.

[V

b‘ooOlpp
0%000
0 7 00 0
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The surface X, — P} differs from the surface t* E — P} by a quadratic twist
by ¢ = v/b. Thus the Picard-Fuchs equation for the holomorphic differential w
on ¥ — P} has the following Riemann scheme.

8

oN| O

b|

hS)

[N
o o —
o oD
o o

We claim that the above differential equation is in fact the derivative of an
equation with only four regular singularities at infinity and the third roots of
unity and no singularity, apparent or otherwise, at zero. Moreover apart from
the singularity at infinity, one of the characteristic exponents at each of the
other singularities is zero. This is the natural generalisation of the hyperge-
ometric condition in Definition 4.25 to differential equations with four regular
singularities; a normal form for such a differential equation is the so-called Heun
equation whose Riemann scheme is

b‘oo 0 1 a

« 0 0 0
B 1—v 1—-0 1-—c¢

To specify such a Heun equation it does not suffice to give its characteristic
exponents; in the classical language there is a single accessory parameter g. The
derivative of the Heun differential equation for generic values of the accessory
parameter has an apparent singularity whose location b = 3 is determined by
the accessory parameter. The Riemann scheme of the derivative of the Heun
equation is

b‘oo 30 1 a

a+1 2 0 0 0
B+l 0 —y -8 —e

We observe that the Riemann scheme of the Picard-Fuchs equation for w on
¥ — P} is of this form after a harmless linear transformation in the dependent
variable. In this case the locations of four non-apparent singular points of the
Riemann scheme of the Picard-Fuchs equation for w on ¥, — P! form a so-called
equianharmonic quadruple. Furthermore the apparent singular point lies in the
distinguished position given by the mean of the three regular singular points
other than oo at which the characteristic exponents are all the same.

The Heun equation whose derivative has such a specially symmetric Riemann
scheme of this form is described in some detail by Maier [Mai05]. He shows that
such a differential equation arises as a cubic transformation of a hypergeomet-
ric differential equation. For the Picard-Fuchs equation of the Seiberg-Witten
differential A on ¥ — P! whose Riemann scheme is

b‘oolpr

0 0 O
1 1 1

D0 =

this transformation produces the Picard-Fuchs equation for A on E — P}.
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The Seiberg-Witten differential

Y

has weight 1 with respect to the C*-action on the family of spectral curves.
Thus the Riemann scheme for the Seiberg-Witten differential on ¢t*E — P} is
given by shifting the characteristic exponents by % at oo and —% at 0.

2

b‘ooOlpp
0 4 00 0
0 -1 11 1

Pushing forward along the t-map ¢ = b3 gives the Riemann scheme for the
Picard-Fuchs equation for A on E — P}.

t] oo 0 1
1
00
-3 01

=]



Chapter 7

Stability conditions for the
Painlevé quivers

In this chapter we complete the proof of the main theorem describing the canon-
ical connected component StabO(DQ) of the space of numerical stability condi-

tions of the Painlevé quivers (except Q = D) via periods of the Seiberg-Witten
differentials studied in the previous chapter.

We define a subquotient AutO(DQ) of the autoequivalence group consisting
of autoequivalences preserving the component StabO(D) modulo those acting
trivially on it. We find that a fundamental domain for the action of Aut’(D)/Z
on Stab’(D)/C has image the double {¢ of a Schwarz triangle in the space of
projective numerical central charges P!. Together with a presentation Z, *Z, —
Aut®(D)/Z we can define the desired lift of the period map to Stab’(D)/C by
equivariance with respect to the natural Z, x Zs-actions.

7.1 Numerical stability conditions

In this section we study the combinatorial structure of the connected component
StabO(DQ) of numerical stability conditions containing those supported on the
standard heart A°. We note that this connected component is empty unless
the standard heart A° is numerical. In this case we see that the numerical U-
domains of two hearts meet in codimension 1 if and only if they are related by a
composite of simple tilts at all simple objects in a given numerical equivalence
class.

Recall that each finite-length heart A defines a cone C'(A) C Hom(K (D), C)
of maximal dimension in the vector space of central charges consisting of those
for which the central charge of the simple objects of A belongs to the upper-
half plane. Such a heart A defines a chamber U(A) = h™ in the distinguished
connected component of the space of stability conditions Stab™ (D). Two such
chambers intersect in codimension 1 if and only if they are related by a simple
tilt at one of the simple objects of the heart A, which corresponds to extremal
ray of the dual cone C'(A)* c K(D) ® C.

Similarly a finite-length heart defines a cone C°(A) C Hom(N(D),C) by
intersecting the cone C'(A) with the space of numerical central charges. However

85
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this cone is not necessarily of maximal dimension for restriction of the cone C'(A)
to the vector subspace of numerical central charges may not necessarily result
in a slice of maximal dimension.

Definition 7.1. A finite-length heart A is said to be numerical if its numerical
cone of central charges C°(A) = C(A) NHom(N (D), C) has dimension equal to
the rank of the numerical Grothendieck group N (D).

It is easy to check that a heart A is numerical if and only if any element
of K(D) in the kernel of the Euler form of D has both positive and negative
coeflicients when expressed in the basis of simple objects of the heart A. The
codimension 1 boundary components of the numerical cone C°(A) are in bi-
jection with the extremal rays of the dual cone C°(A)* C N(D) ® C. For a
numerical heart A each ray of the cone C°(A)* can be labelled by the possibly
multiple simple objects of heart A4 whose corresponding extremal ray in C(A)*
projects to the given ray in C°(A)*.

Definition 7.2. A numerical equivalence class v of simple objects of a heart A
is a subset of the set of simple objects of A consisting of those which define the
same class in N (D).

We consider the tilts of a numerical heart A with respect to torsion pairs for
which either the torsion or torsion-free part is generated by the simple objects
in a numerical equivalence class.

Definition 7.3. The left and right numerically simple tilts p=(A) of a heart
A at the numerical equivalence class v are the tilted hearts associated to the
torsion pairs

T=(S|Sev) F ={X| Hom(S,X)=0VS ev}

and

F=(S|Sev) T ={X| Hom(X,S)=0VS ev}
respectively.

We have the following criterion which determines when the numerically sim-
ple tilts of a numerical heart A are themselves numerical.

Lemma 7.4. The hearts uyik (A) are numerical if and only if the numerical
equivalence class vy, defines an extremal ray of the cone C°(A)*.

Proof. An element of K (D) in the kernel of the Euler form is necessarily of the

form
Z a;[vi]

] = > 15)]

SjEVi

where

are the sums over numerical equivalence classes of the classes of the simple
objects [S;] of A. The numerical equivalence classes v} of the numerically tilted
heart are in bijection with those of v; related by the analogue of Lemma 2.36.
In particular we have that

il = =lve] V] = vl +eilm] fori #k
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for some non-negative coefficients ¢;.

A heart is numerical if and only if there exists an element of K (D) in the
radical of the Euler form whose the coefficients a; do not all have the same sign.
Rewriting the element of K (D) in terms of the classes []] of the tilted heart, we
observe that the only coefficient which can possibly change sign is a;. Thus the
tilted heart can only be non-numerical if there exists an element of the kernel
whose only negative coefficient is ag, i.e. if the ray vy is not extremal.

Conversely if v is not extremal there exists an element of the kernel whose
only non-negative coefficient is ay. It is clear from the above relations that the
coefficient of [v}] in its reexpression in terms of the basis of simple objects [S}]
has a positive coefficient. Thus the tilted heart is not extremal. O

In light of the previous Proposition we make the following Definition

Definition 7.5. A numerical equivalence class v of a numerical heart A is called
numerically tiltable if it defines an extremal ray of the cone C°(A)*.

The numerical U-domain U°(A) of a numerical heart A is defined to be the
subset of the space of numerical stability conditions which are supported on A.
We have an analogue of Bridgeland’s result in the non-numerical setting spec-
ifying when the closures of two numerical U-domains intersect in codimension

1.

Proposition 7.6. The numerical U-domains of two numerical hearts intersect
in codimension 1 in Stabo(’D) if and only if they are related by a numerically
stmple tilt.

Proof. An extremal ray of the cone C°(A)* labelled by the numerical equivalence
class v corresponds to a pair of codimension 1 boundary components of the cone
of numerical central charges C°(.A) supported on A which it shares with the cone
CO(utA) of the respective numerical tilts. Moreover by the previous Lemma
the extremal rays are labelled by the numerically tiltable equivalence classes.
The result now follows by a similar argument to the proof of Lemma 2.15. O

7.2 Numerical autoequivalences

In this section we study the distinguished connected component of the space
of numerical stability conditions Stab®(Dg ) containing those supported on
the standard heart. We consider the hearts supporting a numerical stability
condition in this component and the numerical tilts which relate them. Com-
posites of the associated Keller-Yang equivalences provide autoequivalences of
the category D w which preserve the connected component Stab’(Dg w ).

Definition 7.7. The numerical autoequivalence group AutO(DQVW) is the sub-
quotient of the group of autoequivalences Aut(Dgw) preserving the distin-
guished connected component StabO(DQW) of numerical stability conditions of
IDQ,W

As in the non-numerical setting we will have a wall-and-chamber structure
on the space of numerical stability conditions whose chambers are labelled by
numerical hearts which are related to the standard heart by successive numerical
tilts.
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Definition 7.8. A heart A of Dg v is called numerically reachable if it can be
obtained from the standard heart A° by a finite sequence of numerical tilts at
numerically tiltable equivalence classes.

We note that by Proposition 2.4 any numerically reachable heart is neces-
sarily numerical. However it is not true that any reachable numerical heart
of Dg,w is numerically reachable, for it might not be obtained by a sequence
of numerical tilts at numerically tiltable equivalence classes. For example the
image of a standard heart under a spherical twist at a simple object is again
numerical for it leaves the quiver of the heart unchanged, but it is only numer-
ically reachable if the simple object defines a numerically tiltable equivalence
class.

We denote by N the set of all numerically reachable hearts of the category
Dq,w and consider the Keller-Yang equivalences of Dg w which preserve N.
An important property of the categories Dg w is that any reachable heart has
an Ext-quiver with no 2-cycles. As a consequence we deduce that any pair of
distinct simple objects in a numerical equivalence class of a reachable heart are
orthogonal in Dg w .

Lemma 7.9. Let v = {S;} be a numerical equivalence class of a reachable heart
A in Dg,w. Then Homp,, . (S;, Sj) = 0 whenever i # j.

Proof. Suppose S; and S; are two simple objects in the numerical equivalence
class v. As Dgw is a CY3 category we know that the morphism complex
Homp,, (S, ;) is concentrated in degrees 1 and 2. As the class [S;] — [S)]
belongs to the kernel of the Euler form, we have that

0= x([8:] = [95],[55]) = dim Homp, (S}, S;) — dim Hom, (S}, S5)
= dim EXtA(Sj, S;) — dim Ext _4(.S;, S])

As the Ext-quiver of A has no 2-cycles, we conclude that the morphism complex
Hom'DQ,W(Sth) =0. O

An immediate corollary is that the tilted heart ug, (A) for S; € v contains as
simple objects the remaining simple objects of A in the numerical equivalence
class v. We now show that the tilts with respect to simple objects in the same
numerical equivalence class commute.

Proposition 7.10. The simple tilts ,ui for Sy belonging to a numerical equiv-

alence class v of A commute, and their product ], ”i = uF is equal to the
numerically simple tilt at v.

Proof. The number of arrows between a given vertex of the Ext-quiver of the
heart A and any vertex in v is equal. In particular the Ext-quiver of the heart A
has no arrows between any vertices corresponding to the simple objects Sy € v.
Thus the arrows incident to the other vertices of v of the quiver obtained by
mutating at a vertex corresponding to a particular simple object Sy € v are
unchanged.

Fix a given order of the simple objects in the numerical equivalence class
v and denote by Tw, the product Tw, =[], Twg,. By Lemma 2.36 we have
that the simple objects of the composite [], ugck (A) are

{Sk[ﬂ:] : Sk S l/} U {TWV(Sl) : iX(Si, Sk) > 0} U {SZ : ZEX(S]C7SZ') > 0}
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By [STO01, Lemma 2.11] the spherical twists at orthogonal simple objects
commute. We conclude that the set of simple objects of the heart [], uﬁk (A)is
independent of the order of the product, and so the tilts with respect to simple
objects in the numerical equivalence class commute. O

We will consider the composite of the Keller-Yang equivalences over all sim-
ple objects in a numerical equivalence class, which send the standard heart .A°
to its numerical tilt.

Definition 7.11. The numerical Keller-Yang equivalences &7 : Dow — Dy, qw)
associated to the numerical equivalence class v are defined to be the composites

+
1_‘[31 cv (I)Sk °
Numerical Keller-Yang equivalences with respect to numerically tiltable equiv-
alence classes preserve N. In particular composites of such numerical Keller-

Yang equivalences which preserve the quiver @@ define elements of the numerical
autoequivalence group Aut’ (D).

Definition 7.12. The reachable numerical autoequivalence group Aut% (D) is
the subgroup of Aut® (D) which preserves the set of numerically reachable hearts
N.

In the next section we will compute the group Autl (Dg) of reachable numer-
ical autoequivalences for the categories Dy associated to the Painlevé quivers

Q with the exception of Dy.

7.3 Painlevé quivers

In this section we consider the numerical Keller-Yang equivalences associated

to numerical simple tilts of the Painlevé quivers with the exception of Q = Dj.
We use the labelling the remaining seven finite and affine Painlevé quivers given
in Figures 1.3 and 1.4.

Remark 7.13. One can easily check that none of the four quivers with potential

in the mutation equivalence class of D4 are numerical, and so the corresponding
distinguished connected components Stab’(Dg ) are empty. The hearts of
D = which do support numerical stability conditions are not of finite-length

4
and so the analysis of the previous two sections is not applicable.

As the numerical Grothendieck group N(Dg) has rank two for the Painlevé
quivers @, the cone C°(A°)* spanned by the numerical equivalence classes v
of simple objects must have precisely two extremal rays. Moreover as the cor-
responding numerical equivalence classes generate the numerical Grothendieck
group, there are arrows in the quiver ) between simple objects of the classes.
We denote the two classes by vy and v_ such that the arrows in @ all point
from vertices of the former to the latter.

We list the vertices belonging to the numerical equivalence classes vi for
each of the Painlevé quivers in the Table below. We notice that every vertex of
each Painlevé quiver belongs to one of the two numerical equivalence classes v
with the exception of As. In this case each vertex belongs to its own numerical
equivalence class, but the ray in N(D) corresponding to the simple object S is
not extremal for we have the relation [S3] = [S1] + [S3].
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As in Chapter 5 we note that there is a unique wall of marginal stability in
the numerical U-domain of any numerical heart A of Dg w. On one side of the
wall, the only stable objects are shifts of the simple objects in the numerical
equivalence classes v4 of A%, and on the other side the stable objects are all
the indecomposable objects of the heart 4. We will call a numerical tilt at the
numerically tiltable classes v+ (un)stable respectively according to the side of
the wall of marginal stability on which the corresponding codimension 1 wall of
the numerical U-domain of A lies.

We denote by tbli the four numerical Keller-Yang equivalences which realise

the four numerical tilts ,uljfi of a numerical heart A. We call a numerical Keller-
Yang equivalence @fi (un)stable if the corresponding numerical tilt is.

Proposition 7.14. The numerical Keller-Yang equivalence @Vii s stable re-
spectively unstable according to whether the product of the two signs is + or

Proof. This follows immediately from our convention that the numerical equiv-
alence classes v4 are labelled such that the arrows in the quiver of the numerical
heart A point from v_ to v,. O

If a numerical heart A" = @fi (A) is obtained from A by a numerical tilt,
then the original heart A = <I>i (A”) is recovered by applying the Keller-Yang
equivalence with the two opposite signs. The set of numerically reachable hearts
N is therefore given the structure of a homogeneous set for the free group on
two generators by the action of the numerical Keller-Yang equivalences ®;f, (A).

In Table 2.1 we have computed the action cbffi of the numerical Keller-Yang
equivalences CDfi of the standard heart A° of each of the Painlevé quivers on
N (D). We list the change of basis matrix from the basis {v;,v_} of numerical
equivalence classes of the standard heart A° to the basis {v/,, v} = {v_, v} }
of the tilted heart. By the previous paragraph the square of these matrices is
the identity, so they define reflections of the lattice N (D).

By definition mutation at either of the numerical equivalence classes v
reverses all arrows between vertices in the two numerical equivalences classes.
In the case of the Painlevé quivers, we observe further that either mutation
sends the quiver @ to its opposite Q°P. Indeed this is immediate in the case of
the bipartite quivers and is easily checked for the remaining A, quiver.

In the sequel we will make the distinction between the two classes of the
Painlevé quiver @ according to whether @) is isomorphic to its opposite Q°P or
not.

Q= Q% : Ay, Ay, Ay, A3, Dy
Q ?'\é Qop : A37D3)D47l§4

If @ is isomorphic to its opposite then there exists an autoequivalence T :
Dgor — Dg which sends the simple objects in the numerical equivalence classes
vy of the standard heart of Dgor to the classes v+ of the standard heart of
Dg. Any autoequivalence with these properties defines the same element of the
group of numerically reachable autoequivalences Aut% (D).

Proposition 7.15. For the finite and affine Painlevé quivers Q we have either
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Q vy v o, o v .
P () S € S (R (S B (R B G
a2 (5 ) (o 4) (oY) (04
s oy w2y () (o ) () (LY
D, {0} {1,2,3} _01 1 (1) _01 _01 (1) é _01
A ooy o) (o S) () (e
A {0y {2) Sr)rh) () (s
A2 s (U7) (o D) (oY) (s Y
by o2y wa () (o %) () (s
by 2z (1) (o %) (0Y) (0

Table 7.1: The action on N(D) of the numerical tilt of the standard heart of
Dq

@ = Q°® The group AutJOV(DQ) is generated by the four elements T - fbfi.

Q # Q°P The group Aut?V(DQ) is generated by the sizteen elements ®F - <I>,i.

vt

Proof. A composite of numerical Keller-Yang equivalences is an equivalence
Dg — Dg or Dg — Dgor which preserves N according to the parity of the
length of the composition. It defines an autoequivalence of the category Dq,
after composition with the standard equivalence T if required, if and only if the
image of the standard heart A° has the same quiver.

Conversely the image of the standard heart under any autoequivalence of
Dg,w which preserves N acts on the standard heart A° by a composite of Keller-
Yang equivalences. Thus the group Aut?\,(DQ) consists of composites of Keller-
Yang equivalences and the standard equivalence T' which preserve the quiver
Q. As T commutes with the Keller-Yang equivalences the group Aut% (Dg) is
generated by the composites given in the statement of the Proposition. O

For the Painlevé quivers the shift functor is always numerically reachable
for the shift A°[1] of the standard heart is realised by a composite of unstable
tilts. Indeed the shift functor is equal to the composite ® ®F when the quiver
is bipartite, and A°[1] = (@, )3(A°) for the sole non-bipartite Painlevé quiver
Q = A,. We can show that the quotient of the group of reachable numerical
autoequivalences Aut® (D)/Z by the shift functor is generated by a pair ¥ and
T of autoequivalences up to shift.

Lemma 7.16. The quotient group AutQ,(D)/Z is generated by the equivalence
classes of the numerically reachable autoequivalences o and Y as follows.
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« FQ=Q
S=T-9; T=T-9

o IfQ2Q®
=0, O, T =230, &f

Proof. We observe that the inverses of the above autoequivalences are obtained
by reversing all of the signs of the Keller-Yang equivalences. If @ = Q°P, the
result now follows immediately from the previous Proposition which states that
Aut® (D) is generated by ¥ and T and their inverses.

If Q 2 Q°P the previous Proposition implies that Aut?\, (Dg) is generated by

the sixteen composites @fiq)li for all possible choices of sign. However using

the relations @fifbf; = id and ®} &} = [1] one can check that Aut%;(D)/Z is
generated by the two elements ¢, ®, and ¢, @, . O

For the A quiver we have already seen how to express the generators X
and T as a product of spherical twists and the shift functor. For the Painlevé
quivers () which are not isomorphic to their opposite this is also possible for we
have

T=Tw:' ¥=Tw 'Tw}'

The remaining Painlevé quivers A;, A, and A3 = D3 have an underlying
graph which is a cycle. In this case the group Aut® (D)/Z is not generated by
spherical twists, although they generate the group together with the autoequiv-
alence A =T - ®} . It acts on the simple objects of the standard heart in their
natural cyclic order by shifting the simple objects in the numerical equivalence
class v_ by [1] and rotating the result objects clockwise in the cyclic order by
one position.

In Table 2.2 we collect the explicit expressions for the generators ¥ and T
in terms of spherical twists, the shift functor, and the autoequivalence A. We
have also computed their actions o and v on the numerical Grothendieck group.
In the last column we have given the congruence class I'(Q) < PSL(2,Z) of the
subgroup which they generate, which we note is the same congruence subgroup
of the modular group as the monodromy I'(£) of the associated family & of
spectral elliptic curves.

We can now prove an analogue of the result at the end of Section 5.1 for the
Painlevé quivers.

Proposition 7.17. For each of the finite and affine Painlevé quivers there is a
commutative triangle of groups

Z, * Ly —— Aut(Dg)/Z[1]

I'(Q)

where ¢ is the map sending a numerically reachable autoequivalence Aut® (D) /Z
to its action on N (D) and the remaining maps are given by sending the gener-
ators of Ly x Zs to (T,X) and (v,0) respectively. The maps are all surjective
and are isomorphisms with the exception of the A, quiver.
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Q ) T o v T
Ay Tw_Twy[2] Tw,Tw_Tw,[3] _01 } ((1) _01> r'(1)
A; Tw'Twi! Tw_ 1 j (1) f Io(2)
Dy Tw 'Tw;' Tw_ 1 j (1) ? To(2)
D, Tw 'Twi' Tw_ i :g é ? To(3)
A, TwlA! A _01 ; (1) _01 To(2)
A, TwZ'AT? A _01 ; _01 1 (1)
Ay Twola-l A 0 ; ’01 To(2)
Dy  Tw 'A-! A _01 ; (1) _01 Io(2)
Dy, Tw 'Twi' Tw_ 1 :;1 (é ‘11) To(4)

Table 7.2: The generators ¥ and T of the group Aut”(Dg)/Z[1] and their action
on N(Dg).

Proof. 1t is easy to check that the autoequivalences T and 3 have orders r and
s where they are greater than one and infinite order when they are equal to
one. Thus we have a commutative diagram of groups all of whose arrows are
surjections. Furthermore with the exception of the A, case the diagonal map
in Proposition 1.4 is an isomorphism, from which we deduce that all arrows are
isomorphisms. [

Example 7.18. We study the commutative triangle of groups in Proposition
2.17 in the exceptional case of the A, quiver where the diagonal arrow Zs «Z —
PSL(2,Z) is not an isomorphism. In this case we will see that none of the arrows
is in fact an isomorphism. Consider the diagram
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1 1
\
Ky K3 1
RN
1 K, Z3* 7 — Aut(Dyg,)/Z —— 1
| N
1 PSL(2, Z)
1 \ 1

We have seen that there is a map Br(A;) — Aut (D4,)/Z from the affine
braid group to the quotient of the numerically reachable autoequivalence group
by Z. We note that the kernel K7 contains the free subgroup ZxZ x Z generated
by the three elements corresponding to the braid relations. Furthermore by
[Bri05, Proposition 2.2] we have a short exact sequence

1 = Z+Z+7 — Br(Ay) — PSL(2,Z) — 1

whose second map factors through
Br(Az) — Autd(D,) % PSL(2,7)

The free subgroup Z*Zx*Z is the image of the subgroup of the kernel of the map
Zs3 x 7. — PSL(2,Z) generated by the elements (Yo - 70)? and their conjugates
by vE! identified in Example 1.3.

7.4 V-domains and fundamental domains

For the finite and affine Painlevé quivers we show that the connected component
Stab’(Dg)/C is the union of the numerically reachable V-domains and that
they intersect in codimension 1 if their hearts are related by a numerical tilt. A
fundamental domain for the action of Aut’(D)/Z is either a V-domain or a union
of two neighbouring V-domains according to whether the quiver is isomorphic
to its opposite or not. We identify this fundamental domain with the double
Q@ of the Schwarz triangle.

The description of the V-domains of the standard heart V(ZO) will follow
Section 5.2 in the A, case. We first observe that the V-domain is contained in
the set of projective stability conditions for which the set of stable objects is a
subset of the irreducible objects of A°. Furthermore it contains a single wall of
marginal stability along which all extensions of the simple objects destabilise,
separating the V-domain into the stable and unstable regions where the stable
objects up to shift are the irreducible and simple objects of A° respectively.

We can identify the V-domain V(A") under the projective central charge
map with a closed subset of

P'=ptuwup-
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where W C P! is the equator containing the image of the wall of marginal
stability. We describe the half V -domains V* (ZO) =bht N V(?lo) given by the
intersection of the V-domain with the stable and unstable half-planes h*. The
whole V-domain is obtained by gluing the half V-domains along the part of the
equator W in which they meet.

—0
Each half V-domain V*(A") is contained in the domains V* respectively
consisting of projective stability conditions in h* whose width is no larger on

-0 . . —0 .

A" than on the stable and unstable tilts respectively of A~ with respect to the
two numerical equivalence classes vo. By Lemma 5.11, the two codimension 1
boundary components of each of the domains V* are contained in circles.

Definition 7.19. The bounding circles of the half V-domains Vi(jo) are the
two circles containing the boundary components of V*.

Using the explicit description of the bounding circles provided by Lemma
5.11, one can give a description of the boundary of the domains V*.

Proposition 7.20. Let cfi be the non-negative integers given by the maximal
off-diagonal entry in the matrices qbli given in Table 2.1. Denote by d* =
v, Cy_ the product of the two coefficients cljfi whose product of signs is equal to

+ or — respectively. Then the boundary of each of the domains V* is described
by one of the three cases below according to the value of d*

d* =0 The two bounding circles coincide.
1 < d* <3 The two bounding circles meet at a unique point o= in the interior of h*.
d* =4 The two bounding circles meet at a unique point on the boundary of h*.
Proof. By Lemma 5.11 the bounding circles are given by the loci
Z(vy) L2Z(v_) 4+ ¢y, Z(vy) Zv-) L2Z(vy) 4+ Z(v-)

We notice that the boundary circles coincide if and only if both coefficients ¢,
and ¢, are equal to zero in which case they define the circle Z(v;) L Z(v_).
The two bounding circles meet in the closure of h* if and only if the inequality

is satisfied, with equality if and only if their unique intersection point is on the
boundary. O

The above Proposition is reminiscent of the classification of the rank 2 root
systems R of finite and affine type according to the off-diagonal elements (¢4, c_)
of its Cartan matrix.

(CJr?C*) ‘ (070) ‘ (171) (1,2) (173) ‘ (272) (1,4)
R ‘ Al X Al ‘ A2 Bg G2 ‘ Al B~Cl

We note that for the bipartite Painlevé quivers @, the root systems R*
associated to the unstable and stable regions h* are R~ = A; x 41 and R
obtained by folding the quiver with respect to the automorphisms of the quiver
permuting the vertices in the two numerical equivalence classes. For Q = A,
we find that R~ = As and Rt = A,
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Proposition 7.21. The set of classes in N(Dgq) of the stable objects of Dg
in the stable and unstable regions b* is in bijection with the set of roots of the
corresponding root system RT.

Proof. The action of the stable and unstable Keller-Yang equivalences on N (D)
given in Table 2.1 corresponding to the two simple tilts is that of the generators
of the Coxeter group of the root system RT in its standard representation by
reflections. O

It will be helpful to identify the roots of the root systems R* with the points
on the boundary W of the hemispheres h* where the projective central charge of
the corresponding stable object vanishes. We remark that there is no projective
stability condition in the closure of the domains h* C Stab’(Dg)/C with these
projective central charges.

By definition the half V-domains V* (ZO) are contained in the domains V*
bounded by the bounding circles. We now establish the converse inclusion.

Proposition 7.22. The half V-domains V* (XO) are equal to the domains V*
bounded by the bounding circles.

Proof. We claim that any projective stability condition & in h* is supported
on a projective heart .7\0 which is the image of the standard heart under a
finite number of stable, respectively unstable, numerical tilts. Indeed h* is
by definition covered by the V-domains of the projective hearts supporting
a stability condition in the C-orbit of a stability condition supported on A°.
There is at most one such projective heart A which is not numerically reachable
corresponding to the unique imaginary root of the root system R* if it exists,
but the width of any projective stability condition @ on A is 1 and so it is not
supported on A.

As V(@A) = ¢V (A) it suffices to show that the interiors of the translates of
the closed domains V* C h* under the reflection group in PSL(2,Z) generated
by the two stable, respectively unstable, reflections given in Table 2.1 are dis-
joint. This follows immediately from the fact that there is no element of the root
system RT defining a point on the boundary of h* which is contained in the
domain V*/ for all stable objects of a belong to the cone C°(A%)* € N(D)®C
spanned by [v4] and [v_]. O

We thus have an explicit description of the V-domain V(jo) of the standard

heart ZO as the disjoint union
VA =VvTuUwWluv-

of its intersections V+ = V(XO) N h* with the stable and unstable half-planes
h* and with the equator WO = V(ﬁo) N W consisting of points where Z is real

and negative. Its boundary 8V(ZO) =0Vt UV~ consists of four codimension
1 components corresponding to the four simple numerical tilts of A.

Proposition 7.23. The distinguished connected component Stab’(Dg)/C is
covered by the V-domains of the numerically reachable hearts.
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Proof. We must show that the domain V' given by the union of the V-domains of
the numerically reachable hearts is both open and closed. The key observation
is that the reflection hyperplanes of the two root systems R* are locally-finite
in h*. In particular the walls of the V-domains of the numerically reachable
hearts are locally finite in Stab”(Dg)/C. This means that given any point in
Stab?(D)/C we can find an open neighbourhood which intersects only finitely
many of these walls.

The domain V is open because given a projective stability condition sup-
ported on a numerically reachable heart there exists an open neighbourhood for
which the projective stability conditions are supported on hearts obtained by a
finite sequence of numerical tilts. The domain V is also closed, for any limiting
point of a sequence of projective stability conditions in Stab’ (D)/C is supported
on any of the projective hearts supporting a projective stability condition in a
sufficiently small open neighbourhood. O

An immediate corollary of this is that all numerical autoequivalences of the
categories Dg are in fact numerically reachable.

Corollary 7.24. The subgroup Aut?V(DQ) of numerically reachable autoequiv-
alences of Auto(’DQ) is equal to the entire group.

Proof. By the previous Proposition any autoequivalence of the category Dg
which preserves Stab”(Dg)/C also preserves the set N of numerically reachable
hearts. O

Furthermore we can now describe a fundamental domain (¢ for the action
of Aut’(Dg)/Z on Stab’(Dg)/C. According to whether Q is isomorphic to its
opposite, it consists of a single V-domain or the union of two V-domains of
hearts whose quivers have the opposite orientation.

Proposition 7.25. A fundamental domain Dg for the action of Aut®(Dg)/Z
on Stab’(Dgq)/C is given by

Q= Q°° The V-domain V(jo) of the standard heart A

Q Z Q°P The union V(jlo) UV(@,Z.ZO) of the V-domains of the standard heart and
one of its simple tilts.

Proof. Every point in Stab®(D)/C belongs to the V-domain of a numerically
reachable heart and so is a translate of a point in D¢ by an element of Aut®(D)/Z.
The interiors of the Aut’(D)/Z are disjoint as the interiors of the V-domains of
the set of numerically reachable hearts are. O

We note that the fundamental domain Dq is adapted to the presentation
of Aut’(Dgq)/Z = Aut®(Dg) given in Proposition 2.17. In particular the gen-
erators ¥ and T of Aut’(D)/Z identify the boundary components of D¢ as in
Lemma 5.15.

Lemma 7.26. Let Dg be the standard fundamental domain for the action of
Aut’(Dg)/Z on Stab®’(Dgq)/C given in Proposition 2.25. Suppose x and y be-
long to Do and let g € Aut™(Dq)/Z. Then x = gy if and only if one of the
following occurs:
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e r =1y and g is the identity

=y =0_ if this point exists and g belongs to the subgroup generated by

is

=y =04 if this point exists and g belongs to the subgroup generated by

Ml &

z,y €0DoNh\G- and x =Ty or z = Ty.
e 2,y € dDoNhT\G4 and z =Xy orxzf_ly

Proof. If Q = Q°P this follows from the same argument as in Lemma 5.15. If

Q 2 Q°P then the V-domain V(?lo) is triangular for the bounding circles of V'~
coincide as @7 ®;7 = [1]. The boundary of D¢, therefore consists of four codi-

mension 1 components consisting of the boundary edges of the domains V(A")
and V(@jJr?lo) with the exception of the one they have in common. As @jJr is
a stable equivalence, each hemisphere h* contains a pair of the boundary com-

ponents of Dg, which are identified by T and X respectively. Furthermore & _

does not exist and any autoequivalence fixing 7, sends ZO to a heart obtained
by successive stable tilts and so belongs to the subgroup generated by . O

As we observed for () = A, the side pairing is indicative of the fact that the
domain ¢g = Z(Dg) C P! onto which D¢ projects biholomorphically under
Z is the double of a Schwarz triangle. We observe that (¢ is the double of
the Schwarz triangle given by the image of a branch of the period map of the
Seiberg-Witten differential of the associated family of spectral elliptic curves.

Proposition 7.27. The domain Og = Z(Dq) is the double of the corresponding
Schwarz triangle given in Proposition 1.8 along the edge connecting the vertices
corresponding to the first two exponents.

Proof. The domain (¢ C P! is the double of a Schwarz triangle A whose triangle
group is generated by the actions on N(D) of the following equivalences Dg —
Dger along the edge corresponding to the last equivalence in the list

Q= QP QL, ®F and T
QEQ™ @, , ¢, and &

Furthermore as the monodromy group I'(Q) is equal to I'(£), the Schwarz
triangle has angles specified by the exponents («, 3,7) of Proposition 1.8 up to
shifting the differences in the exponents by an integer. One can verify that in
fact the angles correspond to the exponents («, 8, ) precisely:

Q = Q°P The two vertices of the edge of A along which the Schwarz triangle is
doubled are located at the two intersection points of the bounding circles
of V= and VT respectively. The edges meet in the angles = and % where
r and s are greater than one, and 0 if r respectively s is equal to one. The
third vertex is at an intersection of one of the bounding circles of V+ with
one of the bounding circles of V'~ at a point on the equator, making angle

.
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Q Z Q°P Two of the vertices of A occur at the intersection points of the coincident
bounding circles of V™~ with the two bounding circles of VT each making
angle 7. The third vertex, which belongs to the doubled edge, is located at
the intersection of the bounding circles of V*, with angle T or 0 according
to whether s is greater than, or equal to, one.

O

This Proposition identifies the image under Z of the fundamental domain
Dg of the action of Aut’(Dg)/Z[1] on Stab(Dg)/C with the image ¢¢ of a

—_~—

branch of the period map p : P(r, s)\d — P!. In the next section we will use this

to lift p to a map f : P(r, 5)\d — Stab’(Dg)/C to the distinguished component
of the space of projective numerical stability conditions.

7.5 Proof of main theorem

In this section we complete the proof of the main theorem using the method
employed in the proof of Theorem 5.19 in the A, case. The strategy is to extend
the identification of fundamental domains by equivariance with respect to the
7., * Z¢-actions of Proposition 1.4 and 2.17.

Proposition 7.28. There is a commutative diagram of groups

P

1 (B(r, $)\3) —2— Aut’(Dg)/Z

consisting of surjective maps identifying the following pairs of generators

e The loops Yo,Veo around the points t =0 and t = oo of P(r, s)\d
e The autoequivalences T, % of Aut®(Dg)/Z
e The matrices v and o of T'(Q) given in Table 2.2.

Moreover if Q # Ay then all the arrows are isomorphisms.

—_~—

Proof. We define the map ¢ : 7 (P(r, s)\d) — Aut’(Dg)/Z on generators so
that it sends vy and 7., to T and 3. By the commutativity of the triangles in
the Propositions 1.4 and 2.17, the map ¢ commutes with the maps m and ¢.
As m and ¢ are isomorphisms if @ # A, it follows that  is an isomorphism
with the exception of the A, case. O

We can now prove the main theorem.
Theorem 7.29. There is a holomorphic covering map

—_~—

P(r, s)\d _r Stab?(Dg)/C

Iy

P Hom(N(Dg), C)
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lifting the period map p of the Seiberg-Witten differential A of the family of
elliptic curves € — P(2r,2s)\d. It is equivariant with respect to the actions of
Z, %L on the left by deck transformations, and on the right by Aut®(Dg)/Z[1].

Remark 7.30. In all but the A5 case we have observed in Proposition 2.17 that
the map Z, * Z, — Aut’(D)/Z is in fact an isomorphism, and so the lift f of
the period map in the above theorem is in fact a biholomorphism.

P

Proof. Consider the fundamental domain D for the action of Z, *xZ; on P(r, s)\d
obtained by making branch cuts along the intervals ¢t € (0,1) and t € (1, 00).
By Theorem 4.28 the image of the branch of the period map p is the double
O C P! of the Schwarz triangle with exponents given in Proposition 1.8 along
the edge connecting the vertices corresponding to the first two exponents. By
Proposition 2.27 this agrees with the image under Zof the fundamental domain
D for the action of Aut’(Dg)/C on Stab’(Dg)/C.

Define the map fjp = 7(01 -pip : D = Dg which by definition commutes

with the maps p and Z. Consider its extension f : P(r,s)\d — Stab®(Dg)/C
with respect to the Z, x Z, actions on both sides. This map is well-defined for
the identification of points on the boundary of D by vy and 7., agrees with the
identification of the boundary of Dg = f(D) by T = ¢(70) and & = (Voo
As the map ¢ : 71 (P(r, 5)\0) — Aut’(Dg)/Z commutes with the maps m
and ¢, the map f commutes with the local isomorphisms p and Z and is therefore
holomorphic. As ¢ is surjective it is also a covering map with automorphism

group the kernel of .
O

Remark 7.31. There can be more than one connected component of the space
of numerical stability conditions inside the connected component of the space of
stability conditions containing the standard heart. Indeed in the finite cases As
and Dy it is shown in [Qiul2] that there are Br(As)/Br(Bsz) and Br(Dy4)/Br(G2)
many connected components respectively.
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T+S o T+S

9T4S

T+S

Figure A.3: Fundamental domain for the quiver of type Dy

S+T

Figure A.4: Fundamental domain for the quivers of types A; and A / Ds
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S
E ®S+T
T

Figure A.5: Fundamental domain for the quiver of type Ay

S S
T+S T+S
2T+8S
T T

Figure A.6: Fundamental domain for the quiver of type Dy

Figure A.7: Fundamental domain for the quiver of type 54



104 APPENDIX A. APPENDIX

‘(E—)P%,w) (X —P}w) (L= PN (E — PHN)
3 1 5 1 3
31 9 5.0 0 -1 00 -3 1 9
Ay |t 5 ¢ 8 8 8
r i Y § 00 -5 11 —1 ¢ 1
3 3 1 1
3.0 0 3.0 0 -1 00 -1 00
ABioo i00 P I B
4 4 4 4
3.0 0 3.0 0 -1 0 -1 00
Ds; | ¢ i 4 g
300 00 -2 11 -2 11
2. 00 2. 00 -1 0 L 00
Dy| % ? 3 3
200 100 -2 11 -2 11
3 1 1 1
- 3.0 0 L 00 -1 0 L 90
Alioo i00 —311 —4lo1
4 2 2 4
i %00 %2000 —%000 00
I oo 0000 -+ 111 -to1
3 1 1 1
. 3.0 0 L 00 -1 0 L 090
4501 g oo I S f101
4 2 2 4
3 1 1 1
N 300 100 -1 0 L 090
DSioo oo S S —4101
4 2 2 4
< L 00 L 00 -1 0 -1 00
D4§00 %00 —211 —211
z 1 0 0 11 11 1 0 0
Dy| 7% 7 % 2 i
3 00 2 3 3 3 2 00

Table A.1: Riemann schemes of the Picard-Fuchs equations for the holomorphic
and Seiberg-Witten differentials w and A on the elliptic surfaces F and X



Bibliography

[BGP73]

[BQS]

[Bri05]

[Bri07]

[Bri09al

[Bri09b]

[BS13]

[CP03]

[DM96a]

[DM96b)

Arend Bayer. A tour to stability conditions on derived categories.
http://www.maths.ed.ac.uk/ abayer/dc-lecture-notes.pdf.

A. A. Beilinson, J. Bernstein, and P. Deligne. Faisceaux pervers.
In Analysis and topology on singular spaces, I (Luminy, 1981),
volume 100 of Astérisque, pages 5-171. Soc. Math. France, Paris,
1982.

I. N. Bernstein, I. M. Gel’fand, and V. A. Ponomarev. Coxeter
functors, and Gabriel’s theorem. Uspehi Mat. Nauk, 28(2(170)):19-
33, 1973.

Tom Bridgeland, Yu Qiu, and Tom Sutherland. Stability conditions
and the As quiver.

Tom Bridgeland. t-structures on some local Calabi-Yau varieties.
J. Algebra, 289(2):453-483, 2005.

Tom Bridgeland. Stability conditions on triangulated categories.
Ann. of Math. (2), 166(2):317-345, 2007.

Tom Bridgeland. Spaces of stability conditions. In Algebraic
geometry—Seattle 2005. Part 1, volume 80 of Proc. Sympos. Pure
Math., pages 1-21. Amer. Math. Soc., Providence, RI, 2009.

Tom Bridgeland. Stability conditions and Kleinian singularities.
Int. Math. Res. Not. IMRN, (21):4142-4157, 20009.

Tom Bridgeland and Ivan Smith. Quadratic differentials as stabil-
ity conditions. February 2013, 1302.7030.

C. J. Cummins and S. Pauli. Congruence subgroups of PSL(2,Z) of
genus less than or equal to 24. Ezperiment. Math., 12(2):243-255,
2003.

Ron Donagi and Eyal Markman. Spectral covers, algebraically
completely integrable Hamiltonian systems, and moduli of bun-
dles. In Integrable systems and quantum groups (Montecatini
Terme, 1993), volume 1620 of Lecture Notes in Math., pages 1-
119. Springer, Berlin, 1996.

Michael R. Douglas and Gregory W. Moore. D-branes, quivers,
and ALE instantons. 1996, hep-th/9603167.

105



106

[Dor01]

[Dou02]

[Duil0]

[DWZ08]

[FGO9]

[FSTOS]

[FZ02]

[Gin07]
[GLFS13]

[GMNO9]

[GMN10]

[Hap88]

[HN75]

[HRO96]

BIBLIOGRAPHY

Charles F. Doran. Algebraic and geometric isomonodromic defor-
mations. J. Differential Geom., 59(1):33-85, 2001.

Michael R. Douglas. Dirichlet branes, homological mirror symme-
try, and stability. In Proceedings of the International Congress of
Mathematicians, Vol. III (Beijing, 2002), pages 395-408, Beijing,
2002. Higher Ed. Press.

Johannes J. Duistermaat. Discrete integrable systems, QRT maps
and elliptic surfaces.  Springer Monographs in Mathematics.
Springer, New York, 2010.

Harm Derksen, Jerzy Weyman, and Andrei Zelevinsky. Quivers
with potentials and their representations. I. Mutations. Selecta
Math. (N.S.), 14(1):59-119, 2008.

V. V. Fock and A. B. Goncharov. Cluster ensembles, quantization
and the dilogarithm. II. The intertwiner. In Algebra, arithmetic,
and geometry: in honor of Yu. I. Manin. Vol. I, volume 269 of
Progr. Math., pages 655-673. Birkhduser Boston Inc., Boston, MA,
20009.

Sergey Fomin, Michael Shapiro, and Dylan Thurston. Cluster alge-
bras and triangulated surfaces. I. Cluster complexes. Acta Math.,
201(1):83-146, 2008.

Sergey Fomin and Andrei Zelevinsky. Cluster algebras. I. Founda-
tions. J. Amer. Math. Soc., 15(2):497-529 (electronic), 2002.

Victor Ginzburg. Calabi-Yau algebras. 2007, math/0612139.

Christof Gei, Daniel Labardini-Fragoso, and Jan Schrer. The rep-
resentation type of jacobian algebras. August 2013, 1308.0478.

Davide Gaiotto, Gregory W. Moore, and Andrew Neitzke. Wall-
crossing, Hitchin Systems, and the WKB Approximation. July
2009, 0907.3987.

Davide Gaiotto, Gregory W. Moore, and Andrew Neitzke.
Four-dimensional wall-crossing via three-dimensional field theory.
Comm. Math. Phys., 299(1):163-224, 2010.

Dieter Happel. Triangulated categories in the representation the-
ory of finite-dimensional algebras, volume 119 of London Mathe-
matical Society Lecture Note Series. Cambridge University Press,
Cambridge, 1988.

G. Harder and M. S. Narasimhan. On the cohomology groups of
moduli spaces of vector bundles on curves. Math. Ann., 212:215-
248, 1974/75.

Dieter Happel, Idun Reiten, and SmalgSverre O. Tilting in abelian
categories and quasitilted algebras. Mem. Amer. Math. Soc.,
120(575):viii+ 88, 1996.



BIBLIOGRAPHY 107

[IN14]

[Kel94]

[Kelll]

[Kel12]

[Kod63]

[Kon95]

[KP13]

[KS11]

[KT08]

[KY11]

[KZ03]

[Ler97]

[Mai05]

[Mir90]

[MR12]

[Neh52]

Kohei Iwaki and Tomoki Nakanishi. Exact wkb analysis and cluster
algebras. January 2014, 1401.7094.

Bernhard Keller. Deriving DG categories. Ann. Sci. Ecole Norm.
Sup. (4), 27(1):63-102, 1994.

Bernhard Keller. Deformed Calabi-Yau completions. J. Reine
Angew. Math., 654:125-180, 2011. With an appendix by Michel
Van den Bergh.

Bernhard Keller. Cluster algebras and derived categories. February
2012, 1202.4161.

K. Kodaira. On compact analytic surfaces. II. Ann. of Math. (2)
77 (1963), 563-626; ibid., 78:1-40, 1963.

Maxim Kontsevich. Homological algebra of mirror symmetry. In
Proceedings of the International Congress of Mathematicians, Vol.
1, 2 (Ziirich, 1994), pages 120-139, Basel, 1995. Birkhauser.

Alastair King and Matthew Pressland. Labelled seeds and global
mutations. September 2013, 1309.6579.

Bernhard Keller and Sarah Scherotzke. Linear recurrence relations
for cluster variables of affine quivers. Adv. Math., 228(3):1842—
1862, 2011.

Christian Kassel and Vladimir Turaev. Braid groups, volume 247 of
Graduate Texts in Mathematics. Springer, New York, 2008. With
the graphical assistance of Olivier Dodane.

Bernhard Keller and Dong Yang. Derived equivalences from mu-
tations of quivers with potential. Adv. Math., 226(3):2118-2168,
2011.

Maxim Kontsevich and Anton Zorich. Connected components of
the moduli spaces of Abelian differentials with prescribed singular-
ities. Invent. Math., 153(3):631-678, 2003.

W. Lerche. Introduction to Seiberg-Witten theory and its stringy
origin. Nuclear Phys. B Proc. Suppl., 55B:83-117, 1997. String
theory, gauge theory and quantum gravity (Trieste, 1996).

Robert S. Maier. On reducing the Heun equation to the hyperge-
ometric equation. J. Differential Equations, 213(1):171-203, 2005.

Rick Miranda. Persson’s list of singular fibers for a rational elliptic
surface. Math. Z., 205(2):191-211, 1990.

Marta Mazzocco and Vladimir Rubtsov. Confluence on the
painlevé monodromy manifolds, their poisson structure and quan-
tisation. December 2012, 1212.6723.

Zeev Nehari. Conformal mapping. McGraw-Hill Book Co., Inc.,
New York, Toronto, London, 1952.



108

[0006]

[Qiull]

[Qiul2]

[Rud97]

[Seg08]

[STO1]

[Sut11]

[SW94]

[Tho06]

[vdPS09]

[Ver96]

[Woo10]

BIBLIOGRAPHY

Yousuke Ohyama and Shoji Okumura. A coalescent diagram of the
Painlevé equations from the viewpoint of isomonodromic deforma-
tions. J. Phys. A, 39(39):12129-12151, 2006.

Yu Qiu. Stability conditions and quantum dilogarithm identities
for Dynkin quivers. November 2011, 1111.1010.

Yu Qiu. Folding quivers and numerical stability conditions. Octo-
ber 2012, 1210.0243.

Alexei Rudakov. Stability for an abelian category. J. Algebra,
197(1):231-245, 1997.

Ed Segal. The A, deformation theory of a point and the de-
rived categories of local Calabi-Yaus. J. Algebra, 320(8):3232-3268,
2008.

Paul Seidel and Richard Thomas. Braid group actions on derived
categories of coherent sheaves. Duke Math. J., 108(1):37-108, 2001.

Tom Sutherland. The modular curve as the space of stability con-
ditions of a CY3 algebra. November 2011, 1111.4184.

N. Seiberg and E. Witten. Electric-magnetic duality, monopole
condensation, and confinement in N = 2 supersymmetric Yang-
Mills theory. Nuclear Phys. B, 426(1):19-52, 1994.

R. P. Thomas. Stability conditions and the braid group. Comm.
Anal. Geom., 14(1):135-161, 2006.

Marius van der Put and Masa-Hiko Saito. Moduli spaces for lin-
ear differential equations and the Painlevé equations. Ann. Inst.
Fourier (Grenoble), 59(7):2611-2667, 2009.

Jean-Louis Verdier. Des catégories dérivées des catégories
abéliennes. Astérisque, (239):xii+253 pp. (1997), 1996. With a
preface by Luc Illusie, Edited and with a note by Georges Maltsin-
iotis.

Jonathan Woolf. Stability conditions, torsion theories and tilting.
J. Lond. Math. Soc. (2), 82(3):663-682, 2010.

[yCDM™13] Wu yen Chuang, Duiliu-Emanuel Diaconescu, Jan Manschot, Gre-

[Yos87]

[Yos05]

gory W. Moore, and Yan Soibelman. Geometric engineering of
(framed) BPS states. January 2013, 1301.3065.

Masaaki Yoshida. Fuchsian differential equations. Aspects of Math-
ematics, E11. Friedr. Vieweg & Sohn, Braunschweig, 1987. With
special emphasis on the Gauss-Schwarz theory.

Masaaki Yoshida. A naive-topological study of the contiguity re-
lations for hypergeometric functions. In PDFEs, submanifolds and
affine differential geometry, volume 69 of Banach Center Publ.,
pages 257—268. Polish Acad. Sci., Warsaw, 2005.



