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STABILITY CONDITIONS AND THE A2 QUIVER

TOM BRIDGELAND, YU QIU AND TOM SUTHERLAND

Abstract. We compute the space of stability conditions on the CYn version of the A2

quiver for all n and relate it to the Frobenius-Saito structure on the unfolding space of

the A2 singularity.

1. Introduction

In this paper we study spaces of stability conditions Stab(Dn) on the sequence of CYn

triangulated categories Dn associated to the A2 quiver. Our main result is Theorem 1.1

below. There are several striking features. Firstly we obtain uniform results for all n: the

space of stability conditions quotiented by the action of the spherical twists is independent

of n, although the identification maps are highly non-trivial. Secondly, there is a close

link between our spaces of stability conditions and the Frobenius-Saito structure on the

unfolding space of the A2 singularity: in fact this structure is precisely what encodes the

identifications between our stability spaces for various n. A third interesting feature is

that the space of stability conditions on the usual derived category of the A2 quiver arises

as a kind of limit of the spaces for the categories Dn as n → ∞.

For any integer n > 2 we let Dn = DCYn(A2) denote the bounded derived category

of the CYn complex Ginzburg algebra associated to the A2 quiver. It is a triangulated

category of finite type over C and is characterised by the following two properties:

(a) It is CYn, i.e. for any pair of objects A,B ∈ Dn there are natural isomorphisms

Hom∗

Dn
(A,B) ∼= Hom∗

Dn
(B,A[n])∨.

(b) It is (strongly) generated by two spherical objects S1, S2 satisfying

(1) Hom∗

Dn
(S1, S2) = C[−1].

We denote by D∞ the usual bounded derived category of the A2 quiver. It is again a

C-linear triangulated category, and is characterised by the property that it is generated

by two exceptional objects S1, S2 satisfying (1) and

Hom∗

D∞

(S2, S1) = 0.
1
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The notation D∞ is convenient: the point is that as n increases the Serre dual to the

extension S1 → S2[1] occurs in higher and higher degrees until when n = ∞ it doesn’t

occur at all.

For 2 6 n 6 ∞ we let Stab(Dn) denote the space of stability conditions on the category

Dn. We let Stab∗(Dn) ⊂ Stab(Dn) be the connected component containing stability

conditions in which the objects S1 and S2 are stable. Let Aut(Dn) denote the group

of exact C-linear autoequivalences of the category Dn, considered up to isomorphism of

functors. We let Aut∗(Dn) denote the subquotient consisting of autoequivalences which

preserve the connected component Stab∗(Dn) modulo those which act trivially on it. When

n < ∞ we let Sph
∗
(Dn) denote the subgroup of Aut∗(Dn) generated by the Seidel-Thomas

twist functors TwS1
and TwS2

corresponding to the spherical objects S1 and S2.

The Cartan algebra of the Lie algebra sl3 corresponding to the A2 root system can be

described explicitly as

h = {(u1, u2, u3) ∈ C :
∑

i

ui = 0}.

The complement of the root hyperplanes is

hreg = {(u1, u2, u3) ∈ h : i 6= j =⇒ ui 6= uj}.

There is an obvious action of the Weyl group W = S3 permuting the ui which is free on

hreg. The quotient h/W is isomorphic to C2 with co-ordinates (a, b) by setting

p(x) = (x− u1)(x− u2)(x− u3) = x3 + ax+ b.

The image of the root hyperplanes ui = uj is the discriminant

∆ = {(a, b) ∈ C
2 : 4a3 + 27b2 = 0}.

We can now state the main result of this paper.

Theorem 1.1. (a) For 2 6 n < ∞ there is an isomorphism of complex manifolds

Stab∗(Dn)/ Sph∗(Dn) ∼= hreg/W.

Under this isomorphism the central charge map Stab(Dn) → C2 corresponds to the

multi-valued map hreg/W → C2 given by

∫

γi

p(x)(n−2)/2 dx

for an appropriate basis of paths γi connecting the zeroes of the polynomial p(x).
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(b) For n = ∞ there is an isomorphism of complex manifolds

Stab(D∞) ∼= h/W.

Under this isomorphism the central charge map Stab(D∞) → C2 corresponds to

the map h/W → C2 given by
∫

δi

ep(x) dx

for an appropriate basis of paths δi which approach ∞ in both directions along rays

for which x3 → −∞.

Theorem 1.1 gives a precise link with the Frobenius-Saito structure on the unfolding

space of the A2 singularity x3 = 0. The corresponding Frobenius manifold is precisely

M = h/W . The maps appearing in part (a) of our result are then the twisted period maps

of M with parameter ν = (n − 2)/2 (see Equation (5.11) of [4]). The map in part (b)

is given by the deformed flat co-ordinates of M with parameter ~ = 1 (see [3, Theorem

2.3]).

The n < ∞ case of Theorem 1.1 was first considered by R.P. Thomas in [15]: he obtained

the n = 2 case and discussed the relationship with Fukaya categories and homological

mirror symmetry. The n = 2 case was also proved in [1] and generalised to arbitrary

ADE Dynkin diagrams. The n = 3 case of Theorem 1.1 was proved in [13], and was

extended to all Dynkin quivers of A and D type in [2]. The first statement of part (a),

that Stab(D) ∼= hreg/W , was proved for all n < ∞ in [10].

The case n = ∞ of Theorem 1.1 was first considered by A.D. King [7] who proved that

Stab(D∞) ∼= C2. This result was obtained by several other researchers since then, and

a proof was written down in [10]. The more precise statement of Theorem 1.1 (b) was

conjectured by A. Takahashi [14].

Just as we were failing to get round to finishing this paper, A. Ikeda posted [6] on the

arxiv which also proves Theorem 1.1 (a), and indeed generalizes it to the case of the Ak

quiver for all k > 1. The methods we use here are quite different however so we feel this

paper is also worth publishing.

Acknowledgements. We thank Alastair King for many useful conversations on the topic

of this paper.

2. Auto-equivalences and t-structures

We start by recalling some results from [8, 13]. We use the word heart to mean the

heart of a bounded t-structure. Recall that any such t-structure is determined by its
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heart. For any 2 6 n 6 ∞ the category Dn has a canonical heart which is the extension-

closed subcategory generated by S1 and S2. The exchange graph EG(Dn) has vertices the

hearts in Dn and edges corresponding to simple tilts. We denote by EGo(Dn) the principal

component, i.e. the connected containing the canonical heart A ⊂ Dn. The vertices of

EGo(Dn) are called reachable hearts. We say that a heart in Dn is full if it is equivalent

to the canonical heart.

Remark 2.1. When n > 2, this canonical heart is equivalent to the category Rep(A2)

of representations of the A2 quiver; besides the simple objects S1 and S2, it contains one

more indecomposable object which we denote E; there is a short exact sequence

(2) 0 −→ S2 −→ E −→ S1 −→ 0.

When n = 2, the canonical heart is equivalent to the category of representations of the

preprojective algebra: besides E there is another non-simple indecomposable fitting into

a short exact sequence

(3) 0 −→ S1 −→ F −→ S2 −→ 0.

The group of auto-equivalences of Dn acts on EG(Dn) in the obvious way. An autoe-

quivalence is called reachable if it preserves the connected component EGo(Dn). We write

Aut∗(Dn) for the sub-quotient of the group of autoequivalences in D consisting of auto-

equivalences which preserve the principal component, modulo those which act trivially on

it. We will show that this agrees with the definition given in the introduction later (see

Remark 4.3(b)).

Lemma 2.2. Let 2 6 n < ∞ and define the following auto-equivalences of Dn:

Σ = (TwS1
TwS2

)[n− 1], Υ = (TwS2
TwS1

TwS2
)[2n− 3].

Then we have

Σ(S1, E, S2) = (S2[1], S1, E), Υ(S1, S2) = (S2, S1[n− 2]).

Proof. For any spherical object S we always have TwS(S) = S[1− n], and for any pair of

spherical objects we have the relation

TwS1
◦TwS2

= TwTwS1
(S2) ◦TwS1

.

The short exact sequence (2) shows that

TwS1
(S2) = E, TwE(S1) = S2[1], TwS2

(E) = S1.

Thus Σ = TwE ◦TwS1
[n− 1]. Hence

Σ(S1) = TwE(S1) = S2[1], Σ(S2) = TwS1
(S2) = E.
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It follows that Σ(E) is the unique non-trivial extension of these two objects, namely S1.

Moving on to the second identity we know that TwS1
and TwS2

satisfy the braid relation

(see Prop. 2.7 below). Hence

Υ(S1) = Σ(S1[1]) = S2, Υ(S2) = TwS2
(E[n− 2]) = S1[n− 2].

This completes the proof. �

The following description of the tilting operation in Dn is the combinatorial underpin-

ning of our main result.

Proposition 2.3. Let 2 6 n 6 ∞, and consider hearts obtained by performing simple

tilts of the standard heart A ⊂ Dn.

(a) The right tilt of A at the simple S2 is another full heart:

A = 〈S1, S2〉 → 〈S2[1], E〉 = Σ(A).

(b) If n > 2 then repeated right tilts at appropriate shifts of S1 gives a sequence of

hearts

A = 〈S1, S2〉 → 〈S1[1], S2〉 → 〈S1[2], S2〉 → · · · → 〈S1[n− 2], S2〉 = Υ(A).

Proof. This is easily checked by hand, or one can consult [8, Proposition 5.4]. �

Remarks 2.4. (a) When n > 3 the intermediate hearts in the sequence in (b) are

non-full. In fact, since

Hom1
Dn

(S1[k], S2) = 0 = Hom1
Dn

(S2, S1[k])

for 0 < k < n− 2, each of these hearts is equivalent to the category of representa-

tions of the quiver with two vertices and no arrows.

(b) The cases n = 2, 3,∞ of (b) all deserve special comment.

(i) When n = ∞ the sequence of non-full hearts is of course infinite.

(ii) When n = 3 the first tilt is already a full heart so no non-full hearts arise.

(iii) When n = 2, the statement of Prop. 2.3 (b) needs slight modification: there

is now a non-trivial extension (3) and the right tilt of A at S1 is

A = 〈S1, S2〉 → 〈F, S1[−1]〉 = Σ∗(A),

where Σ∗ = (TwS2
TwS1

)[1]. so again no non-full hearts arise.

Corollary 2.5. The auto-equivalences Σ,Υ and [1] are all reachable. In the group Aut∗(Dn)

we have relations

Σ3 = [1], Υ2 = [n− 2],
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Proof. The reachability of Σ and Υ is immediate from the last result. Since the twist

functors TwSi
are reachable it follows from the definition of Σ and Υ that the shift [1]

is also reachable. From Lemma 2.2 we know that the auto-equivalence Σ3[−1] fixes the

objects S1, S2. This is enough to ensure that it acts trivially on EG0(Dn) and hence defines

the identity element in Aut∗(Dn). Similarly for Υ2[2− n]. �

Proposition 2.6. For 2 6 n 6 ∞ the action of Aut∗(Dn) on the set of full reachable

hearts is free and transitive.

Proof. It is free by definition. That it is transitive follows from the characterisation of the

categories Dn in terms of generators, or by the explicit description of tilts given in Prop.

2.3. �

We denote by Br3 the Artin braid group of the A2 root system; it is the fundamental

group of hreg/W . More concretely, Br3 is the standard braid group on 3 strings and has a

presentation

Br3 = 〈σ1, σ2 : σ1σ2σ1 = σ2σ1σ2〉.

The centre of Br3 is generated by the element τ = (σ1σ2)
3 and there is a short exact

sequence

1 −→ Z
τ

−→ Br3 −→ PSL(2,Z) −→ 1.

We can give the following description of the group Aut∗(Dn).

Proposition 2.7. Let 2 6 n < ∞.

(a) The group Aut∗(Dn) is generated by the subgroup Sph∗(Dn) together with the shift

functor [1].

(b) There is an isomorphism Br3 ∼= Sph
∗
(Dn) sending the generator σi to TwSi

.

(c) The isomorphism in (b) sends the central element τ to [3n− 4].

(d) The smallest power of [1] contained in Sph
∗
(Dn) is [3n− 4]. Thus there is a short

exact sequence

1 −→ Sph∗(Dn) −→ Aut∗(Dn) −→ µ3n−4 −→ 1.

Proof. Part (a) follows from the explicit description of tilts given in Prop. 2.3 since any

element of Aut∗(Dn) takes the canonical heart A to a reachable full heart. Part (b) was

proved by Seidel and Thomas [12]. Part (c) is immediate from Cor. 2.5. Part (d) then

follows from the fact that τ generates the centre of Br3, since any shift [d] lying in Sph∗(D)

is necessarily central and hence corresponds to a multiple of τ . �

It will be useful to introduce the quotient group

PAut∗(Dn) = Aut∗(Dn)/[1].
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Figure 1. The projective exchange graph of D3 drawn on the hyper-
bolic disc. The action of PAut∗(D3) corresponds to the standard action
of PSL(2,Z) on the disc.
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Figure 2. The projective exchange graphs of D2 and D4 drawn on the
hyperbolic disc (orientations omitted).
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When 2 6 n < ∞ it follows from Prop. 2.7 that

PAut∗(Dn) = Sph
∗
(Dn)/〈[3n− 4]〉 ∼= Br3 /〈τ〉 ∼= PSL(2,Z).

Note that by Cor. 2.5, the autoequivalences Σ and Υ define elements of PAut∗(Dn) of

orders 2 and 3 respectively.

For the category D∞ the situation is much simpler.

Proposition 2.8. There is an equality Aut∗(D∞) = Aut(D∞). Moreover

(a) The group Aut(D∞) ∼= Z with the Serre functor Σ being a generator.

(b) There is a relation Σ3 = [1].

Proof. This is easy and well-known. The Auslander-Reiten quiver for D∞ is an infinite

strip

· · · → E[−1] → S1[−1] → S2 → E → S1 → S2[1] → E[1] → · · ·

and Σ moves along this to the right by one place. �

It follows that PAut(D∞) ∼= µ3. Note that our use of the symbol Σ in Prop. 2.8 is

reasonably consistent with our earlier use for the category Dn: for example the first part

of Cor. 2.5 continues to hold in the n = ∞ case.

3. Conformal maps

In this section we describe some explicit conformal maps which will be the analytic

ingredients in the proof of our main result.

x

y

0 1

l+

l−

2

3

2−n
2

Figure 3. The region Rn
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For 2 6 n < ∞ we consider the region Rn ⊂ C depicted in Figure 3. It is bounded by

the line Re(z) = (2 − n)/2 and by the curves ℓ±. Here ℓ± are the images under the map

z 7→ (1/πi) log(z) of the arcs of circles of Apollonius

(4) r± = {z ∈ C : |z±1 + 1| = 1}.

connecting 0 and ω±1 = e±2πi/3. We also consider splitting the region Rn into two halves

R±

n by dividing it along the line Im(z) = 0. By convention we take R+
n to be the part

lying above the real axis. Note that R+
n has three vertices: (2 − n)/2, 2/3 and ∞. The

Riemann mapping theorem ensures that there is a unique biholomorphism

fn : H → R+
n

which extends continuously over the boundary and sends (0, 1,∞) to (2−n
2
,∞, 2

3
). The

Schwarz reflection principle then shows that Rn itself is biholomorphic to the open subset

of P1 consisting of the complement of [0,∞].

Proposition 3.1. For n < ∞ the functions fn can be explicitly written as

fn(t) =
1

πi
log

(

φ
(2)
n (a, b)

φ
(1)
n (a, b)

)

where t = −(27b2)/(4a3) and

φ(i)
n (a, b) =

∫

γi

(x3 + ax+ b)
n−2

2 dx,

for appropriately chosen cycles γi.

Note that the function fn only depends on t = −(27b2)/(4a3) because rescaling (a, b)

with weights (4, 6) rescales both functions φ
(i)
n with weight

3(n− 2) + 2 = 3n− 4

and leaves their ratio unchanged.

Proof. We consider the Schwarzian derivative of the function gn(t) = exp fn(t). As the

images in P1 of the three sides of R+
n under the exponential map are segments of circles, the

image of the boundary of the upper-half plane H under gn is a curvilinear triangle in P1.

Thus by the proof of the Schwarz triangle theorem as e.g. in [9, p.207], the Schwarzian

derivative of the function gn is determined by its exponents αi at the singular points

{0, 1,∞}.

In more geometric terms this means that the Schwarzian derivative is determined by the

angles παi at which the images of the components of the boundary of H meet at images
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of the singular points {0, 1,∞}. We know from the explicit description of the boundary

of R+
n that the exponents at 0 and ∞ are 1

2
and 1

3
respectively. The exponent at 1 is the

difference between the real parts of the asymptotes of the boundary components of R+
n at

infinity, namely

1

2
−

2− n

2
=

n− 1

2
.

The transformation law of the Schwarzian derivative is that of a projective connection;

a function defines a section of the projective local system associated to its Schwarzian

derivative. In particular gn is given by the ratio of a pair of linearly independent solutions

to any second-order linear differential equation with precisely three regular singularities

at (0, 1,∞) at which the characteristic exponents of its solutions differ by (1
2
, n−1

2
, 1
3
)

respectively.

Now consider the periods φn(z) = φn(−3, 2(2z − 1)) where we have fixed the coeffi-

cient a of the polynomial p(x). We prove in the Appendix that these periods satisfy the

hypergeometric differential equation

(5) z(1− z)φ′′(z) + (γ − (α + β + 1)z)φ′(z)− αβ φ(z) = 0

with coefficients (α, β, γ) = (4−3n
6

, 8−3n
6

, 3−n
2
). This differential equation has three regular

singularities at (0, 1,∞) with differences in characteristic exponents

(1− γ, γ − α− β, β − α) =

(

n− 1

2
,
n− 1

2
,
2

3

)

.

We deduce that the periods φn(t) satisfy a differential equation with precisely three

regular singularities at (0, 1,∞) with differences in exponents (1
2
, n−1

2
, 1
3
). Indeed the

covering map t = (2z − 1)2 is ramified over t = {0,∞} and the two regular singularities

at z = {0, 1} are the preimages of the point t = 1. �

In the case n = ∞ we consider the region R∞ depicted in Figure 4. It is bounded by

the same two curves ℓ±. We again consider the half region R+
∞

consisting of points of R∞

with positive imaginary part. This region R+
∞

has just two vertices: 2/3 and ∞. The

Riemann mapping theorem ensures that there is a biholomorphism

f∞ : H → R+
∞

which extends continuously over the boundary, and sends (0,∞) to (2
3
,∞). This map is

unique up to precomposing by a map of the form t 7→ λ · t with λ real.
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x

y

0 1

l+

l−

2

3

−∞

Figure 4. The region R∞

Proposition 3.2. The function f∞ can be written explicitly as

f∞(t) =
1

πi
log

(

φ
(2)
∞ (a, b)

φ
(1)
∞ (a, b)

)

where t = a3, b is arbitrary, and

φ(i)
∞
(a, b) =

∫

γi

ex
3+ax+b dx,

for appropriately chosen cycles γi.

Note that the function f∞ only depends on a because translating (a, b) in the b-direction

rescales both functions φ
(i)
∞ and leaves their ratio unchanged.

Proof. The defining property of f∞(t) shows that it is of the form t1/3 ·m(t) at t = 0 and

t1/2 · n(t) at t = ∞, where m(t) and n(t) are locally-defined analytic functions. Consider

the function g(a) = exp(f∞(a3)) defined on the sector

Σ = {a ∈ C : 0 < arg(a) < π/3}.

Then g(a) extends analytically over the boundary of Σ ⊂ C, and in a neighbourhood of

∞ we can write g(a) = exp(a3/2) · q(a) for some locally-defined analytic function q(a).

Consider now the Schwarzian derivative S(g) of the function g. It is analytic on a

neighbourhood of the closure of Σ in C. Moreover, since we can compose g with any Mobius
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transformation without altering the Schwarzian, and since g maps the boundary ray R>0

to a circle, it follows that S(g) is real-valued on this ray. A similar argument applied to

the function g(eπi/3a) shows that S(g) takes the other boundary ray R>0 exp(πi/3) of Σ

to itself (up to sign).

Consider the function h(a) = exp(a3/2). Then

h′′(a)

h′(a)
=

3a3/2 + 1

2a
.

So the Schwarzian is

S(h) =

(

h′′(a)

h′(a)

)′

−
1

2

(

h′′(a)

h(a)

)2

= −
9a3 + 5

8a2
.

In particular, the Schwarzian S(h) has a simple pole at a = ∞.

It now follows that, up to sign, the Schwarzian S(g) takes Σ to itself and extends over

the boundary. This then implies that S(g) = λa for some real λ. By precomposing

f∞(a) by a rescaling of a we can reduce this to S(g) = a/3. By general properties of the

Schwarzian it follows that g(a) is given by a ratio of solutions of the linear differential

equation

y′′(a)−
a

3
· y(a) = 0,

a variant of the Airy equation. Since the solutions to this equation are precisely the

functions φ
(i)
∞ (a) (as can easily by checked by differentiating under the integral sign), this

completes the proof. �

4. Stability conditions

We let Stab∗(Dn) denote the connected component of the space of stability conditions

on Dn containing stability conditions whose heart is the canonical one. We set

P Stab∗(Dn) = Stab∗(Dn)/C.

It is a complex manifold locally modelled on the projective space

P
1 = PHomZ(K0(Dn),C).

If σ is a stability condition we set S(σ) to be the set of indecomposable semistable

objects of σ. We also set PS(σ) to be the set of such objects up to shift. We now define

an open subset Un ⊂ P Stab∗(Dn) as follows.

Definition 4.1. A projective stability condition σ̄ ∈ P Stab∗(Dn) lies in Un if one of the

following two conditions holds
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(a) PS(σ) = {S1, S2} and 0 < φ(S2)− φ(S1) < (n− 2)/2,

(b) PS(σ) = {S1, S2, E} and

(6) 0 6 φ(S1)− φ(S2) < φ(E[1])− φ(S1), 0 6 φ(S1)− φ(S2) < φ(S2[1])− φ(E).

The point of this definition is the following result.

Proposition 4.2. For any 2 6 n 6 ∞ the domain Un is a fundamental domain for the

action of PAut∗(Dn) on P Stab∗(Dn).

Proof. Suppose a projective stability condition σ lies in the intersection Un ∩ Φ−1(Un) ⊂

P Stab∗(Dn) for some Φ ∈ Aut∗(Dn). This means that σ ∈ Un and also Φ(σ̄) ∈ Un. There

are two cases to consider, corresponding to the two parts of Definition 4.1.

Suppose first that PS(σ) = {S1, S2}. Then Φ maps each Si to an Sj up to shift. Given

the Hom-spaces between S1 and S2 it is easy to see that if Φ defines a non-trivial element

of PAut∗(Dn) then we must have n < ∞ and

Φ(S1, S2) = (S2, S1[n− 2]))

up to shift. But then for Φ(σ) to lie in Un we must have n−2−(φ(S2)−φ(S1)) < (n−2)/2

which gives a contradiction.

The second case is when PS(σ) = {S1, S2, E}. Then Φ preserves this set of objects

up to shift. Given the maps between them, and using Lemma 2.2, it follows that Φ ∈

PAut∗(Dn) lies in the order 3 subgroup generated by Σ. Noticing that the inequalities (6)

are equivalent to

|Z(S2)| < |Z(E)|, |Z(S1)| < |Z(E)|(7)

where Z is the central charge for σ, they give a contradiction.

Now consider the union of the closures of the regions Φ(Un) for Φ ∈ PAut∗(Dn). This

subset of P Stab∗(Dn) is closed because it is a locally-finite union of closed subsets. To

prove that it is open consider a stability condition σ defining a point in the boundary of

Un. Again, there are two possibilities, corresponding to the two parts of Definition 4.1.

In the first case, PS(σ) = {S1, S2} and φ(S2)−φ(S1) = (n− 2)/2. Then a neighbourhood

of σ is covered by the closures of the regions Un and Υ(Un). In the second case PS(σ) =

{S1, S2, E} and one or both of the two inequalities (6) is not strict. Then a neighbourhood

of σ is covered by the closures of the regions Un, Σ(Un) and Σ2(Un). This completes the

proof. �

Remarks 4.3. (a) When n < ∞ there are two special points in the boundary of Un:

one is fixed by Σ and the other by Υ. In the case n = ∞ only the order 3 point

fixed by Σ exists. These projective stability conditions are illustrated in Figure 5.



STABILITY CONDITIONS AND THE A2 QUIVER 14

S2

S1

ES1

S2

Figure 5. Stability conditions corresponding to orbifold points of P Stab∗(Dn)

(b) It follows from this result that an autoequivalence in Aut(Dn) is reachable pre-

cisely if it preserves the connected component Stab∗(Dn). Moreover by [11, Corol-

lary 5.3]) such an autoequivalence acts trivially on Stab∗(Dn) precisely if it acts

trivially on the principal component EGo(Dn).

Proposition 4.4. Let 2 6 n 6 ∞. Then the function

g(σ) =
1

πi
log

Z(S1)

Z(S2)

defines a biholomorphic map between the regions Un and Rn.

Proof. The region Un consists of two parts, corresponding to conditions (a) and (b) of

Definition 4.1. In the first part S1 and S2 are the only indecomposable semistable objects.

This implies that φ(S2) > φ(S1) since otherwise the extension E would also be semistable.

Combined with the inequality in Definition 4.1 this gives

0 < φ(S2)− φ(S1) < (n− 2)/2.

Any stability condition for which S1 and S2 are the only indecomposable semistable objects

is clearly determined up to the C-action by logZ(S2)/Z(S1), and it is also easy to see that

any possible value compatible with the above constraint is possible. So the image of this

part of Un is precisely the strip (2− n)/2 < Re(z) < 0.

In the second part of the region Un, all three objects S1, S2 and E are semistable.

The existence of nonzero maps S1 → S2[1] implies the image of this part of Un lies in

the strip 0 6 Re(z) < 1. Now the inequalities (6) in Definition 4.1 (or equivalently

(7)) imply that this image is one third of this region, divided by the order 3 subgroup

generated by Σ in Aut∗(Dn). To see it is precisely the left part of Rn, we only need

to notice that the boundaries r±, defined by (4), of Rn correspond to the points where

|Z(S1) + Z(S2)| = |Z(E)| = |Z(S1)| and |Z(S1) + Z(S2)| = |Z(E)| = |Z(S2)|. �
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Figure 6. Exchange graph as the skeleton of space of stability conditions

We can now prove a projectivised version of Theorem 1.1. Recall that the quotient h/W

is isomorphic to C2 with co-ordinates (a, b) by setting

p(x) = (x− u1)(x− u2)(x− u3) = x3 + ax+ b.

The image of the root hyperplanes ui = uj is the discriminant

∆ = {(a, b) ∈ C
2 : 4a3 + 27b2 = 0}.

Note that h has a natural C∗ action rescaling the ui co-ordinates with weight 1. This

acts on (a, b) with weights (2, 3). We thus have

C
∗\(h \ {0})/W ∼= P(2, 3).

The weighted projective space P(2, 3) contains two orbifold points with stabilizer groups

µ2 and µ3 respectively. The image of the discriminant is a single (non-orbifold) point

which we also label ∆.

In the n = ∞ case we consider the quotient of P1 by µ3 given by [1 : z] 7→ [1 : e2πi/3z].

We label the two orbifold points {µ3,∞}.

Theorem 4.5. (a) For 2 6 n < ∞ the action of PAut∗(Dn) on P Stab∗(Dn) is quasi-

free and there is an isomorphism of complex orbifolds

P Stab∗(Dn)/PAut∗(Dn) ∼= P(2, 3) \ {∆}.
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(b) The action of PAut(D∞) on P Stab(D∞) is quasi-free and there is an isomorphism

of complex manifolds

P Stab(D∞)/PAut∗(D∞) ∼= C/µ3.

Proof. We identify the upper half-plane arising in the last section with the upper half-

plane in the coarse moduli space of the orbifold P(2, 3), in such a way that the points

(0, 1,∞) correspond to (µ2,∆, µ3). Combining the map g of Prop. 4.4 and the inverse of

the maps fn of the last Section gives a biholomorphic map

Un
g

−→ Rn
f−1
n

−→ P.

Here, we view Un as an open dense subset of P Stab∗(Dn)/Aut∗(Dn), and P = P(2, 3) \

([µ2,∆] ∪ [∆, µ3]) is the union of two copies of the upper half-plane glued along the

boundary component [µ2, µ3].

By definition, the map g extends over the boundary of Un and sends the two types of

boundary points (corresponding to parts (a) and (b) of Definition 4.1) to the boundaries

on the left and right of Figures 3 – 4 respectively. Under the map f−1
n these boundaries

become identified with [µ2,∞] and [µ3,∞] respectively. The result then follows.

The case n = ∞ proceeds along similar lines. We identify the upper half-plane with the

upper half-plane in the coarse moduli space of the resulting orbifold P1/µ3. The composite

f−1
∞

◦g then identifies the dense open subset U∞ of P Stab(D∞)/PAut(D∞) with the union

of two copies of the upper half-plane glued along one of the boundary components [µ3,∞].

The rest of the argument is then as above. �

Remark 4.6. Note that P Stab(D∞) is isomorphic to C and the action of PAut(D∞) ∼= µ3

corresponds to the usual action of µ3 on C by multiplication by a primitive third root of

unity.

We can now lift Theorem 4.5 to obtain a proof of our main theorem.

Proof of Theorem 1.1. We have a diagram of complex manifolds and holomorphic
maps

Stab∗(Dn)/ Sph∗
(Dn) C2 \∆





y





y

P Stab∗(Dn)/P Sph
∗
(Dn)

θn−−−→ P(2, 3) \∆

The vertical arrows are C∗-bundles, and the horizontal arrow θn is the isomorphism of

Theorem 4.5. We would like to complete the diagram by filling in an upper horizontal

isomorphism satisfying the property claimed in Theorem 1.1. Note that by construction
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the central charge map

P Stab(Dn) → P
1

corresponds under the isomorphism θn to the multi-valued map given by ratios of the

functions φ
(i)
n (a, b). These functions lift to C2\∆ and are then scaled with weight 3n−4 > 0

by the C∗-action. There is therefore a unique way to fill in the upper arrow so that the

multi-valued central charge map on Stab(Dn) corresponds to φ
(i)
n (a, b).

In the n = ∞ we have a similar diagram

Stab∗(D∞) C2





y





y

P Stab∗(D∞)
θ∞−−−→ C

in which the vertical arrows are C-bundles. The bundle on the right is just the projection

C
2 → C given by (a, b) 7→ a. By construction the central charge map

P Stab∗(D∞) → P
1

is given by ratios of the functions φ
(i)
∞ (a, b). These functions lift to C2 and are then scaled

by weight eb by translation by (0, b). There is therefore a unique way to fill in the upper

arrow so that the central charge map on Stab(D∞) corresponds to φ
(i)
∞ (a, b).

Remark 4.7. In the n = ∞ case the auto-equivalence group is Z generated by Σ. The

induced action on h/W is given by (a, b) 7→ (e2πi/3a, b+ πi/3). The element Σ3 = [1] then

fixes a and acts by b 7→ b+ πi.

Appendix A. Hypergeometric equation for the twisted periods

In this section we prove that the twisted periods satisfy the hypergeometric differential

equation (5) appearing in the proof of Theorem 3.1.

Let us fix a ∈ C and consider the function

fa(h) = h−(ν+1)

∫

eh(x
3+ax)dx.

Setting t = h1/3 · x we see that

fa(h) = h−(ν+ 4

3
)

∫

et
3+h2/3atdt.

Introduce the differential operator

Dh = h∂h + ν + 1.
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Then

(Dh +
1

3
)fa(h) =

2

3
· h−(ν+ 4

3
)

∫

h
2

3 · at · et
3+h2/3atdt.

Repeating we obtain

(Dh −
1

3
)(Dh +

1

3
)fa(h) =

4

9
· h−(ν+ 4

3
)

∫

h
4

3 · (at)2 · et
3+h2/3atdt,

and it follows that
(

(Dh −
1

3
)(Dh +

1

3
) +

4a3

27
· h2

)

f(a, h) =

= h−(ν+ 4

3
) · h

4

3 ·
4a2

27

∫

(3t2 + h
2

3a) · et
3+h2/3at dt = 0.

Now consider the (inverse) Laplace transform

pa(b) =

∫

ebhfa(h) dh =

∫ ∫

eh(x
3+ax+b) · h−(ν+1) dx dh.

Exchanging the order of integration and using
∫

eh(y+b) · h−(ν+1)dh = (−ν − 1)! · (y + b)ν ,

valid for Re(ν) > −1 this becomes

pa(b) = (−ν − 1)! ·

∫

(x3 + ax+ b)ν dx.

Under the inverse transform h∂h becomes −b∂b − 1 so the transform of the operator Dh is

Mb = (−b∂b + ν).

The twisted periods therefore satisfy the differential equation

(

(−b∂b + ν +
1

3
)(−b∂b + ν −

1

3
) +

4a3

27
· ∂2

b

)

pa(b) = 0

which can be rewritten

(8)

(

4a3

27
+ b2

)

∂2
b + (1 + α + β)b∂b + αβ = 0

with α = −1/3−ν and β = 1/3−ν. Our derivation holds for Re(ν) > −1 but by analytic

continuation the result holds in general.
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The differential equation (8) is second order in b with three regular singularities. To

put it in hypergeometric form substitute

b = d(2z − 1) with 4a3 + 27d2 = 0

so that the singularities lie at z ∈ {0, 1,∞}. The equation now becomes

z(1 − z)∂2
z +

(

γ − (1 + α + β)z
)

∂z − αβ = 0,

with γ = 1/2− ν. Setting ν = (n− 2)/2 gives the claim.
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