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Abstract. In the first part of this paper, we introduce the notion of cyclic stratum
of a Frobenius manifold M . This is the set of points of the extended manifold
C∗ × M at which the unit vector field is a cyclic vector for the isomonodromic
system defined by the flatness condition of the extended deformed connection. The
study of the geometry of the complement of the cyclic stratum is addressed. We show
that at points of the cyclic stratum, the isomonodromic system attached to M can
be reduced to a scalar differential equation, called the master differential equation of
M . In the case of Frobenius manifolds coming from Gromov-Witten theory, namely
quantum cohomologies of smooth projective varieties, such a construction reproduces
the notion of quantum differential equation.

In the second part of the paper, we introduce two multilinear transforms, called
Borel-Laplace (α,β)-multitransforms, on spaces of Ribenboim formal power series
with exponents and coefficients in an arbitrary finite dimensional C-algebra A. When
A is specialized to the cohomology of smooth projective varieties, the integral forms of
the Borel-Laplace (α,β)-multitransforms are used in order to rephrase the Quantum
Lefschetz Theorem. This leads to explicit Mellin-Barnes integral representations of
solutions of the quantum differential equations for a wide class of smooth projective
varieties, including Fano complete intersections in projective spaces.

In the third and final part of the paper, as an application, we show how to use the
new analytic tools, introduced in the previous parts, in order to study the quantum
differential equations of Hirzebruch surfaces. For Hirzebruch surfaces diffeomorphic
to P1 × P1, this analysis reduces to the simpler quantum differential equation of P1.
For Hirzebruch surfaces diffeomorphic to the blow-up of P2 in one point, the quantum
differential equation is integrated via Laplace (1, 2; 1

2 ,
1
3 )-multitransforms of solutions

of the quantum differential equations of P1 and P2, respectively. This leads to explicit
integral representations for the Stokes bases of solutions of the quantum differential
equations, and finally to the proof of Dubrovin Conjecture for all Hirzebruch surfaces.
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1. Introduction

1.1 The Main Problem. We consider the analytic Frobenius manifold defined by
the quantum cohomology QH•(X) of a complex smooth projective variety X [Dub96,
KM94, Man99]. Points p ∈ QH•(X) are parameters of isomonodromic deformations
of a linear system of differential equations of the form

∂

∂z
ζ(z, p) =

(
U(p) + 1

z
µ(p)

)
ζ(z, p). (1.1)

Here ζ is a z-dependent vector field of QH•(X), whereas U and µ are (1, 1)-tensors
on QH•(X): the first1 is the operator of quantum multiplication by the Euler vector
field - a distinguished vectof field on QH•(X) which equals the first Chern class c1(X)
along the locus of small quantum cohomology - the second, called grading operator,
keeps track of the non-vanishing degrees of H•(X,C).

Equation (1.1) is a rich object associated with the variety X: it encapsulates infor-
mation not only about its Gromov-Witten theory, but also (conjecturally) about its
topology, its algebraic geometry, and their mutual relations. The study of the mon-
odromy of solutions of (1.1) is the way to disclose such an amount of information, see
[Dub98, GGI16, CDG18]. In this paper we address the following
Main Problem: to find integral representations of solutions of (1.1) for Fano

complete intersections in Fano varieties.
We split the Main Problem in two parts:

(1) to reduce the system of differential equations (1.1) to a distinguished scalar
linear differential equation, the master differential equation;

(2) to find integral representations of solutions of master differential equations.

The study of these questions leads us to introduce some relevant notions, both in the
analytic theory of Frobenius manifolds and in the theory of integral transforms. The
first three ingredients are the notions of cyclic stratum, master differential equations
and master functions of a Frobenius manifold. The second new analytical tool is a
pair of integral multilinear transforms of functions, that we call Borel-Laplace (α,β)-
multitansforms. We are going to briefly outline these objects.
1.2 Master functions and master differential equations. The rich geometry of
a Frobenius manifold M is (almost) completely encoded in integrability conditions of
the extended deformed connection or first structural connection of M [Dub96, Dub99,
Man99]. This is a flat meromorphic connection ∇̂ defined on the pullback π∗TM of
the tangent bundle of M on the extended manifold M̂ := C∗ ×M , by the natural
projection π : M̂ →M . Equation (1.1) is equivalent to the equation

∇̂ ∂
∂z
ξ = 0, ξ ∈ Γ(π∗T ∗M), (1.2)

1Precise definitions will be given in the main body of the paper.
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the one-form ξ and the vector field ζ being identified via a flat metric η on M . We
call master function at p ∈M any function2 Φξ ∈ O(C̃∗) of the form

Φξ(z) = z−
d
2 〈ξ(z, p), e(p)〉,

where ξ is as in (1.2), and d is the charge of the Frobenius manifold M .
In the first part of the paper, we address the problem of reducing the system of

differential equations (1.2) to a scalar differential equation, whose coefficients depend
on the point p ∈ M . This is a well known problem in the theory of ordinary dif-
ferential equations, equivalent to the choice of a cyclic vector [Del70, Lemma II.1.3].
On Frobenius manifold, however, we have a natural candidate, namely the unit vector
field e ∈ Γ(TM).

In Section 2 we introduce the cyclic stratum M̂ cyc ⊆ M̂ defined as the set of points
(z, p) at which the iterated covariant derivatives

e, ∇̂ ∂
∂z
e, ∇̂2

∂
∂z
e, . . . , ∇̂n−1

∂
∂z

e, n := dimCM, (1.3)

define a basis of the fiber π∗TM |(z,p). The complement of M̂ cyc in P1 × M admits
a natural stratification, whose study is addressed in Section 2.6. A particular role is
played by the AΛ-stratum of M , defined as the set of points p ∈M such that

C∗ × {p} ⊆ M̂ \ M̂ cyc.

Introducing the cyclic coframe ω0 . . . , ωn−1 ∈ Γ(π∗T ∗M) as the dual frame of (1.3),
the system of differential equations (1.2), specialized at points p ∈M \AΛ, reduces to
a scalar differential equation - the master differential equation - in the function 〈ξ, e〉.
Hence, at points p ∈M \ AΛ, we obtain a one-to-one correspondence{ Solutions ξ of the system

(1.2) specialized at p

}
⇐⇒ {Master functions Φξ’s at p} .

See Theorems 2.29 and 2.31. Thus, if integral representations for a basis of master
functions are found, we can consider solved the Main Problem at points in M \ AΛ.

Some motivational comments for introducing these new tools are in order. The
notions of master functions and master differential equations define analogs, for an
arbitrary Frobenius manifold, of well-known objects in Gromov-Witten and quantum
cohomology theories. Namely, in the case of quantum cohomology the components of
Givental’s J-function (w.r.t. an arbitrary cohomology basis) define a generating set
of master functions. Moreover, the master differential equation is (up to re-scaling
of the unknown function) a quantum differential equation as defined e.g. in [CK99,
Section 10.3], see Section 5. In our opinion the concepts of cyclic stratum, master
functions, and master differential equations may represent relevant notions in the
analytic theory of Frobenius manifolds. We stress e.g. the “experimental” evidence
of relations with the geometry of distinguished subsets of Frobenius manifolds: in all
the examples considered so far, the AΛ-stratum described above coincides with the

2Here C̃∗ denotes the universal cover of C∗.



6 GIORDANO COTTI

Maxwell stratum, defined as the closure of the set of semisimple coalescing points. We
conjecture that this holds true in general, see Conjecture 2.26. It would be interesting
to study relations with results of [CDG19, CDG20], concerning the isomonodromic
description of Frobenius manifolds at semisimple coalescing points. This point will be
addressed in a future publication.
1.3 Borel-Laplace multitransforms. In Section 6, we introduce a pair of multilin-
ear transforms in both a formal and an analytical setting.

For h ∈ N∗, and a given h-tuple κ ∈ (C∗)h, we introduce a ring Fκ(A) of Ribenboim
generalized power series [Rib92, Rib94] with both coefficients and exponents in a finite
dimensional, commutative, associative, and unitary C-algebra A. The numbers κi’s
play a role of “weights” for the exponents of the power series. In such a formal setting,
given α,β ∈ (C∗)h, we introduce the Borel-Laplace (α,β)-multitransforms as two
A-multilinear maps rescaling the weights

Bα,β :
h⊗
j=1

Fκj(A)→ Fα−1·β−1·κ(A), α−1 · β−1 · κ :=
(
κ1

α1β1
, . . . ,

κh
αhβh

)
,

Lα,β :
h⊗
j=1

Fκj(A)→ Fα·β·κ(A), α · β · κ := (α1β1κ1, . . . , αhβhκh).

See Sections 6.2 and 6.3 for precise definitions.
In the analytical setting, given h functions Φ1, . . . ,Φh : C̃∗ → A, we define their

Borel-Laplace (α,β)-multitransforms by

Bα,β[Φ1, . . . ,Φh](z) := 1
2πi

∫
γ

h∏
j=1

Φj

(
z

1
αjβj λ−βj

)
eλ
dλ

λ
,

Lα,β [Φ1, . . . ,Φh] (z) :=
∫ ∞

0

h∏
i=1

Φi(zαiβiλβi)e−λdλ,

provided that the integrals exist. The contour γ is a Hankel-type contour beginning
from −∞, circling the origin once in the positive direction, and returing to −∞ (see
Figure 6.1).
1.4 Main results. Consider a Fano smooth projective variety X, and let ι : Y → X
be a Fano subvariety defined as the zero locus of a regular section of a vector bundle
E → X. The classical cohomology groups Hk(Y,C) can be (partially) recovered
by the cohomology groups Hk(X,C) by Lefschetz Hyperplane Theorem. Quantum
Lefschetz Theorem is a quantum improvement of the classical result: it describes
how to reconstruct the Gromov-Witten theory of Y starting from the Gromov-Witten
theory of X [Lee01, CG07, Coa14].

In this paper, by using Quantum Lefschetz Theorem, we give explicit integral rep-
resentations of master functions of Y in terms of Laplace (α,β)-multitransforms of
master functions of the ambient space X under the following assumptions on X and
E:
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Case 1. We assume that E is a direct sum of fractional powers of the determinant
bundle detTX of X;

Case 2. We assume that X = X1 × · · · × Xh is a product of Fano varieties Xi’s, and
that E is the external tensor product of fractional powers of the determinant
bundles detTXi.

Our first main result concerns Case 1. Our Theorem 7.1 asserts that any master
function of Y , at points ι∗δ ∈ H2(Y,C) of its small quantum cohomology, can be
expressed in terms of iterated Laplace (α, β)-transforms (simple transforms of a single
function) of master functions of X at the point δ ∈ H2(X,C). More precisely, if
E = ⊕r

j=1 L
⊗dj , and detTX = L` for an ample line bundle L, then any master

function of Y at ι∗δ is a C-linear combination of integrals of the form
e−cδzL `−

∑s

i=1 di
ds

, ds

`−
∑s−1

i=1 di

◦ · · · ◦L `−d1−d2
d2

,
d2
`−d1
◦L `−d1

d1
,
d1
`

[Φ]

= e−cδz
∫ ∞

0
· · ·

∫ ∞
0

Φ
(
z
`−
∑r

j=1 dj
`

r∏
i=1

ζ
di
`
i

)
e−
∑r

i=1 ζidζ1 . . . dζr,

where Φ is a master function of X at δ, and cδ ∈ C is a complex number depending
on δ.

Our second main result concerns Case 2. In particular, Theorem 7.4 asserts that
any master function of Y , at points ι∗δ ∈ H2(Y,C) of the small quantum locus, can
be expressed in terms of Laplace (α,β)-multitransforms of master functions of Xj at
the point δj ∈ H2(X,C), where

δ =
h∑
j=1

1⊗ · · · ⊗ δj ⊗ · · · ⊗ 1.

More precisely, if E = �hj=1L
⊗dj
j and detTXj = L

`j
j for ample line bundles Lj, then

any master functions of Y at ι∗δ is a C-linear combination of integrals of the form

e−cδzLα,β[Φ1, . . . ,Φh](z) = e−cδz
∫ ∞

0

h∏
j=1

Φj

(
z
`j−dj
`j λ

dj
`j

)
e−λdλ,

where (α,β) = ( `1−d1
d1

, . . . , `h−dh
dh

; d1
`1
, . . . , dh

`h
), Φj is a master function of Xj at δj, and

cδ ∈ C is a complex number depending on δ.
Assumptions of Cases 1 and 2 are clearly satisfied when the varieties X and Xj’s

have Picard rank one. Therefore, Theorems 7.1 and 7.4 can be applied to all Fano
complete intersections in Pn and Fano hypersurfaces in products of projective spaces,
in order to obtain explicit Mellin-Barnes integral representations of master functions.
In particular, if Y ⊆ Pn−1 is a Fano complete intersection defined by homogenous
polynomials of degrees d1, . . . , dh, our Theorem 7.7 asserts that any master function of
Y at 0 ∈ H•(Y,C) is a linear combination of one-dimensional Mellin-Barnes integrals

Gj(z) = e−cz

2π
√
−1

∫
γ

Γ(s)n
h∏
k=1

Γ (1− dks) z−(n−
∑h

k=1 dk)sϕj(s)ds, j = 0, . . . , n− 1,
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where c ∈ Q, γ is a parabola encircling the poles of the factor Γ(s)n and separating
them from the poles of the factors Γ (1− dks), and the function ϕj(s) are defined by

ϕj(s) :=


exp

(
2π
√
−1js

)
, n even,

exp
(
2π
√
−1js+ π

√
−1s

)
, n odd.

In the case of a Fano hypersurface Y ⊆ Pn1−1× · · ·×Pnh−1 defined by a homogeneous
polynomial of multi-degree (d1, . . . , dh), then our Theorem 7.8 asserts that any master
function of Y at 0 ∈ H•(Y,C) is a linear combination of the h-dimensional Mellin-
Barnes integrals

Hj(z) := e−cz

(2π
√
−1)h

∫
×γi

[
h∏
i=1

Γ(si)niϕiji(si)
]

Γ
(

1−
h∑
i=1

si

)
z−
∑h

i=1 disids1 . . . dsh,

where c ∈ Q, γj are parabolas encircling the poles of the factors Γ(si)ni , and the
functions ϕiji(si) are defined by

ϕiji(si) :=


exp

(
2π
√
−1jisi

)
, ni even,

exp
(
2π
√
−1jisi + π

√
−1si

)
, ni odd,

for any h-tuple j = (j1, . . . , jh) with 0 6 jh 6 ni − 1.
Some comments are in order. Given a Fano variety X, Mirror Symmetry provides

other kinds of integral representations of solutions of equation (1.2).3 These are com-
plex oscillating integrals associated with the Landau-Ginzburg models mirror to X, see
[Giv95, Giv97, Giv98, EHX97, Kon98, HV00]. In these representations the cycles of
integration are multi-dimensional4. This fact typically makes more difficult the study
of the aysmptotic expansions of solutions, and of the determination of the correspond-
ing validity sectors in C̃∗. Furthermore, let us recall another technical issue which may
be faced: Landau-Ginzburg models may not have enough critical points, and suitable
compactification procedures have to be applied in order to recover the right number,
see [Rie08, GS15, PR18]. This could represent a delicate point for the computation of
the Stokes bases of solutions of equation (1.1), whose exponential growth is ruled by
the critical values of the Landau-Ginzburg potential.

We believe that one-dimensional Mellin-Barnes integrals of Theorem 7.7 represent
a more advantageous representation of the solutions to the purpose of asymptotic
analysis. Moreover, even for multi-dimensional Mellin-Barnes integrals of Theorem 7.8
the study of their asymptotics is tame: it is equivalent to the study of the asymptotics

3More precisely, for the equations ∇̂ ∂
∂tα

ξ = 0, where t1, . . . , tn are coordinates on QH•(X), and not
w.r.t. the spectral parameter z.
4Notice, for example, that already in the case of Pn these oscillating integrals are over n-dimensional
cycles. On the other hand, one-dimensional Mellin-Barnes integral representations of solutions of the
equation (1.1) associated with Pn were obtained in [Guz99]. Their asymptotics in sectors of C̃∗ is
easier to study.



CYCLIC STRATUM, BOREL-LAPLACE (α,β)-MULTITRANSFORMS 9

of one-dimensional generalized Faxén integrals

I(λ; c1, . . . , cr) :=
∫ ∞

0
exp

[
−λ

(
xµ +

r∑
k=1

ckx
mk

)]
dλ,

with µ > m1 > m2 > . · · · > mr > 0,

which have saddle points whose exponential contributions dominate algebraic terms
in the asymptotic expansion. See [PK01, Chapter 7], [KP97, Section 5] for a detailed
asymptotic analysis, and also [Bur24, Bak33, Wri40] for some special cases. This will
be exemplified in Section 11.6.
1.5 Dubrovin Conjecture for Hirzebruch surfaces. Equation (1.1) has two sin-
gularities: a Fuchsian singularity at z = 0 and an irregular singularity at z = ∞
of Poincaré rank 1. The monodromy of its solutions is quantified by a finite set of
matrices:

• a monodromy matrix M0, quantifying the monodromy of solutions of (1.1) at
z = 0,
• a Stokes matrix S, describing the Stokes phenomenon at z =∞,
• and a central connection matrix C gluing the monodromy data M0 and S at
the two singularities.

Remarkably, the monodromy data define a sort of “system of coordinates” in the
space of solutions of WDVV equations: from the knowledge of their numerical values,
the whole Frobenius manifold structure can be reconstructed via a Riemann-Hilbert
problem [Dub96, Dub99, Guz01].

In [Dub98], B.Dubrovin formulated an intriguing conjecture concerning the geomet-
rical meaning of the numerical values of the monodromy data of quantum cohomologies
of Fano varieties. In the qualitative part of the conjecture, for a given Fano variety X,
the semisimplicity condition of QH•(X) is claimed to be equivalent to the existence
of full exceptional collections in the derived category Db(X) of coherent sheaves on X.
Moreover, in the refined quantitative part of the conjecture, formulated in [CDG18,
Conjecture 5.2], the Stokes and central connection matrices (Sp, Cp) computed at any
point p ∈ QH•(X) are claimed to be determined by characteristic classes of X and of
objects of a full exceptional collection Ep in Db(X).

In particular, the central connection matrix Cp is claimed to equal the matrix asso-
ciated with the morphism

D−X : K0(X)C −→H•(X,C) (1.4)

F 7−−−→(
√
−1)d

(2π) d2
Γ̂−X exp(−π

√
−1c1(X))Ch(F ),



10 GIORDANO COTTI

where d = dimCX, d is its residue class modulo 2, Γ̂−X is the characteristic class of X
defined by

Γ−X :=
dimCX∏
j=1

Γ(1− δj), Γ(1− t) = exp
(
γt+

∞∑
n=2

ζ(n)
n

tn
)
, δj Chern roots of TX,

and Ch(F ) is the graded Chern character defined on vector bundles by the formula
Ch(V ) := ∑rkV

j=1 exp(2π
√
−1εj), εj’s being the Chern roots of V . The matrix of D−X

is computed w.r.t. the exceptional basis [Ep] of K0(X)C, defined by the K-theoretical
classes of objects of Ep, and an arbitrary5 basis of H•(X,C). Furthermore, if the
central connection matrix Cp is related to the morphism D−X as explained above, then
the Stokes matrix Sp automatically equals the inverse of the Gram matrix of the
Grothendieck-Euler-Poincaré χ-pairing on K0(X) w.r.t. the exceptional basis [Ep], see
[CDG18, Corollary 5.8].

It is important to stress that the monodromy data (M0, S, C) are defined up to
several choices: the choice of a system of flat coordinates on the Frobenius manifold
QH•(X), choices of normalizations (at both z = 0 and z =∞) of solutions of equation
(1.1), and the choice of an “admissible ray” in C∗. Remarkably, all these operations
have a geometrical counterpart in derived categories, see [CDG18, Theorem 5.9]. De-
serving special mention is Γ- conjecture II of [GGI16]: it consists of an equivalent
conjectural statement about the central connection matrix, though w.r.t. a choice of
a solution in “Levelt form” at z = 0 not natural from the point of view of the theory
of Frobenius manifolds. See [CDG18, Section 5.6] for details.

The explicit computation of the monodromy data of quantum cohomologies is typi-
cally a rather delicate operation. To the best knowledge of the author, the only cases
in which the computation of the complete set of monodromy data (S,C) of equation
(1.1) has been carried out in all the details (including the determination of the corre-
sponding full exceptional collections) are the cases of projective spaces [Dub99, Guz99]
and of complex Grassmannians [GGI16, CDG18]. We believe that the main results of
the current paper, namely the integral representations described in Theorems 7.1, 7.4,
7.7, and 7.8, will represent a fundamental tool for the development of this study [Cot].

As an application, in Sections 10 and 11, we show how to use the Laplace (α,β)-
multitransform, and the main results described above, in order to prove Dubrovin
Conjecture for Hirzebruch surfaces [Hir51]. These are surfaces Fk, with k ∈ Z, defined
as the total space of the projective bundle P(O ⊕O(−k)) on P1. The interest of this
example is highlighted by the fact that

• only two Hirzebruch surfaces are Fano varieties (namely F0 and F1),
• all others Hirzebruch surfaces are deformation equivalent to either F0 or F1.

Results of A.Bayer already suggested the unnecessity of the Fano assumption for the
validity of the qualitative part of Dubrovin Conjecture, see [Bay04]. Moreover, X.Hu

5The choice of a basis of H•(X,C) in (1.4) corresponds to the choice of a system of flat coordinates
on QH•(X) w.r.t. which the monodromy data (M0, S, C) are computed.
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proved that, in a smooth family of complete varieties, the existence of full exceptional
collection on a fiber preserves for the fibers in a neighborhood, see [Hu18]. See also
[BOR20, Corollary B] for an analogue result for arbitrary semiorthogonal decomposi-
tions. To the best of our knowledge, the study of the monodromy of the isomonodromic
systems (1.1) associated with Hirzebruch surfaces, developed in Sections 10 and 11,
represents the first example in literature which addresses also the quantitative part of
Dubrovin Conjecture, in both the non-Fano case and the case of deformations of the
complex structures.

The case of Hirzebruch surfaces F2k (resp. F2k+1) can be reduced to the single case
of F0 = P1 × P1 (resp. F1 = BlptP2). The monodromy data of QH•(F0) can be easily
reconstructed from the monodromy data of QH•(P1), see Theorem 10.5. In the case of
QH•(F1), the computation is more delicate, and reduces to the study of the quantum
differential equation

(283z − 24)ϑ4Φ +
(
283z2 − 590z + 24

)
ϑ3Φ +

(
−2264z2 + 192z + 3

)
ϑ2Φ

− 4z2
(
2547z2 + 350z − 104

)
ϑΦ + z2

(
−3113z3 − 9924z2 + 1476z + 192

)
Φ = 0,

where ϑ := z d
dz
. In Section 11.4, we show that the solutions of this equation can be

expressed as linear combinations of integrals of the form

e−zL(1,2; 1
2 ,

1
3 )[Φ1,Φ2; z] = e−z

∫ ∞
0

Φ1
(
z

1
2λ

1
2
)

Φ2
(
z

2
3λ

1
3
)
e−λdλ,

where Φ1 and Φ2 are solutions of quantum differential equations of P1 and P2 respec-
tively, that is

ϑ2Φ1 = 4z2Φ1, ϑ3Φ2 = 27z3Φ2.

This allows the study of the asymptotics of solutions in sectors of C̃∗, to reconstruct
the Stokes bases of solutions of the quantum differential equation of F1, and finally to
the computation of both Stokes and central connection matrices, see Theorem 11.27.

From these results, Dubrovin Conjecture is proved for all Hirzebruch surfaces Fk, by
making explicit the exceptional collections in Db(Fk) which arise from the monodromy
data, see Theorems 10.5 and 11.28.
1.6 Plan of the paper. The paper is organized as follows. In Section 2, we introduce
the notion of cyclic stratum in the general context of Frobenius manifolds theory. A
first study of the geometry of the cyclic stratum, and its complement in the extended
manifold C∗ ×M , is addressed.

In Section 3, we recall basic definitions in Gromov-Witten theory, including the
definition of the Frobenius manifold structure on the quantum cohomology of a smooth
projective variety. In Section 4, we recall the definitions of topological-enumerative
solution of the isomonodromic system (1.1), and also of its monodromy data. We
also recall the main properties and natural transformations of the complete set of
monodromy data.

In Section 5, we recall the definition of Givental’s J-function, and we explain how
it is related to the space of master functions, see Theorem 5.2 and Corollary 5.3. We
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recall the formulation of the Quantum Lefschetz Theorem, and we obtain an upper
bound for the dimension of the space of master functions of a Fano hypersurface of a
smooth projective variety X, see Theorem 5.11.

In Section 6, we recall the notion of generalized power series in the sense of P.Riben-
boim, and we introduce the ring Fκ(A) of generalized power series with coefficients
and exponents in a finite-dimensional C-algebra. We introduce the notions of Borel-
Laplace (α,β)-multitransforms, in both formal and analytic setting, and we prove the
compatibility of the two definitions, see Theorem 6.13.

In Section 7, we explain how the J-function can be identified (in several ways) with
elements of rings of Ribenboim generalized power series. We prove the main results of
this paper, Theorems 7.1, 7.4, 7.7, 7.8.

In Section 8, we recall the notions of exceptional collections in derived categories of
coherent sheaves, exceptional bases in K-theory, their mutations and helices. We then
describe the refined statement of Dubrovin Conjecture, as formulated in [CDG18].

In Section 9, we describe the classical and quantum cohomology rings of Hirzebruch
surfaces.

In Section 10, we explicitly compute the monodromy data of the quantum coho-
mologies QH•(F2k), and we prove Dubrovin conjecture for Hirzebruch surfaces F2k.

In Section 11, we address the study of the quantum differential equations of Hirze-
bruch surfaces F2k+1. We show how to use the Laplace (1, 2; 1

2 ,
1
3)-multitransform in

order to give integral representations of solutions, how to reconstruct Stokes funda-
mental solutions, and hence how to compute the monodromy data. This leads to a
proof of Dubrovin Conjecture for Hirzebruch surfaces F2k+1.
Acknowledgements. The author thanks C.Bartocci, A.Brini, U. Bruzzo, B.Dubro-
vin, D. Guzzetti, M.Mazzocco, A.T.Ricolfi, V.Roubtsov, C. Sabbah, M. Smirnov,
A.Tacchella, A.Varchenko, D.Yang for very useful discussions. The author is thankful
to Max-Planck Institute für Mathematik in Bonn, Germany, where this project was
started, for providing excellent working conditions. This research was supported by
MPIM (Bonn, Germany), and the EPSRC Research Grant EP/P021913/2.

2. Cyclic stratum of Frobenius manifolds

2.1. Frobenius manifolds.

Definition 2.1. A Frobenius manifold structure on a complex manifold M of dimen-
sion n is defined by giving

(FM1) a symmetric O(M)-bilinear metric tensor η ∈ Γ
(⊙2 T ∗M

)
, whose correspond-

ing Levi-Civita connection ∇ is flat;
(FM2) a (1, 2)-tensor c ∈ Γ

(
TM ⊗⊙2 T ∗M

)
such that

(a) the induced multiplication of vector fields X ◦Y := c(−, X, Y ), for X, Y ∈
Γ(TM), is associative,
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(b) c[ ∈ Γ
(⊙3 T ∗M

)
,

(c) ∇c[ ∈ Γ
(⊙4 T ∗M

)
;

(FM3) a vector field e ∈ Γ(TM), called the unity vector field, such that
(a) the bundle morphism c(−, e,−) : TM → TM is the identity morphism,
(b) ∇e = 0;

(FM4) a vector field E ∈ Γ(TM), called the Euler vector field, such that
(a) LEc = c,
(b) LEη = (2 − d) · η, where d ∈ C is called the charge of the Frobenius

manifold.

At any point p ∈M the triple (TpM, ηp, ◦p) is a complex Frobenius algebra, namely
an associative commutative algebra with unity whose product is compatible with the
metric, in the sense that

ηp(a ◦p b, c) = ηp(a, b ◦p c), for all a, b, c ∈ TpM, (2.1)
by axioms (FM2-a),(FM2-b),(FM3-a). Moreover, there exists an open neighborhood
Ω ⊆M of p and a function F : Ω→ C such that

c[ =∇3F, (2.2)
η =∇e∇2F. (2.3)

This follows from the axiom (FM2-b). Any such a function F will be called potential
of M .

Remark 2.2. The Euler vector field E is an affine vector field, i.e.
∇2E = 0.

This follows6 from the axioms (FM1) and (FM4-b).

Convention. By introducing ∇-flat coordinates t = (tα)nα=1 on M , w.r.t. which the
metric η is constant and the connection ∇ coincides with partial derivatives, we have
that

E =
n∑

α=1
((1− qα)tα + rα) ∂

∂tα
, qα, rα ∈ C.

Following [Dub96, Dub98, Dub99], we choose flat coordinates t so that ∂
∂t1
≡ e and

rα 6= 0 only if qα = 1. This can always be done, up to an affine change of coordinates.
6For a generic vector field X on a pseudo-riemannian manifold (M, g), a simple computation (invoking
the first Bianchi identities) shows that

∇β∇αXλ = RλαβµX
µ + 1

2 (∇βKαλ +∇αKβλ −∇λKαβ) ,

where
Kαβ = (LXg)αβ = ∇αXβ +∇βXα.

If X is Killing conformal, and LXg = ωg for a function ω, then

∇β∇αXλ = RλαβµX
µ + 1

2 (gαλ∂βω + gβλ∂αω − gαβ∂λω) .

In our case R = 0 and ω is a constant function.
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Remark 2.3. The associativity of the algebra is equivalent to the following conditions
for F , called WDVV-equations:

∂α∂β∂γF ηγδ∂δ∂ε∂νF = ∂ν∂β∂γF ηγδ∂δ∂ε∂αF,

while axiom (FM4) is equivalent to
ηαβ = ∂1∂α∂βF, LEF = (3− d)F +Q(t),

with Q(t) a quadratic expression in tα’s. Conversely, given a solution of the WDVV
equations, satisfying the quasi-homogeneity conditions above, a structure of Frobenius
manifold is naturally defined on an open subset of the space of parameters tα’s.
Definition 2.4. We call grading operator of M to be the tensor µ ∈ Γ(TM ⊗ T ∗M)
defined by

µ(Y ) := 2− d
2 Y −∇YE, Y ∈ Γ(TM).

In what follows we will also denote by U the (1,1)-tensor defined by ◦-multiplication
by the Euler vector field, i.e.

U(Y ) := E ◦ Y, Y ∈ Γ(TM).

2.2. Semisimple points and bifurcation set.
Definition 2.5. A point p ∈M is semisimple if and only if the corresponding Frobe-
nius algebra (TpM, ∗p, ηp, ∂

∂t1
|p) is without nilpotents. Denote by Mss the open dense

subset of M of semisimple points.

On Mss there are n well-defined idempotent vector fields π1, . . . , πn ∈ Γ(TMss),
satisfying

πi ∗ πj = δijπi, η(πi, πj) = δijη(πi, πi), i, j = 1, . . . , n. (2.4)
Theorem 2.6 ([Dub92, Dub96, Dub99]). The idempotent vector fields pairwise com-
mute: [πi, πj] = 0 for i, j = 1, . . . , n. Hence, there exist holomorphic local coordinates
(u1, . . . , un) on Mss such that ∂

∂ui
= πi for i = 1, . . . , n.

Definition 2.7. The coordinates (u1, . . . , un) of Theorem 2.6 are called canonical
coordinates.
Proposition 2.8 ([Dub96, Dub99]). Canonical coordinates are uniquely defined up to
ordering and shifts by constants. The eigenvalues of the tensor U define a system of
canonical coordinates in a neighborhood of any semisimple point of Mss.
Definition 2.9. Given a Frobenius manifold M , we call bifurcation set of M the set
BM of points p ∈ M at which the spectrum of the operator U(p) is not simple, i.e.
ui(p) = uj(p) for some i 6= j.

Following the terminology of [CG18, CDG20, CDG18], the points of BM which are
semisimple are called semisimple coalescing points. We define the7 Maxwell stratum of
M to be the closure of the set of semisimple coalescing points, i.e. MM := Mss ∩ BM .
7The name is taken from singularity theory: for Frobenius structures defined on the miniversal space
of deformations of simple singularities the two notions coincide, see [AGZV88, Arn90, AGLV93].
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The caustic of M , is the set-theoretic difference KM := M \Mss.

Lemma 2.10. We have BM =MM ∪ KM . �

Definition 2.11. We call orthonormalized idempotent frame a frame (fi)ni=1 of TMss

defined by
fi := η(πi, πi)−

1
2πi, i = 1, . . . , n, (2.5)

for arbitrary choices of signs of the square roots. The Ψ-matrix is the matrix (Ψiα)ni,α=1
of change of tangent frames, defined by

∂

∂tα
=

n∑
i=1

Ψiαfi, α = 1, . . . , n. (2.6)

Remark 2.12. In the orthonormalized idempotent frame, the operator U is repre-
sented by a diagonal matrix, and the operator µ by an antisymmetric matrix:

U := diag(u1, . . . , un), ΨUΨ−1 = U, (2.7)
V := ΨµΨ−1, V T + V = 0. (2.8)

2.3. Extended deformed connection. Given a Frobenius manifoldM , let us intro-
duce the extended manifold M̂ := C∗ ×M , and let us consider the pull-back π∗TM
of the tangent bundle of M along the obvious projection π : M̂ →M . We will denote
the natural lifts on M̂ of the tensors η, c, e, E, µ,U by the same symbols. Moreover,
we also denote by ∇ the pull-backed Levi-Civita connection: it is the connection on
the vector bundle π∗TM , uniquely defined by the further requirement that

∇ ∂
∂z
Y = 0, for all Y ∈ π−1TM ,

where z denotes the natural coordinate on C∗, and TM denotes the tangent sheaf ofM .
We are going now to define a second connection ∇̂ on π∗TM which is a deformation
of ∇.

Definition 2.13. We define the extended deformed connection ∇̂ as the connection
on π∗TM given by

∇̂XY =∇XY + zX ◦ Y,

∇̂ ∂
∂z
Y =∇ ∂

∂z
Y + U(Y )− 1

z
µ(Y ),

for all X, Y ∈ Γ(π∗TM).

Theorem 2.14 ([Dub99]). The extended deformed connection ∇̂ if flat. More pre-
cisely, its flatness is equivalent to the totality of the following conditions:

(1) ∇c[ ∈ Γ(�4T ∗M),
(2) the product on each tangent space of M is associative,
(3) ∇2E = 0,
(4) LEc = c. �

The connection ∇̂ induces a flat connection on π∗T ∗M , denoted by the same symbol.
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2.4. Cyclic stratum, and cyclic (co)frame.

Definition 2.15. Given a Frobenius manifold M , we define infinitely many sections
ej ∈ Γ(π∗TM) as

ek := ∇̂k
∂
∂z
e, k ∈ N.

We will call the cyclic stratum M̂ cyc to be the maximal open subset U of M̂ such that
the bundle π∗TM |U is trivial and the collection of sections (ek|U)n−1

k=0 defines a basis of
each fiber. On M̂ cyc we will also introduce the dual coframe (ωj)n−1

j=0 , by imposing

〈ωj, ek〉 = δjk. (2.9)

The frame (ek)n−1
k=0 will be called cyclic frame, and its dual (ωj)n−1

j=0 cyclic coframe.

Definition 2.16. Define the matrix-valued function Λ = (Λiα(z, p)), holomorphic on
M̂ cyc, by the equation

∂

∂tα
=

n−1∑
i=0

Λiαei, α = 1, . . . , n. (2.10)

Remark 2.17. The Λ-matrix should be thought as an analogue of the Ψ-matrix. The
former relates the flat coordinate frame ( ∂

∂tα
)nα=1 to the cyclic frame (ei)n−1

i=0 . The latter
relates the flat coordinate frame ( ∂

∂tα
)nα=1 to the normalized idempotent frame (fi)ni=1.

Lemma 2.18. For j = 1, . . . , n− 1, we have ∇̂ ∂
∂z
ωj = −ωj−1.

Proof. From (2.9), for any k = 0, . . . , n− 2, we have

〈∇̂ ∂
∂z
ωj, ek〉+ 〈ωj, ek+1〉 = 0 =⇒ 〈∇̂ ∂

∂z
ωj, ek〉 = −δj,k+1

=⇒ ∇̂ ∂
∂z
ωj = −ωj−1. �

Proposition 2.19. The vector fields ek, with k ∈ N, have the following form

ek =
k∑
j=0

1
zj
pkj (E),

where the vector fields pkj (E) do not depend on z and satisfy the difference equations

p
(k+1)
0 (E) =E ◦ pk0(E),

p
(k+1)
j (E) =E ◦ pkj (E)− µ(pkj−1(E)) + (1− j)pkj−1(E), j = 1, . . . , k

p
(k+1)
k+1 (E) =− µ(pkk(E))− kpkk(E),

with the only initial datum p
(0)
j (E) = δ0j · e. �
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2.5. Properties of the function det Λ. The holomorphic function det Λ: M̂ cyc → C∗
extends meromorphically to a function on P1 ×M .

Theorem 2.20. The function det Λ is a meromorphic function on P1×M of the form

det Λ(z, p) = zn−2

zn−2A0(p) + · · ·+ An−2(p) ,

where A0, . . . , An−2 are holomorphic functions on M .

We need a preliminary result.

Lemma 2.21. For any k ∈ N, the polyvector field e0∧· · ·∧ek ∈ Γ(∧k+1 π∗TM) admits
a pole at {0} ×M of order at most k − 1.

Proof. The term of order z−k is given by e ∧ · · · ∧ pkk(E). For any k ∈ N, we have
pkk(E) = ck · e, for some ck ∈ C. This is easily proved by induction: the key property
is µ(e) = −d

2e. �

Proof of Theorem 2.20. The polyvector field e0 ∧ · · · ∧ en−1 has the form

e0 ∧ · · · ∧ en−1 = w0(p) + 1
z
w1(p) + . . .

1
zn−2wn−2(p), (2.11)

where w0, w1, . . . , wn−2 are holomorphic n-vector fields on M , by Lemma 2.21. Intro-
duce holomorphic functions A0(p), . . . , An−2(p), such that

wj(p) = Aj(p) ·
∂

∂t1
∧ · · · ∧ ∂

∂tn
.

From the identity
∂

∂t1
∧ · · · ∧ ∂

∂tn
= det Λ · e0 ∧ · · · ∧ en−1,

we deduce
1 = det Λ(z, p)

(
A0(p) + 1

z
A1(p) + . . .

1
zn−2An−2(p)

)
. �

Theorem 2.22. We have

A0(p) =
∏
i<j(uj(p)− ui(p))

Jac(p) , Jac(p) := det
(
∂ui
∂tα

)∣∣∣∣∣
p

.

Proof. The polyvector field w0 in equation (2.11) is

w0 =
n−1∧
j=0

p
(j)
0 (E).

By Proposition 2.19, we have that

p
(j)
0 (E) = E◦j, j ∈ N,
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and using the idempotent vielbein ( ∂
∂ui

)ni=1, we can write w0 as follows

w0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1
u1 . . . un
u2

1 . . . u2
n

...
un−1

1 . . . un−1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣
∂

∂u1
∧ · · · ∧ ∂

∂un
=
∏
i<j

(uj − ui)
 ∂

∂u1
∧ · · · ∧ ∂

∂un

=
∏
i<j

(uj − ui)
 · 1

Jac ·
∂

∂t1
∧ · · · ∧ ∂

∂tn
. �

Remark 2.23. We also have
∂

∂t1
∧ · · · ∧ ∂

∂tn
= det Ψf1 ∧ · · · ∧ fn = det Ψ∏n

i=1 η( ∂
∂ui
, ∂
∂ui

) 1
2

∂

∂u1
∧ · · · ∧ ∂

∂un
,

so that

Jac(p) =
∏n
i=1 η( ∂

∂ui
, ∂
∂ui

) 1
2

det Ψ

∣∣∣∣∣∣
p

=
∏n
i=1 η( ∂

∂ui
, ∂
∂ui

) 1
2

(det η) 1
2

∣∣∣∣∣∣
p

.

The last equality follows from ΨTΨ = η.

2.6. Geometry of the complement of the cyclic stratum in P1×M . Define the
subsets PΛ,M0,M∞ ⊆ P1 ×M and AΛ, I∞Λ , I0

Λ ⊆M by

PΛ :=
{

(z, p) ∈ M̂ : zn−2A0(p) + · · ·+ An−2(p) = 0
}
,

M0 := {0} ×M, M∞ := {∞} ×M,

AΛ := {p ∈M : A0(p) = · · · = An−2(p) = 0} ,
I∞Λ := {p ∈M : A0(p) = 0} ,
I0

Λ := {p ∈M : An−2(p) = 0} .

Lemma 2.24. We have the obvious inclusions
C∗ ×AΛ ⊆ PΛ, AΛ ⊆ I0

Λ ∩ I∞Λ . �

The set PΛ is an analytic subspace of P1 ×M of codimension 1 along which the
function det Λ admits a pole. The function det Λ admits poles along a further analytic
subspace, namely {∞} × I∞Λ .

The set PΛ is the complement M̂ \ M̂ cyc of the cyclic stratum. The complement of
M̂ cyc in P1 ×M is the disjoint union

PΛ ∪· M0 ∪· M∞.
The geometry of PΛ is rather complicated: in general it admits several irreducible
components. For example, AΛ itself does, and consequently also C∗×AΛ. The projec-
tion π : M̂ →M , if restricted to PΛ \ (C∗ ×AΛ), defines a ramified covering of degree
n− 2.



CYCLIC STRATUM, BOREL-LAPLACE (α,β)-MULTITRANSFORMS 19

Poles of det Λ PΛ ∪· ({∞} × I∞Λ )

Zeros of det Λ M0 \ ({0} × I0
Λ)

Indeterminacy locus of det Λ {0} × I0
Λ

Table 2.1. In this table, we summarize the location of poles, zeros and
indeterminacy locus for the meromorphic function det Λ on P1 ×M .

The set {0} × I0
Λ is an analytic subspace of P1 ×M of codimension 2 and it is the

indeterminacy locus of the function det Λ.
Each of the sets I∞Λ , I0

Λ,AΛ seems to be strictly related to other distinguished subsets
of the Frobenius manifold M , namely its bifurcation set BM , and its two components,
the Maxwell stratumMM and the caustic KM . We limit to the following observation.

Theorem 2.25. We have I∞Λ ⊆ BM .

Proof. Let p /∈ BM . On the complement of BM , the eigenvalues (u1, . . . , un) define a
holomorphic system of coordinates. Hence, Jac(p) 6= 0. Moreover, by definition we
have ∏i<j(uj(p)− ui(p)) 6= 0. Hence, p /∈ I∞Λ by Theorem 2.22. �

P1 ×M
M0

M∞

PΛ {∞} × I∞Λ{0} × I0
Λ

Figure 2.1. Configuration of the sets PΛ, {∞}× I∞Λ , and {0}× I0
Λ in

P1 ×M .

In order to obtain more precise results on contingent relations between the sets
I∞Λ , I0

Λ,AΛ and BM ,MM ,KM a more detailed study of the polyvector fields pkj (E) of
Proposition 2.19 is needed. All the examples considered so far suggest the validity of
the following conjecture, concerning the nature of the AΛ-stratum:

Conjecture 2.26. The AΛ-stratum of the Frobenius manifold M coincides with the
Maxwell stratum. That is AΛ =MM .
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We plan to address this problem in a future project. We conclude this section with
two examples.

Example. For 2-dimensional Frobenius manifolds, we have I∞Λ = BM . In this case,
indeed, we have

e0 = e, e1 = E + d

2z e ⇒ e0 ∧ e1 = e ∧ E.

The bivector e ∧ E vanishes if and only if u1 = u2.

Example. Consider the A3-Frobenius manifold, that is the space M ∼= C3 of poly-
nomials f(x,a) = x4 + a2x

2 + a1x + a0, where a = (a0, a1, a2) ∈ C3 are natural
coordinate. Fix ao ∈ M , and define the Kodaira-Spencer isomorphism κ : TaoM →
C[x]/〈∂xf(x,ao)〉, by identifying ∂ai with the class of ∂aif(x,ao). This allows to pull-
back the product of the Jacobi-Milnor algebra C[x]/〈∂xf(x,ao)〉 on TaoM . Consider
the Grothendieck residue metric

ηa

(
∂

∂ai
,
∂

∂aj

)
:= 1

2πi

∫
Γa

∂f
∂ai

∂f
∂aj

∂f
∂x

∣∣∣∣∣∣
(u,a)

du,

where Γa is a circle, positively oriented, bounding a disc containing all the roots of
∂f
∂x

(u,a). One can show that the coordinates t = (t1, t2, t3) given by

t1 = a0 −
1
8a

2
2, t2 = a1, t3 = a2,

are flat for the metric η. In t-coordinates, the Euler vector field is given by

E = t1
∂

∂t1
+ 3t2

4
∂

∂t2
+ t3

2
∂

∂t3
.

The Maxwell stratum is the set {t2 = 0}, and the caustic is the set {8t33 + 27t22 = 0}.
We have the following formulae for the Λ-matrix and for det Λ:

Λ(z, t) =
1 z2t53−21z2t22t

2
3−64z2t21t3−12t3−18zt22−72z2t1t22

2zt2(8zt33−6t3+27zt22)
−3z2t43−16zt23−64z2t1t23+63z2t22t3+192z2t21+48zt1+48

4z(8zt33−6t3+27zt22)
0 4(9zt22+16zt1t3)

t2(8zt33−6t3+27zt22)
−4(−4zt23+24zt1+3)

8zt33−6t3+27zt22
0 − 32zt3

t2(8zt33−6t3+27zt22)
48z

8zt33−6t3+27zt22

 ,

det Λ(z, t) = 64z
(8t2t33 + 27t32)z − 6t2t3

.

We have

• I∞Λ = BM ,
• I0

Λ =MM ∪ {t3 = 0},
• AΛ =MM .
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2.7. Master differential equation and master functions. Let ξ ∈ Γ(π∗T ∗M) be
a ∇̂-flat section. Consider the corresponding vector field ζ ∈ Γ(π∗TM) via musical
isomorphism, i.e. such that ξ(v) = η(ζ, v) for all v ∈ Γ(π∗TM).

The vector field ζ satisfies the following system8 of equations
∂

∂tα
ζ = zCαζ, α = 1, . . . , n, (2.12)

∂

∂z
ζ =

(
U + 1

z
µ
)
ζ. (2.13)

Here Cα is the (1, 1)-tensor defined by (Cα)βγ := cβαγ.

Multiply by η (on the left) the l.h.s. and r.h.s. of (2.12), (2.13): we obtain the
equivalent system of differential equations

∂

∂tα
ξ = zCTα ξ, α = 1, . . . , n, (2.14)

∂

∂z
ξ =

(
UT − 1

z
µ
)
ξ, (2.15)

where ξ is a column vector whose entries are the components ξα(z, t) w.r.t. dtα. At
points (z, p) ∈ M̂ cyc, let us introduce the column vector ξ̄ by

ξ̄ = (Λ−1)T ξ, (2.16)
where Λ is defined as in (2.10). The entries of ξ̄ are the components ξ̄j w.r.t. the cyclic
coframe ωj. The vector ξ̄ satisfies the system

∂ξ̄

∂tα
=
(
z(Λ−1)TCαΛT + ∂(Λ−1)T

∂tα
ΛT

)
ξ̄, (2.17)

∂ξ̄

∂z
=
(

(Λ−1)TUTΛT − 1
z

(Λ−1)TµΛT + ∂(Λ−1)T

∂tα
ΛT

)
ξ̄. (2.18)

Proposition 2.27. Let ξ ∈ Γ(π∗T ∗M) be a ∇̂-flat section, and let (ξ̄j(z, p))n−1
j=0 be its

components w.r.t. the cyclic co-frame, i.e. ξ = ∑
j ξ̄jωj. We have

∂ξ̄j
∂z

= ξ̄j+1, j = 0, . . . , n− 2. (2.19)

Proof. We have

∇̂ ∂
∂z
ξ =

∑
j

∂ξ̄j
∂z

ωj +
∑
j

ξ̄j∇̂ ∂
∂z
ωj

=
∑
j

∂ξ̄j
∂z

ωj −
∑
j

ξ̄jωj−1,

8We consider the joint system (2.12), (2.13) in matrix notations (ζ is a column vector whose entries
are the components ζα(z, t) w.r.t. ∂

∂tα ). Bases of solutions are arranged in invertible n× n-matrices,
called fundamental systems of solutions.
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by Lemma 2.18. The claim follows. �

Corollary 2.28. The system of differential equations (2.18) is the companion system
of a scalar differential equation in ξ1. �

Theorem 2.29. Consider the system of differential equations (2.15), specialized at a
point p ∈ M \ AΛ. The system can be reduced to a single scalar ordinary differential
equation of order n in the unknown function ξ1. The scalar differential equation can
admit at most n− 2 apparent singularities.

Proof. If p ∈ M \ AΛ, then there exist n − 2 complex numbers z1, . . . , zn−2, not
necessarily distinct, such that (zi, p) /∈ M̂ cyc. The numbers zi are the zeroes of the
denominator of the function det Λ(z, p). �

The scalar differential equation at which the system (2.15) can be reduced will be
called the master differential equation of M .

Definition 2.30. Fix p ∈ M . Consider the system of differential equations (2.15)
specialized at p, and set Xp be the C-vector space of its solutions. Let νp : Xp → O(C̃∗)
be the morphism defined by

ξ 7→ Φξ(z), Φξ(z) := z−
d
2 〈ξ(z, p), e(p)〉,

where d is the charge of the Frobenius manifold. Set Sp(M) := im(νp). Elements of
Sp(M) will be called master functions at p.

Theorem 2.31. At points p ∈M \ AΛ the morphism νp is injective.

Proof. Given Φξ ∈ Sp(M), the function ξ1(z) = z
d
2 Φξ(z) is a solution of the master

differential equation at p. By Theorem 2.29, the solution ξ(z) can be reconstructed
from the component ξ1(z) only. �

3. Gromov-Witten theory

3.1. Notations and conventions. Let X be a smooth projective variety over C. In
order not to introduce superstructures, in what follows we assume that Hodd(X,C) =
0. Denote by bk(X) the k-th Betti number of X.

Attached to X there is an infinite dimensional C-vector space PX , called the big
phase space, defined as the infinite product of countable many copies of the classical
cohomology space of X, that is

PX :=
∏
n∈N

H•(X,C).

Let us fix an homogeneous basis (T0, . . . , TN) of H•(X,C) such that

• T0 = 1,
• and T1, . . . , Tr is a nef integral basis of H2(X,Z).
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In particular, we have b2(X) = r. Set t = (t0, . . . , tN) the dual coordinates of
H•(X,C).

Denote by (τpT0, . . . , τpTN) the corresponding basis of the p-th copy of H•(X,C) in
PX . The element τpTα will be called a descendant of Tα with level p. The coordinate
of a point γ ∈ PX w.r.t. the basis (τpTα)α,p will be denoted by t• = (tα,p)α,p. Instead
of denoting by γ = (tα,pτpTα)α,p a generic element of PX we will usually write this as
a formal series

γ =
m∑
α=1

∞∑
p=0

tα,pτpTα.

We identify H•(X,C) with the 0-th factor of PX , called the small phase space. This
allow us to identify tα ≡ tα,0 for α = 0, . . . , N .

We denote by η : H•(X,C)×H•(X,C)→ H•(X,C) the Poincaré pairing defined by

η(u, v) :=
∫
X
u ∪ v,

and we set ηαβ := η(Tα, Tβ) for α, β = 0, . . . , N .

Define the Novikov ring ΛX as the ring of formal sums∑
β∈H2(X,Z)

aβQβ, aβ ∈ Q,

such that
card

{
β : aβ 6= 0 and

∫
β
ω < C

}
<∞, for any C ∈ R,

where ω is the Kähler form of X.

3.2. Descendant Gromov-Witten invariants. For any given g, n ∈ N and β ∈
H2(X,Z), let us denote by Mg,n(X, β) the Kontsevich-Manin moduli stack of genus
g, n-pointed stable maps of degree β with target X: it parametrizes isomorphisms
classes of pairs ((C,x), f) where

• C is a genus g nodal connected projective curve,
• x = (x1, . . . , xn) is an n-tuple of pairwise distinct points of the smooth locus
of C,
• f : C → X is a morphism with f∗[C] = β,
• a morphism between two pairs ((C,x), f), ((C ′,x′), f ′) is a morphism σ : C →
C ′ such that σ(xi) = x′i for all i, and making commutative the diagram

C
σ

//

f   

C ′

f ′~~

X

• the group of automorphisms of ((C,x), f) is finite.
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The moduli spaceMg,n(X, β) is a proper Deligne-Mumford stack of virtual dimension

vir dimCMg,n(X, β) := (1− g)(dimCX − 3) +
∫
β
c1(X) + n.

Let us denote by Li, with i = 1, . . . , n, the i-th tautological line bundle onMg,n(X, β)
whose fiber are at the point [((C,x), f)] ∈ Mg,n(X, β) is the cotangent space T ∗xiC.
Set ψj := c1(Lj) for j = 1, . . . , n.

We have naturally defined evaluation morphisms

evi : Mg,n(X, β)→ X, [((C,x), f)] 7→ f(xi)

for i = 1, . . . , n.

Definition 3.1. Let d1, . . . , dn be non-negative integers. The genus g descendant
Gromov-Witten invariants (or genus g gravitational correlators) are the rational num-
bers defined by the integrals

〈τd1α1, . . . , τdnαn〉Xg,n,β :=
∫

[Mg,n(X,β)]virt

n∏
j=1

ψ
dj
j ∪ ev∗j(αj),

where α1, . . . , αn ∈ H•(X,C), and the class

[Mg,n(X, β)]virt ∈ CHD(Mg,n(X, β)), D = vir dimCMg,n(X, β),

denotes the virtual fundamental class ofMg,n(X, β).

Definition 3.2. The genus g total descendant potential ofX is the generating function
FX0 ∈ ΛX [[t•]] of descendant GW -invariants of X defined by

FXg (t•,Q) :=
∞∑
n=0

∑
β∈Eff(X)

Qβ

n! 〈γ, . . . ,γ〉
X
g,n,β

=
∞∑
n=0

∑
β

N∑
α1,...,αn=0

∞∑
p1,...,pn=0

tα1,p1 . . . tαn,pn

n! 〈τp1Tα1 , . . . , τpnTαn〉Xg,n,βQβ.

Setting tα,0 = tα and tα,p = 0 for p > 0, we obtain the genus g Gromov-Witten potential
of X

FX
g (t,Q) :=

∞∑
n=0

∑
β

N∑
α1,...,αn=0

tα1 . . . tαn

n! 〈Tα1 , . . . , Tαn〉Xg,n,βQβ. (3.1)

It will also be convenient to introduce the genus g correlation functions defined by the
derivatives

〈〈τd1Tα1 , . . . , τdnTαn〉〉g := ∂

∂tα1,d1
. . .

∂

∂tαn,dn
FXg (t•,Q)

∣∣∣∣∣tα,p=0 for p>1,
tα,0=tα

. (3.2)
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3.3. Quantum cohomology. Let β1, . . . , βr ∈ H2(X,Z) be the homology classes
dual to T1, . . . , Tr. By the Divisor axiom, the genus 0 Gromov-Witten potential FX

0 (t)
can be seen as an element of the ring C[[t0,Qβ1et

1
, . . . ,Qβret

r
, tr+1, . . . , tN ]]. In what

follows we will be interested in the cases when FX
0 is a convergent series expansion

FX
0 ∈ C

{
t0,Qβ1et

1
, . . . ,Qβret

r

, tr+1, . . . , tN
}
. (3.3)

Without loss of generality we can put Q = 1. Under the assumption (3.3), FX
0 (t)

defines an analytic function in an open neighbourhood Ω ⊆ H•(X,C) of the point

ti = 0, i = 0, r + 1, . . . , N ; Re ti → −∞, i = 1, 3, . . . , r. (3.4)
The function FX

0 is a solution of WDVV equations [KM94, Man99, Tia94, Voi96], and
thus it defines an analytic Frobenius manifold structure on Ω. Using the canonical
identifications of tangent spaces TpΩ ∼= H•(X;C) : ∂tα 7→ Tα, the unit vector field is
e = ∂t0 ≡ 1, and the Euler vector field is

E := c1(X) +
N∑
α=0

(
1− 1

2 deg Tα
)
tαTα,

which satisfies
LEF

X
0 = (3− dimCX)FX

0 .

The resulting Frobenius structure is called quantum cohomology of X, denotedQH•(X).

4. Monodromy data of quantum cohomology

4.1. Topological-enumerative solution. For β = 0, . . . , N and k ∈ N, introduce
the functions

θβ,k(t) := 〈〈τkTβ, 1〉〉0|Q=1 , (4.1)

θβ(z, t) :=
∞∑
k=0

θβ,k(t)zk. (4.2)

Define the matrix Θ(z, t) by

Θ(z, t)αβ := ηαλ
∂θβ(z, t)
∂tλ

, α, β = 0, . . . , N. (4.3)

Consider the joint system (2.12), (2.13) attached to the Frobenius manifoldQH•(X).

Theorem 4.1 ([Dub99, CDG20]). The matrix Ztop(z, t) := Θ(z, t)zµzc1(X)∪ is a fun-
damental system of solutions of the joint system (2.12), (2.13). �

The fundamental system of solutions Ztop(z, t) is called topological-enumerative so-
lution of the joint system (2.12), (2.13).

Let M0(t) be the monodromy matrix defined by

Ztop(e2π
√
−1z, t) = Ztop(z, t)M0(t), z ∈ C̃∗. (4.4)
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Lemma 4.2. We have
M0(t) = exp(2π

√
−1µ) exp(2π

√
−1R), (4.5)

where R is the matrix associated to the operator c1(X)∪ : H•(X) → H•(X). In par-
ticular, M0 does not depend on t. �

4.2. Stokes rays and `-chamber decomposition.
Definition 4.3. We call Stokes rays at a point p ∈ Ω the oriented rays Rij(p) in C
defined by

Rij(p) :=
{
−
√
−1(ui(p)− uj(p))ρ : ρ ∈ R+

}
, (4.6)

where (u1(p), . . . , un(p)) is the spectrum of the operator U(p) (with a fixed arbitrary
order).

Fix an oriented ray ` in the universal cover C̃∗.
Definition 4.4. We say that ` is admissible at p ∈ Ω if the projection of the the ray
` on C∗ does not coincide with any Stokes ray Rij(p).
Definition 4.5. Define the open subset O` of points p ∈ Ω by the following conditions:

(1) the eigenvalues ui(p) are pairwise distinct,
(2) ` is admissible at p.

We call `-chamber of Ω any connected component of O`.

4.3. Stokes fundamental solutions at z =∞. Fix an oriented ray ` ≡ {arg z = ϕ}
in C̃∗. For m ∈ Z, define the sectors in C̃∗

ΠL,m(ϕ) :=
{
z ∈ C̃∗ : ϕ+ 2πm < arg z < ϕ+ π + 2πm

}
, (4.7)

ΠR,m(ϕ) :=
{
z ∈ C̃∗ : ϕ− π + 2πm < arg z < ϕ+ 2πm

}
. (4.8)

Denote by BX the bifurcation diagram of the quantum cohomology of X.
Theorem 4.6 ([Dub96, Dub99]). There exists a unique formal solution Zform(z, t) of
the joint system (2.12), (2.13) of the form

Zform(z, t) = Ψ(t)−1G(z, t) exp(zU(t)), (4.9)

G(z, t) = I +
∞∑
k=1

1
zk
Gk(t), (4.10)

where the matrices Gk(t) are holomorphic on Ω \ BX .
Theorem 4.7 ([Dub96, Dub99]). Let m ∈ Z. There exist unique fundamental systems
of solutions ZL,m(z, t), ZR,m(z, t) of the joint system (2.12), (2.13) with asymptotic
expansion

ZL,m(z, t) ∼ Zform(z, t), |z| → ∞, z ∈ ΠL,m(ϕ), (4.11)
ZR,m(z, t) ∼ Zform(z, t), |z| → ∞, z ∈ ΠR,m(ϕ), (4.12)

respectively.
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Definition 4.8. The solutions ZL,m(z, t) and ZR,m(z, t) are called Stokes fundamen-
tal solutions of the joint system (2.12), (2.13) on the sectors ΠL,m(ϕ) and ΠR,m(ϕ)
respectively.

4.4. Monodromy data. Let ` ≡ {arg z = ϕ} be an oriented ray in C̃∗ and consider
the corresponding Stokes fundamental systems of solutions ZL,m(z, t), ZR,m(z, t), for
m ∈ Z.
Definition 4.9. We define the Stokes and central connection matrices S(m)(p), C(m)(p),
with m ∈ Z, at the point p ∈ O` by the identities

ZL,m(z, t(p)) = ZR,m(z, t(p))S(m)(p), (4.13)
ZR,m(z, t(p)) = Ztop(z, t(p))C(m)(p). (4.14)

Set S(p) := S(0)(p) and C(p) := C(0)(p).
Definition 4.10. The monodromy data at the point p ∈ O` are defined as the 4-tuple
of matrices (µ,R, S(p), C(p)), where

• µ is the matrix associated to the grading operator,
• R is the matrix associated to the operator c1(X)∪ : H•(X)→ H•(X),
• S(p), C(p) are the Stokes and central connection matrices at p, respectively.

Definition 4.11. Fix a point p ∈ O` with canonical coordinates (ui(p))ni=1. Define
the oriented rays Lj(p, ϕ), j = 1, . . . , n, in the complex plane by the equations

Lj(p, ϕ) :=
{
uj(p) + ρe

√
−1(π2−ϕ) : ρ ∈ R+

}
. (4.15)

The ray Lj(p, ϕ) is oriented from uj(p) to ∞. We say that (ui(p))ni=1 are in `-
lexicographical order if Lj(p, ϕ) is on the left of Lk(p, ϕ) for 1 6 j < k 6 n.

In what follows, it is assumed that the `-lexicographical order of canonical coordi-
nates is fixed at all points of `-chambers.
Lemma 4.12 ([CDG18, Dub99]). If the canonical coordinates (ui(p))ni=1 are in `-
lexicographical order at p ∈ O`, then the Stokes matrices S(m)(p), m ∈ Z, are upper
triangular with 1’s along the diagonal.

By Lemma 4.2, the matrices µ and R determine the monodromy of solutions of the
qDE,

M0 := exp(2π
√
−1µ) exp(2π

√
−1R). (4.16)

Moreover, µ and R do not depend on the point p. The following theorem furnishes a
refinement of this property.
Theorem 4.13 ([CDG18, Dub96, Dub99]). The monodromy data (µ,R, S, C) are
constant in each `-chamber. Moreover, they satisfy the following identities:

CSTS−1C−1 = M0, (4.17)
S = C−1 exp(−π

√
−1R) exp(−π

√
−1µ)η−1(CT )−1, (4.18)

ST = C−1 exp(π
√
−1R) exp(π

√
−1µ)η−1(CT )−1. (4.19)
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Theorem 4.14 ([CDG18]). The Stokes and central connection matrices Sm, Cm, with
m ∈ Z, can be reconstructed from the monodromy data (µ,R, S, C):

S(m) = S, C(m) = M−m
0 C, m ∈ Z. (4.20)

Remark 4.15. Points of O` are semisimple. The results of [CDG19, CDG18, CG17,
CG18] imply that the monodromy data (µ,R, S, C) are well defined also at points
p ∈ Ωss ∩ BΩ, and that Theorem 4.13 still holds true.

Remark 4.16. From the knowledge of the monodromy data (µ,R, S, C) the Gromov-
Witten potential FX

0 (t) can be recostructed via a Riemann-Hilbert boundary value
problem, see [Dub99, Guz01, CDG20, CDG18]. Hence, the monodromy data may be
interpreted as a system of coordinates in the space of solutions of WDV V equations.

4.5. Natural transformations of monodromy data. The definition of the Stokes
and central connection matrices is subordinate to several non-canonical choices:

(1) the choice of an oriented ray ` in C̃∗,
(2) the choice of an ordering of canonical coordinates u1, . . . , un on each `-chamber,
(3) the choice of signs in (2.5), and hence of the branch of the Ψ-matrix on each

`-chamber.

Different choices affect the numerical values of the data (S,C).
For different choices of the oriented ray `, the transformation of S and C can be

described in terms of an action of the braid group Bn, described in Section 4.6.
For different choices of ordering of canonical coordinates, the Stokes and central con-
nection matrices transform as follows:

S 7→ ΠSΠ−1, C 7→ CΠ−1, Π permutation matrix.

For different choices of the branch of the Ψ-matrix, we have a transformation of the
following type:

S 7→ ISI, C 7→ CI, I = diag(±1, . . . ,±1).

See [CDG20, CDG18] for more details.
Moreover, let us also add that the value of all the monodromy data is affected by

different choices of the system of flat coordinates t.

Proposition 4.17. Let (t̃0, . . . , t̃N) be a system of flat coordinates on Ω related to
(t0, . . . , tN) by the transformations

t̃α = Aαβt
β + cα, Aαβ , c

α ∈ C, α, β = 0, . . . , N.

The monodromy data (µ̃, R̃, S̃, C̃), computed w.r.t. the coordinates t̃, are related to the
data (µ,R, S, C), computed w.r.t. t, as follows:

µ̃ = AµA−1, R̃ = ARA−1, S̃ = S, C̃ = AC.



CYCLIC STRATUM, BOREL-LAPLACE (α,β)-MULTITRANSFORMS 29

Proof. The transformation of µ,R is due to their tensorial nature: they are (1,1)-
tensors on Ω. Notice that Ψ̃ = ΨA−1, Z̃R,0 = AZR,0 and Z̃top = AZtopA

−1 so that
C̃ = Z̃−1

topZ̃R,0 = AZ−1
topA

−1AZR,0 = AC.

Equation (4.18), together with η̃ = (A−1)TηA−1, shows that S̃ = S. �

Remark 4.18. In particular, Proposition 4.17 applies in the case of deformations
of the complex structures of X. Consider a smooth proper map f : F → B with a
connected base space B, and set Xb := f−1(b) with b ∈ B. Given b1, b2 ∈ B, there
exists a diffeomorphism ϕ : Xb1 → Xb2 , which allows to identify (co)homology groups:

ϕ∗ : H•(Xb1 ,Z)→ H•(Xb2 ,Z), ϕ∗ : H•(Xb2 ,Z)→ H•(Xb1 ,Z).
Using the isomorphisms ϕ∗, ϕ∗, and by invoking the Deformation Axiom of Gromov-
Witten invariants (see e.g. [CK99, Section 7.3]), we can identify the quantum co-
homologies QH•(Xb1) and QH•(Xb2): the deformation of the complex structure just
represents a change of flat coordinates on the same Frobenius manifold.

4.6. Action of the braid group Bn. Consider the braid group Bn with generators
β1, . . . , βn−1 satisfying the relations

βiβj = βjβi, |i− j| > 1, (4.21)
βiβi+1βi = βi+1βiβi+1. (4.22)

Let Un be the set of upper triangular (n× n)-matrices with 1’s along the diagonal.

Definition 4.19. Given U ∈ Un define the matrices Aβi(U), with i = 1, . . . , n− 1, as
follows (

Aβi(U)
)
hh

:= 1, h = 1, . . . , n, h 6= i, i+ 1, (4.23)(
Aβi(U)

)
i+1,i+1

= −Ui,i+1, (4.24)(
Aβi(U)

)
i,i+1

=
(
Aβi(U)

)
i+1,i

= 1, (4.25)

and all other entries of Aβi(U) are equal to zero.

Lemma 4.20 ([Dub96, Dub99]). The braid group Bn acts on Un×GL(n,C) as follows:
Bn × Un ×GL(n,C) −−−−−−−−→ Un ×GL(n,C)

(βi, U, C) 7−−−→ (Aβi(U) · U · Aβi(U), C · Aβi(U)−1)

We denote by (U,C)βi the action of βi on (U,C). �

Fix an oriented ray ` ≡ {arg z = ϕ} in C̃∗, and denote by ` its projection on C∗. Let
Ω`,1,Ω`,2 be two `-chambers and let pi ∈ Ω`,i for i = 1, 2. The difference of values of the
Stokes and central connection matrices (S1, C1) and (S2, C2), at p1 and p2 respectively,
can be described by the action of the braid group Bn of Lemma 4.20.

Theorem 4.21 ([CDG18, Dub96, Dub99]). Consider a continuous path γ : [0, 1]→ Ω
such that
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• γ(0) = p1 and γ(1) = p2,
• there exists a unique to ∈ [0, 1] such that ` is not admissible at γ(to),
• there exist i1, . . . , ik ∈ {1, . . . , n}, with |ia − ib| > 1 for a 6= b, such that the
rays9

(
Rij ,ij+1(t)

)r
j=1

(resp.
(
Rij ,ij+1(t)

)k
j=r+1

) cross the ray ` in the clockwise
(resp. counterclockwise) direction, as t→ t−o .

Then, we have

(S2, C2) = (S1, C1)β, β :=
 r∏
j=1

βij

 ·
 k∏
h=r+1

βih

−1

. �

Remark 4.22. In the general case, the points p1 and p2 can be connected by concate-
nations of paths γ satisfying the assumptions of Theorem 4.21.

Remark 4.23. The action of Bn on (S,C) also describes the analytic continuation of
the Frobenius manifold structure on Ω, see [Dub99, Lecture 4].

5. J-function and Quantum Lefschetz Theorem

5.1. J-function and master functions.

Definition 5.1. The J-function of X the H•(X,ΛX)[[~−1]]-valued function of τ ∈
H•(X,C) defined by

JX(τ ) := 1 +
∞∑
n=0

~−(n+1)〈〈τnTα, 1〉〉0η
αλTλ.

The following result will be crucial for us. For its proof see Appendix A.

Theorem 5.2. Let α = 0, . . . , N and δ ∈ H2(X,C). The (1, α)-entry of the matrix
ηZtop(z, δ) equals

z
dimX

2

∫
X
Tα ∪ JX(δ + log z · c1(X))

∣∣∣∣Q=1,
~=1

.

Corollary 5.3. Let δ ∈ H2(X,C). The components of the function

J(δ + log z · c1(X))
∣∣∣∣Q=1,
~=1

,

w.r.t. any basis of H•(X,C), span the space of master functions Sδ(X).

Proof. The functions z−dimX
2 [ηZtop(z, δ)]1α define a generating set of the space of master

functions Sδ(X). The claim follows by Theorem 5.2. �

9Here the labeling of Stokes rays is the one prolonged from the initial point t = 0.
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In the notations of Section 3.1, set δ = ∑r
i=1 t

iTi. Any formal differential operator
P ∈ C[[~ ∂

∂t1
, . . . , ~ ∂

∂tr
, et

1
, . . . , et

r
, ~]] such that PJX(δ) = 0 is called a quantum differ-

ential operator. The equation PY = 0 is called a quantum differential equation, see
e.g. [CK99, Section 10.3]. By Corollary 5.3, the master differential equation, defined
as in Section 2.7 at a point δ of the complement of the AΛ-stratum of QH•(X), is
equivalent to a differential equation for master functions

P̃δ(ϑ, z)Φ = 0, ϑ := z
d

dz
, (5.1)

for a suitable differentiable operator P̃δ.

5.2. Twisted Gromov-Witten invariants. Given a holomorphic vector bundleE →
X and an invertible multiplicative10 characteristic class c, one can introduce a (E, c)-
twisted version of the Gromov-Witten theory of X.

Given E, there exists a complex 0→ E0
g,n,β → E1

g,n,β → 0 of locally free orbi-sheaves
onMg,n(X, β) whose cohomology sheaves areR0ftn+1,∗(ev∗n+1E) andR1ftn+1,∗(ev∗n+1E)
respectively. Here, the forgetful and evaluation morphisms ftn+1, evn+1 at the last
marked point fit in the diagram

Mg,n+1(X, β)
ftn+1

ww

evn+1

%%

Mg,n(X, β) X

Let us introduce an obstruction K-class Eg,n,β ∈ K0(Mg,n(X, β)), defined as the K-
theoretic difference

Eg,n,β := [E0
g,n,β]− [E1

g,n,β].

It is possible to show that such a difference does not depend on the choice of the
complex.

Definition 5.4. The (E, c)-twisted Gromov-Witten invariants (with descendants) of
X are the intersection numbers

〈τ d1
1 α1 ⊗ · · · ⊗ τ dnn αn〉X,E,cg,n,β :=

∫
[Mg,n(X,β)]virt

c(Eg,n,β) ∪
n∏
j=1

ψ
dj
j ∪ ev∗j(αj),

where α1, . . . , αn ∈ H•(X,C).

Remark 5.5. If c is the trivial characteristic class, we recover the untwisted Gromov-
Witten invariants of X.

10A characteristic class c is said to be multiplicative if c(E1 ⊕ E2) = c(E1)c(E2). It is invertible if
c(E) is invertible in H•(Y,C) for any vector bundle E on a manifold Y .
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5.3. Quantum Lefschetz Theorem. Introduce a C∗-action on the total space E
defined by fiberwise multiplication. The C∗-equivariant Euler class e is invertible over
the field of fractions Q(λ) of H•C∗(pt) ∼= Q[λ]. Taking c = e we refer to the twisted
Gromov-Witten invariants as Euler-twisted Gromov-Witten invariants.

Exaclty as in the untwisted case, (E, c)-twisted Gromov-Witten invariants can be
collected in generating functions. In particular, we can introduce the Euler-twisted
J-function as the H•(X,ΛX [λ])[[~−1]]-valued function on H•(X,C) by

JE,e(τ ) = 1 +
∑
k,n,β

~−n−1 Qβ

k! 〈τnTα, 1, τ , . . . , τ 〉
X,E,e
0,k+2,βT

α. (5.2)

Assume now that E is convex11, i.e. H1(C, f ∗E) = 0 for all stable maps f : C → X
with C of genus zero. Let Y be a smooth subvariety of X defined by the zero locus of
a regular section of E.

Theorem 5.6 ([CG07, Coa14]). The non-equivariant limit JE,e|λ=0 exists. Moreover,
it is related to the function JY by the equation

ι∗JE,e|λ=0(τ ) ι∗= JY (ι∗τ ), τ ∈ H•(X,C), (5.3)
where ι : Y ↪→ X is the inclusion.

Remark 5.7. The symbol ι∗= means that identity (5.3) holds true after application of
the morphism ι∗ : ΛX → ΛY defined by Qβ 7→ Qι∗β.

Remark 5.8. If dimCX > 3, then ι∗ is an isomorphism, by Hyperplane Lefschetz
Theorem.

Assume that E = ⊕si=1Li where Li are nef line bundles on X such that c1(E) 6
c1(X). In such a case, the Quantum Lefschetz Theorems prescribes how to compute the
non-equivariant limit JE,e(δ)|λ=0 at points of the small quantum locus δ ∈ H2(X,C).

Introduce the hypergeometric modification IX,Y of the function JX as follows: write
JX = ∑

β JβQβ, and for δ ∈ H2(X,C) define

IX,Y (δ) :=
∑
β

Jβ(δ)Qβ
s∏
i=1

〈c1(Li),β〉∏
m=1

(c1(Li) +m~). (5.4)

Theorem 5.9 ([CG07]). The function IX,Y admits an expansion of the form

IX,Y (δ) = F (δ) + 1
~
G(δ) +O

( 1
~2

)
, δ ∈ H2(X,C), (5.5)

where F is H0(X,ΛX)-valued and G takes values in H0(X,ΛX)⊕H2(X,ΛX). More-
over, we have

JE,e(ϕ(δ))|λ=0 = IX,Y (δ)
F (δ) , ϕ(δ) := G(δ)

F (δ) . (5.6)

11Globally generated vector bundles, and direct sums of nef line bundles are automatically convex.
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Proposition 5.10 ([CG07, CCGK16]). Moreover, if c1(X) > c1(E), then we have

F (δ) ≡ 1, G(δ) = δ +H(δ) · 1, H(δ) =
∑
β

(
wβQβe

∫
β
δ
)
· δ1,〈β,c1(X)−c1(E)〉,

for suitable rational coefficients wβ ∈ Q.

Proof. The function IX,Y (δ) is homogeneous of degree 0 w.r.t. the gradings

deg Qβ =
∫
β
c1(X)−

∫
β
c1(E), deg ~ = 1, deg Tα = k if Tα ∈ H2k(X,C).

This is easily seen from the expansion of JX given in Lemma A.2. Hence, F (δ) is given
from the only contribution of the term J0(δ) = 1 + δ

~ + . . . , and H(δ) from the terms
for which deg Qβ = 1. �

5.4. Inequality for dimensions of spaces of master functions. Let Y ⊆ X be
te zero locus of a regular section of a vector bundle E → X, sum of nef line bundles,
with c1(E) < c1(X). Denote by ι : Y → X the inclusion. We always assume that both
X and Y have vanishing odd comology.

For a point τ ∈ QH•(X), denote by Sτ (X) := Sτ (QH•(X)) the space of master
functions as τ .

Theorem 5.11. Let δ ∈ H2(X,C). We have
dimC Sι∗δ(Y ) 6 dimC Sδ+c(X), (5.7)

where c := c1(X)− c1(E).

Proof. By the adjunction formula, we have ι∗c = c1(Y ). The components of the
function JX(δ + c log z)|Q=1

~=1
, w.r.t. any basis of H•(X,C), span the space Sδ+c(X).

Analogously, the components of the function JY (ι∗δ+c1(Y ) log z)|Q=1
~=1

, w.r.t. any basis
of H•(Y,C), span the space Sι∗δ(Y ).

By Theorems 5.6, 5.9 and Proposition 5.10, we have
JY (ι∗δ + c1(Y ) log z)|Q=1

~=1
= e−zH(δ) · ι∗IX,Y (δ + c log z)|Q=1

~=1
.

The components of the r.h.s. are obtained by linear combinations and rescaling of the
components of JX(δ + c log z)|Q=1

~=1
: such a linear combination is due to the hyperge-

ometric modification (5.4), namely the ∪-multiplication by an invertible class. The
claim follows. �

Theorem 5.12. Let Y be a hyperplane section of X. Assume that d := dimCX is
odd, and that the following inequalities of Betti numbers holds true:

bd−1(X) < 1
2bd−1(Y ). (5.8)

Then ι∗(H2(X,C)) is contained in the AΛ-stratum of the Frobenius manifold QH•(Y ).
In particular, along ι∗(H2(X,C)) the canonical coordinates of QH•(Y ) coalesce.
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Proof. From Hyperplane Lefschetz Theorem we deduce that (5.8) holds true if and
only if dimCH

•(X,C) < dimCH
•(Y,C). Then we have dimC Sι∗δ(Y ) < dimCH

•(Y,C)
for any δ ∈ H2(X,C), by (5.7). Hence, the master differential equation of QH•(Y )
at ι∗δ is not of order dimCH

•(Y,C). This implies that the denominator of det Λ is
identically zero at ι∗δ. The last statement follows from Lemma 2.24 and Theorem
2.25. �

6. Borel-Laplace (α,β)-multitransforms

6.1. Algebras of Ribenboim’s generalized power series. Let (M,+, 0) be a
monoid, i.e. a commutative semigroup with neutral element. We will say that an
order relation 6 on M defines a strictly ordered monoid (M,+, 0,6) if the following
compatibility condition holds true:

if a < b, then a+ s < b+ s for all s ∈M .
Let R be a commutative ring with unit. The set R[[M ]] := RM of all functions
f : M → R is equipped with a natural R-module structure, w.r.t. pointwise addi-
tion and multiplication by scalars. An element f ∈ R[[M ]] will usually be denoted
by

f =
∑
a∈M

f(a)Za,

where Z is an indeterminate. Given two functions f, g ∈ R[[M ]], we could be tempted
to define their product as

f · g :=
∑
s∈M

 ∑
(p,q)∈Xs(f,g)

f(p) · g(q)
Zs, (6.1)

where we set
Xs(f, g) := {(p, q) ∈M ×M : p+ q = s, f(p) 6= 0, g(q) 6= 0} .

In general the set Xs(f, g) is not finite, and consequently the product f · g could be
not defined.

Definition 6.1. The R-submodule of R[[M ]] which consists of all functions f : M → R
whose support supp(f) := {s ∈M : f(s) 6= 0} is

(1) Artinian, i.e. every subset of supp(f) admits a minimal element,
(2) narrow, i.e. every subset of supp(f) of pairwise incomparable elements is finite,

is called the set of generalized power series with coefficients in R and exponents in M .
It is denoted by R[[M,6]].

Proposition 6.2 ([Rib94, Rib92]). Given f, g ∈ R[[M,6]], the set Xs(f, g) is finite,
and the product (6.1) is well-defined. The set R[[M,6]] inherits the structure of an
associative R-algebra.

Remark 6.3. If (M,6) is itself Artinian and narrow, then all its subsets are Artinian
and narrow. Consequently R[[M,6]] = R[[M ]].
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6.2. The algebra Fκ(A). Let κ := (κ1, . . . , κh) ∈ (C∗)h. Consider an associative,
commutative, unitary and finite dimensional C-algebra (A,+, ·, 1A). Denote by Nil(A)
the nilradical of A.

Define the monoid MA,κ as the (external) direct sum of monoids

MA,κ :=
 h⊕
j=1

κjNA

⊕ Nil(A).

We have two maps νκ : MA,κ → Nh and ικ : MA,κ → A defined by

νκ((κini1A)hi=1, r) := (ni)hi=1, ικ((κini1A)hi=1, r) :=
h∑
i=1

κini1A + r.

On MA,κ we can define the partial order

x 6 y iff νκ(x) 6 νκ(y),

the order on Nh being the lexicographical one. This order makes (MA,κ,6) a strictly
ordered monoid.

We denote by Fκ(A) the ring A[[MA,κ,6]].
By universal property of the direct sums of monoids, the natural inclusionsMA,κi →

MA,κ induce a unique morphism

ρκ :
h⊕
i=1

MA,κi →MA,κ.

Definition 6.4. Let ro ∈ Nil(A). We say that an element f ∈ Fκ(A) is concentrated
at ro if

supp(f) ⊆
(

h⊕
i=1

κiNA

)
× {ro}.

6.3. Formal Borel-Laplace (α,β)-multitransforms. Given two h-tuples α,β ∈
(C∗)h, we set α · β := (aiβi)hi=1, and α−1 :=

(
1
αi

)h
i=1

.

Definition 6.5. Let F ∈ C[[x]] be a formal power series F (x) = ∑∞
k=0 akx

k. For
α ∈ Nil(A) define F (α) ∈ A by the finite sum

F (α) =
∞∑
k=0

akα
k.

If F is invertible, i.e. a0 6= 0, then F (α) is invertible in A.

In what follows we will usually take F (x) = Γ(λ + x) with λ ∈ C \ Z60, where Γ
denotes the Euler Gamma function.
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Definition 6.6. Let α,β,κ ∈ (C∗)h. We define the Borel (α,β)-multitransform as
the A-linear morphism

Bα,β :
h⊗
j=1

Fκj(A)→ Fα−1·β−1·κ(A),

which is defined, on decomposable elements, by

Bα,β

 h⊗
j=1

 ∑
sj∈MA,κj

f jsjZ
sj


 :=

∑
sj∈MA,κj

j=1,...,h

∏h
i=1 f

i
si

Γ
(
1 +∑h

`=1 ικ`(s`)β`
)Zρκ

(
⊕h`=1

s`
α`β`

)
.

Definition 6.7. Let α,β,κ ∈ (C∗)h. We define the Laplace (α,β)-multitransform as
the A-linear morphism

Lα,β :
h⊗
j=1

Fκj(A)→ Fα·β·κ(A),

which is defined, on decomposable elements, by

Lα,β

 h⊗
j=1

 ∑
sj∈MA,κj

f jsjZ
sj


 :=

∑
sj∈MA,κj

j=1,...,h

(
h∏
i=1

f isi

)
Γ
(

1 +
h∑
`=1

ικ`(s`)β`
)
Zρκ(⊕h`=1α`β`s`).

In the case h = 1, the Borel-Laplace (α,β)-multitransform simplify as follows.

Definition 6.8. Given α, β ∈ C∗, we define two A-linear maps
Bα,β : Fκ(A)→ F κ

αβ
(A), Lα,β : Fκ(A)→ Fαβκ(A), κ ∈ C∗

called respectively (α, β)-Borel and Laplace transforms, through the formulæ

Bα,β

 ∑
s∈MA,κ

fsZ
s

 :=
∑

s∈MA,κ

fs
Γ(1 + βs)Z

s
αβ ,

Lα,β

 ∑
s∈MA,κ

fsZ
s

 :=
∑

s∈MA,κ

fsΓ(1 + βs)Zαβs.

Theorem 6.9. The Borel-Laplace (α, β)-transform are inverses of each other, i.e.
Bα,β ◦Lα,β = Id, Lα,β ◦Bα,β = Id. �

6.4. Analytic Borel-Laplace (α,β)-multitransforms.

Definition 6.10. Let α,β ∈ (C∗)h. The Borel (α,β)-multitransform of an h-tuple
of A-valued functions (Φ1, . . . ,Φh) is defined, when the integral exists, by

Bα,β[Φ1, . . . ,Φh](z) := 1
2πi

∫
γ

h∏
j=1

Φj

(
z

1
αjβj λ−βj

)
eλ
dλ

λ
, (6.2)

where γ is a Hankel-type contour of integration, see Figure 6.1.
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γ

Figure 6.1. Hankel-type contour of integration defining Borel (α,β)-multitransform.

Definition 6.11. Let α := (α1, . . . , αh), and β := (β1, . . . , βh) be two h-tuples in
(C∗)h. The (α,β)-Laplace transform of an h-tuple of functions (Φ1, . . . ,Φh) is defined,
when the integral exists, by

Lα,β [Φ1, . . . ,Φh] (z) :=
∫ ∞

0

h∏
i=1

Φi(zαiβiλβi) exp(−λ)dλ. (6.3)

Proposition 6.12. Let (v1, . . . , vn) be a basis of A and Φ1, . . . ,Φh be A-valued func-
tions. Write Φi = ∑

j Φj
iej for C-valued component functions Φj

i . The components
of Bα,β[Φ1, . . . ,Φh] (resp. Lα,β[Φ1, . . . ,Φh]) are C-linear combinations of the h · n
C-valued functions Bα,β[Φi1

1 , . . . ,Φih
h ] (resp. Lα,β[Φi1

1 , . . . ,Φih
h ]), where (i1, . . . , ih) ∈

{1, . . . , n}×h.

Proof. Set cijk ∈ C be the structure constants of the algebra A, so that ejek = ∑
i c
i
jkei.

We have
Bα,β[Φ1, . . . ,Φh] =

∑
a,i

ca1
i1i2c

a2
a1i3 . . . c

ah−1
ah−2ih

eah−1Bα,β[Φi1
1 , . . . ,Φ

ih
h ].

Similarly for the Laplace multitransform. �

6.5. Analytification of elements of Fκ(A). Let s = ((κini1A)hi=1, r) ∈ MA,κ. We
define the analytification Ẑs of the monomial Zs ∈ Fκ(A) to be the A-valued holo-
morphic function

Ẑs : C̃∗ → A, Ẑs(z) := z
∑h

i=1 κini
∞∑
j=1

rj

j! logj z.

Notice that the sum is finite, since r ∈ Nil(A).
Let f ∈ Fκ(A) be a series

f(Z) =
∑

s∈MA,κ

faZ
s, such that card supp(f) 6 ℵ0.

The analytification f̂ of f is the A-valued holomorphic function defined, if the series
absolutely converges, by

f̂ : W ⊆ C̃∗ → A, f̂(z) :=
∑

s∈MA,κ

faẐs(z).
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Theorem 6.13. Let fi ∈ Fκi(A) such that

• card supp(fi) 6 ℵ0 for i = 1, . . . , h,
• the functions f̂i are well defined on R+.

We have

Bα,β[⊗h
j=1 fj ]̂ = Bα,β[f̂1, . . . , f̂h],

Lα,β[⊗h
j=1 fj ]̂ = Lα,β[f̂1, . . . , f̂h],

provided that both sides are well-defined.

Proof. It is sufficient to prove the statement on monomials Zs1 , . . . , Zsh . Let sj =
(κjnj1A, rj) for j = 1, . . . , h. We have

Bα,β[⊗hj=1Z
sj ] = 1

Γ
(
1 +∑h

`=1 ικ`(s`)β`
)Zρκ

(
⊕h`=1

s`
α`β`

)

= 1
Γ
(
1 +∑h

`=1(κ`n`1A + r`)β`
)Z((

κj
αjβj

nj1A)hj=1,
r1
α1β1

+···+ rh
αhβh

)
.

Hence, we have

Bα,β[⊗hj=1Z
sj ]̂(z) = z

∑h

i=1
κini
αiβi

Γ
(
1 +∑h

`=1(κ`n`1A + r`)β`
) ∞∑
j=1

( r1
α1β1

+ · · ·+ rh
αhβh

)j

j! logj z.

On the other hand, we have

Ẑsj(z) = zκjnj
∑
`

r`j
`! log` z,

so that

Bα,β[Ẑs1 , . . . , Ẑsh ](z) = 1
2πi

∫
γ

h∏
j=1

Ẑsj

(
z

1
αjβj λ−βj

)
eλ
dλ

λ

= 1
2πi

∫
γ
eλ
dλ

λ

h∏
j=1

(z
1

αjβj λ−βj)κjnj
∑
`

r`j
`! log`(z

1
αjβj λ−βj)

= z
∑h

i=1
κini
αiβi

2πi

∫
γ
eλ

dλ

λ1+
∑h

`=1 κ`n`β`

h∏
j=1

∑
`

r`j
`! log`(z

1
αjβj λ−βj)

= z
∑h

i=1
κini
αiβi

2πi

∫
γ
eλ

dλ

λ1+
∑h

`=1 κ`n`β`

∑
`1,...,`h

h∏
j=1

r
`j
j

`j!
log`j(z

1
αjβj λ−βj).
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We have
h∏
j=1

r
`j
j

`j!
log`j(z

1
αjβj λ−βj) =

h∏
j=1

∞∑
w,u=0

r
`j
j

w!u!

(
log z
αjβj

)w
(−βj log λ)u δw+u,`j

=
∑

w1,...,wh
u1,...uh

h∏
j=1

r
`j
j

wj!uj!

(
log z
αjβj

)wj
(−βj log λ)uj δwj+uj ,`j .

We have
1

2πi

∫
γ
eλ

dλ

λ1+
∑h

`=1 κ`n`β`
(− log λ)uj =

( 1
Γ

)(uj)
(

1 +
h∑
`=1

κ`n`β`

)
,

because of the Hankel formula (see e.g. [OLBC10])
1

Γ(z) = 1
2πi

∫
γ
eλ
dλ

λz
.

Thus, we have

Bα,β[Ẑs1 , . . . , Ẑsh ](z)

= z
∑h

i=1
κini
αiβi

∑
`1,...,`h
w1,...,wh
u1,...uh

h∏
j=1

r
`j
j β

uj
j

wj!uj!

(
log z
αjβj

)wj ( 1
Γ

)(uj)
(

1 +
h∑
`=1

κ`n`β`

)
δwj+uj ,`j .

This coincides with the formula of Bα,β[⊗hj=1Z
sj ]̂(z). The proof for the Laplace mul-

titransform is similar, based on the identity

Γ(z) =
∫ ∞

0
λz−1e−λdλ. �

7. Integral representations of solutions of qDEs

7.1. JX-function as element of Fκ(X). Let X be a variety with nef anticanonical
bundle12. Introduce the basis (β1, . . . , βr) of H2(X,Z) Poincaré dual to (T 1, . . . , T n),
so that ∫

βi
Tj =

∫
X
T i ∪ Tj = δi,j.

Set
c1(X) =

r∑
j=1

cαijTαij , cαij ∈ N∗.

Consider the C-algebra H•(X,C). For brevity, we set Fκ(X) := Fκ(H•(X,C)) for
any κ ∈ (C∗)h.

12We recall that this means
∫
C
c1(X) > 0 for all curves C in X. If the strict inequality holds true for

any C, then X is Fano by Nakai-Moishezon Theorem. Varieties with nef anticanonical bundle can
be thought as an interpolation between Fano and Calabi-Yau varieties.



40 GIORDANO COTTI

The JX-function, restricted to the small quantum locus of QH•(X) admits the
following expansion:

JX(δ + log z · c1(X))|Q=1
~=1

= eδzc1(X) +
∑
β 6=0

∞∑
k=0

eδz
∫
β
c1(X)

zc1(X)〈τkTα, 1〉X0,2,βTα.

Such a series can be seen as an element of Fκ(X) for different choices of κ. We
describe two possible choices. In both cases, we have a series in Fκ(X) concentrated
at c1(X).

Choice 1. Set h = 1 and κ = c, where c is a common divisor of the numbers
cαi1 , . . . , cαir . The series can be rearranged as follows

JX(δ + log z · c1(X))|Q=1
~=1

=
∑
d∈N

Jd(δ)zdc+c1(X),

where
Jd(δ) = eδ

∑
k

〈τkTα, 1〉0,2,d·PD(T ), d ∈ N, T ∈ H2(X,Z), c1(X) = cT.

In particular J0(δ) = eδ.

Choice 2. Set h = r and κ = (cαi1 , . . . , cαir ). By expanding the sum over β over
the basis (β1 . . . , βr), the sum above becomes

JX(δ + log z · c1(X))|Q=1
~=1

=
∑
d∈Nr

Jd(δ)zd1c
αi1 +···+drcαir +c1(X),

where
Jd(δ) = eδ

∑
k

〈τkTα, 1〉0,2,d1βαi1
+···+drβαir

, d ∈ Nr.

In particular J0(δ) = eδ.

7.2. Integral representations of the first kind. Let X be a Fano smooth projec-
tive variety. Assume that detTX = L⊗` with L ample line bundle. Let ι : Y ⊆ X be a
smooth subvariety defined as the zero locus of a regular section of the vector bundle
E = ⊕s

j=1 L
⊗dj , where the numbers dj ∈ N∗ are such that ∑s

j=1 dj < `.

Theorem 7.1. Let δ ∈ H2(X,C), and Sδ(X) the corresponding space of master func-
tions of QH•(X). There exists a complex number cδ ∈ C such that the space of master
functions Sι∗δ(Y ) is contained in image of the C-linear map S(`,d) : Sδ(X) → O(C̃∗)
defined by

S(`,d)[Φ](z) := e−cδz©s
j=1 L `−d1−d2−···−dj

dj
,

dj
`−d1−d2−···−dj−1

[Φ](z).

In other words, any element of Sι∗δ(Y ) is of the form

e−cδz
∫ ∞

0
· · ·

∫ ∞
0

Φ
(
z
`−
∑s

j=1 dj
`

s∏
i=1

ζ
di
`
i

)
e−
∑s

i=1 ζidζ1 . . . dζs, (7.1)

for some Φ ∈ Sδ(X). Moreover, cδ 6= 0 only if ∑j dj = `− 1.
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Proof. Set ρ := c1(L), and ρ∗ ∈ H2(X,Z) be its Poincaré dual homology class. In
particular, we have c1(X) = `ρ and c1(E) = (∑s

i=1 di)ρ. By the adjunction formula,
we have c1(Y ) = ι∗(c1(X)− c1(E)). From Lemma A.2, we have

JX(δ + log z · c1(X))|Q=1
~=1

=
∑
d∈N

Jdρ∗(δ)zd`+c1(X) =
∑
d∈N

Jdρ∗(δ)zd`+`ρ, (7.2)

where Jdρ∗(δ) = eδ
∑
k〈τkTα, 1〉X0,2,dρ∗Tα. Analogously, from (5.4) we have

IX,Y (δ + (c1(X)− c1(E)) log z)|Q=1
~=1

=
∑
d∈N

Jdρ∗(δ + (c1(X)− c1(E)) log z)
s∏
i=1

〈diρ,dρ∗〉∏
m=1

(diρ+m)

=
∑
d∈N

Jdρ∗(δ)zd(`−
∑

di)+c1(X)−c1(E)
s∏
i=1

d·di∏
m=1

(diρ+m)

=
∑
d∈N

Jdρ∗(δ)zd(`−
∑

di)+(`−
∑

di)ρ
s∏
i=1

Γ(1 + diρ+ ddi)
Γ(1 + diρ) . (7.3)

On the one hand, from equation (7.2), one can see that the function JX(δ + log z ·
c1(X)))|Q=1

~=1
is the analytification ĴX of the series JX ∈ F`(X), concentrated at

c1(X) = `ρ, defined by
JX(Z) =

∑
d∈N

Jdρ∗(δ)Zd`⊕c1(X).

On the other hand, one recognise in equation (7.3) the analytification of the iteration
of Laplace transforms

IX,Y :=
s∏
i=1

1
Γ(1 + diρ) ·

L `−
∑s

i=1 di
ds

, ds

`−
∑s−1

i=1 di

◦ · · · ◦L `−d1−d2
d2

,
d2
`−d1
◦L `−d1

d1
,
d1
`

[JX ]

 ,
(7.4)

which is an element of F `−
∑s

i=1 di
`

(X). By Theorems 5.6, 5.9, 6.13, and Proposition

5.10, we have
JY (ι∗δ + c1(Y ) log z)|Q=1

~=1
= ι∗ÎX,Y (δ + (c1(X)− c1(E))) exp(−zH(δ)|Q=1).

Thus, the components of the r.h.s., with respect to any basis of H•(Y,C), span the
space of master functions Si∗δ(Y ), by Corollary 5.3. The factor ι∗∏s

i=1 Γ(1 + diρ)−1

coming from (7.4) can be eliminated by a change of basis of H•(Y,C). By H•(X,C)-
linearity of the Laplace (α, β)-transforms, the claim follows by setting cδ := H(δ)|Q=1.

�

Remark 7.2. Integral (7.1) is convergent for any z ∈ C̃∗. This follows from the
exponential asymptotics of Theorem 4.7 for z → ∞, the Fano assumption on Y (i.e.∑s
j=1 dj < `), and the asymptotics |Φ(z)| < C| log z|dimCX for z → 0+ (see Theorem

5.2 and Corollary 5.3).

Remark 7.3. Formula (7.4) generalizes [GI19, Lemma 8.1].
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7.3. Integral representations of the second kind. LetX1, . . . , Xh be Fano smooth
projective varieties. Assume that detTXj = L

⊗`j
j for ample line bundles Lj’s. Let Y

be a smooth subvariety of X := ∏h
j=1Xj defined as the zero locus of a regular section

of the line bundle E = �hj=1L
⊗dj
j , where the numbers dj ∈ N∗ are such that dj < `j

for any j = 1, . . . , h.
By Künneth isomorphism, any element of H2(X,C) is of the form

δ =
h∑
i=1

1⊗ · · · ⊗ δi ⊗ · · · ⊗ 1, with δi ∈ H2(Xi,C).

Denote by ι : Y → X the inclusion.

Theorem 7.4. Let δ ∈ H2(X,C), δi ∈ H2(Xi,C) as above, and Sδi(Xi) the corre-
sponding space of master functions of QH•(Xi). There exists a rational number cδ ∈ Q
such that the space of master functions Sι∗δ(Y ) is contained in image of the C-linear
map P(`,d) : ⊗hj=1 Sδj(Xj)→ O(C̃∗) defined by

P(`,d)[Φ1, . . . ,Φh](z) := e−cδzLα,β[Φ1, . . . ,Φh](z),

where (α,β) =
(
`1−d1
d1

, . . . , `h−dh
dh

; d1
`1
, . . . , dh

`h

)
. In other words, any element of Sι∗δ(Y )

is of the form

e−cδz
∫ ∞

0

h∏
j=1

Φj

(
z
`j−dj
`j λ

dj
`j

)
e−λdλ, (7.5)

for some Φj ∈ Sδj(X) with j = 1, . . . , h. Moreover, cδ 6= 0 only if dj = `j − 1 for some
j.

Proof. Set ρi := c1(Li) and let ρ∗i ∈ H2(Xi,Z) be its Poincaré dual homology class, for
any i = 1, . . . , h. By Künneth isomorphism, and by the universal property of coproduct
of algebras (i.e. tensor product), we have injective13 maps H•(Xi,C) → H•(X,C).
In order to ease the computations, in the next formulas we will not distinguish an
element of H•(Xi,C) with its image in H•(X,C). So, for example we will write
c1(E) = ∑h

p=1 dpρp. The same will be applied for elements in H2(X,Z).
We have

JX (δ + c1(X) log z) |Q=1
~=1

=
h⊗
i=1

JXi(δi + c1(Xi) log z)|Q=1
~=1

=
h⊗
i=1

∑
ki∈N

Ji,kiρ∗i (δi)z
ki`i+`iρi , (7.6)

13In particular, we have inclusions Fk(Xj)→ Fk(X).
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where Ji,kiρ∗i (δi) = eδi
∑
j〈τjTα,i, 1〉Xi0,2,kiρ∗i

Tαi . Analogously, from (5.4), we deduce the
formula

IX,Y (δ + (c1(X)− c1(E)) log z)|Q=1
~=1

=
∑

k1,...,kh∈N

h⊗
i=1

Ji,kiρ∗i (δi)z
ki(`i−di)+(`i−di)ρi

〈
∑

p
dpρp,

∑
p
kpρ∗p〉∏

m=1

(∑
p

dpρp +m

)

=
∑

k1,...,kh∈N

h⊗
i=1

Ji,kiρ∗i (δi)z
ki(`i−di)+(`i−di)ρi

∑
p
dpkp∏

m=1

(∑
p

dpρp +m

)

=
∑

k1,...,kh∈N

h⊗
i=1

Ji,kiρ∗i (δi)z
ki(`i−di)+(`i−di)ρi Γ(1 +∑

p dpkp +∑
p dpρp)

Γ(1 +∑
p dpρp)

. (7.7)

Each element in the tensor product (7.6) can be easily recognized as the analytification
ĴXi of a series JXi ∈ F`i(X), for each i = 1, . . . , h. The function in equation (7.7) can
be identified with the analytification of the Laplace (α,β)-multitransform

IX,Y =
(

h⊗
i=1

1
Γ(1 +∑

p dpρp)

)
∪X Lα,β[⊗hi=1JXi ], (7.8)

where (α,β) =
(
`1−d1
d1

, . . . , `h−dh
dh

; d1
`1
, . . . , dh

`h

)
. The series IX,Y can be seen an element

of Fκ(X), with κ = (`i−di)hi=1, via the Künneth isomorphism. By Theorems 5.6, 5.9,
6.13, and Proposition 5.10, we have

JY (ι∗δ + c1(Y ) log z)|Q=1
~=1

= ι∗ÎX,Y (δ + (c1(X)− c1(E))) exp(−zH(δ)|Q=1).

Thus, the components of the r.h.s., with respect to any basis of H•(Y,C), span the
space of master functions Sι∗δ(Y ), by Corollary 5.3. The factor ι∗⊗si=1Γ(1 +∑

p dpρp)−1

coming from (7.8) can be eliminated by a change of basis of H•(Y,C). By H•(X,C)-
linearity of the Laplace (α,β)-multitransform, the claim follows by setting cδ :=
H(δ)|Q=1. �

Remark 7.5. Integral (7.5) is convergent for any z ∈ C̃∗. This follows from the
exponential asymptotics of Theorem 4.7 for z → ∞, the assumption dj < `j for any
j = 1, . . . , h, and the asymptotics |Φj(z)| < C| log z|dimCXj for z → 0+ (see Theorem
5.2 and Corollary 5.3).

Remark 7.6. Formula (7.8) generalizes [GI19, Lemma 8.1].

7.4. Master functions as Mellin-Barnes integrals. When applied to the case of
Fano complete intersections in products of projective spaces, Theorems 7.1 and 7.4
give explicit Mellin-Barnes integral representations of solutions of the qDE.

Theorem 7.7. Let Y be a Fano complete intersection in Pn−1 defined by h homoge-
neous polynomials of degrees d1, . . . , dh. There exists a unique c ∈ Q such that any
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master functions in S0(Y ) is a linear of the Mellin-Barnes integrals

Gj(z) = e−cz

2π
√
−1

∫
γ

Γ(s)n
h∏
k=1

Γ (1− dks) z−(n−
∑h

k=1 dk)sϕj(s)ds, (7.9)

for j = 0, . . . , n− 1. The functions ϕj are given by
• for n even:

ϕj(s) := exp
(
2π
√
−1js

)
, j = 0, . . . , n− 1; (7.10)

• for n odd:
ϕj(s) := exp

(
2π
√
−1js+ π

√
−1s

)
, j = 0, . . . , n− 1. (7.11)

Moreover, c 6= 0 only if ∑k dk = n− 1.

Proof. The functions

gj(z) := 1
2π
√
−1

∫
γ

Γ(s)nz−nsϕj(s)ds, j = 0, . . . , n− 1,

are a basis of the space of master functions S0(Pn−1), see [Guz99, Lemma 5]. The
result follows by applying Theorem 7.1 to the case X = Pn−1, ` = n. �

Theorem 7.8. Let Y be a Fano hypersurface of Pn1−1 × · · · × Pnh−1 defined by an
homogeneous polynomial of multi-degree (d1, . . . , dh). There exists a unique c ∈ Q such
that any master functions in S0(Y ) is a linear combination of the multi-dimensional
Mellin-Barnes integrals

Hj(z) := e−cz

(2π
√
−1)h

∫
×γi

[
h∏
i=1

Γ(si)niϕiji(si)
]

Γ
(

1−
h∑
i=1

si

)
z−
∑h

i=1 disids1 . . . dsh,

for j = (j1, . . . , jh) ∈
∏h
i=1{0, . . . , ni − 1}. The function ϕiji is defined as follows

• for ni even:
ϕiji(si) := exp

(
2π
√
−1jisi

)
, ji = 0, . . . , ni − 1;

• for ni odd:
ϕiji(si) := exp

(
2π
√
−1jisi + π

√
−1si

)
, ji = 0, . . . , ni − 1.

Moreover, c 6= 0 only if di = ni − 1 for some i = 1, . . . , h.

Proof. The result follows by application of Theorem 7.4 to the caseXi = Pni−1, `i = ni.
For each factor Pni−1 a basis of the space S0(Pni−1) is given by the integrals

giji(z) := 1
2π
√
−1

∫
γi

Γ(s)niz−nisϕiji(s)ds, ji = 0, . . . , ni − 1. �

Example. Consider the complex Grassmannian G := G(2, 4): it can be realized as
a quadric in P5, by Plücker embedding. It can be shown that the space S0(G) is the
space of solutions Φ of the qDE given by

ϑ5Φ− 1024z4ϑΦ− 2048z4Φ = 0, ϑ := z
d

dz
. (7.12)
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By Theorem 7.7, any solution of (7.12) is a linear combination of the functions

Gj(z) = 1
2π
√
−1

∫
γ

Γ(s)6Γ(1− 2s)z−4s exp
(
2π
√
−1js

)
ds, j = 0, . . . , 5.

Recalling the reflection and duplication formulae for Γ-function (see e.g. [OLBC10]),

Γ(z)Γ(1− z) = π

sin(πz) , Γ(2z) = π−
1
2 22z−1Γ(z)Γ

(
z + 1

2

)
,

it is easy to see that the function

G0(z) = 2π 3
2

2π
√
−1

∫
γ

Γ(s)5

Γ
(
s+ 1

2

) 4−s

sin(2πs)z
−4sds

is a solution of (7.12). In [CDG20, Section 6] the solutions

Φ1(z) = 1
2π
√
−1

∫
γ

Γ(s)5

Γ
(
s+ 1

2

)4−sz−4sds,

Φ2(z) = 1
2π
√
−1

∫
γ

Γ(s)5Γ
(1

2 − s
)
eiπs4−sz−4sds,

of equation (7.12) were found and studied. It is not difficult to see that Φ1 and Φ2 are
linear combinations of the functions Gj’s.

Remark 7.9. This example can be extended to GrassmanniansG(k, n) and other fam-
ilies of partial flag varieties. In the case of Grassmannians it gives different integral
representations of solutions w.r.t. those obtained from the quantum Satake indenti-
fication [GM11, KS08]. More in general, it would be interesting to do a comparison
with the integral representations of solutions obtained from the Abelian–Nonabelian
correspondence [CFKS08].

8. Dubrovin Conjecture

8.1. Exceptional collections and exceptional bases. Let X be a smooth complex
projective variety, and denote by Db(X) the bounded derived category of coherent
sheaves on X, see [GM03, Huy06]. Given E,F ∈ Ob

(
Db(X)

)
, define Hom•(E,F ) as

the C-vector space14

Hom•(E,F ) :=
⊕
k∈Z

Hom(E,F [k]).

An object E ∈ Ob
(
Db(X)

)
is said to be exceptional if Hom•(E,E) is a one dimensional

C-algebra, generated by the identity morphism.
A collection E = (E1, . . . , En) of objects of Db(X) is said to be an exceptional

collection if

(1) each object Ei is exceptional,
(2) we have Hom•(Ej, Ei) = 0 for j > i.

14Notice that the category Db(X) is a C-linear category.
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Moreover, an exceptional collection E is full if it generates Db(X), i.e. any triangular
subcategory containing all objects of E is equivalent to Db(X) via the inclusion functor.

Consider the Grothendieck groupK0(X) ≡ K0(Db(X)), and let χ to be the Grothen-
dieck-Euler-Poincaré bilinear form

χ([V ], [F ]) :=
∑
k

(−1)k dimC Hom(V, F [k]), V, F ∈ Db(X). (8.1)

Definition 8.1. A basis (ei)ni=1 of K0(X)C is called exceptional if χ(ei, ei) = 1 for
i = 1, . . . , n, and χ(ej, ei) = 0 for 1 6 i < j 6 n.
Lemma 8.2. Let (Ei)ni=1 be a full exceptional collection in Db(X). The K-classes
([Ei])ni=1 form an exceptional basis of K0(X)C. �

8.2. Mutations and helices. Let E = (E1, . . . , En) be an exceptional collection in
Db(X). For any i = 1, . . . , n− 1 define the collections

LiE := (E1, . . . , Ei−1, E
′
i+1, Ei, Ei+2, . . . , En),

RiE = (E1, . . . , Ei−1, Ei+1, E
′′
i , Ei+2, . . . , En),

where the objects E ′i+1, E
′′
i sit in the distinguished triangles

E ′i+1[−1] // Hom•(Ei, Ei+1)⊗ Ei // Ei+1 // E ′i+1

E ′′i // Ei // Hom•(Ei, Ei+1)∗ ⊗ Ei+1 // E ′′i [1].

Remark 8.3. The object E ′i+1 (resp. E ′′i ) is uniquely defined up to unique isomor-
phism, because of the exceptionality of Ei (resp. Ei+1), see [CDG18, Section 3.3].
Proposition 8.4. [BK89] For any i, with 0 < i < n, the collections LiE,RiE are
exceptional. Moreover, the mutation operators Li,Ri satisfy the following identities:

LiRi = RiLi = Id,
RiRj = RjRi, if |i− j| > 1, Ri+1RiRi+1 = RiRi+1Ri. �

Denote by β1, . . . , βn−1 the generators of the braid group Bn, satisfying the relations
βiβi+1βi = βi+1βiβi+1, βiβj = βjβi, if |i− j| > 1.

We define the left action of Bn on the set of exceptional collections of length n by
identifying the action of βi with Li.
Definition 8.5. Let E = (E1, . . . , En) be a full exceptional collection. We define the
helix generated by E to be the infinite family (Ei)i∈Z of exceptional objects such that

(E1−kn, E2−kn, . . . , En−kn) = Eβ, β = (βn−1 . . . β1)kn, k ∈ Z.
Any family of n consecutive exceptional objects (Ei+k)nk=1 is called a foundation of the
helix.
Lemma 8.6 ([GK04]). For i, j ∈ Z, we have Hom•(Ei, Ej) ∼= Hom•(Ei−n, Ej−n). �

The action of the braid group on the set of exceptional collections in Db(X) admits a
K-theoretical analogue on the set of exceptional bases of K0(X)C, see [GK04, CDG18].
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8.3. Γ-classes and graded Chern character. Let V be a complex vector bundle
on X of rank r, and let δ1, . . . , δr be its Chern roots, so that cj(V ) = sj(δ1, . . . , δr),
where sj is the j-th elementary symmetric polynomial.

Definition 8.7. Let Q be an indeterminate, and F ∈ C[[Q]] be of the form F (Q) =
1 + ∑

n>1 αnQ
n. The F -class of V is the charcateristic class F̂V ∈ H•(X) defined by

F̂V := ∏r
j=1 F (δj).

Definition 8.8. The Γ±-classes of V are the characteristic classes associated with the
Taylor expansions

Γ(1±Q) = exp
(
∓γQ+

∞∑
m=2

(∓1)m ζ(m)
m

Qn

)
∈ C[[Q]], (8.2)

where γ is the Euler-Mascheroni constant and ζ is the Riemann zeta function.

If V = TX, then we denote Γ̂±X its Γ-classes.

Definition 8.9. The graded Chern character of V is the characteristic class Ch(V ) ∈
H•(X) defined by Ch(V ) := ∑r

j=1 exp(2π
√
−1δj).

8.4. Statement of the conjecture. Let X be a Fano variety. In [Dub98] Dubrovin
conjectured that many properties of the qDE of X, in particular its monodromy,
Stokes and central connection matrices, are encoded in the geometry of exceptional
collections in Db(X). The following conjecture is a refinement of the original version
in [Dub98].

Conjecture 8.10 ([CDG18]). Let X be a smooth Fano variety of Hodge-Tate type.

(1) The quantum cohomology QH•(X) has semisimple points if and only if there
exists a full exceptional collection in Db(X).

(2) If QH•(X) is generically semisimple, for any oriented ray ` of slope ϕ ∈ [0, 2π[
there is a correspondence between `-chambers and helices with a marked foun-
dation.

(3) Let Ω` be an `-chamber and E` = (E1, . . . , En) the corresponding exceptional
collection (the marked foundation). Denote by S and C Stokes and central
connection matrices computed in Ω` w.r.t. a basis (Tα)nα=1 of H•(X,C).
(a) The matrix S is the inverse of the Gram matrix of the χ-pairing in K0(X)C

wrt the exceptional basis [E`],
(S−1)ij = χ(Ei, Ej); (8.3)

(b) The matrix C coincides with the matrix associated with the C-linear mor-
phism

D−X : K0(X)C −→H•(X) (8.4)

F 7−−−→(
√
−1)d

(2π) d2
Γ̂−X exp(−π

√
−1c1(X))Ch(F ), (8.5)
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where d := dimCX, and d is the residue class d (mod 2). The matrix is
computed wrt the exceptional basis [E`] and the pre-fixed basis (Tα)nα=1.

Remark 8.11. If point (3.b) holds true, then automatically also point (3.a) holds
true. This follows from the identity (4.18) and Hirzebruch-Riemann-Roch Theorem,
see [CDG18, Corollary 5.8].

Remark 8.12. In [Bay04], A.Bayer suggested to drop any reference to X being Fano
in the formulation of Dubrovin Conjecture. He proved indeed that the semisimplicity
of the quantum cohomology preserves under blow-ups at any number of points. It
follows that point (1) of Conjecture 8.10 (the qualitative part) still holds true after
blowing up X at an arbitrary number of points, which may yield a non-Fano variety.
To the best of our knowledge, however, there is no non-Fano example for which both
the Stokes and central connection matrices have been explicitly computed. In Sections
10 and 11 we will provide the first example, in the case of Hirzebruch surfaces.

Remark 8.13. Assume the validity of points (3.a) and (3.b) of Conjecture 8.10. The
action of the braid group Bn on the Stokes and central connection matrices (Lemma
4.20) is compatible with the action of Bn on the marked foundations attached at each
`-chambers. Different choices of the branch of the Ψ-matrix correspond to shifts of
objects of the marked foundation. The matrix M−1

0 is identified with the canonical
operator κ : K0(X)C → K0(X)C, [F ] 7→ (−1)d[F ⊗ ωX ]. Equations (4.20) imply that
the connection matrices C(m), withm ∈ Z, correspond to the matrices of the morphism
D−X wrt the foundations (E` ⊗ ω⊗mX )[md]. The statement S(m) = S coincides with the
periodicity described in Lemma 8.6, see [CDG18, Theorem 5.9].

Remark 8.14. Conjecture 8.10 relates two different aspects of the geometry of X,
namely its symptectic structure (Gromov-Witten theory) and its complex structure
(the derived category Db(X)). Heuristically, Conjecture 8.10 follows from Homological
Mirror Symmetry Conjecture of M.Kontsevich, see [CDG18, Section 5.5].

Remark 8.15. In the paper [KKP08] it was underlined the role of Γ-classes for re-
fining the original version of Dubrovin’s conjecture [Dub98]. Subsequently, in [Dub13]
and [GGI16, Γ-conjecture II] two equivalent versions of point (3.b) above were given.
However, in both these versions, different choices of solutions in Levelt form of the
qDE at z = 0 are chosen wrt the natural ones in the theory of Frobenius manifolds,
see [CDG18, Section 5.6].

Remark 8.16. Point (3.b) of Conjecture 8.10 allows to identify K-classes with solu-
tions of the joint system of equations (2.12), (2.13). Under this identification, Stokes
fundamental solutions correspond to exceptional bases of K-theory. In the approach
of [TV19, CV20], where the equivariant case is addressed, such an identification is
more fundamental and a priori: it is defined via explicit integral representations of
solutions of the joint system of qDE and qKZ equations.
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9. Quantum cohomology of Hirzebruch surfaces

9.1. Preliminaries on Hirzebruch surfaces. Hirzebruch surfaces Fk, with k ∈ Z,
are defined as the total space of P1-projective bundles on P1, namely

Fk := P (O ⊕O(−k)) , k ∈ Z,
where O(n) are line bundles on P1. More explicitly, they can be defined as hypersur-
faces in P2 × P1 by

Fk :=
{

([a0 : a1 : a2], [b1 : b2]) ∈ P2 × P1 : a1b
k
1 = a2b

k
2

}
, k ∈ N. (9.1)

Hirzebruch surfaces have the following properties:

• the surfaces (F2k)k∈N are all diffeomorphic;
• the surfaces (F2k+1)k∈N are all diffeomorphic;
• the surfaces Fn and Fm with n 6= m are not biholomorphic;
• the only Fano Hirzebruch surfaces are F0 ∼= P1 × P1 and F1 ∼= BlptP2;
• the surfaces Fn and Fm are deformation equivalent if and only if n and m have
the same parity.

See [Hir51, Bea96].

Remark 9.1. Let 0 6 m 6 1
2n. Consider the family F defined by the equation

F :=
{

([a0 : a1 : a2], [b1 : b2], t) ∈ P2 × P1 × C : a1b
n
1 − a2b

n
2 + ta0b

n−m
1 bm2 = 0

}
.

The central fiber over t = 0 is Fn. Any non-central fiber over t 6= 0 is isomorphic to
Fn−2m. See [Kod05, Example 2.16]. See also [Suw73] and [Nam79, Example 0.1.10].

Remark 9.2. The only possible complex structures on S2×S2 are the even Hirzebruch
surfaces F2k, with k ∈ N, and the only possible complex structures on the connected
sum P2#P2 are the odd Hirzebruch surfaces F2k+1, with k ∈ N, see [Qin93].

9.2. Classical cohomology of Hirzebruch surfaces. Using the explicit polynomial
description (9.1) of the Hirzebruch surfaces, let us define the following subvarieties of
Fk:

Σk
1 := {a1 = a2 = 0} ,

Σk
2 := {a2 = b1 = 0} ,

Σk
3 := {a1 = b2 = 0} ,

Σk
4 := {a0 = 0} .

Each of these subvarieties naturally define a cycle in H2(Fk,Z). Notice that, under
the identification

Fk ≡ O(−k) ∪∞ section,
we can

(1) identify Σk
1 with the 0-section of O(−k),

(2) identify Σk
4 with the ∞-section,
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(3) identify both Σk
2 and Σk

3 with (the compactification of) two fibers of O(−k).

Using the original notations of Hirzebruch, we denote by

• τk ∈ H2(Fk,C) the homology class defined by Σk
1,

• εk ∈ H2(Fk,C) the homology class defined by Σk
4,

• νk ∈ H2(Fk,C) the homology class defined by both Σk
2 and Σk

3.

As it is easily seen, the three classes τk, εk, νk are not Z-linearly independent. They
are indeed related by the equation

εk = τk + kνk. (9.2)

Finally, let us also introduce a homogeneous basis (T0,k, T1,k, T2,k, T3,k) of the classical
cohomology H•(Fk,Z), where

T0,k := 1, T1,k := PD(εk), T2,k := PD(νk), T3,k := PD(pt),

where PD(α) denotes the Poincaré dual class of α ∈ H•(Fk,Z). We denote the corre-
sponding dual coordinates by (t0,k, t1,k, t2,k, t3,k).

By Leray-Hirsch Theorem, the classical cohomology algebra is generated by the
classes (T1,k, T2,k). More precisely we have the following result.

Theorem 9.3. In the classical cohomology ring H•(Fk,Z), the following identities
hold true:

(1) T 2
1,k = k · T3,k,

(2) T 2
2,k = 0,

(3) T1,kT2,k = T3,k.

Hence, the following presentation of algebras holds:

H•(Fk,C) ∼=
C[T1,k, T2,k]

〈T 2
2,k, T

2
1,k − k · T1,kT2,k〉

.

The Poincaré metric in the basis (Ti,k)3
i=0 is given by

ηk =


0 0 0 1
0 k 1 0
0 1 0 0
1 0 0 0

 . (9.3)

Proposition 9.4 ([KN90]). Let k ∈ N. The collection (O,O(Σk
2),O(Σk

4),O(Σk
2 +Σk

4))
is a full exceptional collection in Db(Fk). The corresponding Gram matrix of the χ-
pairing is 

1 2 2 + k 4 + k
0 1 k 2 + k
0 0 1 2
0 0 0 1

 .
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Proof. The Gram matrix can be easily computed by Hirzebruch-Riemann-Roch The-
orem. �

9.3. Quantum cohomology of Hirzebruch surfaces. There exist only two classes
of deformation equivalence of Hirzebruch surfaces, namely (F2k)k∈N and (F2k+1)k∈N.
Hence, by the Deformation Axiom of Gromov-Witten invariants [CK99], the quantum
cohomology algebra of F2k (resp. F2k+1) can be identified with the one of F0 (resp.
F1), as explained in Remark 4.18. Notice that, the quantum cohomology algebras of
F0 and F1 coincide with the corresponding Batyrev rings [Bat93]. This does not hold
true for other Hirzebruch surfaces Fk with k 6= 0, 1, being not Fano [Spi02]. See also
[Aud97] for a presentation of the quantum cohomology algebra of F1.

9.3.1. Case of F2k. The diffeomorphism ϕ2k : F2k → F0 induces isomorphisms in ho-
mology and cohomology. We have (ϕ2k)∗(τ2k) = τ0 and (ϕ2k)∗(ν2k) = ν0, so that from
equations (9.2) and (9.3) we deduce

ϕ∗2k(T0,0) = T0,2k, (9.4)
ϕ∗2k(T1,0) = T1,2k − kT2,2k, (9.5)
ϕ∗2k(T2,0) = T2,2k, (9.6)
ϕ∗2k(T3,0) = T3,2k. (9.7)

Thus, we can identify the quantum cohomologies QH•(F0) and QH•(F2k) via the
change of coordinates

t0,2k = t0,0, t1,2k = t1,0, t2,2k = t2,0 − kt1,0, t3,2k = t3,0. (9.8)
Theorem 9.5. For any k > 0, the following isomorphism of algebras holds true:

QH•(F2k) ∼=
C[T1,2k, T2,2k, q1, q2]

〈T ◦22,2k − qk1q2, (T1,2k − k · T2,2k)◦2 − q1〉
,

where q1 = exp(t1,2k) and q2 = exp(t2,2k).

Proof. It follows from the presentation of the quantum cohomology algebra of QH•(F0)
∼= QH•(P1)⊗QH•(P1), and formulae (9.4)-(9.7), (9.8). �

Lemma 9.6. For all k > 0 we have that
T1,2k ◦ T2,2k = T3,2k + kqk1q2. (9.9)

Proof. By homogeneity Let λ0,2k, λ1,2k, λ2,2k, λ3,2k be the dual basis of H•(F2k,C) of
the basis (Ti,2k)3

i=0. By the Deformation Axiom of Gromov-Witten invariants, for any
r, s ∈ N, we have

〈T1,2k, T2,2k, T3,2k〉F2k
0,3,rλ1,2k+sλ1,2k

= 〈T1,0 + kT2,0, T2,0, T3,0〉F0
0,3,rλ0,0+s(λ1,0−kλ0,0)

= 〈T1,0, T2,0, T3,0〉F0
0,3,(r−sk)λ0,0+sλ1,0

+ k〈T2,0, T2,0, T3,0〉F0
0,3,(r−sk)λ0,0+sλ1,0

= 〈σ, 1, σ〉P1

0,3,(r−sk)H〈1, σ, σ〉P
1

0,3,(r−sk)H + k〈1, 1, σ〉P1

0,3,(r−sk)H〈σ, σ, σ〉P
1

0,3,(r−sk)H

= k · δ1,2(r−ks)+1δ3,2s+1.
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Here we used the set H ∈ H2(P1,Z) to be the hyperplane class, and σ ∈ H2(P2,Z) to
be its dual. This gives the quantum correction in (9.9). �

9.3.2. Case of F2k+1. The diffeomorphism ϕ2k+1 : F2k+1 → F1 induces an isomorphism
ϕ∗2k+1 in cohomology given by

ϕ∗2k+1(T0,1) = T0,2k+1, (9.10)
ϕ∗2k+1(T1,1) = T1,2k+1 − kT2,2k+1, (9.11)
ϕ∗2k+1(T2,1) = T2,2k+1, (9.12)
ϕ∗2k+1(T3,1) = T3,2k+1. (9.13)

We can identify the quantum cohomologies QH•(F0) and QH•(F2k) via the change
of coordinates

t0,2k+1 = t0,1, t1,2k+1 = t1,1, t2,2k+1 = t2,1 − kt1,1, t3,2k+1 = t3,1. (9.14)

Theorem 9.7. For any k > 0, the following isomorphism of algebras holds true:

QH•(F2k+1) ∼=
C[T1,2k+1, T2,2k+1, q1, q2]〈 T ◦22,2k+1 − (T1,2k+1 − (k + 1)T2,2k+1)qk1q2,

(T1,2k+1 − kT2,2k+1) ◦ (T1,2k+1 − (k + 1)T2,2k+1)− q1

〉 , (9.15)

where q1 := exp(t1,2k+1) and q2 := exp(t2,2k+1).

Proof. The following presentation for QH•(F1) holds true:

QH•(F1) ∼=
C[T1,1, T2,1, q1, q2]

〈T ◦22,1 − (T1,1 − T2,1)q2, T ◦21,1 − T1,1 ◦ T2,1 − q1〉
. (9.16)

The result follows by formulae (9.10)-(9.13) and (9.14). �

10. Dubrovin Conjecture for Hirzebruch Surfaces F2k

10.1. AΛ-stratum and Maxwell stratum of QH•(F2k). Fix a point p = t1,2kT1,2k+
t2,2kT2,2k of the small quantum cohomology of F2k. The matrix form of the tensor U
is given by

U(p) =


0 2q1 + 2kqk1q2 2qk1q2 0
2 0 0 2qk1q2

2− 2k 0 0 2q1 − 2kqk1q2
0 2 + 2k 2 0

 .
The canonical coordinates are given by

u1(p) = −2
(
q

1
2
1 − q

k
2
1 q

1
2
2

)
, u2(p) = 2

(
q

1
2
1 − q

k
2
1 q

1
2
2

)
,

u3(p) = −2
(
q

1
2
1 + q

k
2
1 q

1
2
2

)
, u4(p) = 2

(
q

1
2
1 + q

k
2
1 q

1
2
2

)
.
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The Ψ-matrix at the point p is given by

Ψ(p) =



− iq
1
2(− k2− 1

2)
1

2 4√q2

iq
1
2(− k2− 1

2)
1

(
√
q1−kqk/2

1
√
q2

)
2 4√q2

−1
2iq

k−1
4

1 4
√
q2

1
2iq

k+1
4

1 4
√
q2

− iq
1
2(− k2− 1

2)
1

2 4√q2
−
iq

1
2(− k2− 1

2)
1

(
√
q1−kqk/2

1
√
q2

)
2 4√q2

1
2iq

k−1
4

1 4
√
q2

1
2iq

k+1
4

1 4
√
q2

q
1
2(− k2− 1

2)
1

2 4√q2
−
q

1
2(− k2− 1

2)
1

(
k
√
q2q

k/2
1 +√q1

)
2 4√q2

−1
2q

k−1
4

1 4
√
q2

1
2q

k+1
4

1 4
√
q2

q
1
2(− k2− 1

2)
1

2 4√q2

q
1
2(− k2− 1

2)
1

(
k
√
q2q

k/2
1 +√q1

)
2 4√q2

1
2q

k−1
4

1 4
√
q2

1
2q

k+1
4

1 4
√
q2


.

Proposition 10.1. The small quantum cohomology of F2k is contained in the I0
Λ-

stratum of QH•(F2k). Moreover, the point p is in the AΛ-stratum of QH•(F2k) if and
only if q1 = qk1q2.

Proof. The function det Λ(z, p) is given by

det Λ(z, p) = − 1
256

(
q1 − q2qk1

) .
By Theorem 2.20, we deduce that A1(p), A2(p) = 0. �

Corollary 10.2. Along the small quantum locus of QH•(F2k) the AΛ-stratum coin-
cides with the Maxwell stratumMF2k .

Proof. If q1 = qk1q2, then we have coalescences of canonical coordinates u1, u2, u3, u4.
Any point of the small quantum locus, however, is semisimple. �

10.2. Small qDE of F2k. In the coordinates (tα,2k)3
α=0, the grading tensor µ has

matrix µ = diag(−1, 0, 0, 1). The isomonodromic system (2.15) is

Hev
k :



∂ξ1

∂z
= (2− 2k)ξ3 + 2ξ2 + 1

z
ξ1,

∂ξ2

∂z
= (2k + 2)ξ4 + ξ1

(
2kqk1q2 + 2q1

)
,

∂ξ3

∂z
= 2ξ1q

k
1q2 + 2ξ4,

∂ξ4

∂z
= 2ξ2q

k
1q2 + ξ3

(
2q1 − 2kqk1q2

)
− 1
z
ξ4.

In the complement of the AΛ-stratum, can be reduced to the single equation in ξ1, the
master differential equation

z4∂
4ξ1

∂z4 − z
2
[
z2(8qk1q2 + 8q1)− 1

] ∂2ξ1

∂z2 − 3z∂ξ1

∂z
−
(
−16z4

(
q1 − qk1q2

)
2 − 3

)
ξ1 = 0.

(10.1)
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Given a solution ξ1(z, t) of equation (10.1), we can reconstruct a solution of the system
Hev
k through the fomulae

ξ2 =−

(
−4(k + 1)q2z

2qk1 + 4(k + 1)q1z
2 + k − 1

)
16z3

(
q1 − q2qk1

) ξ1

−

(
4(3k − 1)q2z

2qk1 + 4(k − 3)q1z
2 − k + 1

)
16z2

(
q1 − q2qk1

) ∂ξ1

∂z

+ (k − 1)
16
(
q1 − q2qk1

) ∂3ξ1

∂z3 ,

ξ3 =−

(
−4q2z

2qk1 + 4q1z
2 + 1

)
16z3

(
q1 − q2qk1

) ξ1

−

(
12q2z

2qk1 + 4q1z
2 − 1

)
16z2

(
q1 − q2qk1

) ∂ξ1

∂z

+ 1
16
(
q1 − q2qk1

) ∂3ξ1

∂z3 ,

ξ4 =−

(
4q2z

2qk1 + 4q1z
2 − 1

)
8z2 ξ1 −

1
8z
∂ξ1

∂z
+ 1

8
∂2ξ1

∂z2 .

Looking for solution of the form
ξ1(z, t) = z · Φ(z, t),

the equation (10.1) can be rewritten as the (small) quantum differential equation

z
(
ϑ4Φ− 2ϑ3Φ

)
− 8z3

(
q1 + qk1q2

) [
ϑ2Φ + ϑΦ

]
+ 16z5

(
q1 − qk1q2

)2
Φ = 0, ϑ := z

∂

∂z
.

10.3. Proof for QH•(F2k). Let us specialize the systemHev
k at the point 0 ∈ QH•(F2k),

for which q1 = q2 = 1:

H′k :



∂ξ1

∂z
= (2− 2k)ξ3 + 2ξ2 + 1

z
ξ1,

∂ξ2

∂z
= (2k + 2)ξ4 + ξ1 (2k + 2) ,

∂ξ3

∂z
= 2ξ1 + 2ξ4,

∂ξ4

∂z
= 2ξ2 + ξ3 (2− 2k)− 1

z
ξ4.

The point p = 0 is in the AΛ-stratum of QH•(F2k), and so in the Maxwell stratum.
Hence, the study of monodromy data of the system of differential equations H′k fits in
the analysis developed in [CDG19, CDG20]. In particular, the isomonodromy property
is justified by [CDG20, Theorem 4.5]. As explained in Remark 4.18, we can reduce
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the computation of the monodromy data of the system H′k to the single case of H′0.
The system H′0 can in turn be integrated using solutions of the isomonodromic system
of QH•(P1) [Dub99, Lemma 4.10].

Proposition 10.3. Let (ϕ(i)
1 , ϕ

(i)
2 ) with i = 1, 2 be two solutions of the system (2.15)

for the quantum cohomology of P1, specialized at 0 ∈ H2(P1,C), i.e.
∂ϕ1

∂z
= 2ϕ2 + 1

2zϕ1,

∂ϕ2

∂z
= 2ϕ1 −

1
2zϕ2.

Then the tensor product

(
ϕ

(1)
1

ϕ
(1)
2

)
⊗
(
ϕ

(2)
1

ϕ
(2)
2

)
=


ϕ

(1)
1 · ϕ

(2)
1

ϕ
(1)
1 · ϕ

(2)
2

ϕ
(1)
2 · ϕ

(2)
1

ϕ
(1)
2 · ϕ

(2)
2


is a solution of the system H′0. �

Remark 10.4. In order to explicitly compute the monodromy data of H′ev one could
still develop the study of solutions of the small quantum differential equation, and then
reconstruct the Stokes solutions of H′k doing a similar argument to the one developed
in [CDG20, Section 6] for the quantum cohomology of G(2, 4).
Theorem 10.5. The central connection matrix of QH•(F2k), computed at the point
0 ∈ QH•(F2k), w.r.t. an oriented admissible line ` of slope ϕ ∈]π2 ,

3π
2 [ and for a suitable

choice of the determination of the Ψ-matrix, is equal to

Ck =


1

2π
1

2π
1

2π
1

2π
−i+ γ

π
−i+ γ

π
γ
π

γ
π

− (k−1)(γ−iπ)
π

iπk−γk+γ
π

−i+ γ−γk
π

γ−γk
π

2(γ−iπ)2

π
2γ(γ−iπ)

π
2γ(γ−iπ)

π
2γ2

π

 ,
and the corresponding Stokes matrix is equal to

S =


1 −2 −2 4
0 1 0 −2
0 0 1 −2
0 0 0 1

 .
The matrix Ck is the matrix associated with the morphism

D−F2k
: K0(F2k)C → H•(F2k,C) : [F ] 7→ 1

2π Γ̂−F2k
∪ e−πic1(F2k) ∪ Ch(F ),

w.r.t. an exceptional basis E := (Ei)4
i=1 of K0(F2k)C and the basis (Ti,2k)3

i=0 of H•(F2k,C).
The exceptional basis E is the one obtained by acting on the exceptional basis(

[O], [O(Σ2k
2 )], [O(Σ2k

4 )], [O(Σ2k
2 + Σ2k

4 )]
)
,

with the element (J−1
k , bk) ∈ (Z/2Z)4 o B4, where
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Jk :=


(1, 1, (−1)p+1, (−1)p), if k = 2p+ 1,

(1, 1, (−1)p, (−1)p), if k = 2p,
bk : = βk3 .

Proof. Step 1: Let us show that for suitable choices of oriented line ` and Ψ-matrix,
the central connection matrix computed at 0 ∈ QH•(F0) is

C0 :=


1

2π
1

2π
1

2π
1

2π
−i+ γ

π
−i+ γ

π
γ
π

γ
π

−i+ γ
π

γ
π

−i+ γ
π

γ
π

2(γ−iπ)2

π
2γ(γ−iπ)

π
2γ(γ−iπ)

π
2γ2

π

 . (10.2)

According to [CDG18, Corollary 6.11], the central connection matrix C of QH•(P1)
computed at the point 0, w.r.t. an oriented line ` of slope ϕ ∈]π2 ,

3π
2 [ and w.r.t. the

following choice of Ψ-matrix

Ψ0 =
( 1√

2
1√
2

i√
2 −

i√
2

)
,

equals

C := i√
2π

(
1 1

2(γ − πi) 2γ

)
.

This is the matrix associated with the morphism

D−P1 : K0(P1)C → H•(P1,C) : [F ] 7→ i

(2π) 1
2

Γ̂−P1 ∪ e−πic1(P1) ∪ Ch(F ),

w.r.t. the bases

• ([O], [O(1)]) of K0(P1)C (the Beilinson basis),
• (1, σ) of H•(P1,C).

By taking the Kronecker tensor square C⊗2, we obtain the central connection matrix of
QH•(P1×P1) computed at the point 0, w.r.t. the same line ` (which is still admissible)
and w.r.t. the choice of the Ψ-matrix given by the Kronecker tensor square Ψ⊗2

0 :

C⊗2 =


− 1

2π − 1
2π − 1

2π − 1
2π

−γ−iπ
π

− γ
π

−γ−iπ
π

− γ
π

−γ−iπ
π

−γ−iπ
π

− γ
π

− γ
π

−2(γ−iπ)2

π
−2γ(γ−iπ)

π
−2γ(γ−iπ)

π
−2γ2

π

 .
By changing all the signs of the rows of Ψ⊗2

0 , i.e. acting with (−1,−1,−1,−1) ∈
(Z/2Z)4 on C⊗2, we obtain the matrix C ′ associated with the morphism

D−P1×P1 : K0(P1 × P1)C → H•(P1 × P1,C) : [F ] 7→ 1
2π Γ̂−P1×P1 ∪ e−πic1(P1×P1) ∪ Ch(F ),

written w.r.t. the bases
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• ([O], [O(1, 0)], [O(0, 1)], [O(1, 1)]) of K0(P1 × P1)C,
• (1, σ ⊗ 1, 1⊗ σ, σ ⊗ σ) of H•(P1 × P1,C) ∼= H•(P1,C)⊗2.

See [CDG18, Proposition 5.11]. In the notations introduced before for Hirzebruch
surfaces, this exceptional collection is(

O,O(Σ0
4),O(Σ0

2),O(Σ0
2 + Σ0

4)
)
.

It is a 3-block exceptional collection, coherently with the fact that 0 ∈ QH•(F0) is
a semisimple coalescing point, see [CDG20, Section 6] and [CDG18, Remark 5.4]. In
particular, the braids β2,3 and β−1

2,3 act as a mere permutation of the central objects,
and of the two central columns of the matrix C ′. Such a permuted matrix is exactly the
matrix C0 in (10.2), and it corresponds to the matrix associated with the morphism
D−F0 w.r.t. the collection (

O,O(Σ0
2),O(Σ0

4),O(Σ0
2 + Σ0

4)
)
.

So, for suitable choices of ` and Ψ, the central connection matrix computed at 0 ∈
QH•(F0) is

C0 =


1

2π
1

2π
1

2π
1

2π
−i+ γ

π
−i+ γ

π
γ
π

γ
π

−i+ γ
π

γ
π

−i+ γ
π

γ
π

2(γ−iπ)2

π
2γ(γ−iπ)

π
2γ(γ−iπ)

π
2γ2

π

 ,
which coincide with the matrix associated with the collection(

O,O(Σ0
2),O(Σ0

4),O(Σ0
2 + Σ0

4)
)
.

Step 2: The central connection matrix computed at 0 ∈ QH•(F2k), w.r.t. the same
choices of ` and Ψ, equals

Ck =


1

2π
1

2π
1

2π
1

2π
−i+ γ

π
−i+ γ

π
γ
π

γ
π

− (k−1)(γ−iπ)
π

iπk−γk+γ
π

−i+ γ−γk
π

γ−γk
π

2(γ−iπ)2

π
2γ(γ−iπ)

π
2γ(γ−iπ)

π
2γ2

π

 .
The corresponding Stokes matrix is independent of k, and it is equal to

S =


1 −2 −2 4
0 1 0 −2
0 0 1 −2
0 0 0 1

 . (10.3)

Step 3: Let us define the matrix Jk ∈ (Z/2Z)4 as follows:

Jk :=


(1, 1, (−1)p+1, (−1)p), if k = 2p+ 1,

(1, 1, (−1)p, (−1)p), if k = 2p.



58 GIORDANO COTTI

We claim that by acting on CkJk with the braid β−k3 we obtain the matrix associated
with D−F2k

and w.r.t. the exceptional collection(
O,O(Σ2k

2 ),O(Σ2k
4 ),O(Σ2k

2 + Σ2k
4 )
)
,

namely the matrix

Ek :=


1

2π
1

2π
1

2π
1

2π
−i+ γ

π
−i+ γ

π
γ
π

γ
π

− (k−1)(γ−iπ)
π

iπk−γk+γ
π

− (k−1)(γ−iπ)
π

iπk−γk+γ
π

2(γ−iπ)2

π
2γ(γ−iπ)

π
2γ(iπ(k−1)+γ)

π
2γ(iπk+γ)

π

 .
Notice that the claim is equivalent to the following statement: the matrix Aβ(Jk ·S ·Jk),
with β = β−k3 and S as in (10.3), is equal to

E−1
k CkJk =


1 0 0 0
0 1 0 0
0 0 k + 1 k
0 0 −k 1− k

 · Jk. (10.4)

Given a generic 4×4 unipotent upper triangular matrix X, the action of subsequent
powers of the braid β3, or of its inverse β−1

3 , simply changes the sign of the entry in
position (3, 4): more precisely,we have that

[Xβ]3,4 = (−1)n[X]3,4, if β = β±n3 .

For example, by acting twice with the braid β3 we have
1 a b c
0 1 d e
0 0 1 f
0 0 0 1

 7→


1 a c b− cf
0 1 e d− ef
0 0 1 −f
0 0 0 1

 7→


1 a b− cf c+ f(b− cf)
0 1 d− ef e+ f(d− ef)
0 0 1 f
0 0 0 1

 .
In particular, the matrix Aβ(X), with β = β−k3 , is equal to

k∏
j=1


1 0 0 0
0 1 0 0
0 0 (−1)jx 1
0 0 1 0

 , x = X3,4.

In the case X = Jk · S · Jk, we have

x = (−1)k+12.

So, in conclusion, we have to prove that the following identity holds for all k > 0:

k∏
j=1


1 0 0 0
0 1 0 0
0 0 (−1)j+k+12 1
0 0 1 0

 =


1 0 0 0
0 1 0 0
0 0 k + 1 k
0 0 −k 1− k

 · Jk.
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We prove the claim by induction on k. The base case k = 0 is evidently true. Let us
assume that the statement holds true for k−1, and let us prove it for k. We have that

k∏
j=1


1 0 0 0
0 1 0 0
0 0 (−1)j+k+12 1
0 0 1 0

 =


k−1∏
j=1


1 0 0 0
0 1 0 0
0 0 (−1)j+k+12 1
0 0 1 0


 ·


1 0 0 0
0 1 0 0
0 0 −2 1
0 0 1 0



=


1 0 0 0
0 1 0 0
0 0 k k − 1
0 0 1− k 2− k

 · Jk−1 ·


1 0 0 0
0 1 0 0
0 0 −2 1
0 0 1 0

 ,
and in both cases k even/odd, the last term is easily seen to be equal to (10.4). �

11. Dubrovin conjecture for Hirzebruch surfaces F2k+1

11.1. AΛ-stratum and Maxwell stratum of QH•(F2k+1). Fix a point

p = t1,2k+1T1,2k+1 + t2,2k+1T2,2k+1

of the small quantum cohomology of F2k+1. The matrix associated to the U -tensor at
p is

U(p) =


0 2q1 0 3qk+1

1 q2
2 kqk1q2 qk1q2 0

1− 2k k
(
−kq2q

k
1 − qk1q2

)
−kq2q

k
1 − qk1q2 2q1

0 2k + 3 2 0

 .
The canonical coordinates are the roots u1(p), u2(p), u3(p), u4(p) of the polynomial

j(u) := u4 + u3qk1q2 − 8q1u
2 − 36uqk+1

1 q2 − 27q2
2q

2k+1
1 + 16q2

1. (11.1)

Hence the bifurcation set BF2k+1 , along the small quantum cohomology, is defined by
the zero locus of the discriminant of j(u), i.e.

BF2k+1 =
{
p : q2k+2

1 q2
2

(
27q2

2q
2k
1 + 256q1

)3
= 0

}
. (11.2)

Since any point of the small quantum cohomology of F2k+1 is semisimple, the set above
actually coincides with the Maxwell stratumMF2k+1 . The determinant of the Λ-matrix
is given by

det Λ(z, p) = − z

(27q2k
1 q

2
2 + 256q1)z − 24q2qk1

. (11.3)

Hence, the AΛ-stratum is given by

AΛ :=
{
p : 27q2k

1 q
2
2 + 256q1 = 0

}
. (11.4)

Also in this case, the Maxwell stratum and the AΛ-stratum coincide along the small
quantum cohomology of F2k+1.
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11.2. Small qDE of F1. At the point p, the grading operator µ has matrix µ =
diag(−1, 0, 0, 1). Hence the isomonodromic system of differential equations (2.15) for
QH•(F2k+1) is given by

Hod
k :



∂ξ1

∂z
= (1− 2k)ξ3 + 2ξ2 + ξ1

z
,

∂ξ2

∂z
= (2k + 3)ξ4 + kξ2q2q

k
1 + kξ3

(
−kq2q

k
1 − q2q

k
1

)
+ 2ξ1q1,

∂ξ3

∂z
= ξ2q2q

k
1 + ξ3

(
−kq2q

k
1 − q2q

k
1

)
+ 2ξ4,

∂ξ4

∂z
= 3ξ1q2q

k+1
1 + 2ξ3q1 −

ξ4

z
.

As explained in Remark 4.18, the computation of the monodromy data of Hod
k can be

reduced to the single case Hod
0 .

The point 0 ∈ QH•(F1) is not in the AΛ-stratum, as it follows from equation (11.4).
At the point 0 ∈ QH•(F1), indeed, the system Hod

0 can be reduced to the small
quantum differential equation

(283z − 24)ϑ4Φ +
(
283z2 − 590z + 24

)
ϑ3Φ +

(
−2264z2 + 192z + 3

)
ϑ2Φ (11.5)

− 4z2
(
2547z2 + 350z − 104

)
ϑΦ + z2

(
−3113z3 − 9924z2 + 1476z + 192

)
Φ = 0.

Given a solution Φ(z) of (11.5), the corresponding solution of the system Hod
0 can be

reconstructed by the formulae

ξ1(z) = z · Φ(z), (11.6)

ξ2(z) = 1
z2(283z − 24)

(
169z3ξ′1(z) + z3ξ′′1 (z) + 204z3ξ1(z)− 8z3ξ1

(3)(z)− 9z2ξ′1(z)

−105z2ξ1(z)− 8zξ′1(z) + 9zξ1(z) + 8ξ1(z)
)
, (11.7)

ξ3(z) = 1
z2(283z − 24)

(
−55z3ξ′1(z)− 2z3ξ′′1 (z)− 408z3ξ1(z) + 16z3ξ1

(3)(z)− 6z2ξ′1(z)

−73z2ξ1(z) + 16zξ′1(z) + 6zξ1(z)− 16ξ1(z)
)
, (11.8)

ξ4(z) = 1
z2(283z − 24)

(
−28z3ξ′1(z) + 35z3ξ′′1 (z)− 218z3ξ1(z) + 3z3ξ1

(3)(z)− 35z2ξ′1(z)

−3z2ξ′′1 (z) + 16z2ξ1(z) + 6zξ′1(z) + 35zξ1(z)− 6ξ1(z)
)
. (11.9)

These formulae are obtained by the identity

ξ = ΛT


ξ1
ξ′1
ξ′′1
ξ

(3)
1

 ,
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where the Λ-matrix at 0 ∈ QH•(F1) is

Λ(z, 0) =


1 204z3−105z2+9z+8

z2(283z−24)
−408z3−73z2+6z−16

z2(283z−24)
−218z3+16z2+35z−6

z2(283z−24)
0 169z2−9z−8

z(283z−24)
−55z2−6z+16
z(283z−24)

−28z2−35z+6
z(283z−24)

0 z
283z−24 − 2z

283z−24
35z−3

283z−24
0 − 8z

283z−24
16z

283z−24
3z

283z−24

 .
Remark 11.1. The quantum differential equation (11.5) has one apparent singularity
at z = 24

283 . This coincides with the zero of the denominator of the determinant of the
Λ-matrix:

det Λ(z, 0) = z

24− 283z .

The Ψ-matrix at the point 0 ∈ QH•(F1) is given by

Ψ =


α

1
2
1 ε1 α

1
2
1 δ1 α

1
2
1 σ1 α

1
2
1 υ1

α
1
2
2 ε2 α

1
2
2 δ2 α

1
2
2 σ2 α

1
2
2 υ2

α
1
2
3 ε3 α

1
2
3 δ3 α

1
2
3 σ3 α

1
2
3 υ3

α
1
2
4 ε4 α

1
2
4 δ4 α

1
2
4 σ4 α

1
2
4 υ4

 , (11.10)

where the numbers αi, εi, δi, υi satisfy the algebraic equations
α4
i + α3

i − 6α2
i − 283 = 0,

283ε4
i + 6ε2

i − εi − 1 = 0,
283δ4

i − 2δ2
i − 9δi − 1 = 0,

283σ4
i − 32σ2

i − σi + 1 = 0,
283υ4

i − 283υ3
i + 105υ2

i − 17υi + 1 = 0.
Their numerical approximations are

α1 ≈ 4.21193, ε1 ≈ 0.237421,
α2 ≈ −0.204399− 3.73457i, ε2 ≈ −0.0146116 + 0.266969i,
α3 ≈ −0.204399 + 3.73457i, ε3 ≈ −0.0146116− 0.266969i,
α4 ≈ −4.80313, ε4 ≈ −0.208197,
δ1 ≈ 0.353808, σ1 ≈ 0.194489,
δ2 ≈ −0.122264− 0.276482i, σ2 ≈ −0.240929− 0.0719476i,
δ3 ≈ −0.122264 + 0.276482i, σ3 ≈ −0.240929 + 0.0719476i,
δ4 ≈ −0.10928, σ4 ≈ 0.28737,
υ1 ≈ 0.28983,
υ2 ≈ 0.279666− 0.0511337i,
υ3 ≈ 0.279666 + 0.0511337i,
υ4 ≈ 0.150837.
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The reader can check that ΨTΨ = η, and that
ΨUΨ−1 = diag(x1, x2, x3, x4), (11.11)

where the canonical coordinates xi’s are the roots of the polynomial
x4 + x3 − 8x2 − 36x− 11 = 0. (11.12)

Their numerical approximations are
x1 ≈ 3.7996, (11.13)
x2 ≈ −2.23455 + 1.94071i, (11.14)
x3 ≈ −2.23455− 1.94071i, (11.15)
x4 ≈ −0.3305. (11.16)

11.3. Coordinates on S(P1)⊗S(P2). Consider the spaces S(P1),S(P2) of solutions
of the qDE’s of P1 and P2 specialized at the origins of H2(P1,C) and H2(P2,C),
respectively: these equations are

ϑ2Φ =4z2Φ, (11.17)
ϑ3Φ =27z3Φ. (11.18)

Solutions Φ1(z) of equation (11.17) have the following expansion at z = 0:

Φ1(z) =
∞∑
m=0

(Am,1 + Am,0 log z) z
2m

(m!)2 , (11.19)

where A0,0, A0,1 are arbitrary complex numbers, and the other coefficients are uniquely
determined by the difference equations

Am−1,0 = Am,0, (11.20)

Am−1,1 = Am,0
m

+ Am,1. (11.21)

in particular, notice that from the equation (11.21) we deduce that
Am,1 = A0,1 − A0,0Hm, m > 0, (11.22)

where Hm := ∑m
i=1

1
i
denotes the m-th harmonic number.

Analogously, solutions Φ2(z) of equation (11.18) have the following expansion at
z = 0:

Φ2(z) =
∞∑
n=0

(Bn,2 +Bn,1 log z +Bn,0 log2 z) z
3n

(n!)3 , (11.23)

where B0,0, B0,1, B0,2 are arbitrary complex numbers, and the other coefficients are
uniquely determined by the difference equations

Bn−1,0 = Bn,0, (11.24)

Bn−1,1 = 2
n
Bn,0 +Bn,1, (11.25)

Bn−1,2 = 2
3n2Bn,0 + 1

n
Bn,1 +Bn,2. (11.26)
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From the difference equation (11.25) we deduce that
Bn,1 = B0,1 − 2B0,0Hn. (11.27)

The products A0,iB0,j, with i = 0, 1 and j = 0, 1, 2, define a natural system of coordi-
nates on the tensor product S(P1)⊗C S(P2).

11.4. Solutions of the qDE of F1 as Laplace (1, 2; 1
2 ,

1
3)-multitransforms. Ac-

cording to Theorem 7.4, the space of solutions of the quantum differential equation
(11.5) can be reconstructed from the spaces of solutions of the qDE’s (11.17) and
(11.18). From the polynomial equation (9.1), indeed, it follows that Theorem 7.4
applies with the specialization of the parameters h = 2, ` = (2, 3), d = (1, 1).

Hence, we expect to reconstruct the solutions of the differential equation (11.5) via
a C-bilinear operator P : S(P1) ⊗ S(P2) → O(C̃∗) involving the Laplace (1, 2; 1

2 ,
1
3)-

multitransform:

P[Φ1,Φ2](z) := e−czL(1,2; 1
2 ,

1
3 )[Φ1,Φ2] = e−cz

∫ ∞
0

Φ1
(
z

1
2λ

1
2
)

Φ2
(
z

2
3λ

1
3
)
e−λdλ,

for a suitable number c ∈ Q to be determined.

Lemma 11.2. We have c = 1.

Proof. Along the locus of small quantum cohomology, the J-function of Pn−1 is

JPn−1(δ) = e
δ
~

∞∑
d=0

Qdedt
1(∏d

k=1(H + k~)
)n , δ = tH,

where H ∈ H2(Pn−1,C) denotes the hyperplane class. Hence, the I-function IP1×P2,F1

equals

IP1×P2,F1(δ1 ⊗ 1 + 1⊗ δ2) = e
δ1
~ ⊗ e

δ2
~ ·

·
∑

d1,d2>0
Qd1

1 Qd2
2

et
1d1(∏d1

k=1(H1 + k~)
)2 ⊗

et
2d2(∏d2

k=1(H2 + k~)
)3

d1+d2∏
j=1

(H1 ⊗ 1 + 1⊗H2 + j~)

= 1 + 1
~
(
Qd1

1 e
t1 + δ1 ⊗ 1 + 1⊗ δ2

)
+O

( 1
~2

)
,

where we set

• H1 ∈ H2(P1,C) and H2 ∈ H2(P2,C) are the hyperplane classes,
• δ1 = t1H1 and δ2 = t2H2 with t1, t2 ∈ C,
• Qi = Qβi , βi being the dual homology class of Hi, for i = 1, 2.

In the notations of Proposition 5.10, we have H(δ1⊗1+1⊗δ2) = Qd1
1 e

t1 . The number
c equals

c = H(0)|Q=1 = 1. �

For brevity, in all the remaining part of this section, we will simply write L to
denote the Laplace (1, 2; 1

2 ,
1
3)-multitransform.
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11.4.1. The subspace H. The space S(P1) ⊗ S(P2) has dimension 6. We are going to
identify a subspace H of dimension 4 which is isomorphically mapped to the space
S(F1) via the operator P.

Theorem 11.3. Let Φ1(z) and Φ2(z) be two solutions of the quantum differential
equations of P1 and P2 respectively, namely

ϑ2Φ1(z) = 4z2Φ1(z), ϑ3Φ2(z) = 27z3Φ2(z).

The function

Φ(z) := e−zL [Φ1,Φ2; z]

is a solution of the quantum differential equation of F1 if the following vanishing con-
ditions are satisfied:

D1[Φ1,Φ2; z] = 0, D2[Φ1,Φ2; z] = 0,

where

D1[Φ1,Φ2; z] :=2z2L [ϑΦ1,Φ2; z]− 2
9L [ϑΦ1, ϑ

2Φ2; z] + 4
9zL [Φ1, ϑ

2Φ2; z],

D2[Φ1,Φ2; z] :=z3L [Φ1,Φ2; z]− z2

3 L [Φ1, ϑΦ2; z]

− z

9L [Φ1, ϑ
2Φ2; z] + z

6L [ϑΦ1, ϑΦ2; z].

Proof. Let us look for solutions of the equation (11.5) in the form

Φ(z) = e−zL(1,2; 1
2 ,

1
3 )[Φ1,Φ2; z],

where Φ1 and Φ2 are solutions of the quantum differential equation for P1 and P2

respectively, that is

ϑ2Φ1 = 4z2Φ1, (11.28)
ϑ3Φ2 = 27z3Φ2. (11.29)

Given arbitrary functions f and g, we have

L [s2f(s), g(s); z] =z
{
L [f(s), g(s); z] + 1

2L [ϑsf(s), g(s); z]

+1
3L [f(s), ϑsg(s); z]− I(f, g)

}
,

with

I(f, g) := λ · f(z 1
2λ

1
2 )g(z 2

3λ
1
3 )e−λ

∣∣∣λ=∞

λ=0
. (11.30)
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Applying the previous identity to Φ1 and Φ2, and using equations (11.28),(11.29), we
deduce the following identities:

L [ϑ2Φ1,Φ2; z] = 4z
{
L [Φ1,Φ2; z] + 1

2L [ϑΦ1,Φ2; z] + 1
3L [Φ1, ϑΦ2; z]

}
+R1,

L [ϑ3Φ1,Φ2; z] = 8(z + z2)L [Φ1,Φ2; z] + (8z + 4z2)L [ϑΦ1,Φ2; z]

+ 8
3
(
z + z2

)
L [Φ1, ϑΦ2; z] + 4

3zL [ϑΦ1, ϑΦ2; z] +R2,

L [ϑ4Φ1,Φ2; z] = 16(z + 4z2 + z3)L [Φ1,Φ2; z] + 8(3z + 5z2 + z3)L [ϑΦ1,Φ2; z]

+ 16
3 (z + 5z2 + z3)L [Φ1, ϑΦ2; z] + 16

3 (z + z2)L [ϑΦ1, ϑΦ2; z]

+ 16
9 z

2L [Φ1, ϑ
2Φ2; z] +R3,

L [Φ1, ϑ
3Φ2; z] = 27z2

{
L [Φ1,Φ2; z] + 1

2L [ϑΦ1,Φ2; z] + 1
3L [Φ1, ϑΦ2; z]

}
+R4,

L [Φ1, ϑ
4Φ2; z] = 9

2z
2
{

18L [Φ1,Φ2; z] + 12L [Φ1, ϑΦ2; z] + 2L [Φ1, ϑ
2Φ2; z]

+ 9L [ϑΦ1,Φ2; z] + 3L [ϑΦ1, ϑΦ2; z]
}

+R5,

L [ϑΦ1, ϑ
3Φ2; z] = 54z3L [Φ1,Φ2; z] + 27(z2 + z3)L [ϑΦ1,Φ2; z] + 18z3L [Φ1, ϑΦ2; z]

+ 9z2L [ϑΦ1, ϑΦ2; z] +R6,

L [ϑ2Φ1, ϑ
2Φ2; z] = 36z3L [Φ1,Φ2; z] + 18z3L [ϑΦ1,Φ2; z] + 12z3L [Φ1, ϑΦ2; z]

+ 4zL [Φ1, ϑ
2Φ2; z] + 2zL [ϑΦ1, ϑ

2Φ2; z] +R7,

L [ϑ3Φ1, ϑΦ2; z] = 8(z + z2)L [Φ1, ϑΦ2; z] + (8z + 4z2)L [ϑΦ1, ϑΦ2; z]

+ 8
3
(
z + z2

)
L [Φ1, ϑ

2Φ2; z] + 4
3zL [ϑΦ1, ϑ

2Φ2; z] +R8,

L [ϑ2Φ1, ϑΦ2; z] = 4z
{
L [Φ1, ϑΦ2; z] + 1

2L [ϑΦ1, ϑΦ2; z] + 1
3L [Φ1, ϑ

2Φ2; z]
}

+R9,

where Rj with j = 1, . . . , 9 denote some negligible boundary terms due to the cumu-
lations of terms like (11.30). Using these identities, after some computations, we can
rewrite the quantum differential equation (11.5) as follows

(−72 + 1674z + 283z2)D1[Φ1,Φ2] + (36 + 724z + 4811z2)D2[Φ1,Φ2] = 0. �

An explicit computation shows that D1[Φ1,Φ2; z] and D2[Φ1,Φ2; z] have the follow-
ing expansions

D1[Φ1,Φ2; z] = Θ1(z) log3 z + Θ2(z) log2 z + Θ3(z) log z + Θ4(z), (11.31)
D2[Φ1,Φ2; z] = Λ1(z) log3 z + Λ2(z) log2 z + Λ3(z) log z + Λ4(z), (11.32)
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where the functions Θi(z) and Λi(z) are of the form

Θi(z) =
∞∑
m=0

∞∑
n=0

(m+ n)!
(m!)2(n!)3

(
A(i)

1 (m,n) +A(i)
2 (m,n)z +A(i)

3 (m,n)z2
)
zm+2n, (11.33)

Λi(z) =
∞∑
m=0

∞∑
n=0

(m+ n)!
(m!)2(n!)3

(
B(i)

1 (m,n) + B(i)
2 (m,n)z + B(i)

3 (m,n)z2
)
zm+2n+1, (11.34)

for i = 1, 2, 3, 4. See Appendix B for the explicit expressions of the coefficientsA(i)
j ,B

(i)
j .

Lemma 11.4. For all m,n > 1 and i = 1, 2, 3, 4, the following identities hold true

(m+ n)A(i)
1 (m,n) +m2A(i)

1 (m− 1, n) + n3A(i)
1 (m,n− 1) = 0, (11.35)

(m+ n)B(i)
1 (m,n) +m2B(i)

1 (m− 1, n) + n3B(i)
1 (m,n− 1) = 0, (11.36)

A(i)
1 (m, 0) +mA(i)

2 (m− 1, 0) = 0, (11.37)

B(i)
1 (m, 0) +mB(i)

2 (m− 1, 0) = 0, (11.38)

A(i)
1 (0, n) + n2A(i)

3 (0, n− 1) = 0, (11.39)

B(i)
1 (0, n) + n2B(i)

3 (0, n− 1) = 0. (11.40)

Proof. The reader can check the validity of these identities using the explicit expres-
sions in Appendix B, equations (11.20), (11.21), (11.24), (11.25), (11.26), and the
following identities (see e.g. [OLBC10]):

ψ(k)(z + 1) = ψ(k)(z) + (−1)kk!
zk+1 , k > 0,

ψ(0)(n) = Hn−1 − γ, n > 1, ψ(z) := Γ′(z)
Γ(z) . �

Theorem 11.5. Let Φ1(z) ∈ S(P1),Φ2(z) ∈ S(P2) be as in equations (11.19) and
(11.23), respectively. Then the function Φ(z) := e−zL [Φ1,Φ2; z] is a solution of the
qDE of F1 if

A0,0B0,0 = 0, 4A0,1B0,0 = 3A0,0B0,1. (11.41)

Proof. Let us rearrange the double series (11.33) as follows:

Θi(z) =

A(i)
1 (0, 0) +

((((
((((

(((
((((

(((∞∑
m=1

∞∑
n=1

(m+ n)!
(m!)2(n!)3A

(i)
1 (m,n)zm+2n

+
��

���
���

���∞∑
m=1

1
m!A

(i)
1 (m, 0)zm +

��
���

���
���∞∑

n=1

1
(n!)2A

(i)
1 (0, n)z2n

+
((((

((((
((((

(((
((((∞∑

m=0

∞∑
n=1

(m+ n)!
(m!)2(n!)3A

(i)
2 (m,n)z1+m+2n +

��
���

���
���

�∞∑
m=0

1
m!A

(i)
2 (m, 0)z1+m

+
((((

((((
(((

((((
((((∞∑

m=1

∞∑
n=0

(m+ n)!
(m!)2(n!)3A

(i)
3 (m,n)z2+m+2n +

���
���

���
���

�∞∑
n=0

1
(n!)2A

(i)
3 (0, n)z2+2n

,
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where

(1) the black summands cancel by equation (11.35),
(2) the red summands cancel by equation (11.37),
(3) the blue summands cancels by equation (11.39).

The proof for Λi(z) is identical. �

Definition 11.6. Let H be the 4-dimensional subspace of ⊆ S(P1) ⊗ S(P2) defined
by the linear equations (11.41).
Corollary 11.7. The space H is isomorphic to the space of solutions S(F1) via the
operator P. �

11.4.2. Bases of S(P1). Define

g(z) := 1
2πi

∫
L1

Γ
(
s

2

)2
z−sds, (11.42)

where L1 is a parabola (Re s)2 = −c · Im s + c′, for suitable c, c′ ∈ R+ so that it
encircles all the poles of the integrand at s ∈ 2Z60. It is easy to see that the integral
(11.42) converges for all z ∈ C̃∗ and that its value does not depend on the particular
choice of c, c′.
Proposition 11.8. The functions g(e−iπz), g(z) define a basis of solutions of the qDE
of P1. �

Define the bases (g1(z), g2(z)) and (s1(z), s2(z)) of S(P1) by(
g1(z)
g2(z)

)
= M1

(
g(e−πiz)
g(z)

)
,

(
s1(z)
s2(z)

)
= M2

(
g(e−πiz)
g(z)

)
, (11.43)

where
M1 :=

(
− iγ

4π
i(γ+iπ)

4π
i

4π − i
4π

)
, M2 :=

(
−1 2
0 1

)
. (11.44)

Lemma 11.9. For z → 0, the following asymptotic expansions hold true:
g1(z) = log z +O(z2 log z), (11.45)
g2(z) = 1 +O(z2 log z). (11.46)

Proof. The proof is a simple computations of residues: by modifying the paths of
integration L1, one obtains the asymptotic expansions of g as a sum of residues of the
integrand. �

Lemma 11.10. We have

g(z) ∼ 2π 1
2

z
1
2
e−2z, z →∞

in the sector | arg z| < 3
2π.

Proof. The estimate follows from application of steepest descent method. �
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11.4.3. Bases of S(P2). Define

h(z) := 1
2πi

∫
L2

Γ
(
s

3

)3
e
πis

3 z−sds, (11.47)

where L2 is a parabola (Re s)2 = −c · Im s + c′, for suitable c, c′ ∈ R+ so that it
encircles all the poles of the integrand at s ∈ 3Z60. It is easy to see that the integral
(11.47) converges for all z ∈ C̃∗ and that its value does not depend on the particular
choice of c, c′.

Proposition 11.11. The functions h(e− 2iπ
3 z), h(z), h(e 2iπ

3 z) define a basis of solutions
of the qDE of P2. �

Define the bases (h1(z), h2(z), h3(z)) and (p1(z), p2(z), p3(z)) of S(P2) by h1(z)
h2(z)
h3(z)

 = N1

 h(e− 2iπ
3 z)

h(z)
h(e 2iπ

3 z)

 ,
 p1(z)
p2(z)
p3(z)

 = N2

 h(e− 2iπ
3 z)

h(z)
h(e 2iπ

3 z)

 , (11.48)

where

N1 :=



−18γ2−π2

216π2
−18γ2−24iγπ+7π2

216π2
18γ2+12iγπ+5π2

108π2

γ
12π2

3γ+2iπ
36π2

−3γ−iπ
18π2

− 1
12π2 − 1

12π2
1

6π2

 , N2 :=

−1 3 −3
0 1 0
0 0 −1

 .
(11.49)

Lemma 11.12. For z → 0, the following asymptotic expansions hold true:

h1(z) = log2 z +O(z3 log2 z), (11.50)
h2(z) = log z +O(z3 log2 z), (11.51)
h3(z) = 1 +O(z3 log2 z). (11.52)

Proof. The proof is a simple computations of residues: by modifying the paths of
integration L2, one obtains the asymptotic expansions of h as a sum of residues of the
integrand. �

Lemma 11.13. We have

h(z) ∼ e−
5
3πi

√
3
z

exp
(
3e 2πi

3 z
)
, z →∞,

in the sector −π < arg z < 5
3π.

Proof. The estimate follows from the steepest descent method. �
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11.5. Basis of solutions Υ of S(F1).

Theorem 11.14. The tensors
1
3g1 ⊗ h2 + 1

4g2 ⊗ h1, g1 ⊗ h3, g2 ⊗ h2, g2 ⊗ h3. (11.53)

define a basis of the subspace H.

Proof. Each of the vectors (11.53) satisfy the constraints (11.41), by Lemmata 11.9
and 11.12. �

Corollary 11.15. The functions

Υ1 := P
(1

3g1 ⊗ h2 + 1
4g2 ⊗ h1

)
, (11.54)

Υ2 := P (g1 ⊗ h3) , (11.55)
Υ3 := P (g2 ⊗ h2) , (11.56)
Υ4 := P (g2 ⊗ h3) (11.57)

define a basis of solutions of the qDE of F1. �

Remark 11.16. Explicit double Mellin-Barnes integral representations of solutions
Υ1, . . . ,Υ4 can be obtained: for any j, k we have

P
(
g(eπkiz)⊗ h(e

2πji
3 z)

)
= e−z

(2πi)2

∫
L1×L2

Γ
(
s

2

)2
Γ
(
t

3

)3
Γ
(

1− s

2 −
t

3

)
e−πiks+

πi
3 t(1−2j)z−

s
2−

2t
3 dtds.

The functions Υi’s are linear combinations of the integrals above, in accordance with
Theorem 7.8.

11.6. Asymptotics of Laplace (1, 2; 1
2 ,

1
3)-multitransforms. Consider the integral

I(z) :=
∫ ∞

0
Φ1(z 1

2λ
1
2 )Φ2(z 2

3λ
1
3 )e−λdλ, (11.58)

where
Φ1(z) = zD1 exp(zu1), Φ2(z) = zD2 exp(zu2), (11.59)

with D1, D2, u1, u2 ∈ C. The integral I(z) is convergent for all z ∈ C̃∗.
Set z = reiκ with r > 0, and change variable of integration λ = αz:

I(z) = z1+D1+D2
∫ e−iκ∞

0
α
D1
2 +D2

3 exp
{
z(−α + u1α

1
2 + u2α

1
3 )
}
dα. (11.60)

Change variable α = β6, by taking the principal determination of the sixth root:

I(z) = 6z1+D1+D2
∫ e−

iκ
6 ∞

0
β5+3D1+2D2 exp

{
z(−β6 + u1β

3 + u2β
2)
}
dβ. (11.61)

Define
f(β;u1, u2) := −β6 + u1β

3 + u2β
2, for β ∈ C, (11.62)
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and consider the z-dependent downward flow in the β-plane defined by
dβ

dt
= −z ∂f

∂β
,

dβ

dt
= −z ∂f

∂β
. (11.63)

The equilibria points βc are the critical points of f , that is
∂f

∂β

∣∣∣∣∣
β=βc

= 0.

For a fixed z, we associate to each critical point βc a curve Lc, a Lefschetz thimble,
defined as the set-theoretic union of the trajectories of the flow (11.63) starting at
βc for t → −∞. Morse and Picard-Lefschetz Theory guarantees that the cycles Lc
are smooth one-dimensional submanifolds of C, piecewise smoothly dependent on the
parameter z, and they represent a basis for the inverse limit of relative homology
groups

lim←−
T

H1(C,CT,z), CT,z := {β ∈ C : Re(zf(β;u1, u2)) < −T} , T ∈ R+.

Lemma 11.17. The Lefschetz thimble Lc is the steepest descent path at βc: the func-
tion t 7→ Im(zf(β;u1, u2)) is constant on Lc, and the function t 7→ Re(zf(β;u1, u2))
is strictly decreasing along the flow.

Proof. We have
d

dt
[Im(zf)] =

(
dβ

dt

∂

∂β
+ dβ

dt

∂

∂β

)[
zf − zf

2i

]
= 0,

d

dt
[Re(zf)] =

(
dβ

dt

∂

∂β
+ dβ

dt

∂

∂β

)[
zf + zf

2

]
= −

∣∣∣∣∣z ∂f∂β
∣∣∣∣∣
2

. �

We are interested in the following cases, by Lemmata 11.10 and 11.13:

u1 = ±2, u2 = 3ζk3 , ζ3 := exp 2πi
3 , k = 0, 1, 2. (11.64)

For any possible pair (u1, u2), define β+ as the critical point of f(β;u1, u2) with
maximal real part (the red one in Table 11.1).

Lemma 11.18. We have

I(z) ∼ 6z 1
2 +D1+D2β5+2D1+3D2

+

(
2π

9u1β+ + 8u2

) 1
2

exp z(−β6
+ + u1β

3
+ + u2β

2
+),

for |z| → ∞ in the sector | arg z − arg f(β+)| < π.

Proof. After choosing an orientation for each Lefschetz thimble, the path of integration
γz ≡ e−i

κ
6 ·R+, defining the function I in equation (11.61), can be expressed as integer

combination, γz = ∑5
j=1 nj(z)Lj with nj ∈ Z, of the thimbles Lc for any value of z not

on a Stokes ray Rij, defined by

Rij :=
{
z ∈ C̃∗ : z = r(f(βc,i)− f(βc,j)), r ∈ R+

}
, i, j = 1, . . . , 5,
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u1 u2 βc f(βc) f(βc)− 1
2 3 −0.724492 0.6695 −0.3305
2 3 0. 0. −1.
2 3 1.22074 4.7996 3.7996
2 3 −0.248126− 1.03398i −1.23455 + 1.94071i −2.23455 + 1.94071i
2 3 −0.248126 + 1.03398i −1.23455− 1.94071i −2.23455− 1.94071i
2 3e 2iπ

3 0. 0. −1.
2 3e 2iπ

3 −0.771392− 0.731875i −1.23455− 1.94071i −2.23455− 1.94071i
2 3e 2iπ

3 −0.610372 + 1.0572i 4.7996 3.7996
2 3e 2iπ

3 0.362246 − 0.627428i 0.6695 −0.3305
2 3e 2iπ

3 1.01952 + 0.302108i −1.23455 + 1.94071i −2.23455 + 1.94071i
2 3e− 1

3 (2iπ) 0. 0. −1.
2 3e− 1

3 (2iπ) −0.771392 + 0.731875i −1.23455 + 1.94071i −2.23455 + 1.94071i
2 3e− 1

3 (2iπ) −0.610372− 1.0572i 4.7996 3.7996
2 3e− 1

3 (2iπ) 0.362246 + 0.627428i 0.6695 −0.3305
2 3e− 1

3 (2iπ) 1.01952 − 0.302108i −1.23455− 1.94071i −2.23455− 1.94071i
−2 3 −1.22074 4.7996 3.7996
−2 3 0. 0. −1.
−2 3 0.724492 0.6695 −0.3305
−2 3 0.248126 − 1.03398i −1.23455− 1.94071i −2.23455− 1.94071i
−2 3 0.248126 + 1.03398i −1.23455 + 1.94071i −2.23455 + 1.94071i
−2 3e 2iπ

3 0. 0. −1.
−2 3e 2iπ

3 −1.01952− 0.302108i −1.23455 + 1.94071i −2.23455 + 1.94071i
−2 3e 2iπ

3 −0.362246 + 0.627428i 0.6695 −0.3305
−2 3e 2iπ

3 0.610372 − 1.0572i 4.7996 3.7996
−2 3e 2iπ

3 0.771392 + 0.731875i −1.23455− 1.94071i −2.23455− 1.94071i
−2 3e− 1

3 (2iπ) 0. 0. −1.
−2 3e− 1

3 (2iπ) −1.01952 + 0.302108i −1.23455− 1.94071i −2.23455− 1.94071i
−2 3e− 1

3 (2iπ) −0.362246− 0.627428i 0.6695 −0.3305
−2 3e− 1

3 (2iπ) 0.610372 + 1.0572i 4.7996 3.7996
−2 3e− 1

3 (2iπ) 0.771392 − 0.731875i −1.23455 + 1.94071i −2.23455 + 1.94071i
Table 11.1. For any possible value of the pair (u1, u2), we list the
corresponding critical points βc of the function f(β;u1, u2), and the cor-
responding critical values f(βc). Notice that the numbers f(βc)−1, with
βc 6= 0, equal all possible values of the canonical coordinates x1, x2, x3, x4
at the origin of QH•(F1). In red, we represent the critical point β+ with
maximal real part.
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where βc,i are the critical points of (11.63). If we let z vary, the Lefschetz thimbles
change. When z crosses a Stokes ray Rij, Lefschetz thimbles jump discontinuously:
in particular, for z on a Stokes ray there exists a flow line of (11.63) connecting two
critical points βc’s. A detailed analysis of the phase portrait of the flow (11.63), for
each pair (u1, u2) as in (11.64), shows that in the sector | arg z − arg f(β+)| < π we
have I = ±Lβ+ ±L1

0 ±L′, where L1
0 is only one half of the Lefschetz thimble L0, and

L′ denote the sum of Lefschetz thimbles attached to other critical points βc. Hence,
we have three contributions in the asymptotics of I(z): one from the integration along
Lβ+ , one from other critical points, the last one from the integration along L1

0. The
last two contributions are easily seen to be negligible w.r.t. the first one. So, by the
steepest descent method, we obtain the estimate

I(z) ∼ ±6z 1
2 +D1+D2β5+2D1+3D2

+

(
− 2π
f ′′(β+)

) 1
2

exp zf(β+). �

Remark 11.19. Note that the arbitrariness of the orientations of the Lefschetz thim-
bles can be incorporated in the choice of the entries of the Ψ-matrix. Consequently, it
will affect the monodromy data by the action of the group (Z/2Z)4.

Proposition 11.20. Let now Φ1,Φ2 be two functions with asymptotic expansions

Φ1(z) ∼ zD1 exp(zu1), Φ2(z) ∼ zD2 exp(zu2), (11.65)

for |z| → ∞ in the sectors

A1 < arg z < B1, A2 < arg z < B2, (11.66)

respectively. We have that

L(1,2; 1
2 ,

1
3 )[Φ1,Φ2; z] ∼ Cz

1
2 +D1+D2 exp z(−β6

+ + u1β
3
+ + u2β

2
+),

where

C := 6β5+2D1+3D2
+

(
2π

9u1β+ + 8u2

) 1
2

,

for |z| → ∞ in the sector A′ < arg z < B′, where

A′ := max
{
A1 − 3 arg β+, A2 − 2 arg β+, arg f(β+)− π

}
, (11.67)

B′ := min
{
B1 − 3 arg β+, B2 − 2 arg β+, arg f(β+) + π

}
. (11.68)

Proof. The statement follows by application of the steepest descent path method and
Lemma 11.18. Notice that the sector A′ < arg z < B′ is chosen so that the critical
point of the logarithm of the integrand lies in the region (11.66) of validity of the
asymptotic expansions (11.65). �
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Figure 11.1. In this figure we represent the downward flow (11.63)
and the mutations of Lefschetz thimbles for |z| = 105, and | arg z −
arg f(β+)| < π for the pair (u1, u2) = (2, 3e 4πi

3 ). Lefschetz thimbles are
in red. The path of integration in equation (11.61) is drawn in green.
Continues in the next page.
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Figure 11.2. Notice that, for a certain range of values of arg z, there
is also a contribution in the asymptotic expansion coming from a third
critical point. Such a term is negligible, since it is dominated by the
exponential term from the critical point β+.

11.7. Stokes basis of the qDE of F1. Set

sij := si ⊗ pj ∈ S(P1)⊗ S(P2), (11.69)

for i = 1, 2 and j = 1, 2, 3.

Theorem 11.21. The following linear combinations of the tensors sij’s define a basis
of H:

s11 − 5s22 − 6s23, s12 + s23, s13 − s22 − 2s23, s21 − 4s22 − 5s23. (11.70)

Proof. Define the column vectors
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u1 u2 A′ B′

2 3 −π π
3

2 3e 2πi
3 −3.71775 0.471036

2 3e 4πi
3 −1.00423 1.62336

−2 3 −π π
3

−2 3e 2πi
3 −1.00423 −0.706554

−2 3e 4πi
3 −1.62336 1.00423

Table 11.2. In this table we represent the values A′ and B′ predicted
in Proposition 11.20 for all possible values of u1 and u2.

• g = (g1, g2)T and s = (s1, s2)T , bases of S(P1),
• h = (h1, h2, h3)T and p = (p1, p2, p3)T , bases of S(P2), respectively.

In what follow we denote by A ⊗ B the Kronecker tensor product of two matrices A
and B. Hence we denote

• by g ⊗ h the basis (gi ⊗ hj)i,j of S(P1)⊗ S(P2).
• by s⊗ p the basis (si ⊗ pj)i,j of S(P1)⊗ S(P2).

We have

g ⊗ h = [(M1M
−1
2 )⊗ (N1N

−1
2 )]s⊗ p, (11.71)

where we represent the basis g ⊗h and s⊗ p as column vectors. Multiply on the left
both sides of (11.71) by the matrix

E1 :=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1

3 0 1
4 0 0

0 0 0 0 1 0
0 0 0 0 0 1


.

We thus obtain the relation

s⊗ p = X



g1 ⊗ h1
g1 ⊗ h2
g1 ⊗ h3

1
3g1 ⊗ h2 + 1

4g2 ⊗ h1
g2 ⊗ h2
g2 ⊗ h3


, (11.72)
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where X is the matrix
X = [(M1M

−1
2 )⊗ (N1N

−1
2 )]−1E−1

1

=



54 36(γ + 11iπ) ∗ ∗ ∗ ∗
−54 −36(γ + iπ) ∗ ∗ ∗ ∗
54 36(γ + 3iπ) ∗ ∗ ∗ ∗
54 36(γ + 9iπ) ∗ ∗ ∗ ∗
−54 −36(γ − iπ) ∗ ∗ ∗ ∗
54 36(γ + iπ) ∗ ∗ ∗ ∗


.

Multiply on the left each sides of (11.72) by the matrix

E2 =



1 0 0 0 −5 −6
0 1 0 0 0 1
0 0 1 0 −1 −2
0 0 0 1 −4 −5
0 0 0 0 1 1
0 0 0 0 0 1


.

We obtain 

s11 − 5s22 − 6s23
s12 + s23

s13 − s22 − 2s23
s21 − 4s22 − 5s23

s22 + s23
s23


= E2X



g1 ⊗ h1
g1 ⊗ h2
g1 ⊗ h3

1
3g1 ⊗ h2 + 1

4g2 ⊗ h1
g2 ⊗ h2
g2 ⊗ h3


,

and we have

E2X =



0 0
0 0 C1
0 0
0 0
0 72iπ ∗ ∗ ∗ ∗
54 36(γ + iπ) ∗ ∗ ∗ ∗


. (11.73)

This proves the claim. �

Remark 11.22. The matrix C1 in equation (11.73) is

C1 =


24(−3iγ − 2π)π −216iπ 36π(−5iγ + 9π) 3π (−42iγ2 + 92γπ + 17iπ2)

72iγπ 216iπ 36π(5iγ + π) 3π (42iγ2 + 12γπ − iπ2)
−72iγπ −216iπ 36π(−5iγ + π) 3π (−42iγ2 + 12γπ + iπ2)
−48π2 0 0 −48γπ2

 .
Corollary 11.23. The functions

Σ1 :=P(s11 − 5s22 − 6s23), (11.74)
Σ2 :=P(s12 + s23), (11.75)
Σ3 :=P(s13 − s22 − 2s23), (11.76)
Σ4 :=P(s21 − 4s22 − 5s23) (11.77)
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define a basis of solutions of the qDE of F1. �

Proposition 11.24. The Stokes basis ΞR of Hod
0 on the sector ΠR(ε) can be recon-

structed, using formulae (11.6),(11.7),(11.8),(11.9), from a basis Σλ of solutions of the
qDE of F1 of the form

λ1Σ2, λ2Σ3 + λ3Σ2, λ4Σ4 + λ5Σ3 + λ6Σ2, λ7Σ1 + λ8Σ4 + λ9Σ3 + λ10Σ2,

for a suitable choice of the coefficients λj ∈ C, with j = 1, . . . , 10.

Proof. The canonical coordinates x1, x2, x3, x4 are in lexicographical order w.r.t. a line
of slope ε > 0 sufficiently small. The functions above have the expected expnential
growth exp(xiz) in the sector ΠR(ε) defined by an oriented line of slope ε. This follows
from the data in Tables 11.1 and 11.2, and from the configuration of the Stokes rays
Rij := {−r

√
−1(xi − xj) : r ∈ R+}: these are given by
R12 = {arg z = π}, R13 = {arg z = 2.36573},
R14 = {arg z = 1.88197}, R23 = {arg z = 0.775863},

R24 = {arg z = 1.25962}, R34 =
{

arg z = π

2

}
,

see Figure 11.3. �

π
3 R12

R13

R14

R23

R24
R34

Figure 11.3. From the left to the right: Stokes rays corresponding to
the origin of the quantum cohomology of P1, P2, and F1 respectively.

Remark 11.25. Notice that, according to Proposition 11.20, the function Σ3 has
the expected exponential growth exp(zx2) in the sector in which this is minimal
w.r.t. the dominance relation, i.e. in which it is dominated by any other exponential
exp(zx1), exp(zx3), exp(zx4). Hence, we expect that λ3 = 0.

11.8. Computation of the central connection and Stokes matrices. Denote by
H′′0 the system of differential equations Hod

0 specialized at 0 ∈ QH•(F1). Consider the
fundamental system of solutions of H′′0

ΞΥ(z) :=
zΥ1(z) zΥ1(z) zΥ1(z) zΥ1(z)

...
...

...
...

 , (11.78)

reconstructed from the basis (Υ1,Υ2,Υ3,Υ4) of the qDE of F1 (see Corollary 11.15)
by formulae (11.6), (11.7), (11.8), (11.9).



78 GIORDANO COTTI

Proposition 11.26. We have

ΞΥ(z) = Ξtop(z) · C0, (11.79)

where

C0 :=


1
18 0 0 0
− γ

18
1
2 0 0

− γ
18 −1

2
1
3 0

6γ2+π2

72 −γ
2 −γ

3 1

 . (11.80)

Proof. From Lemmata 11.9 and 11.12, we can compute the asymptotic expansions of
Υi(z) for z → 0. We have

Υ1(z) = 1
72
(
16 log2(z)− 20γ log(z) + 6γ2 + π2

)
+ 1

18z(log(z)− γ − 2)

+ 1
72z

2
(
16 log2(z)− 20γ log(z)− 17 log(z) + 6γ2 + π2 + 13γ + 2

)

+
z3
(
432 log2(z)− 540γ log(z)− 750 log(z) + 162γ2 + 27π2 + 426γ + 311

)
1944

+ . . . ,

Υ2(z) =1
2(log(z)− γ)− z

2 + 1
8z

2(4 log(z)− 4γ + 5) + 1
36z

3(18 log(z)− 18γ − 37)

+ 1
192z

4(24 log(z)− 24γ + 13) + . . . ,

Υ3(z) =− γ

3 + 2 log(z)
3 + z

3 + 1
12z

2(8 log(z)− 4γ − 9) + 1
54z

3(36 log(z)− 18γ − 17)

+ 1
288z

4(48 log(z)− 24γ − 49) + . . . ,

Υ4(z) =1 + z2 + z3 + z4

4 + . . . .

After some computations, one finds that the first terms of the asymptotic expansion
of ΞΥ(z) for z → 0:

ΞΥ(z) =
1
72z

(
16 log2(z)− 20γ log(z) + 6γ2 + π2

)
1
2z(log(z)− γ) z

(
2 log(z)

3 − γ
3

)
z

log(z)
6 − γ

9 0 1
3 0

log(z)
9 + 1

18z(log(z)− γ − 1)− γ
18

1
2 −

z
2

z
3 0

1
18z(2 log(z)− γ − 1) + 1

18z
z
2 0 0



+ h.o.t..
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The leading term of the asymptotic expansion of Ξtop(z) for z → 0 is

Ξtop(z) = ηzµzR + h.o.t.

=


4z log2(z) 3z log(z) 2z log(z) z
3 log(z) 1 1 0
2 log(z) 1 0 0

1
z

0 0 0

+ h.o.t.,

where µ = diag(−1, 0, 0, 1) and R is the operator of ∪-multiplication by c1(F1) on
H•(F1,C), that is

R =


0 0 0 0
2 0 0 0
1 0 0 0
0 3 2 0

 . (11.81)

By comparison of the leading terms of the asymptotic expansions of ΞΥ and Ξtop, one
obtains the matrix C0 in formula (11.80). �

Theorem 11.27. The central connection and Stokes matrices at 0 ∈ QH•(F1), com-
puted w.r.t. an admissible oriented line of slope ε > 0 sufficiently small, equal

C =


1

2π − 1
2π

1
2π − 1

2π
γ
π

− γ
π

i+ γ
π

−i− γ
π

1
2

(
−i+ γ

π

)
−γ+iπ

2π
1
2

(
−i+ γ

π

)
−γ+iπ

2π

γ
(
−i+ 2γ

π

)
γ
(
−i− 2γ

π

)
2γ(γ+iπ)

π
−2(γ+iπ)2

π

 , (11.82)

S =


1 2 −1 −3
0 1 1 −1
0 0 1 2
0 0 0 1

 . (11.83)

Proof. Denote

• by Ξλ the fundamental system of solutions of H′′0 constructed from the basis
Σλ of Proposition 11.24,
• by ΞΣ the fundamental system of solutions of H′′0 constructed from the basis
Σ of Corollary 11.23.

We have

Ξλ =ΞΣ ·


0 0 0 λ7
λ1 λ3 λ6 λ10
0 λ2 λ5 λ9
0 0 λ4 λ8

 = ΞΥΠTCT
1


0 0 0 λ7
λ1 λ3 λ6 λ10
0 λ2 λ5 λ9
0 0 λ4 λ8

 ,
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where C1 is as in Remark 11.22 and

Π :=


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 .

Thus, we obtain

Ξλ = ΞtopCλ, Cλ := C0ΠTCT
1


0 0 0 λ7
λ1 λ3 λ6 λ10
0 λ2 λ5 λ9
0 0 λ4 λ8

 ,

where C0 is given by (11.80). In order to determine the values of λ for which Ξλ is
the Stokes basis, let us compute the product

CT
λ ηe

πiµeπiRCλ. (11.84)

If Ξλ is the Stokes basis, then the matrix above is the inverse of the Stokes matrix
S, by equation (4.18): in particular, it is an upper triangular matrix with 1’s along
the main diagonal. An explicit computation gives the following result: the columns of
(11.84) are 

−576π4λ2
1

−576π4λ1λ3
−576π4λ1λ6

−576π4λ1 (3λ7 + λ10)

 , (11.85)


576π4λ1 (2λ2 − λ3)
−576π4 (λ2 − λ3) 2

−576π4 (λ3λ6 + λ2 (λ4 + λ5 − 2λ6))
576π4 (λ2 (λ7 − λ8 − λ9 + 2λ10)− λ3 (3λ7 + λ10))

 , (11.86)


−576π4λ1 (λ4 − 2λ5 + λ6)

−576π4 (λ2λ5 + λ3 (λ4 − 2λ5 + λ6))
−576π4 (λ2

4 + (λ5 + λ6)λ4 + (λ5 − λ6) 2)
−576π4 (λ6 (3λ7 + λ10) + λ4 (5λ7 + λ8 + λ10) + λ5 (−λ7 + λ8 + λ9 − 2λ10))

 ,
(11.87)

576π4λ1 (6λ7 − λ8 + 2λ9 − λ10)
−576π4 (λ2 (6λ7 + λ9) + λ3 (−6λ7 + λ8 − 2λ9 + λ10))

−576π4 (λ5 (6λ7 + λ9) + λ4 (6λ7 + λ8 + λ9) + λ6 (−6λ7 + λ8 − 2λ9 + λ10))
−576π4 (13λ2

7 + (11λ8 + 5λ9 − 3λ10)λ7 + λ2
8 + (λ9 − λ10) 2 + λ8 (λ9 + λ10))

 .
(11.88)
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The matrix (11.84) is upper triangular with 1’s along the diagonal if and only if

λ2
1 =− 1

576π4 , λ2
2 =− 1

576π4 , (11.89)

λ3 = 0, λ2
4 =− 1

576π4 , (11.90)

λ5 =− λ4, λ6 = 0, (11.91)

λ2
7 =− 1

576π4 , λ8 =− 2λ7, (11.92)

λ9 =− 3λ7, λ10 =− 3λ7. (11.93)

For the choice λ1 = λ2 = λ4 = λ7 = − i
24π2 , we obtain the central connection and

Stokes matrices (11.82) and (11.83). �

Theorem 11.28. The central connection matrix of QH•(F2k+1), computed w.r.t. an
oriented line of slope ε > 0 sufficiently small, and a suitable choice of the branch of
the Ψ-matrix, equals

Ck =


1

2π − 1
2π

1
2π − 1

2π
γ
π

− γ
π

i+ γ
π

−i− γ
π

γ−2γk−iπ
2π −γ−2γk+iπ

2π
−2γk−i(2πk+π)+γ

2π
(2k−1)(γ+iπ)

2π
γ
(
−i+ 2γ

π

)
γ
(
−i− 2γ

π

)
2γ(γ+iπ)

π
−2(γ+iπ)2

π

 . (11.94)

This is the matrix associated with the morphism

D−F2k+1
: K0(F2k+1)C → H•(F2k+1,C) : [F ] 7→ 1

2π Γ̂−F2k+1
∪ e−πic1(F2k+1) ∪ Ch(F ),

w.r.t. an exceptional basis E := (Ei)4
i=1 of K0(F2k+1)C and the basis (Ti,2k+1)3

i=0 of
H•(F2k+1,C). The exceptional basis E mutates to the exceptional basis(

[O], [O(Σ2k+1
2 )], [O(Σ2k+1

4 )], [O(Σ2k+1
2 + Σ2k+1

4 )]
)
, (11.95)

by application of the following natural transformations:

(1) action of the braid β3β2β1β3β2;
(2) action of the element J̃k ∈ (Z/2Z)4

J̃k :=


(−1,−1, (−1)p, (−1)p+1), if k = 2p,

(−1,−1, (−1)p+1, (−1)p+1), if k = 2p+ 1;

(3) action of the element βk3 .

Proof. The matrix associated to D−F2k+1
w.r.t. the basis (11.95) is �
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Ek :=


1

2π
1

2π
1

2π
1

2π
−i+ γ

π
−i+ γ

π
γ
π

γ
π

(1−2k)(γ−iπ)
2π

−2γk+i(2πk+π)+γ
2π

(1−2k)(γ−iπ)
2π

−2γk+i(2πk+π)+γ
2π

2(γ−iπ)2

π
2γ(γ−iπ)

π
γ
(
−i+ 2ik + 2γ

π

)
γ
(
i+ 2ik + 2γ

π

)
 .

Set C ′k := Cβ3β2β1β3β2
k . We have

(C ′k)−1Ek =


−1 0 0 0
0 −1 0 0
0 0 1− k −k
0 0 −k −k − 1

 .
It is easy to see that this is the matrix representing the action of the element (J̃k, βk3 ) ∈
(Z/2Z)4oB4: the argument is the same as in Step 3 of the proof of Theorem 10.5. �
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Appendix A. Proof of Theorem 5.2

We need some preliminary results.

Lemma A.1. For n > 0, and δ ∈ H2(X,C), we have

〈〈τnTα, 1〉〉0(δ) = 1
(n+ 1)!

(∫
X
Tα ∪ δn+1

)
+
∑
β 6=0

∑
ν>0

Qβe
∫
β
δ

ν! 〈τn−νTα ∪ δν , 1〉X0,2,β.

Proof. We have

〈〈τnTα, 1〉〉0(δ) = ∂

∂tα,n
∂

∂t0,0
FX0

∣∣∣∣∣
δ

=
∞∑
k=0

∑
β

Qβ

k! 〈τnTα, 1, δ . . . , δ〉
X
0,k+2,β.

We have two cases:

• if β 6= 0, then for k > 0 we have

〈τnTα, 1, δ . . . , δ〉X0,k+2,β =
∑

µ+ν=k

k!
µ!ν!

(∫
β
δ
)µ
〈τn−νTα ∪ δν , 1〉X0,2,β,

by the Divisor Axiom of Gromov-Witten invariants. Here any invariant with
τ−r with r > 0 is vanishing.
• If β = 0, then for k > 0 by Divisor Axiom we have15

〈τnTα, 1, δ . . . , δ〉X0,k+2,0 = 〈τn−k+1Tα ∪ δk, 1, δ〉0,3,0 =
(∫

X
Tα ∪ δk

)
δk,n+1.

So, we have

〈〈τnTα, 1〉〉0(δ) = 1
(n+ 1)!

(∫
X
Tα ∪ δn+1

)

+
∑
β 6=0

∑
k>0

Qβ

k!
∑

µ+ν=k

k!
µ!ν!

(∫
β
δ
)µ
〈τn−νTα ∪ δν , 1〉X0,2,β

= 1
(n+ 1)!

(∫
X
Tα ∪ δn+1

)
+
∑
β 6=0

∑
ν>0

Qβe
∫
β
δ

ν! 〈τn−νTα ∪ δν , 1〉X0,2,β. �

Lemma A.2. Let δ ∈ H2(X,C). We have

JX(δ) = e
δ
~ +

∑
β 6=0

∞∑
n=0

∑
k+p=n

~−(n+1) Qβe
∫
β
δ

p! 〈τkTα ∪ δp, 1〉X0,2,βTα.

15Here, we use the fact that L1 is trivial onM0,3(X, 0) and hence has zero Chern class. This follows
from the fact that M0,3(X, 0) ∼= X, and the frogetful morphism M0,4(X, 0) → M0,3(X, 0) is the
projection X ×M0,4 → X.
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Proof. By Lemma A.1, we have

JX(δ) =1 +
∞∑
n=0

~−(n+1)

(n+ 1)!

(∫
X
Tα ∪ δn+1

)
Tα

+
∑
β 6=0

∞∑
n=0

∑
k+p=n

~−(n+1) Qβe
∫
β
δ

p! 〈τkTα ∪ δp, 1〉X0,2,βTα

=e δ~ +
∑
β 6=0

∞∑
n=0

∑
k+p=n

~−(n+1) Qβe
∫
β
δ

p! 〈τkTα ∪ δp, 1〉X0,2,βTα. �

Lemma A.3. For δ ∈ H2(X,C), we have

Ztop(δ, z)Tα = ezδ ∪ zµzc1(X)Tα +
∑
β 6=0

∑
λ

e
∫
β
δ

〈
zezδ

1− zψ ∪ z
µzc1(X)Tα, Tλ

〉X
0,2,β

T λ. (A.1)

Proof. For τ ∈ H•(X,C), we have

Θ(τ , z)Tα =Θ(τ , z)βαTβ = ∂θα
∂tλ

∣∣∣∣∣
(τ ,z)

T λ

=
∞∑
p=0

zp〈〈τpTα, 1, Tλ〉〉0(τ )|Q=1T
λ

=
∞∑
p=0

∞∑
k=0

∑
β

zp

k! 〈τpTα, 1, Tλ, τ , . . . , τ 〉
X
0,3+k,βT

λ.

Consider the contribution coming from (k, β) = (0, 0): by the Mapping to point Axiom
of Gromov-Witten invariants, we have16

∞∑
p=0

zp〈τpTα, 1, Tλ, 〉X0,3,0T λ =
∞∑
p=0

zp
(∫

X
Tα ∪ Tλ

)
δ0,pT

λ = Tα.

By the Fundamental class Axiom, instead, the contribution from (k, β) 6= (0, 0) can
be re-written as

∞∑
p=0

∞∑
k=1

∑
β 6=0

zp

k! 〈τp−1Tα, Tλ, τ , . . . , τ 〉X0,2+k,βT
λ.

Thus, we have recovered the formula

Θ(τ , z) = Id +
∞∑
p=0

zp+1〈〈τp(−), Tλ〉〉0(τ )|Q=1T
λ,

which was used in [CDG20, Proposition 7.1] to define Θ. At this point the proof is
known, and can be found in [CK99, Proposition 10.2.3]: the parameter ~ of loc. cit.
has to be replaced by our z, and pre-composition with zµzc1(X) has to be taken into
account in order to obtain formula (A.1). �

16Also here, we use the fact that L1 is trivial onM0,3(X, 0).
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We are now ready for the proof of Theorem 5.2.

Proof of Theorem 5.2. Let us compute the entries of the first row of the matrix

ηΘ(δ, z)zµzc1(X).

By Lemma A.3, we have[
ηΘ(δ, z)zµzc1(X)

]1
α

= η
(
1,Θ(δ, z)zµzc1(X)Tα

)
= η

1, ezδ ∪ zµzc1(X)Tα +
∑
β 6=0

∑
λ

e
∫
β
δ

〈
zezδ

1− zψ ∪ z
µzc1(X)Tα, Tλ

〉X
0,2,β

T λ


= η(1, ezδ ∪ zµzc1(X)Tα)

+ η

1,
∑
β 6=0

∑
λ

e
∫
β
δ

〈
zezδ

1− zψ ∪ z
µzc1(X)Tα, Tλ

〉X
0,2,β

T λ

 .
Using the identity of endomorphisms of H•(X,C)

z−µ ◦ (hk∪) ◦ zµ = z−k(hk∪), h ∈ H2(X,C), k ∈ N,

and the η-skew-symmetry of µ, we can rewrite the first summand as

η(1, ezδ ∪ zµzc1(X)Tα) = η(1, zµeδzc1(X)Tα)
= η(z−µ(1), eδzc1(X)Tα)

= z
dimCX

2

∫
X
eδzc1(X)Tα.

For the second summand, notice that

(1) the only nonzero contribution comes from λ = 0,
(2) for any ϕ ∈ H•(X,C) we have that

zezδ

1− zψ ∪ ϕ =
∞∑
n=0

n∑
k=0

zn+1

(n− k)!ψ
kδn−kϕ,

(3) and that

zµzc1(X)Tα =
∞∑
`=0

(log z)`

`! z
2`+degTα−dimX

2 c1(X)`Tα.

(4) the Gromov-Witten invariant

〈τkδn−kc1(X)`Tα, 1〉X0,2,β
is nonzero if and only if

2k + 2(n− k) + 2`+ deg Tα = 2 dimCX + 2
∫
β
c1(X)− 2.
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So, we obtain that〈
zezδ

1− zψ ∪ z
µzc1(X)Tα, 1

〉X
0,2,β

=
∞∑
n=0

n∑
k=0

∞∑
`=0

(log z)`

`!(n− k)!z
n+1+ 2`+degTα−dimX

2 〈τkδn−kc1(X)`Tα, 1〉X0,2,β

= z
dimX

2 z
∫
β
c1(X)

∞∑
h=0

∑
m+`+k=h

(log z)`

`!m! 〈τkδ
mc1(X)`Tα, 1〉X0,2,β

= z
dimX

2 z
∫
β
c1(X)

∞∑
h=0

∑
k+p=h

1
p!〈τk(δ + log z · c1(X))pTα, 1〉X0,2,β.

Putting this all together, we obtain that[
ηΘ(δ, z)zµzc1(X)

]1
α

= z
dimX

2

∫
X
eδzc1(X)Tα +

∑
β 6=0

e
∫
β
δ
z
∫
β
c1(X)

∞∑
h=0

∑
k+p=h

1
p!〈τk(δ + log z · c1(X))pTα, 1〉X0,2,β


= z

dimX
2

∫
X
Tα ∪ JX(δ + log z · c1(X))

∣∣∣∣Q=1,
~=1

.

The last equality follows by Lemma A.2. This completes the proof. �
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Appendix B. Coefficients A(i)
j ,B

(i)
j

The coefficients A(i)
j ,B

(i)
j are

A(1)
1 (m,n) =− 8

9mn
2A0,0B0,0,

A(1)
2 (m,n) = 8

9n
2A0,0B0,0,

A(1)
3 (m,n) = 8

9mA0,0B0,0,

A(2)
1 (m,n) = 4

9n (4mnA0,0B0,0Hm + 6mnA0,0B0,0Hn

− 4mnA0,1B0,0 − 3mnA0,0B0,1 − 4mnA0,0B0,0ψ
(0)(m+ n+ 1)

−4mA0,0B0,0 − 2nA0,0B0,0) ,

A(2)
2 (m,n) =− 4

9n (4nA0,0B0,0Hm + 6nA0,0B0,0Hn

−4nA0,0B0,0ψ
(0)(m+ n+ 1)− 4nA0,1B0,0 − 3nA0,0B0,1 − 4A0,0B0,0

)
,

A(2)
3 (m,n) =− 4

9 (6mA0,0B0,0Hn + 4mA0,0B0,0Hm

−4mA0,0B0,0ψ
(0)(m+ n+ 1)− 4mA0,1B0,0 − 3mA0,0B0,1 − 2A0,0B0,0

)
,

A(3)
1 (m,n) =− 2

9
(
24mn2A0,0B0,0HmHn − 24mn2A0,1B0,0Hn − 12mn2A0,0B0,1Hm

− 8mn2A0,0B0,0Hmψ
(0)(m+ n+ 1)− 18mn2A0,0B0,0Hnψ

(0)(m+ n+ 1)
− 16mnA0,0B0,0Hm − 12mnA0,0B0,0Hn − 12n2A0,0B0,0Hn

+ 12mn2A0,1B0,1 + 9mn2A0,0Bn,2 + 5mn2A0,0B0,0ψ
(0)(m+ n+ 1)2

+ 4n2A0,0B0,0ψ
(0)(m+ n+ 1) + 5mn2A0,0B0,0ψ

(1)(m+ n+ 1)
+ 8mn2A0,1B0,0ψ

(0)(m+ n+ 1) + 9mn2A0,0B0,1ψ
(0)(m+ n+ 1)

+ 16mnA0,1B0,0 + 6mnA0,0B0,1 + 12mnA0,0B0,0ψ
(0)(m+ n+ 1)

+ 2mA0,0B0,0 + 6n2A0,0B0,1 + 8nA0,0B0,0 ) ,
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A(3)
2 (m,n) = 2

9
(
24n2A0,0B0,0HmHn − 12n2A0,0B0,1Hm

− 8n2A0,0B0,0Hmψ
(0)(m+ n+ 1)− 18n2A0,0B0,0Hnψ

(0)(m+ n+ 1)
− 16nA0,0B0,0Hm − 24n2A0,1B0,0Hn − 12nA0,0B0,0Hn

+ 5n2A0,0B0,0ψ
(0)(m+ n+ 1)2 + 5n2A0,0B0,0ψ

(1)(m+ n+ 1)
+ 8n2A0,1B0,0ψ

(0)(m+ n+ 1) + 9n2A0,0B0,1ψ
(0)(m+ n+ 1)

+ 12nA0,0B0,0ψ
(0)(m+ n+ 1) + 12n2A0,1B0,1 + 9n2A0,0Bn,2

+ 16nA0,1B0,0 + 6nA0,0B0,1 + 2A0,0B0,0 ) ,

A(3)
3 (m,n) = 2

9 (24mA0,0B0,0HmHn − 24mA0,1B0,0Hn

− 8mA0,0B0,0Hmψ
(0)(m+ n+ 1)− 18mA0,0B0,0Hnψ

(0)(m+ n+ 1)
− 12mA0,0B0,1Hm − 12A0,0B0,0Hn + 9mA0,0Bn,2

+ 5mA0,0B0,0ψ
(0)(m+ n+ 1)2 + 4A0,0B0,0ψ

(0)(m+ n+ 1)
+ 8mA0,1B0,0ψ

(0)(m+ n+ 1) + 9mA0,0B0,1ψ
(0)(m+ n+ 1)

+ 5mA0,0B0,0ψ
(1)(m+ n+ 1) + 12mA0,1B0,1 + 6A0,0B0,1 ) ,

A(4)
1 (m,n) =− 2

9
(
−18mn2A0,0HmBn,2 − 2mn2A0,0B0,0Hmψ

(0)(m+ n+ 1)2

− 6mn2A0,0B0,0Hnψ
(0)(m+ n+ 1)2 − 6n2A0,0B0,0Hnψ

(0)(m+ n+ 1)
+ 12mn2A0,0B0,0HmHnψ

(0)(m+ n+ 1)
− 12mn2A0,1B0,0Hnψ

(0)(m+ n+ 1)− 6mn2A0,0B0,1Hmψ
(0)(m+ n+ 1)

− 2mn2A0,0B0,0Hmψ
(1)(m+ n+ 1)− 6mn2A0,0B0,0Hnψ

(1)(m+ n+ 1)
+ 24mnA0,0B0,0HmHn − 24mnA0,1B0,0Hn − 12mnA0,0B0,1Hm

− 8mnA0,0B0,0Hmψ
(0)(m+ n+ 1)− 12mnA0,0B0,0Hnψ

(0)(m+ n+ 1)
− 4mA0,0B0,0Hm − 12nA0,0B0,0Hn + 18mn2A0,1Bn,2

+mn2A0,0B0,0ψ
(0)(m+ n+ 1)3 + n2A0,0B0,0ψ

(0)(m+ n+ 1)2

+ 2mn2A0,1B0,0ψ
(0)(m+ n+ 1)2 + 3mn2A0,0B0,1ψ

(0)(m+ n+ 1)2
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+ 3mn2A0,0B0,0ψ
(1)(m+ n+ 1)ψ(0)(m+ n+ 1)

+ 3n2A0,0B0,1ψ
(0)(m+ n+ 1) + 6mn2A0,1B0,1ψ

(0)(m+ n+ 1)
+ 9mn2A0,0Bn,2ψ

(0)(m+ n+ 1) + n2A0,0B0,0ψ
(1)(m+ n+ 1)

+mn2A0,0B0,0ψ
(2)(m+ n+ 1) + 2mn2A0,1B0,0ψ

(1)(m+ n+ 1)
+ 3mn2A0,0B0,1ψ

(1)(m+ n+ 1) + 12mnA0,1B0,1

+ 4mnA0,0B0,0ψ
(0)(m+ n+ 1)2 + 2mA0,0B0,0ψ

(0)(m+ n+ 1)
+ 4nA0,0B0,0ψ

(0)(m+ n+ 1) + 8mnA0,1B0,0ψ
(0)(m+ n+ 1)

+ 6mnA0,0B0,1ψ
(0)(m+ n+ 1) + 4mnA0,0B0,0ψ

(1)(m+ n+ 1)
+ 4mA0,1B0,0 + 9n2A0,0Bn,2 + 6nA0,0B0,1 + 2A0,0B0,0 ) ,

A(4)
2 (m,n) = 2

9
(
−18n2A0,0HmBn,2

− 2n2A0,0B0,0Hmψ
(0)(m+ n+ 1)2 − 6n2A0,0B0,0Hnψ

(0)(m+ n+ 1)2

+ 12n2A0,0B0,0HmHnψ
(0)(m+ n+ 1)− 12n2A0,1B0,0Hnψ

(0)(m+ n+ 1)
− 6n2A0,0B0,1Hmψ

(0)(m+ n+ 1)− 2n2A0,0B0,0Hmψ
(1)(m+ n+ 1)

− 6n2A0,0B0,0Hnψ
(1)(m+ n+ 1) + 24nA0,0B0,0HmHn − 12nA0,0B0,1Hm

− 8nA0,0B0,0Hmψ
(0)(m+ n+ 1)− 12nA0,0B0,0Hnψ

(0)(m+ n+ 1)
− 4A0,0B0,0Hm − 24nA0,1B0,0Hn + n2A0,0B0,0ψ

(0)(m+ n+ 1)3

+ 2n2A0,1B0,0ψ
(0)(m+ n+ 1)2 + 3n2A0,0B0,1ψ

(0)(m+ n+ 1)2

+ 3n2A0,0B0,0ψ
(1)(m+ n+ 1)ψ(0)(m+ n+ 1)

+ 6n2A0,1B0,1ψ
(0)(m+ n+ 1) + 9n2A0,0Bn,2ψ

(0)(m+ n+ 1)
+ n2A0,0B0,0ψ

(2)(m+ n+ 1) + 2n2A0,1B0,0ψ
(1)(m+ n+ 1)

+ 3n2A0,0B0,1ψ
(1)(m+ n+ 1)

+ 4nA0,0B0,0ψ
(0)(m+ n+ 1)2 + 2A0,0B0,0ψ

(0)(m+ n+ 1)
+ 8nA0,1B0,0ψ

(0)(m+ n+ 1) + 6nA0,0B0,1ψ
(0)(m+ n+ 1)

+ 4nA0,0B0,0ψ
(1)(m+ n+ 1) + 18n2A0,1Bn,2 + 12nA0,1B0,1 + 4A0,1B0,0 ) ,
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A(4)
3 (m,n) =− 2

9 (18mA0,0HmBn,2

+ 2mA0,0B0,0Hmψ
(0)(m+ n+ 1)2 + 6mA0,0B0,0Hnψ

(0)(m+ n+ 1)2

− 12mA0,0B0,0HmHnψ
(0)(m+ n+ 1) + 6A0,0B0,0Hnψ

(0)(m+ n+ 1)
+ 12mA0,1B0,0Hnψ

(0)(m+ n+ 1) + 6mA0,0B0,1Hmψ
(0)(m+ n+ 1)

+ 2mA0,0B0,0Hmψ
(1)(m+ n+ 1) + 6mA0,0B0,0Hnψ

(1)(m+ n+ 1)
− 18mA0,1Bn,2 −mA0,0B0,0ψ

(0)(m+ n+ 1)3 − A0,0B0,0ψ
(0)(m+ n+ 1)2

− 2mA0,1B0,0ψ
(0)(m+ n+ 1)2 − 3mA0,0B0,1ψ

(0)(m+ n+ 1)2

− 3mA0,0B0,0ψ
(1)(m+ n+ 1)ψ(0)(m+ n+ 1)− 3A0,0B0,1ψ

(0)(m+ n+ 1)
− 6mA0,1B0,1ψ

(0)(m+ n+ 1)− 9mA0,0Bn,2ψ
(0)(m+ n+ 1)

− A0,0B0,0ψ
(1)(m+ n+ 1)−mA0,0B0,0ψ

(2)(m+ n+ 1)
− 2mA0,1B0,0ψ

(1)(m+ n+ 1)− 3mA0,0B0,1ψ
(1)(m+ n+ 1)− 9A0,0Bn,2 ) ,

B(1)
1 (m,n) = 2

9nA0,0B0,0(m− n),

B(1)
2 (m,n) =− 2

9nA0,0B0,0,

B(1)
3 (m,n) = 2

9A0,0B0,0,

B(2)
1 (m,n) =− 1

9(m− n) (4nA0,0B0,0Hm + 6nA0,0B0,0Hn

−4nA0,0B0,0ψ
(0)(m+ n+ 1)− 4nA0,1B0,0 − 3nA0,0B0,1 − 2A0,0B0,0

)
,

B(2)
2 (m,n) = 1

9 (4nA0,0B0,0Hm + 6nA0,0B0,0Hn

−4nA0,0B0,0ψ
(0)(m+ n+ 1)− 4nA0,1B0,0 − 3nA0,0B0,1 − 2A0,0B0,0

)
,

B(2)
3 (m,n) =1

9 (−4A0,0B0,0Hm − 6A0,0B0,0Hn

+4A0,0B0,0ψ
(0)(m+ n+ 1) + 4A0,1B0,0 + 3A0,0B0,1

)
,
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B(3)
1 (m,n) = 1

18
(
−24n2A0,0B0,0HmHn

+ 12n2A0,0B0,1Hm + 8n2A0,0B0,0Hmψ
(0)(m+ n+ 1)

+ 18n2A0,0B0,0Hnψ
(0)(m+ n+ 1) + 16nA0,0B0,0Hm

+ 24mnA0,0B0,0HmHn − 24mnA0,1B0,0Hn

− 12mnA0,0B0,1Hm − 6mA0,0B0,0Hn − 8mnA0,0B0,0Hmψ
(0)(m+ n+ 1)

− 18mnA0,0B0,0Hnψ
(0)(m+ n+ 1)− 8mA0,0B0,0Hm + 24n2A0,1B0,0Hn

− 5n2A0,0B0,0ψ
(0)(m+ n+ 1)2 − 5n2A0,0B0,0ψ

(1)(m+ n+ 1)
− 8n2A0,1B0,0ψ

(0)(m+ n+ 1)− 9n2A0,0B0,1ψ
(0)(m+ n+ 1)

+ 12mnA0,1B0,1 + 9mnA0,0Bn,2 + 5mnA0,0B0,0ψ
(0)(m+ n+ 1)2

− 8nA0,0B0,0ψ
(0)(m+ n+ 1) + 5mnA0,0B0,0ψ

(1)(m+ n+ 1)
+ 8mnA0,1B0,0ψ

(0)(m+ n+ 1) + 9mnA0,0B0,1ψ
(0)(m+ n+ 1)

+ 6mA0,0B0,0ψ
(0)(m+ n+ 1) + 8mA0,1B0,0 + 3mA0,0B0,1

− 12n2A0,1B0,1 − 9n2A0,0Bn,2 − 16nA0,1B0,0 + 2A0,0B0,0 ) ,

B(3)
2 (m,n) = 1

18 (−24nA0,0B0,0HmHn + 12nA0,0B0,1Hm

+ 8nA0,0B0,0Hmψ
(0)(m+ n+ 1) + 18nA0,0B0,0Hnψ

(0)(m+ n+ 1)
+ 8A0,0B0,0Hm + 6A0,0B0,0Hn + 24nA0,1B0,0Hn

− 5nA0,0B0,0ψ
(0)(m+ n+ 1)2 − 6A0,0B0,0ψ

(0)(m+ n+ 1)
− 8nA0,1B0,0ψ

(0)(m+ n+ 1)− 9nA0,0B0,1ψ
(0)(m+ n+ 1)

− 5nA0,0B0,0ψ
(1)(m+ n+ 1)− 12nA0,1B0,1 − 9nA0,0Bn,2

− 8A0,1B0,0 − 3A0,0B0,1 ) ,

B(3)
3 (m,n) = 1

18
(
24A0,0B0,0HmHn − 8A0,0B0,0Hmψ

(0)(m+ n+ 1)

− 18A0,0B0,0Hnψ
(0)(m+ n+ 1)− 12A0,0B0,1Hm

− 24A0,1B0,0Hn + 5A0,0B0,0ψ
(0)(m+ n+ 1)2 + 8A0,1B0,0ψ

(0)(m+ n+ 1)
+ 9A0,0B0,1ψ

(0)(m+ n+ 1) + 5A0,0B0,0ψ
(1)(m+ n+ 1)

+ 9A0,0Bn,2 + 12A0,1B0,1 ) ,
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B(4)
1 (m,n) = 1

18
(
−n2A0,0B0,0ψ

(0)(m+ n+ 1)3 +mnA0,0B0,0ψ
(0)(m+ n+ 1)3

+ 2mA0,0B0,0ψ
(0)(m+ n+ 1)2 − 3nA0,0B0,0ψ

(0)(m+ n+ 1)2

+ 2n2HmA0,0B0,0ψ
(0)(m+ n+ 1)2 − 2mnHmA0,0B0,0ψ

(0)(m+ n+ 1)2

+ 6n2HnA0,0B0,0ψ
(0)(m+ n+ 1)2 − 6mnHnA0,0B0,0ψ

(0)(m+ n+ 1)2

− 2n2A0,1B0,0ψ
(0)(m+ n+ 1)2 + 2mnA0,1B0,0ψ

(0)(m+ n+ 1)2

− 3n2A0,0B0,1ψ
(0)(m+ n+ 1)2 + 3mnA0,0B0,1ψ

(0)(m+ n+ 1)2

− 4mHmA0,0B0,0ψ
(0)(m+ n+ 1) + 8nHmA0,0B0,0ψ

(0)(m+ n+ 1)
− 6mHnA0,0B0,0ψ

(0)(m+ n+ 1) + 6nHnA0,0B0,0ψ
(0)(m+ n+ 1)

− 12n2HmHnA0,0B0,0ψ
(0)(m+ n+ 1)

+ 12mnHmHnA0,0B0,0ψ
(0)(m+ n+ 1)

− 3n2ψ(1)(m+ n+ 1)A0,0B0,0ψ
(0)(m+ n+ 1)

+ 3mnψ(1)(m+ n+ 1)A0,0B0,0ψ
(0)(m+ n+ 1)

+ 4mA0,1B0,0ψ
(0)(m+ n+ 1)− 8nA0,1B0,0ψ

(0)(m+ n+ 1)
+ 12n2HnA0,1B0,0ψ

(0)(m+ n+ 1)− 12mnHnA0,1B0,0ψ
(0)(m+ n+ 1)

+ 3mA0,0B0,1ψ
(0)(m+ n+ 1)− 3nA0,0B0,1ψ

(0)(m+ n+ 1)
+ 6n2HmA0,0B0,1ψ

(0)(m+ n+ 1)− 6mnHmA0,0B0,1ψ
(0)(m+ n+ 1)

− 6n2A0,1B0,1ψ
(0)(m+ n+ 1) + 6mnA0,1B0,1ψ

(0)(m+ n+ 1)
− 9n2A0,0Bn,2ψ

(0)(m+ n+ 1) + 9mnA0,0Bn,2ψ
(0)(m+ n+ 1)

+ 4HmA0,0B0,0 + 12mHmHnA0,0B0,0 − 24nHmHnA0,0B0,0

− 6HnA0,0B0,0 + 2mψ(1)(m+ n+ 1)A0,0B0,0

− 3nψ(1)(m+ n+ 1)A0,0B0,0 + 2n2Hmψ
(1)(m+ n+ 1)A0,0B0,0

− 2mnHmψ
(1)(m+ n+ 1)A0,0B0,0

+ 6n2Hnψ
(1)(m+ n+ 1)A0,0B0,0 − 6mnHnψ

(1)(m+ n+ 1)A0,0B0,0

− n2ψ(2)(m+ n+ 1)A0,0B0,0 +mnψ(2)(m+ n+ 1)A0,0B0,0

− 12mHnA0,1B0,0 + 24nHnA0,1B0,0 − 2n2ψ(1)(m+ n+ 1)A0,1B0,0

+ 2mnψ(1)(m+ n+ 1)A0,1B0,0 − 4A0,1B0,0 − 6mHmA0,0B0,1

+ 12nHmA0,0B0,1 − 3n2ψ(1)(m+ n+ 1)A0,0B0,1

+ 3mnψ(1)(m+ n+ 1)A0,0B0,1 + 3A0,0B0,1 + 6mA0,1B0,1

− 12nA0,1B0,1 + 9nA0,0Bn,2 + 18n2HmA0,0Bn,2

− 18mnHmA0,0Bn,2 − 18n2A0,1Bn,2 + 18mnA0,1Bn,2 ) ,
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B(4)
2 (m,n) = 1

18 (−12A0,0B0,0HmHn

+ 18nA0,0HmBn,2 + 2nA0,0B0,0Hmψ
(0)(m+ n+ 1)2

+ 6nA0,0B0,0Hnψ
(0)(m+ n+ 1)2 + 4A0,0B0,0Hmψ

(0)(m+ n+ 1)
− 12nA0,0B0,0HmHnψ

(0)(m+ n+ 1) + 6A0,0B0,0Hnψ
(0)(m+ n+ 1)

+ 12nA0,1B0,0Hnψ
(0)(m+ n+ 1) + 6nA0,0B0,1Hmψ

(0)(m+ n+ 1)
+ 2nA0,0B0,0Hmψ

(1)(m+ n+ 1) + 6nA0,0B0,0Hnψ
(1)(m+ n+ 1)

+ 6A0,0B0,1Hm + 12A0,1B0,0Hn − nA0,0B0,0ψ
(0)(m+ n+ 1)3

− 2A0,0B0,0ψ
(0)(m+ n+ 1)2 − 2nA0,1B0,0ψ

(0)(m+ n+ 1)2

− 3nA0,0B0,1ψ
(0)(m+ n+ 1)2 − 3nA0,0B0,0ψ

(1)(m+ n+ 1)ψ(0)(m+ n+ 1)
− 4A0,1B0,0ψ

(0)(m+ n+ 1)− 3A0,0B0,1ψ
(0)(m+ n+ 1)

− 6nA0,1B0,1ψ
(0)(m+ n+ 1)− 9nA0,0Bn,2ψ

(0)(m+ n+ 1)
− 2A0,0B0,0ψ

(1)(m+ n+ 1)− nA0,0B0,0ψ
(2)(m+ n+ 1)

− 2nA0,1B0,0ψ
(1)(m+ n+ 1)− 3nA0,0B0,1ψ

(1)(m+ n+ 1)
− 18nA0,1Bn,2 − 6A0,1B0,1 ) ,

B(4)
3 (m,n) = 1

18 (−18A0,0HmBn,2

− 2A0,0B0,0Hmψ
(0)(m+ n+ 1)2 − 6A0,0B0,0Hnψ

(0)(m+ n+ 1)2

+ 12A0,0B0,0HmHnψ
(0)(m+ n+ 1)− 12A0,1B0,0Hnψ

(0)(m+ n+ 1)
− 6A0,0B0,1Hmψ

(0)(m+ n+ 1)− 2A0,0B0,0Hmψ
(1)(m+ n+ 1)

− 6A0,0B0,0Hnψ
(1)(m+ n+ 1) + A0,0B0,0ψ

(0)(m+ n+ 1)3

+ 2A0,1B0,0ψ
(0)(m+ n+ 1)2 + 3A0,0B0,1ψ

(0)(m+ n+ 1)2

+ 3A0,0B0,0ψ
(1)(m+ n+ 1)ψ(0)(m+ n+ 1) + 6A0,1B0,1ψ

(0)(m+ n+ 1)
+ 9A0,0Bn,2ψ

(0)(m+ n+ 1) + A0,0B0,0ψ
(2)(m+ n+ 1)

+ 2A0,1B0,0ψ
(1)(m+ n+ 1) + 3A0,0B0,1ψ

(1)(m+ n+ 1)
+ 18A0,1Bn,2 ) .
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