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We consider an n x n linear system of ODEs with an irregular singularity of Poincaré rank 1 at z = oo,
holomorphically depending on parameter ¢ within a polydisc in C™ centred at ¢t = 0. The eigenvalues of
the leading matrix at z = co coalesce along a locus A contained in the polydisc, passing through ¢t = 0.
Namely, z = oo is a resonant irregular singularity for t € A. We analyse the case when the leading
matrix remains diagonalisable at A. We discuss the existence of fundamental matrix solutions, their
asymptotics, Stokes phenomenon and monodromy data as t varies in the polydisc, and their limits for ¢
tending to points of A. When the deformation is isomonodromic away from A, it is well known that a
fundamental matrix solution has singularities at A. When the system also has a Fuchsian singularity at
z = 0, we show under minimal vanishing conditions on the residue matrix at z = 0 that isomonodromic
deformations can be extended to the whole polydisc, including A, in such a way that the fundamental
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matrix solutions and the constant monodromy data are well defined in the whole polydisc. These data
can be computed just by considering the system at fixed ¢ = 0. Conversely, if the ¢-dependent system
is isomonodromic in a small domain contained in the polydisc not intersecting A, if the entries of the
Stokes matrices with indices corresponding to coalescing eigenvalues vanish, then we show that A is not
a branching locus for the fundamental matrix solutions. The importance of these results for the analytic
theory of Frobenius Manifolds is explained. An application to Painlevé equations is discussed.

1. INTRODUCTION

We study deformations of linear differential systems, playing an important role in applications, with
a resonant irregular singularity at z = co. The n X n linear (deformed) system depends on parameters
t=(t1,...,tm) € C™, (here n,m € N\{0}) and has the following form:

o0
% — A(= )Y, A1) = Agft) + 3 Ap(t)2 ", (1.1)
k=1
with singularity of Poincaré rank 1 at z = oo. The series A(z, t) is uniformly convergent in a neighborhood
of z = oo for |z| > Ny > 0 sufficiently large, and the coefficients Ag(t) and Ag(t), k > 1, are holomorphic
matrix valued functions on an open connected domain of C™. We take the Poincaré rank equal to 1 in
view of the important applications which motivate our work, as it is explained below in this Introduction.

The deformation theory is well understood when Ay(t) has distinct eigenvalues uq (t), ua(t), ..., un(t)
for ¢t in the domain. On the other hand, there are important cases for applications (see below) when
Ap(t) is diagonalisable, but two or more eigenvalues may coalesce when t reaches a certain locus A in the
t-domain, called the coalescence locus. This means that u,(t) = up(t) for some indices a # b € {1,...,n}
whenever ¢ belongs to A, while u;(t), ua(t), ..., u,(t) are pairwise distinct otherwise!. Points of A
will be called coalescence points. The point z = oo for ¢ € A is usually called a resonant irreqular
singularity, but we will not use this nomenclature throughout the paper. To the best of our knowledge,
the analysis of fundamental matrix solutions and their monodromy when Ag(t) is diagonalisable with
coalescing eigenvalues for ¢t € A, is missing from the existing literature, as we will shortly review later.
This is the main problem which we address in the present paper, both in the non-isomonodromic and
isomonodromic cases. The main results of the paper are contained in:

— Theorem 14.1, Corollaries 14.1 and 14.2, and in Theorem 15.1, for the non-isomonodromic case;
— Theorem 1.1 (Th. 19.1), Corollary 1.1 (Corol. 19.2) and Theorem 1.2, for the isomonodromic
case.

For the sake of the local analysis at coalescence points, we can restrict to the case when the domain
is a polydisk
Ue,(0):={t €C™ suchthat |t|<e}, [t] := e [t:]

for suitable ¢y > 0, being t = 0 a point of the coalescence locus. We will again denote by A the
coalescence locus in U, (0). Tt is well known that the eigenvalues uq(t),..., u,(t) are branches of one or
more functions of ¢, with algebraic branching at A (see [45]). A matrix Go(t) which diagonalises Ay (t)
for ¢ ¢ A, namely such that Gy *(t)Ag(t)Go(t) = A(t), where

A(t) = diag(uy (1), ..., un (1)), (1.2)

is generally singular when t approaches A. Example will be given in Section 2.1. Consider a fundamental
solution? that for ¢ belonging to a sufficiently small domain V C U,,(0), with VN A = ), has a canonical
asymptotic representation (see [37])

Y(z,t) ~ Go(t) (I + ZFk(t)sz>zBleA(t)z, z — 00,
k=1

LA is a discrete set for m = 1, otherwise it is a continuous locus for m > 2. For example, for the matrix diag(t1, ta, ..., tn),
the coalescence locus is the union of the diagonals t; =t;, 1 # j € {1,2,...,n}.
2A fundamental matrix solution will be simply called a fundamental solution.
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in a suitable sector S(V) depending on V), explained after formula (1.6) below. Here I stands for the
identity matrix and Bj is a diagonal matrix, given in formula (1.6). Then, the t-analytic continuation
of Y(z,t) inherits the singularities of Go(t) as t tends to A. Thus, in order to extend the deformation
theory when ¢ approaches A, we need the following;:

Assumption 1: The holomorphic matrix Ag(t) is holomorphically similar in U, (0) to a diagonal
matrix A(t) as in (1.2), namely there exists an invertible matrix Go(t) holomorphic on U.,(0) such that

Gyt () Ao(t)Go(t) = A(2). (1.3)
Assumption 1, which is basically the assumption of the paper, holds for example for Frobenius man-
ifolds remaining semisimple at the locus of coalescent canonical coordinates, and in applications to the

sixth Painlevé transcendents holomorphic at a fixed singularity of the Painlevé equation (see Sections
21 and 22 below).

Given Assumption 1, the transformation Y +— G(¢)Y changes A(z,t) to a matrix valued function

Az, 1) 1= Go(t) ™ A2, 1)Go(1), (1.4)
holomorphic on {|z| > Ny} x U, (0) for sufficiently large Ny > 0, so that system (1.1) becomes
v = A(z,t)Y, Az t) = A(t) +i2 (t)z"F (1.5)
5, =AY, z,t) = kzlkz. :

where A}, (t), k > 1, and A(t) are holomorphic on U, (0).

When A is not empty, the dependence on ¢ of fundamental solutions of (1.5) near z = oo is quite
delicate. If t ¢ A, then the system (1.5) has a unique formal solution (see [37]),

Yp(z,t) := (I + i Fk(t)z*k)zBﬂf)eA(t)a By (t) == diag(A; (1)), (1.6)
k=1

where the matrices F(t) are uniquely determined by the equation and are holomorphic on U, (0)\A.

In order to find actual solutions, and their domain of definition in the space of parameters t, one can
refer to the local existence results of Sibuya [66] [37] (see Theorems 2.1 and 5.1 below), which guarantees
that, given ¢y € U, (0)\A, there exists a sector and a fundamental solution Y (z,t) holomorphic for |z|
large and |t — to| < p , where p is sufficiently small, such that Y (z,t) ~ Yr(z,t) for 2 — oo in the
sector. The condition |t —tg| is restrictive, since p is expected to be very small. In the present paper, we
prove this result for ¢ in a wider domain V C U, (0), extending |t — tg| < p. V is constructed as follows.
Let t = 0 and consider the Stokes rays associated with the matrix A(0), namely rays in the universal
covering R of the z-punctured plane C\{0}, defined by the condition that Re[(uy(0) —up(0))z] = 0, with
ua(0) # up(0) (1 < a # b < n). Then, consider an admissible ray, namely a ray in R, with a certain
direction 7, that does not contain any of the Stokes rays above, namely Re[(u,(0) —u(0))z] # 0 for any
uq(0) # up(0) and argz = 7. Define the locus X (7) to be the set of points ¢t € U, (0) such that some
Stokes rays {z € R | Re[(uq(t) — up(t))z] = 0} associated with A(¢), ¢t & A, coincide with the admissible
ray arg z = 7. Finally, define a 7-cell to be any connected component of U, (0)\ (A U X (7)) (see Section
10 for a thorough study of the cells). Then, we take an open connected open domain V such that its
closure V is contained in a 7-cell.

Definition 1.1. The deformation of the linear system (1.9), such that t varies in an open connected
domain V C U, (0), such V is contained in a T-cell, is called an admissible deformation®. For

simplicity, we will just say that t is an admissible deformation.

By definition, an admissible deformation means that as long as ¢ varies within V, then no Stokes rays
of A(t) cross the admissible ray of direction 7.

If ¢ belongs to a domain V as above, then we prove in Section 13 that there is a family of actual
fundamental solutions Y,.(z,t), labelled by r € Z, uniquely determined by the canonical asymptotic

3The definition of admissible deformation of a linear system is in accordance with the definition given in [28].



FIGURE 1. Stokes phenomenon of formula (1.7). In the left figure is represented the

sheet of the universal covering 7 — 7 < argz < 7 + 7 containing S&1(V) N S2(V), and

in the right figure the sheet 7 < argz < T + 27 containing S2(V) N S3(V). The rays
argz = 7 and T + m (and then 7 4 kx for any k € Z) are admissible rays, such that

Re {(ua(O)—ub(O))z} # 0 along these rays, for any u4(0) # up(0). Moreover, Re [(ua(t)—
ub(t))z} #0forany t €V and any 1 < a #b < n.

representation

Y (z,t) ~ Yr(z,t),
for 2 — oo in suitable sectors S,.(V) of the universal covering R of C\{0}. Each Y,(z,t) is holomorphic
in {z € R ||z] > N} xV, for a suitably large N. The asymptotic series I + >, | Fi(t)z~" is uniform
in V.

The sectors S,.(V) are constructed as follows: take for example the “ half plane” I1; := {z € R | T—7 <
arg z < 7}. The open sector containing IT; and extending up to the closest Stokes rays of A(t) outside ITy
will be called S;(t). Then, we define Sy (V) := (o5 S1(t). Analogously, we consider the “half-planes”
I, :={z€R |7+ (r—3)7r <argz <7+ (r — 1)7} and repeat the same construction for S,.(V). The
sectors S,.(V) have central opening angle greater than 7 and their successive intersections do not contain
Stokes rays Re[(uq(t) —up(t))z] = 0 associated with the eigenvalues of A(t), t € V. The sectors S,.(V) for

r =1,2,3 are represented in Figure 1. An admissible ray argz = 7 in S;(V) N Sz(V) is also represented.

If the t-analytic continuation of Y;.(z,t) exists outside V, then the delicate points emerge, as follows.

o The expression Re [(uq(t) —up(t))z], 1 < a # b < n, has constant sign in the 7-cell containing
V, but it vanishes when a Stokes ray Re [(uq(t) — up(t))z] = 0 crosses the admissible direction 7.
This corresponds to the fact that ¢ crosses the boundary of the cell. Then, it changes sign for ¢
outside of the cell. Hence, the asymptotic representation Y,.(z,t) ~ Yr(z,t) for z — oo in S,.(V)
does no longer hold for ¢ outside the 7-cell containing V.

e The coefficients Fy(t) are in general divergent at A.

e The locus A is expected to be a locus of singularities for the Y,.(z,t)’s (see Example 5.1 below).

e The Stokes matrices S, (t), defined for ¢ € V by the relations (see Figure 1)
Y;~+1(Z,t) :YT(th) ST(t)’ (17)
are expected to be singular as t approaches A.

Remark 1.1. It is well known that, in order to completely describe the Stokes phenomenon, it suffices
to consider only three fundamental solutions, for example Y,.(z,t) for r = 1,2,3, and Sy (¢), Sa2(t).

The matrix A(z,t) may have other singularities at finite values of z. In the isomonodromic case, we
will consider A(z,t) with a simple pole at z = 0, namely

Az, t) = Ao(t) + (1.8)

Ai(t)

pos
An isomonodromic system of type (1.8), with antisymmetric A;, is at the core of the analytic approach
to semisimple Frobenius manifolds [17] [18] [19] (see also [62] [63] [64] [53] [61]). Its monodromy data
play the role of local moduli. Coalescence of eigenvalues of Ag(t) occurs in important cases, such as
quantum cohomology (see [14] [15] and Section 21 below). For n = 3, a special case of system (1.8)
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gives an isomonodromic description of the general sixth Painlevé equation, according to [54] (see also
[35]). This description was given also in [17] [19] for a sixth Painlevé equation associated with Frobenius
manifolds. Coalescence occurs at the critical points of the Painlevé equation (see Section 22).

The transformation Y — Go(t)Y changes (1.8) into

o = Ay, &aozmw+AfX (1.9)

For given t, a matrix G()(¢) (not to be confused with Go(t) in (1.3)), puts A;(¢) in Jordan form
TO() == (GO )7 Au(t) GO(p).

Close to the Fuchsian singularity z = 0, and for a given ¢, the system (1.9) has a fundamental solution
> (0) (0) (0)
Y(O)(z,t) =GO (t) <I + Z\IJl(t)zl> 2P0 ST OFRTW) (1.10)
=1

in standard Birkhoff-Levelt normal form, whose behaviour in z and ¢ is not affected by the coalescence
phenomenon. The matrix coefficients ¥;(t) of the convergent expansion are constructed by a recursive
procedure. D) (t) = diag(d;(t), ...,d,(t)) is a diagonal matrix of integers, piecewise constant in t, S(°)(¢)
is a Jordan matrix whose eigenvalues pi(t), ..., pn(t) have real part in [0, 1], and the nilpotent matrix
RO)(¢) has non-vanishing entries only if some eigenvalues of A, (t) differ by non-zero integers. If some
eigenvalues differ by non-zero integers, we say that gl(t) is resonant. The sum

JO @) = DO(#) + 5O (¢)

is the Jordan form of A;(t) above. Under the assumptions of our Theorem 1.1 below, the solution (1.10)
turns out to be holomorphic in t € U, (0). *

In order to completely describe the monodromy of the system (1.9), we need its essential monodromy
data (the adjective “essential” is inspired by a similar definition in [44]). We recall that it suffices to
consider three fundamental solutions, for example Y,.(z,t) for r = 1,2,3, and consequently the Stokes
matrices S;(¢) and Sy(t). Moreover, chosen a solution Y(©)(z,¢) with normal form (1.10), a central
connection matriz C(©) is defined by the relation

Yi(z,t) =Y Oz, ) cO®@),  ze&V). (1.11)
Then, the essential monodromy data of the system (1.9) are defined to be
Si(t), Sat), Bi(t) = diag(Ai(t), CO), JO@), RO®). (1.12)

Now, when ¢ tends to a point tA € A, the limits of the above data may not exist. If the limits exist, they
do not in general give the monodromy data of the system A(z,ta). The latter have in general different
nature, as it is clear from the results of [3], and from Section 3 below.”

Definition 1.2. If the deformation is admissible in a domain V, as in Definition 1.1, we say that it is
isomonodromic in V if the essential monodromy data (1.12) do not depend on t € V.

When this definition holds, the classical theory of Jimbo-Miwa-Ueno [44] applies.® We are interested
in extending the deformation theory to the whole U, (0), including the coalescence locus A.

4f Y (0) (2, t) is chosen, with given G(O) (t), ¥;(t)’s and R(%)(t), then there is a class of suitable matrices D(t) such that
YO (z,4)D(t) also has the standard form (1.10) with new G(O(¢), W;(t)’s and R(9)(¢). More details are in Section 16.

53ee for example the solution (4.13), where it is evident that the monodromy datum L, defined at ¢ = 0, is not the
limit for ¢ — 0 of Bi(¢) as in (1.6).

6 Notice that in [44] it is also assumed that A;(t) is diagonalisable with eigenvalues not differing by integers. We do
not make this assumption here.
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1.1. Main Results. a] The case of systems (1.1) and (1.5). Up to Section 15, we study
system (1.1) without requiring that the deformation is isomonodromic. First, we give the general formal
and actual solutions for z — oo of system (1.1) when t = 0 (or to € A), without Assumption 1.7
Then, under Assumption 1, in Proposition 5.1 we give necessary and sufficient conditions such that the
coefficients Fj(t) of a formal solution of (1.1)

Yi(z,t) = Gol(t) (I +) Fk(t)z_k)zBl(t)eA(t)Z, td A, (1.13)
k=1

are actually holomorphic also at t € A. Notice that our result cannot be derived from [1] and [65],
where holomorphic confluence for ¢ — 0 of formal solutions is studied, since A(¢)z is in general not “well-
behaved” (condition (4.2) of [65] is violated). In Section 13, we prove that fundamental solutions Y.(z, t),
r € Z, of (1.1) can be t-analytically continued to a whole 7-cell containing the domain V of Definition
1.1, preserving the asymptotic representation (1.13). In Theorem 14.1 we give sufficient conditions such
that fundamental solutions Y,.(z,t), together with their Stokes matrices S, (t), are actually holomorphic
also at A and in the whole U, (0), in such a way that the asymptotic representation Y,(z,t) ~ Yr(z,t)

continues to hold, for z — oo in wider sectors S, containing S,(V), to be introduced below (see (1.19)).
We show in this case that the limits

lim S,(t), ta €A, (1.14)

t—ta

exist and are finite. They give the Stokes matrices for the system (1.1) with matrix coefficient A(z,ta)
(see Corollary 14.1 and 14.2). In the analysis of the above issues, wall crossing phenomena and cell
decompositions of U, (0) will be studied. Another result on the analytic ocntinuation of fundamental
solutions, with vanishing conditions on the Stokes matrices, is given in Theorem 15.1.

We compare our results with the existing literature, where sometimes the irregular singular point
is taken at z = 0 (equivalent to z = oo by a change z +— 1/z). One considers a “folded” system
A(2,0) = 27kt Z;io A;(0)27, with an irregular singularity of Poincaré rank k at z = 0 and studies its
holomorphic unfolding A(z,t) = p(z,t)~* > o A;(t)z7, where p(z,t) = (2 —a1(t)) - (z — ar41(t)) is a
polynomial. Early studies on the relation between monodromy data of the “folded” and the “unfolded”
systems were started by Garnier [29], and the problem was again raised by V.I. Arnold in 1984 and
studied by many authors in the ’80’s and ’90’s of the XX century, for example see [59], [26], [9]. Under
suitable conditions, some results have been recently established regarding the convergence for t — 0 (¢
in sectors or suitable ramified domains) of fundamental solutions and monodromy data (transition or
connection matrices) of the “unfolded” system to the Stokes matrices of the “folded” one [59], [26], [9],
[1], [65], [30], [31], [38], [40], [46]. Nevertheless, to our knowledge, the case when Ay(0) is diagonalisable
with coalescing eigenvalues has not yet been studied. For example, in [30] (see also references therein)
and [38] [40], it is assumed that the leading matrix Ao(0) has distinct eigenvalues. In [31], Ag(0) is
a single n x n Jordan block (only one eigenvalue), with a generic condition on A(z,t). Moreover, the
irregular singular point is required to split into non-resonant Fuchsian singularities aj(t), ..., ag4+1(¢).
The case when Ag(0) is a 2 x 2 Jordan block and k = 1 is thoroughly described in [46], again under
a generic condition on A(z,t), with no conditions on the polynomial p(z,t). Explicit normal forms for
the unfolded systems are given (including an explanation of the change of order of Borel summability
when z = 0 becomes a resonant irregular singularity as ¢ — 0). Nevertheless, both in [31] and [46] the
system at ¢ = 0 is ramified and the fundamental matrices Y.(z,t) diverge when ¢ — 0, together with the
corresponding Stokes matrices. Therefore, our results on the extension of the asymptotic representation
at A and the existence of the limit (1.14), for a system with diagonalisable Ag(ta), seem to be missing
in the literature.

b] Isomonodromic case of system (1.9). Let the deformation be isomonodromic in V), as
in Definition 1.2, so that the classical theory of Jimbo-Miwa-Ueno applies. As a result of [44], the

"We give an explicit construction of the formal solutions; their structure can also be derived from [3].



7

eigenvalues can be chosen as the independent deformation parameters. This means that we can assume®

linearity in ¢ € U, (0), as follows:
Ue(t) = ug(0) +t,, 1<a<n = m=n. (1.15)

Therefore,
A(t) = A(0) + diag(ty, ..., tn)

with

A(O) :Al@"'@As, s<n, Ai :)‘ilpia (116)
where A1, ..., As are the s < n distinct eigenvalues of A(0), of respectively multiplicities py, ..., ps (p1 +
---+ps = n). Here, I, is the p; x p; identity matrix. Now, the size €y of U, (0) is taken sufficiently
small so that we can write

A(t) :Al(t)EB"'@As(t)v (117)
with the properties that lim; o Aj(t) = AjIp, , and that A;(t) and A;(t) have no common eigenvalues
for i # j. Thus, A is represented as
A=]a,
i=1

where
A i={t €U, (0) | ty =ty with ug(0) = up(0) = A\;}.

Our problem is to extend the isomonodromy deformation theory from V to the whole U, (0) in this case.

As it will be reviewed below after Theorem 1.2, the existing literature on isomonodromy deformations
does not seem to solve our problem. We give a solution in the following Theorem 1.1 and Corollary 1.1
(equivalently, see Theorem 19.1 and Corollary 19.2 in the main body of the paper).

In order state Theorem 1.1 in a precise way, we need a last technical remark on the radius ¢y of the
polydisc. As explained above, ¢ is sufficiently small to ensure that A;(¢) has no eigenvalues in common
with A;(t), for i # j (see (1.17)). Moreover, we require that it satisfies the following constraint

< min b, 1.18
co < Jnin_ djk (1.18)

where .
djk = 3 gleiﬂg{P\k -\ + ipexp{—i%}\}

(here 7 is the imaginary unit). This condition has a geometrical reason. If we represent Ay, ..., As in the
same A-plane, we can easily verify that the distance between the two parallel lines through A; and Ay of
angular direction 37/2 — 7 is exactly 20;;. Let us consider Stokes rays {z € R | R(z(uq(t) — up(t)) = 0}
associated with couples uq(t), up(t), a,b € {1,2,...,n}, such that u,(0) = A; and u,(0) = Ag, with
1 < j # k < s. None of these rays crosses the admissible directions 7 + km, k € Z, when t varies in
U, (0) with €y as in (1.18). For a given t, let Ji(¢) be the set of all the above rays for all j # k. We
construct a sector S, (t) containing the “half-plane” II, (defined above), and extending up to the closest
Stokes rays of R(t) lying outside II,. Clearly, ‘SA'T(t) D S,(t). Then, define

S= ] Sw. (1.19)

teU., (0)

By construction, if €y is as in (1.18), then this sector has central opening angle greater than 7. Note
that S, (V) C S,

Theorem 1.1. Consider the system (1.9), with eigenvalues of A(t) linear in t as in (1.15), and with
A1 (t) holomorphic on a closed polydisc Ue,(0) centred at t = 0, with sufficiently small radius €y as in
(1.18). Let A be the coalescence locus in Ue,(0), passing through t = 0. Let the dependence on t be
isomonodromic in a domain V as in Definition 1.2.

8 This assumption will be used in the paper starting from Section 14.2.



If the matriz entries of Ay(t) satisfy in U, (0) the vanishing conditions
(21(t)) .= Oua(t) —wy(t), 1<a#b<n, (1.20)

whenever ug(t) and up(t) coalesce as t tends to a point of A, then the following results hold:

e The formal solution Yr(z,t) of (1.9) as given in (1.6) is holomorphic on the whole Ue,(0).

o The three fundamental matriz solutions Y,.(z,t), r = 1,2,3, of the system of (1.9), which are
defined on V, with asymptotic representation Yr(z,t) for z — oo in sectors S,.(V) introduced
above, can be t-analytically continued as single-valued holomorphic functions on U, (0), with

asymptotic representation
Y, (z,t) ~ Yr(z,1), Z — 00 in 3;,

for any t € U, (0), and any 0 < €1 < €. In particular, they are defined at any to € A
with asymptotic representation Yr(z,ta). The fundamental matriz solution Y9 (z,t) is also
t-analytically continued as a single-valued holomorphic function on Ue,(0)

o The constant Stokes matrices Sy, So, and a central connection matriz C© | initially defined for
t € V, are actually globally defined on U, (0). They coincide with the Stokes and connection
matrices of the fundamental solutions Y, (z,0) and Y9 (z,0) of the system

y -~ ~ A1(0
e A(z,0)Y, A(z,0) = A(0) + i ) (1.21)
z z
Also the remaining t-independent monodromy data in (1.12) coincide with those of (1.21).
e The entries (a,b) of the Stokes matrices are characterised by the following vanishing property:

(S1)ab = (S1)ba = (S2)ap = (S2)pe =0 whenever u,(0) = up(0), 1< a#b<n. (1.22)

Theorem 1.1 allows to holomorphically define the fundamental solutions and the monodromy data
on the whole U, (0), under the only condition (1.20). This fact is remarkable. Indeed, according to
[55], in general the solutions Y(©)(z,t), Y;.(2,t) and X(z,t), t € V, of monodromy preserving deforma-
tion equations can be analytically continued as meromorphic matrix valued functions on the universal
covering of C"\Acn, where Acn = Uz;éb{ua(t) = up(t)} is the coalescence locus in C™. They have fixed
singularities at the branching locus Ac¢n, and so at A C Acgn. Moreover, the t-analytic continuation on
U, (0) of a the solutions Y, (z,t) are expected to lose their asymptotic representation Y, (z,t) ~ Yr(z,1)
in S,.(V), when t moves sufficiently far away from V), namely when Stokes rays cross and admissible ray
of direction 7. Under the assumptions of Theorem 1.1 these singular behaviours do not occur.

Let the assumptions of Theorem 1.1 hold. Then, the system (1.21) has a formal solutions (here we
denote objects Y, S and C referring to the system (1.21) with the symbols Y, S and C) with behaviour?

Vi(z) = (1 +3 ﬁkz*k)z&w)eA(O)Z, B1(0) = diag(A,(0)). (1.23)
k=1

The matrix-coefficients F . are recursively constructed from the equation (1.21), but not uniquely deter-
mined. Actually, there is a family of formal solutions as above, depending on a finite number of complex
parameters. To each element of the family, there correspond unique actual solutions Y7 (z), Ya(z), Y3(z)
such that Y, (z) ~ Yp(z) for z — 0o in a sector S, D S,(V), r = 1,2, 3, with Stokes matrices defined by

o

V() =Y(2) S, r=12

Only one element of the family of formal solutions (1.23) satisfies the condition Fj, = F}(0) for any
k > 1, and by Theorem 1.1 the relations S, = S, hold. Let us choose a solution Y(O)(z) close to z =0 in
the Birkhoff-Levelt normal form, and define the corresponding central connection matrix C®) such that

Yi(z) =YO(z) CO,

91If the vanishing condition (1.20) fails, formal solutions are more complicated (see Theorem 4.1).
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We will prove that the class of formal solutions (1.23) reduces to only one element (thus the formal

solution is unique) if and only if the diagonal entries of //1\1 (0) do not differ by non-zero integers. This
fact implies the following

Corollary 1.1. Let the assumptions of Theorem 1.1 hold. If the diagonal entries of A (0) do not differ
by non-zero integers, then there is a unique formal solution (1.23) of the system (1.21), whose coefficients
necessarily satisfy the condition )

Fk = Fk (0)
Hence, (1.21) only has at z = oo canonical fundamental solutions Yi(z), Ya(z), Y3(z), which coincide
with the canonical solutions Y1(z,t), Ya(z,t), Ys(z,t) of (1.9) evaluated at t = 0, namely:

Yi(z,0) = Y1(2), Ya(2,0) = Ya(z), Yi(z,0) = Ys(2).

Moreover, for any Y (2) there exists YO (z,t) such that Y(©(z,0) = YO (2). The following equalities
hold: ) ) )
S1=851, S2=8;, CcO=CO,

Corollary 1.1 has a practical computational importance: the constant monodromy data (1.12) of the
system (1.9) on the whole U, (0) are computable just by considering the system (1.21) at the coalescence
point t = 0. This is useful for applications in the following two cases.

a) When A (t) is known in a whole neighbourhood of a coalescence point, but the computation of
monodromy data, which is highly transcendental, can be explicitly done (only) at a coalescence point,
where (1.9) simplifies due to (1.20). An example is given in Section 22 for the sixth Painlevé equation.
Another example will be given in [15] for the As-Frobenius manifold.

b) When A;(t) is explicitly known only at a coalescence point. This may happen in the case of
Frobenius manifolds. So far, the theory of semisimple Frobenius manifolds has never been extended
to semisimple coalescence points, which appear frequently in important cases, such as for example the
quantum cohomology of Grassmannians [14], [15]. Our result is at the basis of the extension of the
theory, as it will be thoroughly exposed in [15]. Theorem 1.1 and Corollary 1.1 allows the computation
of local moduli (monodromy data) of a semisimple Frobenius manifold just by considering a coalescence
point. The link between the present paper and [15] will be established in Section 21.

In the present paper, we also prove Theorem 1.2 below, which is the converse of Theorem 1.1. Assume
that the system is isomonodromic on a simply connected domain V C U, (0) as in Definition 1.1. Note
that now we are not assuming that A;(t) is holomorphic in the whole U, (0), contrary to what has
been done so far. As a result of [55], the fundamental solutions Y, (z,t), r = 1,2,3, and A;(¢) can be
analytically continued as meromorphic matrix valued functions on the universal covering of U, (0)\A,
with movable poles at the Malgrange divisor [57] [50] [51] [52]. The coalescence locus A is in general a
fixed branching locus. Moreover, although for ¢ € V the fundamental solutions Y,.(z,t) have in S,(V)
the canonical asymptotic behavior Yg(z,t) as in (1.6), in general this is no longer true when ¢ moves
sufficiently far away from V.

Nevertheless, if the vanishing condition (1.22) on Stokes matrices holds, then we can prove that the
fundamental solutions Y, (z,t) and A, (t) have single-valued meromorphic continuation on U, (0)\A, so
that A is not a branching locus. Moreover, the asymptotic behaviour is preserved, according to the
following

Theorem 1.2. Let €y be asin (1.18). Consider the system (1.9). Let the matriz A, (t) be holomorphic on
an open simply connected domain V C U, (0) such that the deformation is admissible and isomonodromic
as i Definitions 1.1 and 1.2. Assume that the entries of the constant Stokes matrices satisfy the
vanishing condition

(S1)ab = (S1)ba = (S2)ab = (S2)ba = 0 whenever uq(0) = up(0), 1 < a#b<n.
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Then, as functions of t, the fundamental solutions Y, (z,t) and 21\1 (t) admit single-valued meromorphic
continuation on U, (0)\A. Moreover, for any t € U, (0)\A which is not a pole of Y,.(z,t) (i.e. which is
not a point of the Malgrange divisor), we have

Y, (z,t) ~Yp(z,t) forz— oo in gr(t), r=1,2,3,

and

Yiii1(z,t) =Y. (2,t) S,, r=1,2.
The S, (t)’s are the wide sectors described after the inequality (1.18) above.

We compare our results with the existing literature on isomonodromic deformations. The case when
A is empty and A (t) is any matrix does not add additional difficulties to the theory developed in
[44]. Indeed, in the definition of isomonoromic deformations given above, not only we require that the
monodromy matrix at z = 0 is independent of ¢, but also the monodromy exponents J©©, R(®) and the
connection matrix C(©) in (1.12) are constant (this is an isoprincipal deformation, in the language of
[42]). Given these conditions on the exponents, and assuming that A = (), one can essentially repeat
the proofs given in [44]. For example, the case when A is empty and A, (t) is skew-symmetric and
diagonalisable has been studied in [17], [19]. We also recall that in case of Fuchsian singularities only,
isomonodromic deformations were completely studied!® in [11] and [42].

Isomonodromy deformations at irregular singular points with leading matrix admitting a Jordan form
independent of t were studied in [6] (with some minor Lidskii generic conditions). For example, if the
singularity is at z = oo as in (1.5), the results of [6] apply to A\(Z,t) = 1 J + Z]Oil Ej(t)z_j),
with Jordan form J and Poincaré rank k > 1. Although the eigenvalues of J have in general algebraic
multiplicity greater than 1, J is “rigid”, namely w1, ..., u, do not depend on t.

Other investigations of isomonodromy deformations at irregular singularities can be found in [27]
and [7]. Nevertheless, these results do not apply to our coalescence problem. For example, the third
admissibility conditions of definition 10 of [7] is not satisfied in our case. In [27] the system with
A(z,t) = 2""1B(2,t), r € Q, is considered, such that B(co,t) has distinct eigenvalues; z = co satisfying
this condition is called a simple irregular singular point. This simplicity condition does not apply in our
case.

The results of [46], cited above, are applied in [47] to the 3 x 3 isomonodromic description of the
Painlevé 6 equation and its coalescence to Painlevé 5. In this case, the limiting system for ¢ — 0 has
leading matrix with a 2 x 2 Jordan block, so that the fundamental matrices Y;(z,t) diverge.

Isomonodromic deformations of a system such as our (1.9) (with z — 1/z, Ay~ Z, Ay — f) appears
also in [12]. Nevertheless, the deformations in Section 3 of [12] are of a very particular kind. Indeed,
the eigenvalues uyq,...,u, of the matrix Z in [12], which is the analogue of our 20, are deformation
parameters, but always satisfy the condition

UL = = Up,, (1.24)

Upy+1 = = Upy+py> (125)

(1.26)

Upy+-4ps_1+1 = " = Upy - +pg>s (127)

with p; + -+ 4+ ps = n. Thus, no splitting of coalescences occurs, so that the deformations are always
inside the same ”stratum” of the coalescence locus. Moreover, the matrix f = f(Z) in [12], which is the
analogue of our /All, satisfies quite restrictively requirements that the diagonal is zero and (ﬁl)ab =0
whenever u, = up, 1 < a # b < n. These conditions are always satisfied along the deformation “stratum”
of [12]; they are a particular case or the more general conditions of Proposition 4.2 in our paper below.
For these reasons, an adaptation of the classical Jimbo-Miwa-Ueno results [44] (and those of [8] for a
connection on a G-bundle, with G a complex and reductive group) can be done verbatim, in order to

101y [11] it is only assumed that the monodromy matrices are constant. This generates non-Schlesinger deformations.
On the other hand, an isopricipal deformation always leads to Schlesinger deformations [42].
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describe the isomonodromicity condition for such a very particular kind of deformations. In the present
paper, we studied general isomonodromic deformations of the system (1.9), not necessarily the simple
decomposition of the spectrum as in (1.24)-(1.27).

1.2. Plan of the Paper.

e In Part I, we study formal and fundamental solutions of the system (1.1) as z — oo, both at
coalescence points and away from them. We give necessary and sufficient conditions for a formal
solution, computed away from coalescence points, to admit holomorphic continuation to the
coalescence locus (see Proposition 5.1).

e In Part II, we study the Stokes phenomenon at z = co for the system (1.1), both at coalescence
and non-coalescence points. We show existence and uniqueness results at coalescence points.

e In Part ITI, under Assumption 1 we discuss the analytic continuation of fundamental solutions
of (1.1). We show that U, (0) splits into topological cells, determined by the fact that Stokes
rays associated with A(t) cross a fixed admissible ray. In Theorem 14.1 and Corollary 14.1 we
give sufficient conditions such that fundamental solutions can be analytically continued to the
whole U, (0), preserving their asymptotic representation, so that the Stokes matrices admit the
limits (1.14). Notice that for the results in Parts I-1II no isomonodromicity is required.

e In Part IV, we formulate the monodromy preserving deformation theory for system (1.9). We
prove Theorem 1.1 , Corollary 1.1 and Theorem 1.2.

e In Part V, we show how Theorem 1.1 and Corollary 1.1 can be applied to Frobenius Manifolds
and to the sixth Painlevé equation.

Remark 1.2. In the main body of the paper, the matrices Y;., sectors S, and Stokes matrices S, will
be labelled differently as Y, 1), Sut(r—1)p @nd Sy 4 (»—1)u, Vs ¢ € Z. This labelling will be explained.

Acknowledgements: We thank Marco Bertola for helpful discussions concerning the proof of Theorem
1.2. D. Guazzetti remembers with gratitude Andrei Kapaev for insightful discussions at the time when
this work was initiated.

PART I: Structure of Fundamental Solutions

Notational Remarks: If o < 8 are real numbers, an open sector and a closed sector with central opening
angle f — a > 0 are respectively denoted by

S(a, B) ::{zeR | a<argz < }, S(a, B) ::{zeR ‘ a<argz<f }

The rays with directions o and 8 will be called the right and left boundary rays respectively. If S(61,62) C S(a, B),
then S(61,602) is called a proper (closed) subsector.

Given a function f(z) holomorphic on a sector containing S(a, 3), we say that it admits an asymptotic
expansion f(z) ~ > 77, arz” " for z = oo in S(a, B), if for any m > 0, lim, oo 2™ (f(z) - >, aszk) =0,
z € S(a,B). If f depends on parameters ¢, the asymptotic representation f(z,t) ~ > o, ax(t)z~" is said to be
uniform in ¢ belonging to a compact subset K C C™, if the limits above are uniform in K. In case the sector
is open, we write f(z) ~ > ;7 arz " as z = oo in S(a, B) if the limits above are zero in every proper closed
subsector of S(c, ). When we take the limits above for matrix valued functions A = (A;(2,t)); =1, we use the
norm |A| := max;; |Aij|. O

2. DEFORMATION OF A DIFFERENTIAL SYSTEM WITH SINGULARITY OF THE SECOND KIND

We consider system (1.1) of the Introduction, namely

ay

——=A@EDY, t=(t . tm) €CT (2.1)
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depending on m complex parameters'! t. The nxn matrix A(z,t) is holomorphic in (z,t) for |z| > Ny > 0
and |t| < eg, for some positive constants Ny and ey, with uniformly convergent Taylor expansion

A(z,t) =Y Aj(t)z. (2.2)
j=0

The coefficients A;(t) are holomorphic for [t| < €y. We assume that Ay(0) is diagonalisable, with distinct

etgenvalues A1, ..., As, s < n. We are interested in the case when s is strictly less than n. Up to a
constant gauge transformation, there is no loss of generality in assuming that
A()(O) =A:= Al@"'@AS, Az = )\Z’Ipi, 1= 1,2,...,s§n7 (23)

being I,, the p; x p; identity matrix. If Ag(¢) is holomorphically similar to A(t), as in (1.3), then
A = A(0). However, at this stage of the discussion we do not assume holomorphic similarity, so we keep
the notation A instead of A(0).

Remark 2.1. A result due to Kostov [48] states that, if system (2.1) is such that A(z,0) = Ap(0) +
A1(0)/z, and if the matrix A;(0) has no eigenvalues differing by a non-zero integers, than there exists
a gauge transformation Y = W(z,t)Y, with W(z,t) holomorphic at z = oo and ¢ = 0, such that (2.1)

becomes a system like (1.8):
dy ~ A\ ~
= = <A0(t) + 1“) Y. (2.4)

dz z

Nevertheless, since Ay(0) has non-distinct eigenvalues, we cannot find in general a gauge transformation
holomorphic at z = oo which transforms A(z,0) of the system (2.1) into Ay(0) + A1(0)/z (see also [9]
and references therein). Therefore the system (2.1) — namely the system (1.1) — is more general than
system (2.4), namely than (1.8).

2.1. Sibuya’s Theorem. General facts about eigenvalues and eigenvectors of a matrix M (t), depending
holomorphically on ¢ in a domain D C C™, such that M (0) has eigenvalues A1, ..., A5, s < n, can be found
in [49] and at page 63-87 of [45]. If s is strictly smaller than n, then ¢ = 0 is a coalescence point. For
D C C™ and m = 1 the coalescence points are isolated, while for m > 2 they form the coalescence locus.
Except for the special case when M (t) is holomorphically similar to a Jordan form J(¢), which means
that there exists an invertible holomorphic matrix Go(t) on D such that (Go(t)) 1M (t)Go(t) = J(t), in
general the eigenvectors of M (t) are holomorphic in the neighborhood of a non-coalescence point, but
their analytic continuation is singular at the coalescence locus. For example,

M(t)z(? é), teC,

has eigenvalues Ay = 4+/f, which are branches of f(t) = ¢'/2, with ramification at A = {t = 0}. The
eigenvectors can be chosen to be either

€r = (£1/V1,1), or & = (£1,V1).

The matrix Go(t) := [€4(£), £ (t)] puts M(t) in diagonal form Go(t)~'Ag(t)Go(t) = diag(Vt, —V/1), for
t # 0, while M(0) is in Jordan non-diagonal form. Either Go(t) or Go(t)~! is singular at ¢t = 0. The
branching could be eliminated by changing deformation parameter to s = t*/2. Nevertheless, this would
not cure the singularity of Gy or Gy l'at s = 0. Another example is

M(t)z(é i) tecC.

The eigenvalues u; = uy = 1 are always coalescing. The Jordan types at ¢t # 0 and ¢ = 0 are different.
Indeed, M (0) = diag(1, 1), while for ¢ # 0,

_ 1 1 t 0
G @) Got) = (1 ) Goto= (5 1 )
Now, Go(t) is not invertible and Go(t)~! diverges at t = 0.

Hater, we will take n = m, as in (1.15).
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In the above examples, the Jordan type of M (t) changes. In the next example, the Jordan form
remains diagonal, and nevertheless Gy(t) is singular. Consider

14¢ t
mo = (1B ) tmmmect

The eigenvalues coalesce at t = 0, where M (0) = I. Moreover, there exists a diagonalizing matrix Gy (t)
such that
_ 1+t 0 L a(t) —tg (1)
1 _ 1 _ 2
Go(t)”T"M(t)Go(t) = ( 0 1t ) is diagonal, Gq(t) = < 0 (ti+1t) b(t) )

for arbitrary non-vanishing holomorphic functions a(t), b(t). At ¢ = 0 the matrix Go(t) has zero deter-
minant and Go(t)~! diverges.

Although M (t) is not in general holomorphically similar to a Jordan form, holomorphic similarity can
always be realised between M (t) and a block-diagonal matrix M (t) having the same block structure of
a Jordan form of M (0), as follows.

Lemma 2.1. [LEMMA 1 of [66]]: Let M (t) be a n x n matriz holomorphically depending ont € C™,
with |t| < €, where €y is a positive constant. Let A1, Aa, ..., As be the distinct eigenvalues of M(0), with
multiplicities p1,pa, ..., ps, S0 that p1 + p2 + -+ - + ps = n. Assume that M(0) is in Jordan form
M(0) = My(0) & - - - & M,(0)
where
0 b
0 by
Mj(0) = Ajly; +Hj,  Hy = , =i <s,

0 hjprl
0

ik being equal to 1 or 0. Then, for sufficiently small 0 < € < ¢ there exists a matriz Go(t), holomorphic
int for |t| <€, such that

GO(O) = Ia
and M\(t) = (Go(t)) 1M (t)Go(t) has block diagonal form
M(t) = M(t) & - & M(1), (2.5)

where ]\Z(t) are p; X p; matrices. For |t| < ¢, ]\Z(t) and Z\/ij(t) have no common eigenvalues for any
i ],
Remark 2.2. The lemma also holds when ¢ € R™ in the continuous (not necessarily holomorphic)
setting.
Lemma 2.1 can be applied to M(t) = Ag(t) in (2.2), with A¢(0) = A. Therefore'?
Ag(t) = Go(t) ' Ao()Go(t) = A () & - & AL (1), (2.6)
Go(0) =1,  Ap(0) = Ag(0) = A.
Remark 2.3. Gg(t) is determined up to Gy — Go(t)Ag(t), where Ay(t) is any block-diagonal matrix

solution of [Ag(t), Ag(t)] = 0. Sibuya’s normalization condition Go(0) = I can be softened to Go(0) =
Ay.

We define a family of sectors S, in R and state Sibuya’s theorem. Let argp()\j — A\x) be the principal
determination. Let 7 € R be an admissible direction for A in the A-plane (we borrow this name and
the following definition of the 7,’s and 7,’s from [2] and [5]). By definition, this means that,

n # arg,(A; — Ax) mod(27), V1<j#k<s.

12Given a n x n matrix Ag, partitioned into s? blocks (s < n), we use the notation AE?), 1 <i4,5 < s, to denote the

block in position (i, 7). Such a block has dimension p; X p;, with p1 + ... + pp = n.
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Introduce another determination arg as follows:
n—2m < arg(A; — A\g) <1, 1<j#k<s. (2.7)

Let 2p1, u € N, be the number of values arg(\; — Ax), when (j, k) spans all the indices 1 < j # k < .13
Denote the 24 values of arg(\; — Ag) with 79,71, ..., 2,1, according to the following ordering:

nN>Mng > 0 > N1 >Ny > o > Nou—1 > 1 — 27 (2.8)
Clearly
Nugp =My — T, v=0,1,...,u— 1. (2.9)
Consider the following directional angles in the z-plane
3 3
T::gfn, Tu::gfny, 0<v<2u—1. (2.10)

From (2.8) if follows that,
T<T< o0 <Tpuo1 <7 < oo < Ty < T+ 27 (2.11)
From (2.9) if follows that,
Togp = Ty + T, v=0,1,..,p0—1.
The extension of the above to directions in R is obtained by the following definition:
Totkp = Ty + k, k € Z.

This allows to speak of directions 7,, for any v € Z.

Definition 2.1 (Sector S,). We define the following sectors of central opening angle greater than m:

S, = S(Tl, — 7r,7'l,+1) = S(Tu,u,ﬂ,ﬂ), Vel (2.12)

Theorem 2.1 (Sibuya [66] [37]). Let A(z,t) be holomorphic in (z,t) for |z2| > No > 0 and |t| < ¢ as
in (2.2), such that Ag(0) = A=A &---® Ag, as in (2.3). Pick up a sector S, as in (2.12). Then,
for any proper closed subsector S(a,B) = {z | 7, — 7 < a < argz < < T,41} C S,, there exist a
sufficiently large positive number N > Ny, a sufficiently small positive number ¢ < €y, and matrices
Go(t) and G(z,t) with the following properties:
i) Go(t) is holomorphic for |t| < e and
Go(0) =1,  Ag(t) := Go(t) " Ag(t)Gol(t) is block-diagonal as in (2.6).

ii) G(z,t) is holomorphic in (z,t) for |z| > N, z € S(a, B), [t] < ¢;
iii) G(z,t) has a uniform asymptotic expansion for |t| < €, with holomorphic coefficients G (t):

G(z,t) ~ I+ Gr(t)z™*, 200, 2€8(a,p),
k=1
i) The gauge transformation

Y(z,t) = Go(t)G(z,1)Y (2,¢),
reduces the initial system to a block diagonal form
Y ~
(sz = B(z,1)Y, B(z,t) = Bi(z,t) ® - -+ ® Bs(z,1), (2.13)

where B(z,t) is holomorphic in (2,t) in the domain |z| > N, z € S(a, B), |t| <,
and has a uniform asymptotic expansion for |t| < e, with holomorphic coefficients By(t),

B(z,t) ~ Ag(t) + in(t)z_k, z— 00, z€8(a,p). (2.14)
k=1

In particular, setting Ay (t) := Gy (t)A1(t)Go(t), then By (t) = 2511) e ---@ A (t).

13 9/, < s(s — 1), with “=" occurring when arg(Aj — Ag) # arg(Ar — As) mod 27 for any (j, k) # (r, s).
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Remark 2.4. In the theorem above, € is such that EE?)(t) and gy;) (t) have no common eigenvalues for
any i # j and || < e. Observe that one can always choose § — «a > 7.

Remark 2.5. S, coincides with a sector { z € R |-37/2 —w_ < rargz < 37/2 — w4}, introduced by
Sibuya in [37]. A closed subsector S(a, 3) is a sector D(N,~) introduced by Sibuya in [66].

Remark 2.6. If A = A\ I, Theorem 2.1 gives no new information, being Go(t) = G(z,t) = I and
S, =TR.

-~

— A Short Review of the Proof: The z-constant gauge transformation Y (z,t) = Go(t)Y (z,t) transforms
(2.1) into

S

=A(z,t) Y,  Azt) = igi(t)z_i, Ai(t) = Gy (1) Ai()Golt). (2.15)

0
Another gauge transformation Y (z,t) = G(z,t)Y (2, t) yields (2.13). Substitution into (2.15) gives the
differential equation
G'+GB = Az,t)G, (2.16)
with unknowns G(z,t), B(2,t). If formal series G(2,t) = I + 372, G;(t)z~7 and B(z,t) = Ao(t) +
> i1 Bj(t)z~7 are inserted into (2.16), the following recursive equations (¢ is understood) are found:

For I = 0: By(t) = Ay(t).

For [ =1:
goG]_ — G]_A\O = _A\l + B]_. (217)
For [ > 2:
AoGy — G Ay = [Z(GjBl,j - Al,jGj) - Al} —(1-1)Gi_1 + B (2.18)
Jj=
Once Gy(t) has been fixed, the recursion equations can be solved. A solution {G;(t)}2,, {Bi(¢)};2, is
not unique in general. The following choice is possible:

Gyj) (t) =0, 1<j5<s, [diagonal blocks are zero], (2.19)

and
Bi(t) = B%l)(t) @®---@BO(@), [off-diagonal blocks are zero]. (2.20)
Then, the G;(t)’s and B;(t)’s are determined by the recursion relations, because for a diagonal block

[4,7] the Lh.s of (2.17) and (2.18) is equal to 0 and the r.h.s determines the only unknown variable B](é).
For off-diagonal blocks [¢, j] there is no unknown in the r.h.s while in the Lh.s the following expression
appears

APmeg - AP, 1<i#j<s
For |t| < € small enough, AE?)(t) and gﬁ-g) (t) have no common eigenvalues, so the equation is solvable
for G%). With the above choice, Sibuya [66] proves that there exist actual solutions G(z,t) and B(z,t) of
(2.16) with asymptotic expansions I+ 3. G;(t)2~7 and Ao+ >, Bj(t)z77 respectively. We remark that
the proof relies on the above choice. It is evident that this choice also ensures that all the coefficients
G;(t)’s and B;(t)’s are holomorphic where the gj(t)’s are. Note that (2.17) yields B;(t) = A\gll) @D
AV, o

3. FUNDAMENTAL SOLUTIONS OF (2.13)

The system (2.13) admits block-diagonal fundamental solutions Y (z,t) = Y1 (2, 1)@ - -@Y,(z,t). Here,
ﬁ(z,t) is a p; x p; fundamental matrix of the i-th diagonal block of (2.13). The problem is reduced
to solving a system whose leading matrix has only one eigenvalue. The case when Ay(¢) has distinct
eigenvalues for |t| small is well known (see [37], and also [2] for the ¢-independent case). The case when
Ap(0) = A is diagonalisable, with s < n distinct eigenvalues, will be studied here and in the subsequent
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sections.
We do another gauge transformation

Y(z,t) = e Yyea(z,1), (3.1)
where the subscript red stand for “rank reduced”. We substitute into (2.13) and find

(Y ea + Yog) = B2, DY rea.
The exponentials cancel because B(z,t) is block diagonal with the same structure as A. Thus, we obtain

dYred 1

=-B Y, 2
dz 2 red(za t) red> (3 )
with
Brea(z,t) == 2(B(z,t) = A) = B (z,6) @ -+ @ BIred (2, 1), (3.3)
Brea(z.t) ~ 2(Ao(t) — A) + > By(t)z~F+1. (3.4)
k=1

Fundamental solutions can be taken with block diagonal structure,
Ymd(z, t) = )/1(7-611)(,2:7 t) DB }/S(Ted)(z, t).

where Yi(red) (z,1t) solves

d}/i(red) 1 red red
e CUR G

The exponential e*? commutes with the above matrices, hence a fundamental solution of (2.1) exists in
the form

Y (2,t) = Go(t)G(2, 1) Yyea(2, 1) €.

We proceed as follows. In Section 4 we describe the structure of fundamental solutions of (2.1) for
t = 0 fixed. In Section 5 we describe the structure of fundamental solutions at other points t € U, (0).

4. A FUNDAMENTAL SOLUTION OF (2.1) AT t =0
At t = 0, the rank is reduced, since the system (3.2) becomes a Fuchsian system in S(a, 3),

AYrea 1
- = *Bre 9 0 YT€ ) 4.1
o, — 5 Dred(#,0) Yiea (4.1)

with Breq(2,0) ~ Y o, Br(0)z2=**! for 2 — oo in S(a, B). Let J; be a Jordan form of the i-th block
Bfl)(O) = EEZI)(O) = Az(.il)(O)7 1 < i < s. Following [69], we choose J; arranged into h; < p; Jordan blocks
g

i

Ji=JP e eJd. (4.2)

Each block J]@, 1 < j < hy, has dimension 7; x r;, with r; > 1, 7y +--- + 15, = p;. Bach JJ@ has only
one eigenvalue ,ug»z), with structure,

J;i) = u;i)lrj +H,, I, = rjxr; identity matrix,

H,, =0ifr; =1, H, = if rj > 2.

J
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Note that u(l) e ugi,) are not necessarily distinct. One can choose a t-independent matrix Ay =
Ago) @AY in the block-diagonal of Remark 2.3, such that (AEO))”A\E;)( )A(O) Ji. Hence,

Ji o* * *

*  Jy *

AFTAL(0)Ag = AFTAL(0)Ag = .
* * . *
* * * Jg

The transformation Y.y = AgX,.cq of the system (4.1) yields'?

ered

1 _
dz = ;Bred(z) Xreda Bred(z) = Ao 1Bred<27 0)A07 (43)

B
red ~J+ Z k+1’ Bk = AalBk(O)AO

The system (4.3) has block-diagonal fundamental solutions X,eq = Xl(mi) e X (md), each block
satisfying
dX (TEd) 1 re re
= ;Bf Dizy xired  1<i<s. (4.4)
Now, J; has the unique decomposition
J; = D; +5;, D; = diagonal matrix of integers, (4.5)
S; = Jordan form with diagonal elements of real part € [0, 1). (4.6)

For i = 1,2,...,s, let m; > 0 be the maximum integer difference between couples of eigenvalues of J;
(m; = 0 if eigenvalues do not differ by integers). Let 7 := max;—1 . sm;. The general theory of Fuchsian
systems assures that (4.4) has a fundamental matrix solution

XD (2) = Kiz) 2P, Ki(2) ~ T+ K277 2= o0 in S(a, ).
j=1
Here L; := S; + R;, where the matrix R; is a sum R; = R(1); + - R(,),i» whose terms satisfy
(4)

[Ray.ilblock ap 70 only if ua =1 > 0 integer. (4.7)
Let
D:=D1& - & Dy, S:=56--88, R:=R % - &R, L:=R+5S. (4.8)
Observe now that R has a sum decomposition
R=Ruy+ R+ + By, (4.9)

where Ry = R),1 @+ & Rp),s- Here it is understood that R ; = 0 if m; <1 <m. We conclude that
Xyea(2) = K(z2) 2P2L, K(Z)NIJrZsz*j, z — oo in S(a, B),

KZ) =K ((2)®- - & K,2), Kj:Kij)@"'@ng).
Hence, there is a fundamental solution of (2.1) at t = 0, of the form
Y(2) = G(2,0) AgK(2) 2P2" 2.

This is rewritten as,
Y (2) = AoG(2) 2021 e,

14 The gauge transformation 37(2, 0) = AgX(z), of the system (2.13) at t = 0 yields,

dX

= =B(z)X,  B(2):=2;"B(z,0000,  B(z) A+ + Z lik By, := Ay ' Bi(0)Ao.
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where G(2) := Ay 'G(2,0)A¢K(2). Clearly,

z)~1+iﬁ’kz*k::(1+iAglak AO) (I+2Kkz ) 2 ooin S(a, B).  (4.10)
k=1

k=1

The results above can be summarized in the following theorem:

Theorem 4.1. Consider the system (2.1) satisfying the assumptions of Theorem 2.1. There exist an
invertible block-diagonal matriz Ay and a matriz G(2), holomorphic for |z| > N, z € S(a, 3), with
asymptotic expansion

z)~I+Z}%‘kz_k7 z— 00, z€S(a,p), (4.11)

such that the gauge transformation Y (z,0) = A¢G(2)Y(2) transforms (2.1) at t = 0 into a blocked-
diagonal system
a
dz

where J; is a Jordan form of Aii (0) = AS)(O), 1 <i<s, and the Ry, 1 <1 < m are defined in
(4.7)-(4.9). The system (4.12) has a fundamental solution Y(z) = 2P 2% e’ hence (2.1) restricted at
t =0 has a fundamental solution,

R R

Y (2) = AgG(2) 2Pz et (4.13)
The matrices D, L are defined in (4.5), (4.6) and (4.8). The matriz Ay satisfies

Ji x * *
* Jg *

AFAL(0) Ag =

Remark 4.1. Observe that (4.13) does not solve (2.1) for ¢ # 0.
Definition 4.1. The matriz

Yp(z) i= AgF(z) 2P2" M, F(z):=I+ Z FpzF (4.14)

is called a formal solution of (2.1) for t =0 and Ap(0) = A.

Notice that we use the notation Y for solutions of the system with ¢ = 0. For fixed Ay, D, L and A
the formal solution is in general not unique. See Corollary 4.1.

We note that (4.14) can be transformed into a formal solution with the structure described in [3], but
the specific form (4.14) is more refined and is obtainable by an explicit construction from the differential
system (see also Section 4.1 below).

4.1. Explicit computation of the F}’s and R of (4.11) and (4.12). Uniqueness of Formal
Solutions. We present the computation of the Fj’s in (4.11) and R in (4.9). This serves for two
reasons. First, the details of the computation in itself will be used later, starting from section 4.2.
Second, it yields the Corollary 4.1 below concerning the (non-)uniqueness of formal solutions. Consider

the gauge transformation Y = AoX at t = 0, which transforms (2.1) into

‘fiX (85" A= O)Ao) (=),

AG'A(2,0)A0 = A+ZA 2 A= A A (0)A.
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The recurrence equations (2.17), (2.18) become (using Fj instead of G)),

AF1 — FlA = —Al + Bh with dlag(Al) = J, (415)
-1

AF, — FA :[Z<FjBl—j - Al—ij) - Al} —(=1)F-1 +B. (4.16)
j=1

Proposition 4.1. (4.15)-(4.16) admit a solution {Fy}x>1, {Bk}k>1 which satisfies,

By = J,

By=Rg)y, -, Bmt1=Rm,

B =0 for any k>m+ 2,
where Ry = Rgy1 © -+ @ Rq),s, and each Ry ; is as in (4.7). The Fy’s so obtained are exactly the
coefficients Fy, of the asymptotic expansion of the gauge transformation (4.11), which yields (4.12).

Proof: Let K, :{Zi_:ll (FjBl_j - Al_ij) - Al}, and rewrite (4.15) and (4.16) in blocks i, j:
e For I =1 ([4, j] is the block index, 1 <1i,7 < s):
AF, —FA=-A+B = (\-\FS =-A% +BY.

e For [l > 2:

l l -1 l
AR ~FA=K;—(-1)F.+B = M\-XNFY =k -0-nFi™ +BY.

)

e For | = 1 we find:

~Ifi=j:
Bi(il) = AS) =Ji, Fi(il) not determined.
—1Ifi # j: N
AU
o A ¥ BV g
“ Xi— A &

e For | > 2 we find:

—1Ifi # j5:
FY == )7 (kY - a-nESY), BY o
n the r.h.s. matrix entries of F1, ..., Fj_; appear, therefore the equation determines F:.”.
In the r.h ix entries of Fy, ..., F herefore th ion determines £y}’
—Ifi=j:
l -1 !
0=k —@-1)F" +BI, (4.17)
We observe that in K(l) the matrix entries of F1, ..., Fj_1 appear, including the entry Fi(il_l). Keeping
into account that By = A(l) -® Aﬁ?, we explicitly write (4.17):
- E z(asz-%;? —ADREY) 4 z(F By~ AE) | A+ B -
k=1 ot
A(l 1)Fl 1) ZAl)Fl 1) +Z(FJB;7]‘ —Al,ij) - —AE?+B§?-
ki j=1 L6
Thus, keeping into account that .A(l) J;, the above is rewritten as follows:
ping )
1—2
(Ji +1- I)Fi(il_l) —Fy Vg = - ZA(I)F(Z Y Z(FjBl—j - Al—ij>[_ ) AP + B (418)
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In the r.h.s. every term is determined by previous steps (diagonal elements F' j-(;)

except for B, which is still undetermined. (4 18) splits into the blocks inherited from J; = Jl(i) DD

it

J}(fi). Let the eigenvalues of J; be ugi), - ,uh , hi <p;. Then (for | > 2),

appear up to k <1—2),

(69 + 1= 14 1, ) S Vo = (B Voo + Hy,) =

1—2
=S AVELY 4 (BB - A o AD 4 O] (4.19)
ke 5=l ! ab
Here [ - ~]ab denotes a block, with 1 < a,b < h;.
o If ul(f) =1—1, the Lh.s. of (4.19) is H,, [F(l 1)]a - [Fi(il_l)]abHrb. The homogeneous equation
H,, [Fi(il_l)} [Fl(ll 1)]abHrb = 0 has non trivial solutions, depending on parameters, since the matrices

H,, and H,, have common eigenvalue One can then choose Fj; to be a solution of the homogeneous
equation and determine [ b ]ab # 0 by imposing that the r.h.s. of (4.19) is equal to 0.

o If u ;é I — 1, the choice [B D1, =0 is possible and in(z )}ab is determined.

iii

We conclude that ‘
BT, £0  only if ul()’) —p) =1>0 integer.

This means that [B (Hl)] = [Ryy,ilap. O

Corollary 4.1 (Uniqueness of Formal Solution at ¢ = 0). A formal solution (4.14) with given Ag, D,
L, A is unique if and only if for any 1 < i < s the eigenvalues of 21\511)(0) do not differ by a non-zero
mnteger.

Proof: Computations above show that {F},}7° ; is not uniquely determined if and only if some ul() R ug) =

I —1, for some [ > 2, some i € {1,2,...,s}, and some a,b. [J

4.2. Special sub-case with R = 0, J diagonal, Aqg = I. A sub-case is very important for the
discussion to come, occurring when Ay = I and AE;)(O) is diagonal. Clearly, if Ag = I, then J; = AEP(O).
Hence, if Ag = I, then J is diagonal if and only if (25?(0)) =0 for any 1 <p # q < p;.

Pq

Proposition 4.2. There ezists a fundamental solution (4.13) att =0 in a simpler form
Y (2) = G(2)2P 2, (4.20)
with Ag = I, J = B1(0) = diag(A1(0)) diagonal, and

2)~ 1+ Zﬁ‘kz_k, z — oo in S(a,B), (4.21)

if and only if the following conditions hold:
e For every i € {1,2,...,s}, and every p,q, with 1 < p # q < p;, then

(25})(0))m = 0. (4.22)

o If ( (1)( ))pp — (/if»?(O))qq +1—-1=0, for somel > 2, some i € {1,2,...,s}, and some diagonal

entries (Agi)(O)) , (ﬁf?(O)) , then
pp aq

S

> (AP0 £ +§kz;1( o) D) +(A00) -0 am)

ki
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for those values of I, i, p and q.

Proof: We only need to clarify (4.23), while (4.22) has already been motivated. We solve (4.15), (4.16)
when Ag = I, namely (recall that 4;(0) = A;(0)) (we write Fj, as in (4.15), (4.16), but it is clear that
the result of the computation will be the F} appearing in (4.21)):

AF) — FyA = —4,(0) + By,

-1
AF, — FA :[Z(FjBl_j - Al_j(O)Fj) - AZ(O)} —(I-1)F_, +B.
j=1
At level [ =1: R
o @ Ai(0)
Bl = dlagAl(O), F” = 7m
At level | > 2,
@ (-1
po _ Kif —(U-DF; B0 _ g
i NN tu D

where K; :[Zi_:ll (Fng_j - gl_j(O)FJ) - 25(0)} Formula (4.19) reads

-2

(1= +1-1) SV = |- S AR OFL + 3 (FiBi le,j(o)Fj)[i ' — A7 (0) + By
ki j=1 o b

Indices above are block indices. The above can be re-written in terms of the matrix entries,

(A ) = (AP (0))gq +1 = 1) (V) =

-2
ne! -1 1 N l
- | S AOR Y (BE, - AL 0F) | - A0+ B

ki i=t , entry pq

o If (A(l)( 0))pp (A(l)( 0))gq +1— 10, choose Bg ) = 0 and determine (F(zl 1))pq.
o If (A( )( 0))pp ( ( ))gq +1—1 =0, by induction assume that the B;_; = 0. Then the equation
is satisfied for any (F( ))pq and for

(z p-D ~(1)
B kZ#z A ki + Z (Al =i )block [4,1] + A” <0)
entry pq

Then, if we impose that (Bg))pq = 0 we obtain the necessary and sufficient condition (4.23). The proof
by induction is justified because at the first step, namely | = 2, we need to solve

(A 0y = (AT (0))gq +1) (F e == S AL FD )y — A2 O + (B (120)
k#i

If (A\S)(O))I,p - (A\(?)(O))qq + 1 # 0, the above has a unique solution for any choice of (B (2))pq. We

X3

choose (Bi(f))pq =0. If Agl-l)( 0))pp — (AS)( 0))gq + 1 = 0, the equation leaves the choice of (Fz(l ))pq free,
and determines

A - (AP O0)AL (0)pg | 7
(B )og = D (A (0) B Yoy + (A7 (0)pg = = 3 =it 4 (A0(0))
k#i ki k 7
We can choose (Bz‘(?))pq = 0 if and only if

(AP (0) AL (0)) g

(3

)\k:_)\z

(A2(0))pg =
ki

; (4.25)
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which is precisely (4.23) for [ =2. O

5. SOLUTIONS FOR t € U, (0) WITH Ap(t) HOLOMORPHICALLY DIAGONALISABLE.

In the previous section, we have constructed fundamental solutions at the coalescence point ¢ = 0.
Now, we let ¢ vary in U, (0). In Sibuya Theorem, Ag(t) = A\(ﬁ) e & Zgg)(t) is neither diagonal nor
in Jordan form, except for t = 0. Ag(t) admits a Jordan form at each point of U, (t), but in general this
similarity is not realizable by a holomorphic transformation. In order to procede, we need the following
fundamental assumption, already stated in the Introduction.

Assumption 1: For |t| < ¢ sufficiently small and such that Lemma 2.1 and Theorem 2.1 apply, we
assume that Ag(¢) is holomorphically similar to a diagonal form A(¢), namely there exists a holomorphic
invertible Go(t) for || < ey such that

Golt) ™" Ao(t) Golt) = A(t) = ding (1 (£), uz(t), . un(2)),
Remark 5.1. Assumption 1 is equivalent to the assumption that Ag(¢) is holomorphically similar to its

Jordan form. The requirement implies by continuity that the Jordan form is diagonal, being equal to
A =A(0) at t = 0.

With Assumption 1, we can represent the eigenvalues as well defined holomorphic functions u; (t),
us(t), ..., u,(t) such that

u1(0) = -+ = up, (0) = A1, (5.1)

up1+1(0) = = Upi4p,y (O) = Az, (52)

(5.3)

Upytootp141(0) =+ = Upypoopp, 149, (0) = As. (5.4)

Moreover,

Ay =ME) D A(t) D -+ D AL(L),
where Ay (%), ..., As(t) are diagonal matrices of dimensions respectively pi, ..., ps, such that A;(t) — A; 1,
fort - 0, j =1,...,s. For example, A;(t) = diag(u1(t), ..., up, (t)), and so on. Any two matrices A;(¢)
and A;(t) have no common eigenvalues for ¢ # j and small «.

The coalescence locus in U, (0) is explicitly written as follows
A= U {t € C™ such that: |t| < ey and u,(t) = ub(t)}.
a#b

a,b=1,....,m
We can also write .
A= A,
i=1
where A; is the coalescence locus of A;(t). For m = 1, A is a finite set of isolated points.
Improvement of Theorem 2.1: With the same assumptions and notations as of Theorem 2.1, if

Assumption 1 holds, then

B(z,t) ~ A(t) + ZBk(t)z_k, z — 00 in S(a, B).
k>1

With Assumption 1, we can replace the gauge trasfromation (3.1) with
Y(z,t) = 207 ¥, 4(2, 0).

Since go(t) = A(t), then Byeq(z,t) ~ Y7o, Bi(t)2=%T1. Hence the reduced system (3.2) is Fuchsian
also for ¢ # 0. The recursive relations (2.17) and (2.18) become By(t) = A(t) for [ = 0, and:
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Forl=1:
A(t)Gy — GiA(t) = — Ay (t) + By. (5.5)
For [ > 2:
-1
A(t)G) — GIA(t) :{Z(G]Bl,j - El,j(t)c:j) - El(tﬂ —(1—7r)Gi_ + B (5.6)

As for Theorem 2.1, the choice which yields holomorphic G;(t)’s and B,(t)’s is (2.19) and (2.20). Gen-
erally speaking, it is not possible to choose the B;(¢)’s diagonal for I > 2, because such a choice would
give G(t)’s diverging at the locus A.

5.1. Fundamental Solution in a neighbourhood of ¢y ¢ A, with Assumption 1. Let Assumption
1 hold. Theorem 2.1 has been formulated in a neighbourhood of ¢ = 0, with block partition of Ay(0) =
A1®---®A;. Theorem 2.1 can also be formulated in a neighbourhood (polydisc) of a point tg € U, (0)\A,
of the form

Upy(to) :={t € C | [t —to| < po} C Ue, (0),

Uy (to) NA =10,

where A(t) has distinct eigenvalues, provided that pg > 0 is small enough. In order to do this, we need
to introduce sectors. To this end, consider a fixed point ¢, in U, (0), and the eigenvalues uq(t«), ...,
y,(t.) of A(t,). We introduce an admissible direction n*) such that

ntte) £ arg,, (ua(t*) - ub(t*)) mod(2m), V1<a#b<n. (5.7)

There are 2/1;, determinations satisfying n(**) — 2 < arg(uq (t.) —up(t.)) < n*+). They will be numbered

as
nt) > it > s Moueo 1 > 0t —2r.
Correspondingly, we introduce the directions
A0 = 3T ) ) 23T

2 5 - 0w~

satisfying

7t < Tét*)

The following relation defines Tét*) for any o € Z, represented as 0 = v + kg, :

(t+)

<7< <7'(t*)_1 < 7)o,

2t

Tutkpe, = Tlft*) + km, ve{0,1,...,u, —1}, keZ.
Finally, we introduce the sectors

ng = S(T(t*) - w,nS’ii% o€ 7.

g

Theorem 2.1 in a neighbourhood of #y becomes:

Theorem 5.1. Let Assumption 1 hold and let tg € Ue,(0)\A. Pick up a sector Sito) = S(Tét‘)) =5, Tc(rtﬁ)l),
o € Z, as above. For any closed sub-sector

g(tO)(a,ﬁ) = {z eR| ) —r<a<argz<B< TS_E%} c Stto),

there exist a sufficiently large positive number N, a sufficiently small positive number p and an invertible
matriz valued function G(z,t) with the following properties:

i) G(z,t) is holomorphic in (z,t) for |z| > N, z € g(tO)(a,B), [t —to] < p;
it) G(z,t) has uniform asymptotic expansion for |t — to| < p, with holomorphic coefficients G(t):

G(z,t) ~ I + E:Gk(t)z_k7 z—00, z€ g(tO)(a,B),
k=1
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i1i) The gauge transformation
Y (z,t) = Go(t)G(2,t)Y (2, 1),
reduces the initial system (2.1) to
% = B(z,1)Y,
where B(z,t) is a diagonal holomorphic matriz function of (z,t) in the domain
|z2| > N, z € S(, 8), |t —to| < p, with uniform asymptotic expansion and holomorphic coefficients:

B(z,t) ~ A(t) + ZBk(t)sz, z—00, zE€ g(to)(a,ﬂ).
k=1

In particular, By (t) = diag A, (t).

Remark 5.2. g(to)(a, f3) is not the same S(c, 3) of Theorem 2.1 (the latter should be denoted g(o)(a, B)
for consistency of notations). The matrices G(z,t) and B(z,t) are not the same of Theorem 2.1. On the
other hand, G (t) is the same, by Assumption 1.

As before, we let Breq(z,t) = 2(B(z,t) — A(t)). Then the system (2.1) has a fundamental matrix
solution

Y (z,t) = Go(t)G(z,t)zP1 P A2,
where G(z,t) = G(z,t)K(z,t), and

_ ? Bred((,t) —Bl(t) o Z—k—i—l B oo ;
K(Z,t)—exp{/oo c dC}NeXp{kZﬂBk(t)k+1}—1+;Kj(t)z7

2z — 00 in S(a, 8). This result is well known, see [37]. This proves the first part of the following

Corollary 5.1. The analogue of Theorem 5.1 holds with a new gauge transfromation G(z,t), enjoying

the same asymptotic and analytic properties, such that Y (z,t) = Go(t)G(z,t)Y (2) transforms the system
(2.1) into

ay Bi(t)\ < ~
With the above choice, the system (2.1) has a fundamental solution,
Y (2,t) = Go()G(z,t)zP1 M eh®)2, (5.9)
and G(z,t) is holomorphic for z € g(to)(a,ﬁ), |z| > N and |t — to| < p, with expansion
G(z,t) ~ T+ Fi(t)z, (5.10)
k=1

for z — 00 in g(t(’)(a,ﬁ), uniformly in |t — to| < p. The coefficients Fy(t) are uniquely determined and
holomorphic on U, (0)\A.

Proof: The statement is clear from the previous construction. It is only to be justified that the Fy(¢)’s,
k > 1, are holomorphic functions of ¢ ¢ A and uniquely determined. We solve (5.5) and (5.6) for the
F(t)’s, namely

A(t)Fy, — FyA(t) = — Ay (t) + By,

A(t)F, — FA(D) :[Z(FjBl_j - ﬁl_j(t)Fj) - /Tl(t)} ~(I-1F_, +B.

Jj=1
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It is convenient to use the notation uq(t), ..., u,(t) for the distinct eigenvalues. Matrix entries are here
denoted a, b € {1,2,...,n}. For I =1,

(F1)ab(t) = (Bi(t))ab =0, a#b.
(B1)aa(t) = (Xnaa(t), = Bi(t) = diag(4:(1)).
Now, impose that B;(t) = 0 for any [ > 2. Hence, at level [ = 2 we get:

(FDaa(t) = = 3 (A0 ab(O)(F )b (t) — (Ao)aa ().

b#a
For any [ > 2, we find:

Eat) = L [(E)aalt) ~ Aalt) + 1~ 1] (Frn)wn(t)+

-2
+ 3 (A (P + 2 (A OF 1)+ (Aaslt) p, ab
y#a Jj=1
-2
(= D(F-aal) = =D (A)aOE -5 = Y (A OF D) = (Aaal?):
b#a j=1

The above formulae show that the Fj(¢) are uniquely determined, and holomorphic away from A. OJ

The above result has two corollaries:

Proposition 5.1. The coefficients Fy(t) in the expansion (5.10) are holomorphic at a point ta € A if
and only if there exists a neighbourhood of ta where

(A1)as(2) (5.11)

and

[(El)m(t)—(El)bb(t)+z—1] (Fim)ab(t) + > (A1)ay (8) (Fi—1) (¢ +Z(A, . ) A+ @a(t) (5.12)

Y#a

vanish as fast as O(uq(t) — up(t)) in the neighbourhood, for those indexes a,b € {1,2,....,n} such that
Ua (t) and up(t) coalesce when t approaches a point of A in the neighbourhood. In particular, the Fy(t)’s
are holomorphic in the whole U, (0) if and only if (5.11) and (5.12) are zero along A.

Remarkably, in the isomonodromic case, we will prove that if we just require vanishing of (A41)qs(t)
then all the complicated expressions (5.12) also vanish consequently.

Proposition 5.2. If the holomorphic conditions of Proposition 5.1 hold att = 0, then (4.22) and (4.23)
are satisfied, with the choice )
B, = F(0), k> 1.

If moreover <A\1(0)) — (ﬁl(O) o +1—1%0 for every l > 2, then the above is the unique choice of the
F, ’s, according to Corollary 4.1.

Expression (5.12) is a rational function of the matrix entries of A, (), ey ﬁl(t), since F(t),...,F1—1(t)
are expressed in terms of A;(t), ..., A;(t). For example, for [ = 2, (5.12) becomes

~

((At) ~ (A)aalt) 1) u((t)l)_% ()= Y (Al)agt(;)_(i%’“). (5.13)
¢ V#a v
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Example 5.1. The following system does not satisfy the vanishing conditions of Proposition 5.1

X(z,t):(g ‘t)>+i(1 g) A={teC|t=0}={0} (5.14)

It has a fundamental solution

with

3

kk.[
w(z,t) := t?ze*Ei(tz) — t ~ Z F z— 00, —3m/2 <arg(tz) < 3m/2.
k=1

The above solution has asymptotic representation (5.10), namely (1.6). Now, ¢t = 0 is a branch point of
logarithmic type, since Ei(zt) = —In(zt)+ holomorphic function of zt. Moreover, the coefficients Fj,(t)
diverge when t — 0. The reader can check that the system has also fundamental solutions which are
holomorphic at ¢ = 0, but without the standard asymptotic representation Yr(z,t). We also notice a
peculiarity of this particular example, namely that Y (z,t) and Y (ze~2™% t) are connected by a Stokes
1
2mit?
I of the system A(z,t =0). O

matrix S = [ (1) } , which is holomorphic also at ¢ = 0 and coincides with the trivial Stokes matrix

5.2. Fundamental Solution in a neighbourhood of tA € A, with Assumption 1. Let Assumption
1 hold. Let to € A. Since the case to = 0 has already been discussed in detail, suppose that to # 0.
Then ta € A;, for some i € {1,2,...,s}.

Directions T( A), o € Z, and sectors S((,tA) have been defined in section 5.1 (just put t. = ta). We
leave to the reader the task to adjust the statement of Theorem 2.1 reformulated in a neighbourhood of
ta, with the block partition of A(ta ), which is finer than that of A(0). The closed sector in the theorem
will be denoted g(tA)(a, B) C S A solution analogous to (4.13) is constructed at ¢ = ta, with finer
block partition than (4.13). Special cases as in Section 4.2 are very important for us, hence we state the
following.

Proposition 4.2 generalized at ta: For ¢t = ta, the fundamental solution analogous to (4.13) reduces
to an analogous to (4.20), namely

Yieny(2) = GO(tA)Q(tA)( 2)2B1ta) M)z with By (ta) = diag(A;(ta)),
Gea (2 NI—I—ZF(tA , Z— 00 ing(m)(a,ﬁ),

if and only if the following condltlons generalising (4.23) hold. For those a # b € {1,...,n} such that
ua(ta) = up(ta),

(/L(tA)) =0, (5.15)

ab

and if also (gl(tA)) - (gl(tA))bb +1—1 =0 for some [ > 2, the following further conditions must

aa

hold:
> (21(tA))a7<F(tA);lfl) +l Q(Al i(ta) tA);j)ab+ (gl(m))“bzo.
ved{l,..,n}, .
s (ta) # (ta(ta) = w(ta))

(5.16)

In the notation used here, then Y (z) in (4.20) is Y(0)(2), while G(2) in (4.21) is Gy (2). Finally, Fy in
(4.14) is Fg);x- Keeping into account that (gl)a’y vanishes in (5.12) for t — ta and u,(ta) = us(ta) =
up(ta), it is immediate to prove the following,
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Proposition 5.2 generalised: If the vanishing conditions for (5.11) and (5.12) of Proposition 5.1 hold
for t — ta € A, then (5.15) and (5.16) at t = ta are satisfied with the choice

F(tA);k = Fk(tA), k>1. (5.17)

If moreover (;1\1 (tA)) (21 (tA))b +1—1#0 for every | > 2, the above (5.17) is the unique choice.

Namely, for the system with ¢ = ¢t there is only the unique formal solution

(r+ > Fy(ta))2P102) A0, By (ta) = ding(A1 (ta)).
k=1

PART II: Stokes Phenomenon

When Assumption 1 holds, the system (2.1) is gauge equivalent to (2.15) (i.e. system (1.5) in the
Introduction) with Go(t) diagonalizing Ag(t), namely

— = A(zt) Y,  Azt) = Gy ) A(z, 1) Go(t) )+ ZAk . (5.18)

At tg & A, A(tp) has distinct eigenvalues, the Stokes phenomenon is studied as in [2]. We describe
below the analogous results at ¢ = 0 and tA € A, namely the existence and uniqueness of fundamental
solutions with given asymptotics (4.14) in wide sectors. The results could be derived from the general
construction of [4], especially from Theorem V and VI therein'®. Nevertheless, it seems to be more
natural to us to derive them in straightforward way, which we present below. First, we concentrate on
the most degenerate case A = A(0), for t = 0, so that A(z,0) = A(z,0) and the systems (2.1) and (5.18)
coincide. In Section 7 we consider the case of any other tA € A.

6. STOKES PHENOMENON AT ¢t =0
6.1. Stokes Rays of A = A(0).

Definition 6.1. The Stokes rays associated with the pair of eigenvalues (Aj, Ap), 1 <j#k <mn, of A
are the infinitely many rays contained in the universal covering R of C\{0}, oriented outwards from 0
to oo, defined by

§R<()\j - Ak)z) —0, s((Aj - Ak)z) <0, zeR.
The definition above implies that for a couple of eigenvalues (\;, A\x) the associated rays are
R(0jr +27N) := { z€R ’ z = petllirt2mN) 5 }, N e Z. (6.1)

where

7” arg, (A — Ax)- (6.2)
e Labelling: We enumerate Stokes rays with v € 7Z, using directions 7, introduced in Section 2.

Indeed, by Definition 6.1, Stokes rays have directions arg z = 7,,, ordered in counter-clockwise sense as

v increases. For any sector of central angle 7 in R, whose boundaries are not Stokes rays, there exists a

vy € Z such that the p Stokes rays 7,,—,+1 < -+ < Tyy—1 < Ty, are contained in the sector. All other

Stokes rays have directions

ij =

gz = Tyqky = T, + K, keZ, ve{vy—p+1,.., vo—1, v} (6.3)

Rays Tyy—pt1 < -+ < Tyy—1 < Ty, are called a set of basic Stokes rays, because they generate the
others 6.

15Note that notations here and in [4] are similar, but they indicate objects that are slightly different (for example Stokes
rays 7, and sectors S, are not defined in the same way).
16Although notations are similar to [4], definitions are slightly different here.
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e Sectors S,: Consider a sector S of central opening less than 7, with boundary rays which are
not Stokes rays. The first rays encountered outside S upon moving clockwise and anti-clockwise, will
be called the two nearest Stokes rays outside S. If S contains in its interior a set of basic rays,
SaY Ty41—p, Tv4+2—u, ---» Tv, then the two nearest Stokes rays outside S are 7,_, and 7,41, namely the
boundaries rays of S, in (2.12), and obviously S C S,.

e Projections onto C: If R is any of the rays in R, its projection onto C will be denoted PR. For
example, let A; be the complex conjugate of A;, then for any N the projection of (6.1) is

PR(Ojx +27N) ={z€C| 2= —ip(Aj — \), p>0}.
Definition 6.2. An admissible ray for A(0) is a ray R(7) :== {z € R | z=pe'", p>0} in R, of
direction T € R, which does not coincide with any of the Stokes rays of A(0). Let
14(7) := PR(T + 2kw), [1_(7):=PR(T+ (2k+ 1)m), keZ,

I(7) =1_(T)u{0}uly(7).
We call the oriented line I(T) an admissible line for A(0). Its positive part is [ (7).

Observe that there exists a suitable v such that 7, < 7 < 7,41, which implies
R(?) - Sl, N SV‘H“ R(? + 7T) C SthL N SV+2N'
In particular, if 7 is as in (2.10), then 7_; < 7 < 79, and I(7) is an admissible line.

6.2. Uniqueness of the Fundamental Solution with given Asymptotics. In case of distinct eigen-
values, it is well known that there exists a unique fundamental solution, determined by the asymptotic
behaviour given by the formal solution, on a sufficiently large sector. This fact must now be proved also
at coalescence points.

Let the diagonal form A = A1 ®---@ A, of Ag be fixed. Let a formal solution Yp(z) = AgF(2)zPzler?
be chosen in the class of formal solutions with given Ag, D, L, A, as in Definition 4.1. As a consequence
of Theorem 2.1 and Theorem 4.1, there exists at least one actual solution as in (4.13), namely

Y(2) = AoG(2)2P2F e, G(z)~ F(2), z-—00, z€S(a,p). (6.4)
Observe that S(a, 3) can be chosen in Theorem 2.1 so that it contains the set of basic Stokes rays of S,,
namely 7,41—,, ..., Tu—1, T». The asymptotic relation in (6.4) is conventionally written as follows,

Y (2) ~ Yr(2), z— 00, z€S(a,p).
Now, G(z) is holomorphic for |z| sufficiently big in S(a, B). Since A(z) has no singularities for |z| > Ny
large, except the point at infinity, then Y (2) and G(z) have analytic continuation on R N{|z| > No}.
Lemma 6.1. Let C € GL(n,C), and S an arbitrary sector. Then
LA EP NI 2o 0in S — ZPlet:P=] — (C=1I
The simple proof is left as an exercise.

Lemma 6.2 (Extension Lemma). Let Y (z) be a fundamental matriz solution with asymptotic behaviour,
Y (2) ~ Yr(2), z—o00, z€S,
in a sector S of a non spegviﬁed central opening angle. Suppose that there is a sector S not containing
Stokes rays, such that SNS # (. Then,
Y(z) ~ Yr(2), z— 00, for zeSUS.

Proof: S has central opening angle less than 7, because it does not contain Stokes rays. Therefore,
by Theorem 2.1, there exists a fundamental matrix solution Y'(z) = AgG(z)zP2%e *, with asymptotic
behaviour Y (z2) ~ Yg(z), for 2z — oo, z € S. The two fundamental matrices are connected by an

invertible matrix C, namely Y (z) = Y (z) C, z € SN S. Therefore,

G Uz2) G(z) = 2Pl € e Moyl D,
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Since G(z) and G~!(z) have the same asymptotic behaviour in S N S, the Lh.s has asymptotic series
equal to the identity matrix I, for z — oo in z € SN S. Thus, so must hold for the r.h.s. The r.h.s
has diagonal-block structure inherited from A. We write the block [i,j], 1 < 4,5 < s, of C' with simple
notation C;;. The block [4, j] in r.h.s. is then, e(Xi=Xi)z 5 Di y L Cij 2z~ Liz=Pi_ Hence, the following must
hold,

ePi=Ai)z D, L Cij 27 liz=Pi 0ij 1, z—00, z€8N S.
Here I; is the p; X p; identity matrix.

— For i # j: Since there are no Stokes rays in §, the sign of ®(\; — A;)z does not change in S. This
implies that e(Ai=Ai)zzDi zLi Cij z7Liz=Pi ~0for 2 — oo in S.

— For i = j: We have zPizli Cy 2~ Liz=Pi ~ I for z = ocoin SN S. From Lemma 6.1 it follows that
2Pizli Oy 2z~ Liz=Pi = [,. This holds on the whole S.

The above considerations imply that 2P2Lerz € e D2y~ Ly=D [ for z — ooin S. From the fact that
G(2) ~ T+ 45 Frz™" in S, we conclude that also G(2) ~ I+~ Fyz ™" for z — oo in S. Therefore,
G(z) ~ I+ 5 Frz"%in SUS. O

The extension Lemma immediately implies the following:

Theorem 6.1 (Extension Theorem). Let Y (z) be a fundamental matriz solution such that Y (z) ~ Y (2)
in a sector S, containing a set of u basic Stokes rays, and no other Stokes rays. Then, the asymptotics
Y (2) ~ Yp(z) holds on the open sector which extends up to the two nearest Stokes rays outside S. This
sector has central opening angle greater than m and is a sector S, for a suitable v.

Important Remark: The above extension theorem has the important consequence that in the state-
ment of Theorem 4.1 and Proposition 4.2, the matrix G(z), which has analytic continuation in R for
|z| > Np, has the prescribed asymptotic expansion in any proper closed subsector of S,. Hence, by
definition, the asymptotics holds in the open sector S,,.

Theorem 6.2 (Uniqueness Theorem). A fundamental matriz Y (2) as (4.13) such that Y (z) ~ Yi(2),
for z = oo in a sector S containing a set of basic Stokes rays, is unique. In particular, this applies if
S(a, B) of Theorem 2.1 contains a set of basic Stokes rays.

Proof: Suppose that there are two solutions Y'(z) and Y (z) with asymptotic representation Yz (z) in
a sector S, which contains p basic Stokes rays. Then, there exists an invertible matrix C such that
Y(z) =Y (z) C, namely

G 1(2) G(2) = 2P2Fer C e ML P,
The L.h.s. has asymptotic series equal to I as z — oo in S. Therefore, for the block [7, j], the following
must hold,
eNi—i)z Dy L Cij 27 Liz7Di 0i5 1, for z—> o0 in S.
Since S contains a set of basic Stokes rays, ®(A; — A\;)z changes sign at least once in .S, for any 1 <i #

j < s. Thus, e}~ diverges in some subsector of S. For i # j this requires that Ci; =0 for i # j.
For i = j, we have 2Pzl Cy; 2z~ 2P+ ~ I;. Lemma 6.1 assures that C;; = I;. Thus, C =1. O

e [The notation Y, (z)]: There exist v € Z such that a sector S of Theorem 6.2 contains the basic rays
Ty41—ps - Tu—1, Tv. Hence S C S,,. The unique fundamental solution of Theorem 6.2, with asymptotics
extended to S, according to Theorem 6.1, will be denoted Y, (z).
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6.3. Stokes Matrices. The definition of Stokes matrices is standard. Recall that the Stokes rays
associated with (Aj, ;) are (6.1). Consider also the rays

R(Ojr + 27N +9) = { z€R ‘ z = petllint2mN+0) =) 5 }, N c Z.

The sign of R(A\; — A\p)z for z € Ry (01 + 0) is:

R —Ap)z <0, for —71<d<0 mod2rm
R —Ag)z >0, for 0<d<m mod2m
RN —Ag)z=0, for 6=0, m, —7 mod 2w

)-

Definition 6.3 (Dominance relation). In a sector where R(A; — Ag)z > 0, A; is said to be dominant
over A in that sector, and we write A\; = \i. In a sector where R(\; — A\g)z < 0, A; is said to be
sub-dominant, or dominated by A, and we write A\j < Ag.

If a sector S does not contain Stokes rays in its interior, it is well defined a dominance relation in S,
which determines an ordering relation among eigenvalues, referred to the sector S.

Denote by
Y, (2) and Y,i.(2)
the unique fundamental solutions (4.13) with asymptotic behaviours Yp (2) on S, and S,4,, respectively,
as in Theorem 6.2. Observe that S, NS,4, = S(7y, Ty41) is not empty and does not contain Stokes rays.
Definition 6.4. For any v € Z, the Stokes matrix g,, 1s the connection matriz such that
Yoiu(z) =Y, (2)S,, zeR. (6.5)
Proposition 6.1. Let < be the dominance relation referred to the sector S, NS,4,. Then, the Stokes
matriz S, has the following block-triangular structure:
st =1,,,

SY =0 for \j= M in Sy NSpap, Gk €{1,2,..5}.

Proof: We re-write (6.5) as
g;l(z) gqu( ) _ ZDZLeAz gu e_AZZ_LZ_D.
For z € §, NS, 44, the Lh.s. has asymptotic expansion equal to I. Hence, the same must hold for the
r.h.s. Recalling that no Stokes rays lie in S, N S,4,, we find:
e For j # k, we have e(Af*)‘k)zzDizLJg;Z)z*L’“z*Dk ~ 0in 8, NS4, if and only if ng) = 0 for
Aj = Ak, where the dominance relation is referred to the sector S, NS, 4.

e For j = k, we have zPiz%i gE;)z_Liz_D-f ~ I, if and only if S; I,,, by Lemma 6.1. This proves

the Proposition. [J

6.4. Canonical Sectors, Complete Set of Stokes Matrices, Monodromy Data. There are no
Stokes rays in the intersection of successive sectors S, 4, and S,,+(k+1)u (recall that 7, + km = T4k,
for any k € Z). Therefore, we can introduce the unique fundamental matrix solutions

Yy p(2) (6.6)
with asymptotic behaviour Yp(z) in S, 4xu, and the Stokes matrices gu+ku connecting them,
YV+(]€+1)“(Z) = Yy+k#(2) Sy+k’ul7 S R
From Proposition 6.1, it follows that the blocks [4, k] and [k, j] satisfy
S;:) =0for \; = Ay in S, NSy, <= gi‘;*“) = 0 for the same (j, k).
We call S, S+, Sv+2, the canonical sectors associated with 7,.

Given a formal solution, a simple computation (recall that [L, A] = 0) yields Y (e2™2) = Yp(z) 2L
L is called exponent of formal monodromy.
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Theorem 6.3. We introduce the notation z(, if z € Sy. Thus 2(,12,) = 62”2'(,,). The following
equalities hold

() Yitou(zotom) = Yolzw)) €™,
(”) ffu-&-Zu(z) = i}u(z) gu gl/-’r}t? z €R,
. . . IR 1
(i1) Y, (e¥™2) =V, (z) 2™k (gy Sw) .,  zeR.

where |z| > Ny is sufficiently large, in such a way that any other singularity of A(z) is contained in the
ball |z| < Np.

Proof: As in the case of distinct eigenvalues. Alternatively, one can adapt Proposition 4 of [4] to the
present case.'”. .

The equality (iii) provides the monodromy matrix MY of Y,(2) at z = oo:
M@ = (gy §V+M) e~2miL, (6.7)

corresponding to a clockwise loop with |z| > Ny large, in such a way that all other singularities of A(z)
are inside the loop.

The two Stokes matrices g,,, guﬂt, and the matrix L generate all the other Stokes matrices g,,Jrk#,
according to the following proposition

Proposition 6.2. For any v € Z, the following holds: §V+2# = e 2miL g,, e?mil,

Proof: For simplicity, take v = 0. A point in 2z € Sy, N Sz, can represented both as z(5,) and 23,
and a point in Sy N S, is represented both as 2z and z(,). Therefore, the Lh.s. of the equality
Ys,(2) = }/QM(ZQ Sau is Y3 (2(3u)) = Yu(z()) €™ = Yo(z(o))QSo ™. The r.hus. is Yau(220)) Sop =
Yo(2(0))e*™ % Sap. Thus Yo(z(0)) So €*™F = Yo(2(0))e*™  Sy,,. This proves the proposition. [

The above proposition implies that g,,Jrk . are generated by gu, §,,+ u» which therefore form a complete
set of Stokes matrices. A complete set of Stokes matrices and the exponent of formal monodromy
are necessary and sufficient to obtain the monodromy at z = oo, through formula (6.7). This justifies
the following definition.

Definition 6.5. For a chosen v, {gy, gv—ﬂu L} is a set of monodromy data at z = co of the system
(2.1) with t = 0.

Remark 6.1. By a factorization into Stokes factors, as in the proof of Theorem 15.1 below, it can
be shown that Sl,, S,,Jr# suffice to generate S,,H, . SVJFM 1. Hence, Sl,, Sl,ﬂb are really sufficient to
generate all Stokes matrices. This technical part will be omitted.

7. STOKES PHENOMENON AT FIXED ta € A

The results of Section 6 apply to any other tA € A. By a permutation matrix P we arrange
P71A(ta)P in blocks, in such a way that each block has only one eigenvalue and two distinct blocks
have different eigenvalues. This is achieved by the transformation f’(z,t) =P ?(z,t) applied to the
system (5.18). Then, the procedure is exactly the same of Section 6, applied to the system

dy

P Az tA)P Y. 7.1
- (z,ta) (7.1)

17With the warning that notations are similar but objects are slightly different here and in [4].
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The block partition of all matrices in the computations and statements is that inherited from P=1A(tA)P.
The Stokes rays are defined in the same way as in Definition 6.1, using the eigenvalues of A(ta), namely

m((ua(tA) - ub(tA))z) =0, %((ua(tA) - ua(tA))z) <0, zeR,
for 1<a#b<n and wu,(ta) # us(ta).

Hence, the Stokes rays associated with u,(ta), up(ta) are the infinitely many rays with directions

7” — arg, (uq(ta) — up(ta)) + 2N7, N €Z.

The rays associated with up(ta), uq(ta) are opposite to the above, having directions

argz =

3
argz = - — arg, (up(ta) — ua(ta)) + 2N
We conclude that all Stokes rays have directions
argz:Tétﬂ), o€,

analogous to (6.3), with directions 7512) defined in Section 5.1. Once the Stokes matrices for the above

system are computed, in order to go back to the original arrangement corresponding to A(ta) we just
apply the inverse permutation. Namely, if S is a Stokes matrix of (7.1), then PSP~ is a Stokes matrix
for (5.18) with ¢ = ta.

8. STOKES PHENOMENON AT to € A

The results of Section 6 (extension theorem, uniqueness theorem, Stokes matrices, etc) apply a fortiori
if the eigenvalues are distinct, namely at a point tg € A such that Theorem 5.1 and Corollary 5.1 apply.
The block partition of A(¢g) is into one-dimensional blocks, being the eigenvalues all distinct, and we
are back to the well known case of [2]. The Stokes rays are defined in the same way as in Definition 6.1,
using the eigenvalues of A(tp), namely

m((ua(to) - ub(to))z) —0, s((ua(to) - ub(to))z) <0, z2eR, Vi<a#b<n.

Since and u,(tg) # up(ty) for any a # b, the above definition holds for any 1 < a # b < n. Hence, the
Stokes rays associated with u,(to), up(to) are the infinitely many rays with directions

3
argz = ?ﬂ- —arg,,(uq(to) — up(to)) + 2N, N e Z. (8.1)
The rays associated with wup(to), uq(to) are opposite to the above, having directions
3
argz = o — arg, (up(to) — ua(to)) + 2N (8.2)
We conclude that all Stokes rays have directions
argz = T[E_t‘)), o€,

analogous to (6.3), being the directions 78) defined in Section 5.1. We stress that to is fixed here.
The Stokes phenomenon is studied in the standard way. The canonical sectors are the sectors S((;to) of
Theorem 5.1. The sector SgtO) contains the set of basic Stokes rays

t t
T e Toh s e T, (8.3)
which serve to generate all the other rays by adding multiples of w. The rays T[StBLtO and Téﬁfl are the

nearest Stokes rays, boundaries of S((yt(’). The Stokes matrices connect solutions of Corollary 5.1, having
the prescribed canonical asymptotics on successive sectors, for example Séto), S(St_‘ﬁLtO, Sétiémo, ete.
Our purpose is now to show how the Stokes phenomenon can be described in a consistent “holomor-

phic” way as t varies. The definition of Stokes matrices for varying ¢ will require some steps.

PART III: Cell Decomposition, t-analytic Stokes Matrices
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9. STOKES RAYS ROTATE AS t VARIES

At t = 0, Stokes rays have directions 37/2 — arg,(\; — A;j) +2N7, 1 <i # j < s. For ¢ away from
t = 0, the following occurs:

1) [Splitting] For 1 <i # j < s, there are rays of directions 37/2 — arg,,(u,(t) — up(t)) mod(27), with
uq(0) = i, up(0) = Aj. These rays are the splitting of 37/2 — arg,(A; — A;) mod(27) into more rays.

2) [Unfolding] For any 7 = 1,2,...;s, new rays appear, with directions 37/2 — arg, (ua(t) — uy(t)),
1a(0) = up(0) = A;. These rays are due to the unfolding of \;.

The cardinality of a set of basic Stokes rays is maximal away from the coalescence locus A, minimal at
t = 0, and intermediate at ta € A\{0}.

If t & A, then uy(t) # up(t) for any a # b. The direction of every Stokes ray (8.1) or (8.2) is a
continuous functions of ¢ ¢ A. As t varies in U,,(0)\A, each one of the rays (8.1) or (8.2) rotates in R.

Remark 9.1. Problems with enumeration of moving Stokes rays. Apparently, we cannot assign
a coherent labelling to the rotating rays as ¢ moves in U, (0)\A. At a given tg € U,,(0)\A, the rays are
enumerated according to the choice of an admissible direction n(*), as in formula (5.7) with t, = t,.
If t is very close to ty, we may choose n(*) = 1) and we can label the rays in such a way that T(Et)
o € Z, is the result of the continuous rotation of o), Nevertheless, if t moves farther in U, (0)\A, then
some rays, while rotating, may cross with each other and cross the rays R(7() 4 kr), k € Z, which
are admissible for A(¢p). This phenomenon destroys the ordering. Hence, labellings are to be taken
independently at ¢y and at any other ¢ € U, (0)\A, with respect to independent admissible directions
ntto) and n®). In this way, T,ﬁt) will not be the deformation of a TgtO) with the same o.

This complication in assigning a coherent numeration to rays and sectors as t varies will be solved in
Section 11, by introducing a new labelling, valid for almost all ¢ € U, (0), induced by the labelling at
t = 0. Before that, we need some topological preparation.

)

10. RAY CROSSING, WALL CROSSING AND CELL DECOMPOSITION

We consider an oriented admissible ray R(7T) for A(0), with direction 7, as in Definition 6.2 and we
project R onto C\{0}. For ¢t € U, (0)\A, some projected rays associated with A(¢) will be to the left
of [(7) and some to the right. Moreover, some projected ray may lie exactly on [(7), in which case we
improperly say that “the ray lies on I[(T)”. Suppose we start at a value ¢, € U, (0)\A such that no rays
associated with A(t,) lie on (7). If t moves away from ¢, in U, (0)\A, then the directions of Stokes rays
change continuously and the projection of two or more rays'® may cross I(7) as t varies, in which case
we say that “wo or more rays cross 1(7)”. Let

- 3m
=——T.
=

Two or more Stokes rays cross [(T) for ¢ belonging to the following crossing locus

XFi= U {t€tal0) | ualt) £ un(t),  arg,(ua(t) = up(t)) =7 mod 7.
1<a<b<n
Let
W(7) = AUX(7).

Definition 10.1. A T-cell is every connected component of the set U, (0)\W (7).

W (T) is the “wall” of the cells. For t in a 7-cell, A(t) is diagonalisable with distinct eigenvalues, and
the Stokes rays projected onto C lie either to the left or to the right of I(7). If ¢ varies and hits W (7),
then either some Stokes rays disappear (when t € A), or some rays cross the admissible line [(7) (when
t € X(7)). Notice that

ANX(T)#0.

18Crossing involves always at least two opposite projected rays, which have directions differing by 7. One projection
crosses the positive part [ (7) of I(7), and one projection crosses the negative part I (7) = I+ (7 £ 7).
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A cell is open, by definition. If the eigenvalues are linear in ¢, as in (1.15), we will show in Section
10.1 that a cell is simply connected and convex, namely it is a topological cell, so justifying the name.
Explicit examples and figures are given in the Appendix.

10.1. Topology of 7-cells and hyperplane arrangements. In order to study the topology of the
T-cells, it is convenient to first extend their definition to C™. A T7-cells in C" can be proved to be
homeomorphic to an open ball, therefore it is a cell in the topological sense. A 7-cell in C" is defined to
be a connected component of C™\(Acn U Xcn (7)), where

Acn = U {u eCcn

1<a<b<n

Xe(®:= {uE(C"

1<a<b<n

Uq = ub}v

uq —up # 0 and arg,(u, — up) = 1 mod w}.

Recall that 77 = 37” -7

We identify C" with R?". A point u = (uy, ..., u,) is identified with (X,y) = (Z1, ..., Tny Y15 e, Yn)s
by ug = x4 + 1Yq, 1 < a < n. Therefore

a) Acn is identified with

A= U {(X, y) € R?"

1<a<b<n

xa_xb:ya_yb:0}~

b) Xcn (7) is identified with

B:= J {(x,y)GRQ”

1<a<b<n

(xa,ya) 7é (‘rbvyb) and Lab(X, y) = O}

where Lu,(x,y) is a linear function

Lop(%,Y) = (Ya — yp) — tan? (z, — ), for n # g mod T, (10.1)

Lop(x,y) = xo — xyp, for n = g mod . (10.2)
Hence AU B is a union of hyperplanes Hy:

AUB= | Haw,  Hau:={(xy) €R™| La(x,y) =0}
1<a<b<n

Note that Lap(x,y) = 0 if and only if Ly, (x,y) = 0, namely Hy, = Hp. The set A = {Hap}acp is
known as a hyperplane arrangement in R?”. We have proved the following lemma

Lemma 10.1. Let u € C" be represented as u = x+1iy, (x,y) € R?™. Then, Acn U Xcn (T) is the union
of hyperplanes Hgp, € A defined by the linear equations La,(x,y) =0, 1 <a <b<, asin (10.1), (10.2).

Properties of finite hyperplane arrangements in R?" are well knows. In particular, consider the set
R — U Hap.
1<a<b<n

A connected component of the above set is called a region of A. It is well known that every region of
A is open and convex, and hence homeomorphic to the interior of an 2n-dimensional ball of R?". It is
therefore a cell in the proper sense. We have proved the following

Proposition 10.1. A 7-cell in C™ is a cell, namely an open and convex subset of C™, homeomorphic
to the open ball {u € C™ | Jug|? + -+ + Jup|? < 1} = {(x,y) € R | 22 + -+ + 42 < 1}.
Remark 10.1. Three hyperplanes with one index in common intersect. Indeed, let b be the common

index. Then,

- Lac(x7 Y) =0.

{ Lab(xa Y) =0
Ly(x,y) =0

Hence,
Habmec CHaw HbcmHac - Hab7 HacmHab - Hbc-
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Equivalently
HabmecmHac: abﬁHbc:HabmHac:HbcmHao

We now consider 7-cells in U, (0) in case the eigenvalues of A(t) are linear in ¢ as in (1.15). The argu-
ments above apply to this case, since u, = u,(0) 4+, is a linear translation. Let w(0) = (u1(0), ..., u,(0))
be as in (5.1)-(5.4), so that u(t) = u(0) + t. Let us split u(t) into real (R) and imaginary () parts:

u(O) =X+ 1yg, t=Rt+iSt - u(t) = (Xo + iy0> + (%t + i%t).
Here, Rt := (Rtq, ..., Nt,) € R™ and St := (Sty, ..., St,) € R™. Define the hyperplanes
1= {(mt, St) € R™ | Lap(Rt, St) + Lap(x0, y0) = o}, 1<a#b<n, (10.3)

and
Hgy, = H., NU, (0). (10.4)
Then,
AUXF = |J Ha
1<a<b<n
Note that Lgp(%0,y0) = 0 for any a # b corresponding to a coalescence ug(t) — up(t) — 0 for t — 0.

Corollary 10.1. If the eigenvalues of A(t) are linear int as in (1.15), then a T-cell in Ue,(0) is simply
connected.

Proof: Any of the regions of a the hyperplane arrangement with hyperplanes (10.3) is open and convex.
U, (0) is a polydisc, hence it is convex. The intersection of a region and U, (0) is then convex and simply
connected. U

Remark 10.2. The H’s enjoy the same properties of hyperplanes H’s as in Remark 10.1. In other
words, if a Stokes ray associated with the pair u,(t), up(t) and a Stokes ray associated with up(t), uc(t)
cross an admissible direction R(7 mod 7) at some point ¢, then also a ray associated with s (t), uc(t)
does.

Remark 10.3. We anticipate the fact that if €; is sufficiently small as in Section 14.1, then f[abﬂueo (0) =
() for any a # b such that for t — 0, ua(t) — \; and uy(t) — A; with 1 <@ # j < s (i.e. ug(0) # up(0)).
See below Remark 14.1 for explanations.

11. SECTORS S, (t) AND S, (K)

We introduce t—dependent sectors, which serve to define Stokes matrices of Y (z,t) of Corollary 5.1
in a consistent way w.r.t. matrices of Y (z) of Theorem 4.1.

Definition 11.1 (Sectors S,y (t)). Let 7, < T < Tyq1, and k € Z. Let t € U, (0)\X (7). We define
Suiku(t) to be the sector containing the closed sector S(T — m + km,T + kr), and extending up to the
nearest Stokes rays of A(t) outside S(T — 7 + km, T + k).

The definition implies that

Su-l-ku(t) - Su+k7u7 Sl/-‘rkﬂ(o) - Sl/-'rkp"

For simplicity, put k = 0. Note that S, (¢) is uniquely defined and contains the set of basic Stokes rays
of A(t) lying in S(7 — 7, 7). We point out the following facts:

e Due to the continuous dependence on t of the directions of Stokes rays for ¢ ¢ A, then S,(t)
continuously deforms as ¢ varies in a 7T cell.

e S, (t) is “discontinuous” at A, by which we mean that some Stokes rays disappear at points of A.

e S, (t) is “discontinuous” at X (7), because one or more Stokes rays cross the admissible ray R(7T)
(this is why S, (t) has not been defined at X (7)). More precisely, consider a continuous monotone curve
t = t(x), x belonging to a real interval, which for one pair (a,b) intersects ﬁab\A at © = x, (recall

that H,p is define in (10.4)). Hence, the curve passes from one cell to another cell, which are separated
by Hgap. A Stokes ray associated with (uq(t),us(t)) crosses R(T) when ¢t = t(z.). Then S, (t(z)) has a
discontinuous jump at x,.
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FIGURE 2. In the left figure ¢t = 0 and the sector S, = S, (0) is represented in a sheet
of the universal covering R. The dashed line represents R(7) U R(T — m) . The arrow
is that of the oriented ray R(7). The rays are the Stokes rays associated with couples
Aiy Aj, 1 < i # j <s. In the right figure ¢ slightly differs from ¢ = 0; the rays in bold
are small deformations of the rays appearing in the left figure, associated with couples
uq(t), up(t) s.t. ua(0) = A;, up(0) = A; with 4 # j. The rays in finer tone are the rays
associated with couples such that u,(0) = up(0) = A\;. The sector S, (t) = S, (¢,7) is
represented.

The above observations assure that the following definition is well posed.

Definition 11.2 (Sector S, (K)). Let K be a compact subset of a T-cell. We define
S,(K):=[)Su(t) CS,.

teK

By the definitions, S, (t) and S, (K) have the angular width strictly greater than 7 and they contain
the admissible ray R(7) of Definition 6.2. Moreover S, (K1) D S, (K3) for K1 C Ko, and S, (K1 UK>y) =
S, (K1) NS, (K3). Below in the paper we will consider a simply connected subset V of a T-cell, such that

the closure V is also contained in the cell, and take
K=V.
Remark 11.1. A more precise notation could be used as follows:
Su(t) =S (t:7) , (11.1)

to keep track of 7, because for given v and two different choices of 7 € (7, 7,41), then the resulting
S, (t)’s may be different. Figures 2 and 3 show two different S, (), according to two choices of 7. As a
consequence, while in Definition 11.1 we could well define S, 4xu(t) C Syqry, for any k € Z, we cannot
define sectors Sy41(t), Su42(t), -y Suqpu—1(t).

12. FUNDAMENTAL SOLUTIONS Y, (2,t) AND STOKES MATRICES S, (%)

Let 7, < T < 7,41. We show that, if to &€ A belongs to a 7-cell, we can extend the asymptotic

behaviour (5.10) of Corollary 5.1 from g(tg)(a,ﬁ) to S, (t). The fundamental matrix of Corollary 5.1
will then be denoted by Y, (z,t).

Proposition 12.1 (Solution Y, (z,t) with asymptotics on S, (t), t € U,(to)). Let Assumption 1 hold for
the system (2.1). Let to belong to a T-cell. For any v € Z there exists U,(ty) contained in the cell of to
and a unique fundamental solution of the system (2.1) as in Corollary 5.1 of the form

Y, (2,t) = Go(t)Gy (2, ) 2B D h®)z (12.1)
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FIGURE 3. The explanation for this figure is the same as for Figure 2, but 7 # 7.
S, = 8,(0) is the same, but S, (t) = S, (¢,7') differs from S, (¢,7) of figure 2.

holomorphic in (z,t) € {z € R | |z| > N} x U,(to), with asymptotic behaviour (5.10) extended to S, (t),
t € Uy(to). Namely ¥ t € U,(to) the following asymptotic expansion holds:

Go(z,t) ~ I+ Z Fn(t)z7", z— 00, z€S8,(t). (12.2)
k=1
The asymptotics (12.2) restricted to z € S, (U,(to)) is uniform in the compact polydisc U,(to).

Note: Recall that by definition of asymptotics, the last sentence of the above Proposition means that
the asymptotics (12.2) is uniform in the compact polydisc U,(ty) when z — oo in any proper closed
subsector of S, (U,(to)).

Proof: In Theorem 5.1 choose g(to)(a,ﬁ) = S(7 — m,7). This contains a set of basic Stokes rays of
A(tg) and of A(t) for any ¢ in the cell of ty. Then, Sibuya’s Theorem 5.1 and Corollary 5.1 apply, with
fundamental solution Y (z,t) defined for ¢ in some U, (tp). It is always possible to restrict p so that U, (to)
is all contained in the cell.

e [Extension to S, (t)] For t € U,(ty), the sector containing S(7—m,7) and extending up to the nearest
Stokes rays outside is S, (¢), by definition. Hence there exists a labelling as in Section 5.1, and a ¢ € Z,

such that S, (tg) = S{) . The Extension Theorem and the Uniqueness Theorem can be applied to Y(z,t)
for any fixed t, because S(7 — 7, 7T) contains a set of basic Stokes rays. Hence, for any t € U,(ty) the
solution Y'(z,t) is unique with the asymptotic behaviour (5.10) for z — oo in S, (t).

e [Uniformity in S, (U,(to))] Clearly, S,(U,(to)) D S(7 — ,7). Since S, (U,(to)) C S,(t) for any
t € Uy(to), the asymptotics (12.2) holds also in S, (U,(t9)). Moreover, the asymptotics is uniform in
U,(to) if z = oo in S(7 — 7, 7), by Theorem 5.1 and Corollary 5.1. We apply the same proof of the
Extension Lemma 6.2 as follows. Let 67 and fg be the directions of the left and right boundary rays
of S,(U,(to)) (e. S,U,(to)) = S(0r.0L)). Let Si := S(¢,¢), for p + 7 < ¢ < ¢ < 0, and
Sy := S(¢',¢') for O < ¢’ < ' < 0 — 7. Let us consider S;. By construction, S; does not contain

Stokes rays of A(t) for any t € U,(to), and so, by Theorem 5.1 now applied with a g(t()) = S, there

exists Y (z,t) ~ Yp(z,t), for z = oo in Sy, uniformly in |t — to| < py, for suitable p; > 0. Moreover,
Y(z,t) = Y(z,t)C(t), where C(t) is an invertible holomorphic matrix in |t — to| < min(p, p1). The
matrix entries satisfy e(#e(®=uw )z, (1) = G(2,8)71G(2,t) ~ dap, a,b =1, ...,n, for |t —to| < min(p, p1)
and z — oo, z € S(7 — 7, 7) N S1. Since N((uq(t) — up(t))z) does not change sign for ¢ in the cell and
z € Sq, then Y (2,t) ~ Yr(2,t) also for 2 € S(7 — 7, 7) U Sy, uniformly in |t — t5| < min(p, p;). The
same arguments for Sy allow to conclude that Y (z,t) ~ Yr(z,t) for 2 € S(7 — m,7) US; U Sa, uniformly
in |t — to| < min(p, p1, p2). Finally, from the proof given by Sibuya of Theorem 5.1 (cf. [66], especially
from page 44 on) it follows that p; and po are greater or equal to p. The proof is concluded. We denote
Y (z,t) with Y, (z,t). O
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Definition 12.1 (Stokes matrices S, ;,(t)). The Stokes matrix S, r.(t), k € Z, is defined for
t € U,(to) of Proposition 12.1 by,

Yoset1)u(2:8) = Yognp(2,8)Suprp(t), z€R,
where the Y, 4k (2,t) and Y, (,41),(2,1) are as in Proposition 12.1.

Sy 4k (t) is holomorphic in ¢ € Uy (to), because so are Y, 4 (p11)u(2,t) and Yy, (2, 1).

13. ANALYTIC CONTINUATION OF Y, (z,t) ON A CELL PRESERVING THE ASYMPTOTICS

Proposition 13.1 (Continuation of Y, (z,t) preserving the asymptotics, along a curve in a cell). Let
Assumption 1 hold for the system (2.1). The fundamental solution Y,(z,t) of Proposition 12.1 holo-
morphic in t € U,(to) admits t-analytic continuation along any curve contained in the T-cell of to, and
maintains its asymptotics (12.2) for z — oo, z € S,(t), for any t belonging to a neighbourhood of the
curve. The asymptotics is uniform in a closed tubular neighbourhood U of the curve for z — oo in (any
proper subsector of) S, (U).

Proof: Let Y, (z,t), t € U,(to) be as in Proposition 12.1. Join o to a point ¢ inq, belonging to the 7-cell
of ¢y and not belonging to U,(ty), by a curve whose support is contained in the 7-cell. Let t1 € U, (to)
be the intersection point with the curve. Theorem 5.1 and its Corollary 5.1 can be applied at t;, with
sector SC(,tl) = S, (t1), by definition. By Proposition 12.1, there exists a unique fundamental solution,
which we temporarily denote Y,,(l)(z,t), with asymptotics (12.2) for z — oo, 2z € S,(t), t € U,, (t1).
Here p; is possibly restricted so that U, (¢1) is contained in the cell. The asymptotics is uniform
in U, (t1) for z — oo in S, (U,, (t1)). Now, when t € U,(to) N U,,(t1), both Y, (z,t) and YV(I)(z,t)
are defined, with the same asymptotic behaviour (12.2) for z — oo, z € S, (U,(to)) N S, Uy, (t1)),
uniform in ¢ € U,(to) NU,, (t1). Moreover, S, (U,(to)) NS, (Uy, (t1)) has central opening angle strictly
greater than m because both U,(t9) and U, (t1) are contained in the cell. By uniqueness it follows
that Y, (z,t) = Yl,(l)(z,t) for t € U,(to) NU,, (t1). This gives the t-analytic continuation of Y, (z,t) on
U,(to) UU,, (t1). The procedure can be repeated for a sequence of neighbourhoods U, (t,), n =1,2,3, ...
(tn is point of intersection of the curve with U, _ (t,—1)). Consider U := {J,,U,, (tn). If tina is an
internal point of € U, the proof is completed and U, (t,) is a finite sequence. If not, the point ¢, of
intersection of OU with the curve either precedes t finai, Or t« = tinar € OU. Since ¢, belongs to the cell,

Proposition 12.1 can be applied. The sector S((,i*), 0« € Z, prescribed by Theorem 5.1 and Corollary
5.1 coincides with S, (t.), by definition. Therefore, the analytic continuation is feasible in a U, (t.), as
in the construction above. We can add U,,- (t«) to U. In this way, tfinal is always reached by a finite
sequence, and U is compact. By construction, the asymptotics is uniform in any compact subset K C U,
including also K = U, for z — o0, z € S, (K). O

Corollary 13.1. (Analytic continuation of Y, (z,t¢) preserving the asymptotics on the whole
cell — case of eigenvalues (1.15)). Let Assumption 1 hold for the system (2.1). If the eigenvalues
of A(t) are linear in t as in (1.15) then Y, (z,t) of Proposition 12.1 is holomorphic on the whole T-cell,
with asymptotics (12.2) for z — oo in S, (t), for any t in the cell. For any compact subset K of the cell,
the asymptotics (12.2) for z — oo, z € S,(K), is uniform int € K.

Proof: If the eigenvalues of A(t) are linear in ¢ as in (1.15), then any 7-cell is simply connected (see
Corollary 10.1). Hence, the continuation of Y, (z,t) is independent of the curve. OJ

e Notation: If ¢ is the 7-cell of Corollary 13.1, the following notation will be used

Y. (z,t) =Y, (2,7, ¢), tec. (13.1)
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13.1. Analytic continuation of Y, (z,t;7,c) preserving the asymptotics beyond 0Jc. Let the
eigenvalues of A(t) be linear in ¢ as in (1.15). The analytic continuation of Corollary 13.1 and the
asymptotics (12.2) can be extended to values of ¢ a little bit outside the cell. This is achieved by a small
variation 7 +— T + ¢, for € > 0 sufficiently small.

Recall that the Stokes rays in R associated with the pair (uq(t), uy(t)) and (up(t), uq(t)), a # b, have
respectively directions

3 3
argz = ?ﬂ- —arg, (uq(t) —up(t)) +2N7  and argz = ?ﬁ —arg, (uy(t) — uq(t)) + 2N, N e Z.

Thus, their projections onto C are the following opposite rays
PRo(t) :={z € C | 2 = —ip(ua(t) — us(t))}, PRy (t) :={z € C | 2 = —ip(up(t) —ua(t))}. (13.2)

For t ¢ W(T), a ray PRgy(t) lies either in the half plane to the left or to the right of the oriented
admissible line (7). For t € W (T), the finite set of projected rays is the union of the two disjoint subsets
of (projected) rays to the left and to the right of [(7) respectively. Now, for ¢ varying inside a cell ¢, the
projected rays never cross [(7). On the other hand, if ¢ and ¢’ belong to different cells ¢ and ¢, then the
two subsets of rays to the right and the left of I(7) which are associated with ¢ do not coincide with the
two subsets associated with ¢. These simple considerations imply the following:

Proposition 13.2. A T-cell is uniquely characterised by the subset of projected rays which lie to the left
of U(T).

Definition 13.1. A point t, € f[ab\A is simple if t, & H,y N Hyy for any (a’,b") # (a,b).

If ¢ varies along a curve crossing the boundary dc of a cell ¢ at a simple point belonging to ﬁab\A,
for some a # b, the ray PRy, (t) crosses either [ (7) or I_(7), while PRp,(t) crosses either [_(7) or
I4(7T). Since only PR, (t) and PRy, (t) have crossed I(7), then by Proposition 13.2 there is only one
neighbouring cell ¢’ sharing the boundary H,p with . On the other hand, if the curve crosses Oc\A at a
non simple point, then two or more rays simultaneously cross I, (7) (and the opposite ones cross [_(7T)).

For example, if the crossing occurs at (Hgap N Hop )\A then there are three cells, call them ¢y, cq, c3,
sharing common boundary (Hap N Hyp )\A with e. Looking at the configuration of Stokes rays as in the
figures 4, 5, 6, 7, we conclude that out of the three cells ¢y, co, c3, there is one, say it is ¢1, such that the

transition from ¢ to ¢; occurs with a double crossing of Stokes rays (figure 7), namely at a non-simple
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Stokes rays

Stokes rays

FIGURE 8. The two closed sectors of amplitude 2¢, not containing Stokes rays when ¢ € U.

point; while for the remaining co and c3 the transition occurs at simple points. In figures 4, 5, 6, 7, PR,
stands for PR,y (t) (or PRy, (t)) and PRs stands for PRy (t) (or PRy (t)). The transition between

figure 4 and 7 is between ¢ and ¢; of figure 11, through non simple points of (Hgp N ﬁa/b/)\A.

Remark 13.1. Recall that for any a # b, ﬁabﬁA # (). Therefore, when we discuss analytic continuation,
this requires crossing of “hyperplanes” H,,\A.

Proposition 13.3 (Continuation slightly beyond the cell, preserving asymptotics). Let the assumptions
of Corollary 13.1 hold. Let ¢ and ¢’ be T-cells such that dcNdc’ # 0. If deNAC does not coincide with the
multiple intersection of two or more flab s, then Y, (2, t; T, ¢) has analytic continuation, with asymptotics
(12.2) in S, (t), for t slightly beyond Oc\A into ¢'. The asymptotics for z — oo in S,(K) is uniform in
any compact subset K of the extended cell. Equivalently, Y, (z,t;7,c) can be analytically continued along
any curve crossing dc\A at a simple point and ending slightly beyond Oc\A in the neighbouring cell ¢'.

Proof: Let U be an open connected subset of the 7-cell ¢, such that U is contained in c. There exists a
small ¥ = 9(U) > 0 such that for any ¢ € U the projected Stokes rays of A(t) lie outside the two closed
sectors containing [(7) and bounded by I(7 + 0) and (7 — 0), as in figure 8. Let £ € [0,9]. All lines
I(7 + ¢) are admissible for the Stokes rays, when ¢t € U. Consider the subset of projected Stokes rays to
the left of I(7). It uniquely identifies (cf. Proposition 13.2) the (7 + €)-cell and the (7 — ¢)-cell obtained
by deforming the boundaries of ¢ when 7+ 7 4+ ¢ and T — T — € respectively (recall that L, in (10.3)
depends on 77 = 37/2 — 7). Call these cells ¢, and ¢_.. By construction

U CcNeqe, e €[0,9],
Y.(z,t;7,¢) =Y, (2,6;T £ e,c1.), teU.

The last equality follows from the definition of Y}, its uniqueness and Corollary 13.1. Indeed, the analytic
continuation explained in the proof of Proposition 13.1 can be repeated for the function Y, (z,¢; T+e, cy.)
initially defined in a neighbourhood of ¢y contained in U, but with cell partition determined by T + €.
Moreover, by uniqueness of solutions with asymptotics, it follows that Y, (z,¢;7,¢) = Y, (2, ;7 £ &, c4c)
for t € U. Therefore, Y, (z,t;7,c) has analytic continuation to cy.. Now,

c+e N { union of cells sharing boundary with ¢ } # .

Then, the analytic continuation of Y, (z,¢; 7, c) obtained above is actually defined in a t-domain bigger
than ¢. We characterise this domain, showing that it intersect any cell ¢ which is a neighbour of ¢, and
such that dc N dc’ does not coincide with the multiple intersection of two or more hyperplanes. Thus,
we need to show that cy. N ¢’ # 0. Notice that dc N O’ = Hy, for suitable a,b. Then, suppose without
loss of generality that PRqy(t) crosses I (7) clockwise when ¢ crosses H,,\A moving along a curve from
¢ to ¢. An example of this crossing is the transition from figure 4 to figure 6, with the identification



R p(®
> R(t)

R(t) ab(t)
Rr—e)
continuation of Y,(z,t;7,c)

hiztine FIGURE 10. Analytic continuation
of Y, (z,t;7,c) for t in the neigh-
bouring cell ¢’ just after the crossing
of dc\A, namely just after Rqp(t)
has crossed R(7). The sector where
Y, (z,t;7,c) has the canonical as-
ymptotic behaviour is represented.

FIGURE 9. Y, (z,t;7,c) for
t € c¢. The sector where
Y., (z,t;7,c¢) has the canonical
asymptotic behaviour is repre-
sented.

¢ = c3 of Figure 11, and PRy = PRgy,. Then, for the small deformation 7 — 7 — ¢ the above discussion
applies. Namely, ¢_. N ¢ # (). See figures 9 and 10. O

If 9c N O = Hyy N Hyy for some (a/,b') # (a,b), there is multiple crossing of {(7). The proof
does not work if the crossing corresponds to a transition such as that from figure 4 to figure 7, with
the identification ¢ = ¢;. Since PR; and PRy cross simultaneously {4 (7) from opposite sides, any
deformation 7 — 7 &+ £ produces a cell ¢4, which does not intersect ¢;. In other words, the deformatlon
prevents points of ci. from getting close to Hab N H, o't~ The schematic figure 11 shows the 4 cells
corresponding to the figures from 4 to 7. It is shown that Y, (z,¢;7,¢) can be continued slightly inside
¢o and cg, but not inside ¢’ = ¢;. It is worth noticing that both Y, (z,%; 7, ) and Y, (2,4 T, c3) can be
continued beyond Hap N Hyryy. See figure 12 for Y, (z,t; 7, c3).

Remark 13.2. If the eigenvalues are linear in ¢ as in (1.15), the results of this section assures that
the fundamental solutions Y, 4k, (2,t;7, c)’s are holomorphic in a 7-cell ¢ and a little beyond, that they
maintain the asymptotic behaviour, and then the corresponding Stokes matrices S, 1, (t)’s are defined
and holomorphic in the whole 7-cell ¢ and a little bit beyond.

14. FUNDAMENTAL SOLUTIONS Y, (z,t) AND STOKES MATRICES S, (f) HOLOMORPHIC AT A

If the fundamental solutions Y, 4, (2, t; 7, ¢)’s of (2.1) (with Assumption 1) have analytic continuation
to the whole U, (0), in this section we give sufficient conditions such that the continuations are c-
indendent solutions Y}, 1, (2,t)’s, which maintain the asymptotic behaviour in large sectors 3,, defined
below, so that the Stokes matrices S, x,(t) are well defined in the whole U, (0). Moreover, we show
that Y, 15.(2,0) = f@Hw (2) and Sy 4, (0) = Su+km where Yu+k#( z), SH_;W have been defined in Section
6 for the system at fixed ¢t = 0.

14.1. Restriction of €. So far, ¢y has been taken so small that A;(t) and A;(¢), 1 <i# j <'s, have
no common eigenvalues for t € U, (0). If A = A(0) has at least two distinct eigenvalues, we consider a
further restriction of €. Let 7 = 37/2 — 7 be the admissible direction associated with the direction 7 of
the admissible ray R(7). Let dp be a small positive number such that

0y < 1<r1117£1§1<S ijs (14.1)

where 6;; is 1/2 of the distance between two parallel lines of angular direction 7 in the A-plane, one
passing through A; and one through A;; namely

8ij 1= %min“)\i — X+ pe'l, peR}, i#j=12..5:. (14.2)

Clearly, dp depends on the choice of 7] (see also Remark 14.2). Let B(\;;8) be the closed ball in C with
center \; and radius dp. Then, we choose € so small that the eigenvalues uy(t), ..., u,(t) for t € U, (0)
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Co
c Ha/b/ Cy
Heyp
K “ —

~ : Heyp

H, |
FIGURE 11. The cells
of complex dimension n e
(real dimension 2n) are ’ o o
schematically and im-
properly depicted in real FIGURE 12. Analytic contin-
dimension 2. Boundaries uation of Y, (2,7, c3) beyond
H,, and Hpy are rep- the boundary of ¢. The con-
resented as lines, their tinuation goes up to the 3
intersection as a point neighbouring cells. This cor-
(understanding that it is responds to the fact that the
not in A). The do- three transitions form figure 6
main of the analytic con- to figures 4 and 7 occur when
tinuation of Y, (z,¢;7,¢) PRy and PRy respectively
beyond the boundary of cross (1), while the transition
¢ is the dashed region. from figure 6 to figure 5 oc-
The analytic continua- curs when PR, and PR; si-
tion does not go beyond multaneously cross (1), com-
Hoy N Hay, because the ing from the same side of I(T)
transition from figure 4 (moving in  anticlockwise
to figure 7 is obtained by sense).

a simultaneous crossing
of [(T) by PRy and PRy
from opposite sides of

1(7).

satisfy
<U1(t)7 ,Un(t)) S F()‘l; 50)><p1 X e X E()\S; 50)><ps.
As t varies in U,,(0) above, the Stokes rays continuously move, but the directions of the rays associated

with a u, € B(\i;d) and a u, € B(\j;00), i # j, never cross the values 7 and 77 — 7 (mod 27), so that
the projected rays PRgy(t) and PRy, (t) never cross the admissible line [(7). It follows that

the cell decomposition only depends on the Stokes rays associated with couples (uq(t), up(t)) such that
ue(0) = up(0) = N, i =1, ..., 8.

For eigenvalues linear in ¢ as in (1.15), we can take ¢y = dp and

U, (0) = B(0;50)"P* x -+ x B(0;80)*P=, €0 = 0p. (14.3)

Remark 14.1. If £ moves from one 7-cell to another, the only Stokes rays which may cross admissible
rays R(T + km), k € Z, are those associated with pairs u(t), up(t) with u,(0) = up(0) = A, @ =
1,...,s. Therefore, the boundaries of the cells are only the Hgp’s such that u,(0) = up(0). In this case,
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FIGURE 13. In the left figure ¢ = 0 and the sector S, is represented. The explanation
is as for the left part of Figure 2. In the right figure, ¢ = 0. Represented are only the
rays associated with couples ug (t), up(t) with u,(0) = A, up(0) = Aj, for i # j, together
with the sector §,,(t).

Lay(%0,y0) = 0, so that
ab = {(%t, St) € R*™ | Lop(Rt, St) = o}.
Remark 10.3 follows from the above observations.

14.2. The Sectors S, (t) and S,. Let A(t) be of the form (1.2) with eigenvalues (1.15). Let eg = d; be
as in subsection 14.1. We define a subset 91(t) of the set of Stokes rays of A(t) as follows: 9i(¢) contains
only those Stokes rays {z € R | R(z(uq(t) — up(t))) = 0} which are associated with pairs u, (), up(t)
satisfying the condition u,(0) # uy(0) (namely, uo(0) = A;;, up(0) = Aj, @ # j; see (5.1)-(5.4)). The
reader may visualise the rays in JR(¢) as being originated by the splitting of Stokes rays of A(0). See
figure 13.

M (t) has the following important property: if ¢ varies in U, (0), the rays in 9R(t) continuously move,
but since ey = dg, they never cross any admissible ray R(T + kn), k € Z.

Definition 14.1 (Sectors §V+;m(t)). We define §l,+ku(t) to be the unique sector containing S(T — m +
km, 7 + km) and extending up to the nearest Stokes rays in R(t), t € Ue,(0).

Any §V+ku(t) contains a set of basic Stokes rays of J&. Moreover,
R(7) € S,(t) N Spip(t) C S(70, ur1),
and ~ ~
S, (t) C Su(t), S.(0)=S,.
In case A(0) = A\ I, then Al,(t) is unbounded, namely it coincides with R.
Definition 14.2 (Sectors S, (K)). For any compact K C U, (0) we define
S, (K) =[] S.(t).
teK
If K, C Ko, then S, (K2) C 8, (K3). For any K1, K, we have S, (K, U K») = S, (K1) NS, (K>).
Definition 14.3 (Sectors S,). If K = U, (0), we define
S, =8, (U, (0)).
Since €y = dp, gy has angular opening greater than 7 and
§V C 3’,,(()) =S,
R(7) C8,N81u C STy, Tui1)
Remark 14.2. Notice that 7 € (7, 7,4.1) determines Jo through (14.2) and (14.1). Let 7 € (70, 7y41)

and let 0, be obtained through (14.2) and (14.1). Let €y = min{do, d(,}. We temporarily denote by S,[7]
the sector S, of Definition 14.3 obtained starting from 7. Then for the above ¢y we have

S,[7] =8, [7].
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FIGURE 14. Loop 74 represented in B(\;; €p). The dashed oriented line is the direction
7. Along the loop, u, and wu; get aligned with 77 twice, in the second and fourth figures.
The second figure corresponds to the passage from one initial cell ¢ to a neighbouring
cell ¢ (while PRy, crosses clockwise a half line of I(7)) and the fourth figure to the
return to ¢ (while PRy, crosses clockwise the opposite half line of I(7)). Other dots
represent other eigenvalues u.(t) in B(\;;€).

14.3. Fundamental group of U, (0)\A and generators. Let the eigenvalues of A(t) be linear in ¢ as
in (1.15), 7, <7 < Tyy1 and 77 = 37/2 — 7.

The fundamental group m (Ue,(0)\A,pase) is generated by loops e, 1 < a # b < n, which are
homotopy classes of simple curves encircling the component {t € U,,(0) | uy(t) = up(t)} of A. The
choice of the base point is free, because U, (0)\A is path-wise connected, since A is a braid arrangement
in U,,(0) and the hyperplanes are complez.

For eg = dp of Section 14.1, Stokes rays in fR(t) never cross the admissible rays R(T + k), k € Z,
when ¢ goes along any loop in U, (0) (see Remark 14.1). Therefore, as far as the analytic continuation of
Y, (z,t) is concerned, it is enough to consider u,(t) and wu(t) coming from the unfolding of an eigenvalue
A; of A(0) (see the beginning of Section 9), namely

ua(t) =\ + g, ub(t) =\ +1p. (144)

If we represent t, and ¢, in the same complex plane, so that ¢, —t; is a complex number, a representative
of v4p, which we also denote 7., with abuse of notation, is represented by the following loop around
to —tp, =0,

ty —ty — (tq — tp)e*™. (14.5)
|ta — tp| will be taken small. The Stokes rays associated with u,(t) and wuy(t) have directions

3% —arg(ty, — tp) mod(2m), 3% —arg(ty —t,) mod(2m). (14.6)
The projection of these rays onto C are the two opposite rays PRy, (t) and PRy, (t), as in (13.2) . Along
the loop (14.5), each of these rays rotate clockwise and crosses the line I(7) twice (recall Definition 6.2),
once passing over the positive half line and once over the negative half line, returning to the initial
position at the end of the loop. Hence, the support of 7, is contained in at least two cells, but generally
in more than two, as follows.

e There exists a representative contained in only two cells if only PRy, (t) and its opposite PRy, (t)
cross I(7T), each twice. For example, in figure 14 the ball B(\;;€o) is represented with the loop (14.5).
The dots represent other points u~(t) € B(\i;€0), ¥ # a,b. PRap(t) and PRya(t) cross [(T) when u,(t)
and u,(t) are aligned with the admissible direction 7). Along the loop, no other u. aligns with w,(t) and
ub(t).

e In general, other (projected) rays cross I(7) along any possible representative of 7,,. For example,
the representative of (14.5) in figure 15 is contained in three cells. Indeed, also PR, (t) and PR.4(t)
cross [(T) when u, and u, get aligned with 7. Alignment corresponds to the passage from one cell to
another.

14.4. Holomorphic conditions such that Y, (z,t) — Y, (z) and S, (t) — S, for ¢ — 0, in case of
linear eigenvalues (1.15). The following theorem is one of the central results of the paper, and it will
be used to prove Theorem 1.1.
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FIGURE 15. Loop 7, represented in B(\;; €). The dashed oriented line is the direction
7. In the first figure, u, moves close to u;. Along the way it gets aligned with u.. At
this alignment, PR, crosses clockwise a half line of I(7) and ¢ passes from the initial
cell ¢ to a cell ¢/. The second figure is figure 14. Here ¢ passes from ¢’ to another cell
¢’ and then back to ¢’. In the third figure, u, moves to the initial position. Along the
way it gets aligned with w,, PR, crosses anti-clockwise the same half line of {(7) and
t returns to the cell c¢. In this example, 74, has support contained in three cells.

Theorem 14.1. Consider the system (2.1) (i.e. system (1.1) of the Introduction). Let Assumption 1
hold, so that (2.1) is holomorphically equivalent to the system (5.18) (i.e. to (1.5) of the Introduction,).
Let A(t) be of the form (1.2), with eigenvalues (1.15) and €y = 6y as in subsection 14.1. Let T be the
direction of an admissible ray R(T), satisfying 7, < T < T,41. Suppose that:

1) For every integer j > 1, the F;(t)’s are holomorphic in U, (0) (so necessary and sufficient conditions
of Proposition 5.1 hold);

2) For any T-cell ¢ ofUe,(0) and any k € Z, the fundamental solution Y, 11, (2,t;7, ¢) has analytic con-
tinuation as a single-valued holomorphic function on the whole Ue,(0). Denote the analytic continuation
with the same symbol Y, 1. (2,t;7,¢), t € U (0).

Then:
e For any T-cells ¢ and ¢/,

YV—"-kM(Z? t7 ;7 C) = Yy+ku(27 tv 7A:7 C/), te uﬁo (O)
Therefore, we can simply write Yy, (2,6 7).
o Let Guigu(2,657) i= Go(t) ™ Yo pnu(z,t;7) 2 Bre 202 For any ¢ < €y the following asymptotic
expansion holds:
(o)
Gt (2,6;7) ~ I+ ZFk(t)sz, z—00, 2€Sutky, tE€U,(0). (14.7)
k=0
The asymptotic expansion is uniform in t in Ue, (0) and uniform in z in any closed subsector of SAVHW.

e For any t € U, (0), the diagonal blocks of any Stokes matriz S, 1, (t) are the identity matrices I, ,
Iy, , ... 1y, . Namely

(Svtru)ap(t) = (Svtrp)pa(t) =0  whenever u,(0) = up(0).

Remark 14.3. [Continuation of Remark 14.2] Since Y, 4 1, (2,t; 7, ¢) = Yoqru(2, 6 7,¢) = Yoqru(2, 65 7),
only the choice of 7 is relevant. If 7 and 7’ are as in Remark 14.2 , then

Yu+k1L(Za t; ?) = Yy+ku(z7 t; ;/)a

because the rays in R(t), t € U, (0), neither cross the admissible rays R(7+mm) nor the rays R(7'+mm),
m € Z. In other words, Y, +x,(2,t;7) depends on 7T only through €. Hence, we can restore the notation

Yosru(:t), L€ Uy (0).
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Corollary 14.1. Let the assumptions of Theorem 14.1 hold. Let }o/,,_s_;w(z), k € Z, denote the unique
fundamental solution (6.6) of the form (4.20), namely

o

Yu+k:p, (Z) - gl/+k:u (Z>zBl © eAZ )

with the asymptotics (4.21)

o0
gl/—i—ku(z) ~ I+ Zszij, z — 00, 7z & S,/_;'_ku,
j=1

corresponding to the particular choice F'j = F;(0), j > 1. Then,
gu-{—k,u(za O) = gu+ku(3)v

o

Yoiku(2,0) = Yoyru(2).

Proof: Observe that Y, 4, (2,0) is defined at t = 0. Now, 3\1, C S, and both sectors have central
opening angle greater than 7. Hence, the solution with given asymptotics in S, is unique, namely

G,(2) =Gu(2,0). O

Corollary 14.2. Let the assumptions of Theorem 14.1 hold. Let S,(t), Sy4,.(t) be a complete set of
Stokes matrices associated with fundamental solutions Y, (z,t), Yi4u(2,t), Yiyou(2,t), with canonical
asymptotics, for t in a T-cell of Ue,(0), in sectors S,(t), Sy1.(t) and Syyo,(t) respectively, which by
Theorem 14.1 extend to §,,, §V+u and ‘§V+2u respectively for t € U, (0). Then there exist

o

}g% Su(t) =S, tlg% Sv4u(t) = Svqp,

where gy, g,,JrH s a complete set of Stokes matrices for the system at t = 0, referred to three fundamental
solutions Y, y1,(2), k =0,1,2, of Corollary 14.1 having asymptotics in sectors Sy4xy, with F; = F;(0),
j=>1

Proof: The analyticity of Y, 1r.(z,t) in assumption 2) of Theorem 14.1 implies that the Stokes matrices
are holomorphic in U, (0). Hence, for k = 1,2, there exists

SV+I€#(0) = tlg% (Yu+(k+1)u(zvt)_IYVJrku(th)) = i}v+(k+1)u(z)_1ﬁ/+ku('z) = glﬂrku'
O

14.4.1. Proof of Theorem 1}.1.

Lemma 14.1. Let Assumption 1 hold for the system (2.1). Let the eigenvalues of A(t) be linear in
t as in (1.15). Suppose that Y, (z,t;7,c) has t-analytic continuation on Ue,(0)\A, with eg = o as in
subsection 14.1. Temporarily call Y,f°" (2,1, 7, ¢) the continuation. Also suppose that

YO (2,47, c) =Y, (2, t7,c).
tec

Then:
a) Any Y, (z,t;7,c") has analytic continuation on Ue,(0)\A, coinciding with Y,5" (z,;7,c). Due to
the independence of ¢, we denote this continuation by

Y, (2,6, 7).

b) G (2, t:7) = Go(t) Y, (2,t;7) 2~ Br®ze =MDz has asymptotic expansion

Gz, i7) ~ T+ Fe(t)z™", z—00, 2€8,(t), teU,(0)\A.

k=0
The asymptotics for = — 0o in S, (K) is uniform on any compact subset K € U, (0)\A.
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Proof of Lemma 14.1: a) is obvious. We prove b), dividing the proof into two parts.

Part 1 (in steps). Chosen an arbitrary cell ¢ (all cells are equivalent, by a)) and any f € ¢, we prove
that the sector where Y, (z,f;7) has canonical asymptotics can be extended from S, (i) to S, (f). For
clarity in the discussion below, let us still write Y, (z,%; 7, c).

Step 1. At £, consider the Stokes rays in S, ()\S(7 — 7, 7) associated with the unfolding of the A;’s.
Those with direction greater than 7 will be labelled in anticlockwise sense as Ry (f), Ry (f), ..., etc. Those
with direction smaller than 7 — 7 will be labelled in clockwise sense R} (f), R5(f), etc. Therefore, R, (%)
is the closest to the admissible ray R(7), while R} (f) is the closest to R(7 — m). (Warning about the
notation: The dependence on ¢ is indicated in Stokes rays Ry, Ro etc, while for the admissible ray R(7),
T is the direction as in Definition 6.2). See figure 16.

Let t vary from f into a neighbouring cell ¢;, in such a way that R;(t) approaches and crosses R(T)
clockwise. By Proposition 13.3, Y,°"(z,t; 7, c) is well defined with canonical asymptotics on a sector
having left boundary ray equal to Ry(t), for values of ¢ € ¢; just after the crossing.’

By assumption, Y, (2, t;7,¢) = Y, (2,t;7,c1). For t € ¢1 just after the crossing, Y, (z,t;7,c1) has
canonical asymptotics in S, (¢), which now has left boundary ray equal to Ra(t). See Figures 17 e 18.
This implies that Y,%°"(z,¢; 7, ¢) has canonical asymptotics extended up to Ra(t), t € ¢1 as above. See
Figure 19.

Let t go back along the same path, so that Ry (t) crosses R(7) anticlockwise. Proposition 13.3 now can
be applied to Y, (z,t;7,c1) for this crossing.?’ Hence, Y, (z,t;7,c1) has analytic continuation for ¢ before
the crossing, certainly up to ¢ (because Ri(t) does not cross Ry(t)), with canonical asymptotics in a
sector having Ry (f) as left boundary. See Figure 20. Again, by assumption, we have that Y, (z2,;7,¢) =
Yot (2,7, c1). Hence, Y, (z,1;7,c) has canonical asymptotics extended up to the ray Ry (f). See Figure
21. In conclusion, R;(t) has been erased.

Step 2. We repeat the arguments analogous to those of Step 1 in order to erase Ry(t). Let t vary
in such a way that R;(t), which is now a “virtual ray”, crosses R(T) clockwise, as in step 1. After the
crossing, t € ¢ and Y, (2, t; 7, ¢) = Y, (2,t;7,c1). Then, let ¢ vary in such a way that also Ra(t) crosses
R(T) clockwise. See Figures 22, 23. Just after the crossing, ¢ belongs to another cell ¢y (clearly, co # ¢
and ¢;; see Proposition 13.2).

The same discussion done at Step 1 for Y, (z,t;7,¢) is repeated now for Y, (z,t;7,¢1). Indeed,
Yot (2,47, c1) = Yo (2,47, c2), for t € o just after Ra(t) has crossed R(7). The conclusion, as before,
is that Y,°°"t(2,¢;7,c1) has canonical asymptotics extended up to R3(t) for ¢t € ¢;. See Figure 24.

Now, let ¢ go back along the same path up to f. Also the virtual ray R;(t) comes to the initial
position, and Y, (z,£;7,¢c) = Y. (2,67, ¢1) = Y2 (2,1, 7, co), with canonical asymptotics extended
up to Rs(f). See figure 25.

Step 3. The discussion above can be repeated for all Stokes rays R1, Ry, R3 , etc.

Step 4. Observe that the right boundary ray R} of the sector where Y, (z,¢;7, ¢) has asymptotics is
not affected by the above construction. Once the left boundary rays R;, Rs,... have been erased, the
same discussion must be repeated considering crossings of the admissible ray R(7 — ) by the rays R},
R}, etc, as in figure 26.

In conclusion, all rays Ry, Ra, ..., R}, R}, ... from unfolding lying in 51,(1?)\5(77777, 7) are erased. Hence

Y, (z,£;7,¢) = Y, (2,1;7) has canonical asymptotics extended up to the closest Stokes rays in 9(#) outside
S(T — 7, 7), namely the asymptotics holds in §u(f).

The above discussion can be repeated also if one of more rays among Ry, Ra, etc. is double (i.e. it
corresponds to three eigenvalues) at {, because as t varies the rays unfold. Thus, the above discussion
holds for any £ € ¢ and any ¢. Therefore, Y, (2,t;7) has asymptotics in §,,(t) for any ¢ belonging to the
union of the cells.?!

1945 long as Ry (t) does not reach another Stokes ray
201n the proof, deform 7 — 7 + €.

2INamely, t € Ueo (0)\ (AU X(T)) = Uey (0)\ (U ﬁab), a,b from unfolding.
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~
S,

FIGURE 16. Rays in S, (t) which are going to be crased in the proof.

We observe that a ray Ry(t), Ra(t), etc, crosses R(T) for ¢ equal to a simple point ¢, (see Definition
13.1). The above proof allows to conclude that Y, (z,t.;7) has asymptotics in S, (.) also when # = t,.

Part 2: Points ¢ _internal to cells and simple points have been considered. It remains to discuss non
simple points t. € (Hayp, NHagp, NN Ha, b, )\A, for some [ > 2. Consider all the Stokes rays associated
with either one of (ug,, (t),us,, (t)) or (up,, (t),uq,, (t)), m =1,....1, and lying in S(7,7 + 7). There exists
a cell ¢, among the cells having boundary sharing the above intersection, such that these rays cross R(T)
clockwise and simultaneously at ¢., when ¢ approaches ¢, from c. Call these rays Ry, (t), Rayp, (1), etc.
See figures 27, 28, 29.

_Let ¢ start from t € c and vary, reaching ¢, and penetrating into a neighbouring cell ¢’ through
(Hayby N Haypy M-+ N Hg, 3, )\A. At t, the above Stokes rays cross R(7) clockwise and simultaneously,
from the same side. Hence Y,°"(z,¢; 7, c¢) has analytic continuation into ¢’ (here the situation is similar
to the continuation from c3 to c¢g in figure 12). After the crossing, ¢t € ¢ and the same discussion of
Part 1 applies. Namely, Y, (2, t;7,¢) = Y, (z,t;7, ). The canonical asymptotics is extended up to the
nearest Stokes ray in S(7,7 4+ 7). Then,?? as in Proposition 13.3, Y, (z,t;7,¢) is analytically continued
for ¢ back to ¢, up to £. Therefore, the asymptotics of Yeort(z, 7, ¢) gets extended up to the above
mentioned nearest Stokes ray in S(7,7+m). This fact holds also for ¢ = t... In this way, Rg,p, (t), Rasb, (£),
etc, get erased also at t.. Proceeding as in Part 1, we conclude that Y, (z,t,;7) = Y, <" (2, t.; T, c) has
asymptotics in the sector §,,(t*).

Uniformity follows from Corollary 13.1 and Proposition 13.3 applied to any Y, (z,t;7,¢/). O

Remark 14.4. If A(0) = A\ I, then S, =R, so that the asymptotics extends to R.

e Proof of Theorem 14.1: We do the proof for Y, ,(z,t;7,c). For any other Y, yx,, k € Z, the proof is
the same. We compute the analytic continuation of Y, ,(z,t; 7, ¢) along loops vap in 71 (Ue, (0)\A, thase),
associated with u,(t) and wu,(t) in (14.4). For these a, b, only one of the infinitely many rays of directions
(14.6) is contained in S(7,7 + ) for t € ¢c. We can suppose that this is the ray

3T
Rap(t) := {z eER ‘ argz = - — argp(ta - tb) + 2Nc7r} ,
(recall that arg, (uq(t) — us(t)) = arg, (to —t3)) where N, is a suitable integer such that
~ 3m ~
T<?—argp(ta—tb)+2Nc7r<T+7r, tec.

If it is not the above ray, then it is a ray with argz = 37" —arg, (tb — ta) + 2N/ and suitable N/, so that

the proof holds in the same way. Rq;(t) rotates clockwise as ¢t moves along the support of Y.

22By a small deformation 7 +— 7 + €.
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Rs(®)
Ry() R0
Ry(1)
R,® | Yy(zt;t.e)
. ey 1
R(7) Y, (zt; 1.0 R;(®)
Y, =t t.o
FIGURE 18. Y™ (2,t;7,¢)
FIGURE 17. Y,(z,t;7,¢) for and Y,(z,1;7,c1) just after
t € ¢, before Ry(t) crosses R (t) has crossed R(T). Por-
R(7). A portion of S,(t) is tions of sectors where the
represented by an arc. asymptotics holds are repre-
sented.
R3(t) Ry

R,(t)
Ry(t) ?

- R®

cont \\

| Y z,t;1.0) i JYVco?zt:,t;'c,cl) R(7)
R(7)

Ry®) FIGURE 20. Continuation
Yot (z,¢;7,¢1), t € ¢ before
the crossing. The sector of
the asymptotics is repre-

FiGUure 19. Extension of sec-
tor for the asymptotics of
Yeort(z, 4,7, ¢), t € c1.

sented.
Ry(?) .
Rt
Ry () 3R) "
2
d > ;
Y, (ztt.c) R(7) el R
R;(?)
FIGUrE  21. The  sector FIGURE 22. The dashed “vir-
where Y, (z,¢; T, ¢) has canon- tual ray” Ra(t) crosses R(7),
ical asymptotics has been when t enters into ¢;.

extended up to Ra(t), t € c.

For the sake of this proof, if a ray R has angle 6 and R’ has angle 6 +6’, we agree to write R’ = R+¢’.
Hence, let
Rpo(t) := Rap(t) + 7.
See Figure 31.
Assume first that a, b are such that for t € ¢ and |¢, — t| sufficiently small, then no projected Stokes
rays other than PR,, and PRy, cross {(T) when ¢ varies along v, (the case discussed in figure 14).
Cases when also other projected Stokes rays cross [(T), as for figure 15, will be discussed later.

Step 1) As base point consider ty € ¢, close to ﬁab, in such a way that Rg(to) C S(7,7 + m) is
close to R(7),?® and it is the first ray in S(7,7 + 7) encountered on moving anti-clockwise from R(7).

23 ¥ in R(F) is the direction, while ¢ in Rqp(t) is the dependence on ¢
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Ry(®)

R(t)
e Rg(t)
R,(®)

FIGURE 23. Ro(t) crosses
R(7T) when t enters into ¢y

- R(7)
Yy (z,t1,0)

FIGURE 25. Extension up to
R3(t) of the sector for the
asymptotics of Y,(z,t7,c¢),
for t € c.

Ry

Ry
~
. RMm)
Rl(t)
YV (Z) t; T, C])
FIGURE 24. Extension up to
R3(t) of the sector for the
asymptotics of Y, (2,7, ¢1),
fort € ¢.
Ry
R
Ri(t)
R(t-m)' R(t)

FIGURE 26. The extension of the
sector for the asymptotics of
Y, (z,t;7T,c) must be done as above
also at R(T — m), considering cross-
ings as in figure.

\ R 031%( t)
Razbz(t)
Rap, ()

R(7)

FIGURE 27. t belongs to a cell ¢ whose boundary contains I;Talbl OIA{T&QbQ n-- 'mﬁal,b“ and
such that the Stokes rays associated with these hyperplanes cross R(7) simultaneously
from the same side (¢ can be taken so that the crossing is clockwise).

Rayby(t) = Raysy(t) =Rags(t)

¢ : * ; R(T)>
/ R(T) Rap(t)
& Razf,?(t)

Rﬂabg(t)

FIGURE 28. Simultaneous crossing

for t € (Ha1b1 N Happy, N -2 N
Halybl)\A'

FIGURE 29. After the simultaneous
crossing, t € ¢'.

Y, +.(2,t0; T, ) has the canonical asymptotics in S,4,(¢0), which contains R(7). By definition, S, (to)
contains S(7,7 + m) and extends to the closest Stokes rays outside. These rays are:

a) [left ray| the ray Rpq(to)-

b) [right ray] the first ray encountered on moving clockwise from Rgup(tg), which we call “the ray
before” Rqp(to) ( see Figure 31). The name “before” means that this ray comes before R,p(to) in the
natural anti-clockwise orientation of angles). This ray is to the right of R(7).
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Ry

FIGURE 30. If A(0) = \;I, the asymptotics extends to S(arg(R;(f)) — 27, arg(R} (£)) + 27).

other rays

other rays
Y
Rap(10)
Y. R(t)
R, (1) Vil Rpa(t) Rab(1)
R(t)
ray after Ry, (%)) Yv+u
y ba'’0 ray before R, (1)
ray after Ry, (1) ray before Ryp(t)

FI1GUre 31. This and the fol-

lowing pictures represent the

sheet S(T — 7/2,7 + 37/2) FIGURE 32. Crossing of R(T).
(this is the meaning of the Note that also the other rays
dashed vertical half-line). The can move, but never cross the
Stokes rays at the starting admissible ray R(7) or R(T +
point tg are represented. Y, 4, ).

is Y,1,(2,t;7,¢), while Y is
YV+AL(Zat;7’:7 CI)

Step 2) As t moves along Yap, Rap(t) moves clockwise and crosses R(7T), while Ry, () crosses R(T + )
(see Figure 32). The curve 74 crosses ﬁab\A and penetrates into another cell ¢’. As in Proposition 13.3,
just before the intersection of the curve with Hy,\A, also Y, 1u(2,t7,c) is well defined with the same
asymptotics as Y,4,(2,¢; 7, c), but in the sector bounded by Ra(t), as right ray, and the ray coming
after Rp,(t) in anti-clockwise sense, as left ray, which we call “the ray after” (see Figures 31 and 32). A

connection matrix KI?)(¢) (called Stokes factor) connects Y, 1, (z,t;7,¢') and Y, 1, (2,t;7,¢) ,
Yoru(2,t:7,¢) = Yoy u(z, 67, ¢) KV (1), (14.8)

K2](#) is holomorphic on U, (0), because the fundamental solutions are holomorphic by assumption 2).
Again by the proof of Proposition 13.3, just after the crossing, Y, ,(z,t; 7, c) maintains its asymptotics
between the ray before Ry (t), which has possibly only slightly moved, and Ry, (t). Both Yy, (z,t;7,¢)
and Y,4,(z,t;7,¢) have the same asymptotics in successive sectors, and in particular they have the
same asymptotics on the sector having right ray Rqp and left ray Rp,. Since R[(uq — up)z] > 0 on this
sector, it follows from (14.8) that for ¢ in a small open neighbourhood of the intersection point of the
curve with Hap\A, the structure of KI*?(£) must be as follows

(Kla®l;; =1, 1<i<ny (Kleth,; =0 Vi j except fori=b,j=a.

The entry (K[®),,(t) may possibly be different from zero. Since K[*?l(t) is holomorphic on U, (0), the
above structure holds for every ¢ € U, (0).
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other rays
Yyan
other rays
(Rab(t)+27t Rpa(t)
) R()
4
ray before Ry, (1) Rflb(t()) = sz(’yug( %))+2n
ray after R, (1)+21 f;f/ -V R(7)
= Yv+p
FIGURE 33. Second
crossing. Yo is ray before Ry (1o)

Yoiu(z,t;7,¢) and Y
is Yy4u(z,t;7,¢). The
other rays represented FIGURE 34. After the loop 7Y
are moving, without

crossing R(T) or R(T +

).

Step 3) As t moves along 7., Rap(t) continues to rotate clockwise. It will cross other Stokes rays
along the way, but Y, ,(z,t;7,¢) will maintain its canonical asymptotics in S, ,(t), because t € ¢,
until Ryp(t) reaches R(T — 7).

Step 4) Just before Ry (t) crosses R(T—), S,4,(t) has left ray equal to Rep(t) + 27 and the right ray
is the ray before Ryq(t). Again by Proposition 13.3, Y, 1, (2,t; 7, ¢) is defined with canonical asymptotics
in the sector following S, ,,(t) anticlockwise (see Figure 33). There is a Stokes factor Kl (£) such that,

Yoiu(z,t:7,¢) = Yoqu(2,6:7,¢) K (¢). (14.9)

The above relation and the common asymptotic behaviour imply that for ¢ in a neighbourhood of the
crossing point the structure must be

(Kl*th,, =1, 1<i<mn; (K[ab])ij =0 V i jexcept fori=a,j=>0.

= lab]

The entry (K),, () may be possibly non zero. By assumption 2), K%l (¢) is holomoprhic on U, (0), so
the above structure holds for any ¢ € U, (0).

Step 5) The rotation of Rg(t) continues, crossing other Stokes rays. Finally, Rq(t) reaches the
position

Rap (%b(to)) = Rap(to) — 27,

after a full rotation of —27. This corresponds to the full loop t, — tp = (t, — tp)e*™".
From (14.8) and (14.9) we conclude that,
Yyiu(z, 657, ¢) = Yo u(z, 67, ¢) KE @K 1), ¢ e U, (0). (14.10)
Hence
Kl (K ) =1,  tel,,(0).
This implies that (K1), = (]K[“b])ab = 0. Therefore,
K@) =Ky =1, teU,,(0). (14.11)
We conclude from (14.8) or (14.9) that
Yoiu(z,t:7,¢) = Yoz, 67, ¢), t € U, (0). (14.12)

The above discussion can be repeated for all loops 7, starting in ¢ involving a simple crossing of R(7).
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We now turn to the case when also other projected Stokes rays, not only PR, and PRy,, cross [(T)
along 7v.4. In this case, the representative of 7,, can be decomposed into steps, for each of which the
analytic continuation studied above and formula (14.12) hold. See for example the configuration of figure
15. In these occurrences, the analytic continuation is done first from ¢ to ¢’. The passage from c¢ to ¢’
corresponds to the alignment of u, and u,. Hence, Y, 1, (2,t;7,¢) is continued from ¢ to ¢’ and (14.12)
holds. Then, Y, ,(z,t;7,¢) can be used in place of Y, ,(z,t; 7, ¢), applying the same proof previously
explained, since for t € ¢, if |t, — | is sufficiently small, then the crossing involves only PRy, and P Ryp,.

Concluding, (14.12) holds for any cell ¢ which has a boundary in common with c.

Now, we consider a cell ¢’ which has a boundary in common with ¢, and we do the analytic continuation
of Y,4,u(2,t7,¢) to all cells ¢” which have a boundary in common with ¢/, in the same way it was
done above. In this way, we conclude that Y, ,(z,t;7,¢) = Y,4,u(2,6:7,¢) and Yoy u(2,47,¢) =
Yo iu(z,t;7,¢"), for t € U, (0). With this procedures, all cells can be reached, so that (14.12) holds for
any cell ¢ and ¢ of U,,(0). For the above reasons, we are allowed to write

Yoiu(z,t;7), t € U, (0), (14.13)
in place of Y, 1, (2,47, ¢).

The above conclusions imply that the assumptions of Lemma 14.1 hold. Lemma 14.1 assures that the
asymptotics extends to the closest Stokes rays in JR(t) outside S(7,7 + 7). Hence the asymptotics

Go(t) ™ Vogu(z, t;7)e 2027510 w T+ N " Ry ()" (14.14)
k=0
holds for z — oo in §,,+M(t), and t € U, (0)\A. A fortiori, the asymptotics holds in §V+u = §1,+H(Z/I€O (0)).
It is uniform on any compact subset K C U, (0)\A for z — oo in S, (K).

The last property to be verified is that the asymptotics in §1,+N holds also for t € A. Let

k—1
Ri(z,t) := Go(t) 1Yy p (2, t;7)e Az~ Bal) (I + Z Fl(t)z_k> ) t € U, (0).
=1

Let (Ri(z,t)),s, I,s = 1,...,n be the entries of the matrix Ry. Since R} is the k-th remainder of the
asymptotic expansion, it satisfies the inequality

C(k; S;t) —

‘Rk(z,t)’:: mox [(Ru(= 0| < =P (€U O\, 2 €5, (14.15)

l,s=1,...,n

for z belonging to a proper closed subsector S C §,,+M. Here C(k;S;t) is a constant depending on k, S
and t € U, (0)\A. Our goal is to prove a similar relation for ¢ € A.

We consider n positive numbers r, < €y, a = 1,...,n. We further require that for any ¢ = 1, ..., s and
for any a # b, such that u,(0) = u,(0) = A;, these numbers are distinct, i.e. r, # 5. We introduce the
polydisc Uy, ..., (0):={t € C" | |ty| < 7e, a =1,...,n}. Clearly, U, . . (0) CU.,(0). Let us denote
the skeleton of Uy, . (0) with T := {t € C" | |[tx,| = rq, a = 1,...,n}. The above choice of pairwise
distinct r,’s assures that ' N A = (.

The inequality (14.15) holds in U, .., (0)\A for any fixed z € S. Since Ry(z,t) is holomorphic on
the interior of U, ., (0) and continuous up to the boundary, every matrix entry of Ry (z,t) attains its
maximum modulus on the Shilov boundary (cf. [60], page 21-22) of Uy, ... », (0), which coincides with T
Since (14.15) holds on T', we conclude that

C(k; S;T)
l2*

......

‘Rk(z7 t)‘ < VteU,. . (0), (14.16)
where C(k; S;T') = maxycr C(k; S;t). This maximum is finite, because the asymptotics is uniform on
every compact subset of U, (0)\A. The above estimate (14.16) means that the asymptotics (14.14) holds
uniformly in ¢ on the whole U, ., (0), including A, for z — co in S. A fortiori, the asymptotics holds
in U, (0), with €; < min, r, < €. Since (14.16) holds for any closed proper subsector S C §V+u> by
definition Go(t) 1Y, (2, t;7)e 20 2= B1(1) is asymptotic to I + 350, Fr(t)z ™% in S,y
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It remains to comment on the structure of a Stokes matrix. In the proof above, a ray R (t) associated
with a pair ug(t), up(t) with u,(0) = up(0) = A; is “invisible” as far as the asymptotics is concerned,
because K92 (t) = Kl®!(t) = I for any 4. Therefore, in the factorisation of any S, (t), the Stokes
factors associated with rays 3w/2 — arg(u, (t) — up(t)) mod 27, with u,(0) = up(0) = A;, are the identity.
]

15. MEROMORPHIC CONTINUATION

In Theorem 14.1 we have assumed that for any 7-cell ¢ of U,,(0) and any k € Z, the fundamental
solution Y, 1,(z,t; 7, ¢) has analytic continuation as a single-valued holomorphic function on the whole
Ue,(0). In this section, we assume that the above fundamental matrices have continuation on the
universal covering R(U, (0)\A) of U,,(0)\A as meromorphic matrix-valued functions. We show that
if the Stokes matrices satisfy a vanishing condition, then the continuation is actually holomorphic and
single valued on U, (0)\A. In particular, A is not a branching locus.

Recall that the Stokes matrices are defined by

Yot teriyu(z:t7,¢) = Yopnu(2, 6 7,¢) Suqpu(t), forteec

Theorem 15.1. Consider the system (2.1) (i.e. system (1.1) of the Introduction) with holomorphic
coefficients and Assumption 1. Let A(t) be of the form (1.2), with eigenvalues (1.15) and ey = &y as in
subsection 14.1. Let T be the direction of an admissible ray R(T), satisfying 7, < T < Ty41.

Assume that for any T-cell ¢ of Ue,(0) and any k € Z, the fundamental solution Y,y (2,t;7,c),
defined for t € ¢, has analytic continuation on the universal covering R(U.,(0)\A) as a meromorphic
matriz-valued function. Assume that the entries of the Stokes matrices satisfy the vanishing condition

(8. (@))ab = (Su())oa = (Sorp@))as = (Sorp@)oa =0, Viee, (15.1)
for any 1 < a # b <n such that u,(0) = uy(0).

Then:

o The continuation of Y, y,(2,t; 7T, c) defines a single-valued holomorphic (matriz-valued) function
on U, (0)\A.

o Y iiwu(z,t;7,¢) =Yoqnu(2,47,¢), fort € c. Therefore, we write Y, 5u(2,6;7)

o The asymptotics

G ()Yirku(z, 6 ) 202750 1+ N " F(t) 2,

j=21

holds for z — 00 in S, yxu(t), t € Ue, (0)\A.

Remark 15.1. Recall that By (t) = diag(zzl\l(t)) is the exponent of formal monodromy, appearing in the
fundamental solutions (12.1). The formula S, 2, = e 2miB1§ 2781 analogous to that of Proposition
6.2, implies that (15.1) holds for any S, ;. Notice that the F}(t)’s are holomorphic on U, (0)\A.

Proof: Without loss of generality, we label the eigenvalues as in (5.1)-(5.4), so that S, 4, (t) is partitioned
into p; x pi blocks (1 < j, k < s) such that the p; x p; diagonal blocks have matrix entries (Sy4x,(£))ab
corresponding to coalescing eignevalues u, (0) = up(0).

We consider Y, 4, (2,t;7,¢c). For any other Y, ,.(2,t;7,c) the discussion is analogous. We denote
the meromorphic continuation of Y1, (2,7, ¢) on R(Ue, (0)\A) by Y,i, (2,67, ¢), t € R(Ue, (0)\A).
Therefore, the continuation along a loop 74 as in (14.4) and (14.5), starting in ¢, will be denoted by
Yot (2, Yabt; T, €), where £ = 7,4t is the point in R(U, (0)\A) after the loop.

We then proceed as in the proof of Theorem 14.1, up to eq. (14.10). Assume first that a, b are such
that for t € ¢ and |t, — tp| sufficiently small, then no projected Stokes rays other than PR, and PRy,
cross {(7T) when t varies along 74, (the case discussed in figure 14). Cases when also other projected
Stokes rays cross I(T), as for figure 15, can be discussed later as we did in the proof of Theorem 14.1.
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The intermediate steps along 74, corresponding to the formulae (14.8) and (14.9), hold. Namely:
Yoru(2, 57, ¢) = Yopu(z, 67, ¢) Kl (2) (15.2)

for ¢ in a neighbourhood of the intersection of the support of 74, with the common boundary of ¢ and
¢ (i.e. Hgp\A) corresponding to R,y crossing R(7). Moreover,

YL/Jr/_L (Z, t; ?a C) = Yu+,u(zv t; ?a C/) ]K[ab] (t)7 (153)

for ¢ in a neighbourhood of the intersection of the support of 74, with the common boundary of ¢ and ¢’
corresponding to R, crossing R(7 — 7). Note that to such ¢ there corresponds a point ¢ in the covering,
which is reached along yap, so that Y, 1, (2,t; 7, ¢) in the right hand-side of (15.2) becomes Y, ,.(z,; 7, ¢).

K@)(¢), Kl*?)(¢) have the same structure as in the proof of Theorem 14.1, for ¢ in a small open
neighborhood of the crossing points. By assumption, K92l (¢), K*!(¢) are meromorphic on R(Ueo (0\A),
so they preserve their structure.

At the end of the loop, t is back to the initial point, but in the universal covering the point ¢ = yat
is reached and Y, 1, (2,;7, ¢) has been analytically continued to Y, 4, (2, vast; 7T, c). Thus, the analogous
of formula (14.10) now reads as follows

Yoiu(2,t:7,¢) = Youu(z, Yapt; 7, ¢) Klot) (K (¢), tec. (15.4)

We need to compute the only non trivial entries (K92 ())p, and (K% (£)) 4. Let us consider K[)(¢).
As it is well known, S,4, can be factorised into Stokes factors. At the beginning of the loop 7as, just
before ¢ crosses the boundary of the cell ¢ as in Figure 31, we have

Svtp = Kol T,
where Kl% is a Stokes factor and the matrix T is factorised into the remaining Stokes factors of Su4u-

For simplicity, we suppose that S, is upper triangular (namely a < b; if not, the discussion is modified
in an obvious way):

I, = * *
0 I, =x *
e L (15.5)

0O 0 0 0 I,
It follows that b < a, namely K% has entries equal to 1’s on the diagonal, 0 elsewhere, except for a
non-trivial entry mp, := (K[“b])ba above the diagonal in a block corresponding to one of the I,,,, ..., Ip,
in (15.5). Let E;; be the matrix with zero entries except for (Eji);x = 1. Then, K = T 4+ mpoEpa,
and we factorise T as follows:
Svtn =T +mpaBra)- [ (T +muE)- 11 (I +mjnEjk),
j<kin V The others j<k

where V' is the set of indices j < k € {1,2,...,n} such that u;(0) = ux(0) and (j, k) # (b, a) (the entries
of the diagonal blocks of the matrix block partition associated with pq, ..., ps).

Now, all the numbers my, and m;;, are uniquely determined by the entries of S, ,. This fact follows
from the following result (see for example [2]). Let S be any upper triangular matrix with diagonal
elements equal to 1. Label the upper triangular entries entries (j, k), j < k, in an arbitrary way,

(k1) Gaska)y oy (s Raeon).
Then, there exists numbers m1, ma, ..., m nn1) which are uniquely determined by the labelling and the
entries of S, such that
S=UT+miEj i,)I+moEj, ) (I + WWE]‘%I@% ).
Indeed, a direct computation gives
n(n-1)

2
S=1+ Z mqEj,k, + non linear terms in the m,’s. (15.6)

a=1
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The commutation relations
EijEj, = By, EijEy, =0 for j #1,
imply that the non linear terms are in an upper sub-diagonal lying above the sub-diagonal where the
corresponding factors appear. Hence, (15.6) gives uniquely solvable recursive relations, expressing the
mg’s in terms of the entries of S.
Applying the above procedure to S =S, ,, and keeping (15.1) into account, we obtain

Mpe = 0, mjk:OVj<kinV.
This proves that
Kll(t) = I,
for ¢t in a small open neighborhood of the intersection point of the curve 7, with ﬁab\A. This structure
is preserved by analytic continuation. Analogously, we factorise into Stokes factor the (lower triangular)
matrix S, = T - K[%®! and prove that
Kl = 1.
We conclude that
YI/+M (27 t7 Fa C) = YV+M(’Z7 ’Yabt§ ;7 C)'
Formulae (15.2) and (15.3) also imply that

Yl/+lt(zvt§%; C/) = Yl/—l-u(zvt;;a C) (157)

This discussion can be repeated for any loop and any cell, as we did in the proof of Theorem 14.1 in
the paragraphs following eq. (14.12). Since Y,4,(2,t;7,¢) is holomorphic on ¢ by Corollary 13.1, the
above formulae imply the analyticity of Y,4,(z,t;7,¢) on U, (0)\A. Since (15.7) holds, the first two
statements are proved.

Equation (15.7) also implies that the rays Rq, and Rp, are not the boundaries of the sector where
the asymptotic behaviour of Y1, (z,¢;7) holds. The above discussion repeated for all a,b such that
ua(0) = up(0) proves the third statement of the theorem. OJ

PART IV: Isomonodromy Deformations of system (1.9).
Theorem 1.1, Corollary 1.1 and Theorem 1.2

We have established the theory of coalescence in U, (0), and the corresponding characterisation of
the limiting Stokes matrices for the system (1.1) — namely system (2.1) of Section 2 — under Assumption
1, or equivalently for the system (1.5). We now consider the system (1.8) under Assumption 1, already
put in the form (1.9), namely

W Aoy, Aen=am+ 1Y,
and study its isomonodromy deformations. The eigenvalues are taken to be linear in ¢, as in (1.15):

ui(t):ui(O)—l—ti, 1< <n.

16. STRUCTURE OF FUNDAMENTAL SOLUTIONS IN LEVELT FORM AT z = 0

At any point t € U, (0), let p1(t), p2(t), ..., 1tn (t) be the (non necessarily distinct) eigenvalues of AL (D),
and let J(O)(t) be a Jordan form of A;(t), with diag(.J(*)) = diag(u1, ..., ttn) (see also (16.3) below). The
eigenvalues are decomposed uniquely as,

pi) =40 + 5”@, 4 €2, 0< R (1) <1.
Let DO (t) = diag(dgo)(t), s d%o)(t))7 which is piecewise constant, so that
JO ) = DO (t) + 5O (1),
where S (t) is the Jordan matrix with diag(S(®)) = diag(pgo)7 ey p£?)).
Let V be an open connected subset of U, (0). In order to write a solution at z = 0 in Levelt form
which is holomorphic on V', we need the following assumption.
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Assumption 2: We assume that A, (t) is holomorphically similar to J(®)(t) on V. This means that
there exists an invertible matrix G(%)(t) holomorphic on V such that

(@) Aut) GO(1) = TO(1).

Assumption 2 in V implies that the eigenvalues u;(t) are holomorphic on V. In the isomonodromic case
(to be defined below), Assumption 2 for ¥V = U, (0) turns out to be equivalent to the vanishing condition
(1.20). See Proposition 19.2 below.

Remark 16.1. In order to realise the above assumption it is not sufficient to assume, for example,
that the eigenvalues of A; (t) are independent of ¢, as the example A (t) = ( g ; ) shows. Sufficient
conditions can be found in the Wasow’s book [69], Ch. VII.

With Assumption 2, the following fundamental solutions in Levelt form are found.

Al Tf A\l (t) has distinct eigenvalues at any point of V, it is automatically holomorphically similar to

fa(t) = diag(pi (t), -, pn(t)).

A fundamental matrix exists of the form
YO (2 1) = GO 1) (1 +3 q/l(t)zl)zﬂ<t>.
I=1

Each matrix ¥;(¢) is holomorphic on V, and the series I + > ;=, ¥;(¢)z! is absolutely convergent for |z|
bounded, defining a holomorphic matrix-valued function in (z,¢) on {|z| < r} x V, for any r > 0.

B] If pi(t) — p;(t) € Z\{0} for any i # j and any ¢ € V, then there exists a fundamental matrix
YO (2 1) = GO 1) (1 +3 \I/l(t)zl>z'](0)(t),
I=1

such that G(O(¢), J(©(¢) and each matrix ¥;(¢) are holomoprhic on V, and the series I + > ;= W, (¢)2!
is absolutely convergent for |z| bounded, defining a holomorphic matrix-valued function in (z,t) on
{]z] <r} xV, for any r > 0.

The above forms of the matrix Y(°)(z,¢) are obtained by a recursive procedure (see [69]), aimed at
constructing a gauge transformation Y = G0 (t) (I + Y \I'l(t)zl)y that reduces the linear system to

g ](0)(
z

when 1;(t)—p;(t) € Z\{0}, this procedure yields a gauge transformation Y = G(®)(t) (I—i—Z}ﬁl v, (t)zl> y
that reduces the system to the form

% — % (J(O)(t) +Ri(t)z+--+ Rﬁ(t)zﬁ> Y, (16.1)

where 1 < & is the maximal integer difference of eigenvalues of J(©), and the R;(t)’s are certain nilpotent
matrices (see (17.1) below for more details). These matrix coefficients may be discontinuous in ¢, even
if Assumption 2 is made. In order to avoid this, we need the following

a simple form % = Y, whose solution z7" ®) can be immediately written. In resonant cases, namely

(Temporary) Assumption 3 [Resonant Case|: If for some i # j it happens that u,(t) — p;(t) €
Z\{0} at a point ¢t € V, then we require that p;(t) — p;(t) = constant € Z\{0} all over V. If moreover
J©)() is not diagonal, then we require that the d;’s, 1 < i < n, are constant on V.

Assumptions 3 certainly holds if the eigenvalues pq, ..., i, are independent of ¢ in V, namely in the
isomonodromic case of Definition 17.2 below.?* Hence, Assumptions 3 is only “temporary” here, being
unnecessary in the isomonodromic case.

241 case we define a deformation to be isomonodromic when the monodromy matrices are constant, this is still true,
namely g1, ..., pn are independent of t. See Lemma 1 of [11].
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When Assumptions 2 and 3 hold together, fundamental matrices in Levelt form can always be con-
structed in such a way that they are holomorphic on V. Besides the cases A] and B| (which require only
Assumption 2), we have the following resonant cases:

C) If JO(t) = fi(t) := diag(py(t), p1(t), ..., un(t)) (eigenvalues non necessarily distinct) then there
exists a fundamental matrix

YO (z, 1) = GO () (I + Z \Ill(t)zl)zﬁ(t)zR(o)(t),
=1

were the matrix R(9)(t) := Ry(t) + - R.(t) has entries RE?)(t) # 0 only if u;(t) — p;(t) € N\{0}.
Moreover, G (), fi(t) R (t) and each matrix ¥;(¢) can be chosen holomorphic on V, and the series
I+5772, U,(t)z! is absolutely convergent for |z| bounded, defining a holomorphic matrix-valued function
in (z,t) on {|z| <r} xV, for any r > 0.

D] If some p;(t) — p;(t) € Z\{0} and J(©(¢) is not diagonal, then there exists a fundamental matrix
holomorphic on V,

YO (2, 1) = GO1) (I +3 \Ill(t)zl>zD(0)zL(0)(t), (16.2)
=1

where
LO@) := SO @) + RO(¢),

G, 5 are holomorphic on U, (0), and R and the ¥;’s can be chosen holomorphic on V. The series
I+5772, U(t)z! is absolutely convergent for |z| bounded, defining a holomorphic matrix-valued function
in (z,t) on {|z| <r} xV, for any r > 0.

The structure of R(® is more conveniently described if the eigenvalues puq, o, ..., in, are re-labelled
as follows. Up to a permutation J(© — P=1JO) P which corresponds to G(® — GO P, where P is a
permutation matrix, the Jordan blocks structure can be arranged as

JO) — Jl(O) B P J©)

So 7

s0 < m. (16.3)

For i =1,2,...,sq, each Ji(o) has dimension n; (then ny + -- -+ ns, = n) and has only one eigenvalue Ji;,
with structure

JO =L, + H,,, I, = n; x n; identity matrix, (16.4)
0 1
0 1
0 1
0
1, ..., fis, are not necessarily distinct. Let us partition R according to the block structure ny, ..., Mgy -

Then [RO]yi0ek i; # 0 only if f1; — fi; € N\{0}, for 1 <i # j < s0.

Remark 16.2. Also in cases A], B] and C] the fundamental solution can be written in the Levelt form
(16.2), with L(® = §©) in A] and B}, and L(® = S + R©) in C].

16.1. Freedom. Let the matrix J()(¢) be fixed with the convention (16.3). Let Assumptions 2 and 3
hold. The class of normal forms at the Fuchsian singularity z = 0 with given J© is not unique, when
some eigenvalues of ﬁl(t) differ by non-zero integers. Let k be the maximal integer difference. Then, if
(16.2) is a Levelt form, there are other Levelt forms

)N/(O) (2:, t) = é(O) (t) (I + Z {I;l (t)zl) ZD(O) (t)zi(°>(t)
=1

=Y Oz, )D(¢t),
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where D(t) is a connection matrix. From the standard theory of equivalence of Birkhoff normal forms
of a given differential system with Fuchsian singularity, it follows that ©(¢) must have the following
property

ZD(O)(t)ZL(D)(t)CD(t) _ @o(t) <I + 5‘31(1‘,)2 4t @H(t)zn) ZD(0>(t)ZZ(0)(i£)7

being Dy, ..., D, arbitrary matrices satisfying [Dq, J(©)] = 0, CDZ(;) # 0 only if f1; — fi; =1 > 0. The
connection matrix is then

D(t) = Do(t) (1 FOL() + -+ @k(t)>.

Being Dg(t), ..., ©.(t) arbitrary, we can choose the subclass of those connection matrices ©(¢) which
are holomorphic in ¢. Note that ®q commutes with D(®). The relation between matrices with — and
without is as follows:

GO (1) (I + i @l(t)zl) -
=1

= GO(t) (I+i%<t>zl) [D0() (T+D1(t)z+- -+ Da(t)2") .
=1

Moreover,
LO =910 RO =9 'ROD 4+ '[s® D] (16.5)
Observe that
GOt) = GO(t) «— Do(t) = 1.

17. DEFINITION OF ISOMONODROMY DEFORMATION OF THE SYSTEM (1.9) WITH EIGENVALUES
(1.15)

The Stokes phenomenon at z = co has been already described.

Let 7 be an admissible direction for A(0). For the remaining part of the paper, V will denote an
open simply connected subset of a 7-cell, such that the closure V is also contained in the cell. Let the
label v satisfy 7, < 7 < 7,41. The holomorphic fundamental matrices of Section 12, namely Y, (z,t),
o =v,v+ u, v+ 2u, exist and satisfy Corollary 13.1 and Proposition 13.3. Therefore, in particular, they
have canonical asymptotics on S, (1), with holomorphic on V Stokes matrices S, (¢) and S, 4, (t).

Remark 17.1. [Notations] The notation Y, (z,t) of Sections 12-14 has been used for the fundamental
matrix solutions of the system (1.1), (2.1). We consider now the system (1.9) and use the same notation
Y, (z,t), with the replacement Go(t) — I in all the formulae where Gy(t) appears.

Definition 17.1. The central connection matrix C,SO)(t) is defined by
Y, (2,t) =YDz 0)eW@),  zeR.

Definition 17.2 (Isomonodromic Deformation in V). Let V be an open connected subset of a T-cell,
such that V is also contained the cell. A t-deformation of the system (1.9) satisfying Assumption 2 in V
is said to be isomonodromic in V if the essential monodromy data,

Sy Syt B =diag(4); {u1, oy pint,

are independent of t € V, and if there exists a fundamental solution (16.2) (see Remark 16.2), holomor-
phic int € V, such that also the corresponding essential monodromy data

RO, C,
are independent of t € V.

Remark 17.2. If uq, ..., 4y, are independent of ¢ as in Definition 17.2, then Assumption 2 in B implies
that also Assumption 3 holds in V.
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The existence of a fundamental solution with constant R(®) implies that the system (1.9) can be
reduced to a simpler form (16.1) which is independent of ¢ € V, namely

d 1
d%} = - (J<°) +R1z+--~+Rﬁz”) Y, (17.1)

where 1 < k is the maximal integer difference of eigenvalues of J(®, [Rilbiock i,; 7 0 only if f; — 1 =1,

Ri+ -+ R, = R, with all R; independent of ¢t € V, and the [i;’s are the eigenvalues of /All(t) as
arranged in the Jordan from (16.3)-(16.4).

Remark 17.3. There is a freedom in the isomonodromic R(®) and L), as in (16.5), for a t-independent
D such that Y(© = y©D. Hence, there is a freedom in the isomonodromic central connection matrix,
according to

cO =oCO.
We call Co(J@, L) the group of such transformations ® which leave L(®) invariant in (16.5). This
notation is a slight variation of a notation introduced in [19] for a particular subclass of our systems
(1.9), related to Frobenius manifolds.

Remark 17.4. Definition 17.2 is given with reference to some v. Nevertheless, it implies that it holds
for any other v/ in a suitably small V' C V. To see this, consider another admissible 7/ € (7,/, Tpr41),
and define S, 41, (t), Yo/ x,(z,t) in the usual way, for ¢ in the intersection of V with a 7/-cell. 25 Call V/
the intersection. Now, there is a finite product of Stokes factors Ki(t)--- Kp(t) (M < number of basic
Stokes rays of A(t)) such that Y, (z,t) = Y,/ (2,t)K1(¢) - - - Kp(t), t € V'. The Stokes matrices S, (t) and
Sy+u(t) are determined uniquely by their factors, and conversely a Stokes matrix determines uniquely
the factors of a factorization of the prescribed structure (see the proof of Theorem 15.1, or section 4 of
[2], point D). Moreover, the product K4 (t)--- K (t) appears in the factorization of S, or S,,. Hence,
if S, and S, 4, do not depend on t € V for a certain v, also S,» and S,, do not depend on t € V' C V.

Thus, the same is true for C’S)).

Lemma 17.1. Let the deformation be isomonodromic in V' as in Definition 17.2 (here it is not necessary
to suppose that V is in a cell, since we are considering solutions at z = 0). Let Assumption 2 hold in
U, (0), namely let Ay (t) be holomorphically equivalent to J© in U, (0). Then:
1) 1y pin, DO, SO and JO) are independent of t in U, (0).
ii) Any fundamental matriz (also non-isomonodromic ones) in Levelt form Y (0 (z,t) = GO (t)(I +
> ‘Ill(t)zl)zDzL(O)(t), which is holomorphic of t € V, is also holomorphic on the whole Ue,(0).
iii) If RO (i.e L)) is independent of t in V, then it is independent of t in Ue,(0).

Proof: i) That g1, ..., ttn, D@, S©  JO) are constant in U, (0) follows from the fact that sy, ..., i,
are constant in V, and that G(9)(¢), and so the py, ..., i, are holomorphic on Ue,(0). So fi1, ..., jt, are
constant in U, (0).

ii) Since p1, ..., b, are constant in U, (0), and A(t) and Ay (t) are holomorphic, the recursive standard
procedure which yields the Birkhoff normal form at z = 0 allows to choose ¥;(t)’s and R(?) (¢) holomorphic
on U, (0).

iii) That R(® is independent of ¢ € U, (0) follows from the fact that R(?)(t) is holomoprhic on U, (0)
and constant on V. O

Proposition 17.1. Let the deformation of the system (1.9) be isomonodromic in V as in Definition
17.2 (here it is not necessary to assume that V is contained in a cell). Let Assumption 2 hold in Ue,(0),
namely let Ay (t) be holomorphically equivalent to J© = D© + §O) in tf, (0). Consider the system

dy -
—=A Y, 17.2
— = A0, (17.2)

25Note that there may be more than one choices for S,/ g, Y,/4r,(2,t), depending on the neighbourhood of ¢
considered. See Remark 11.1.
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and a fundamental solution in the Levelt form

o

YO () = GOG(2)P7 2L, GR)=1+0(), (17.3)
with L = S© + R. Here R is obtained by reducing (17.2) to a Birkhoff normal form at z = 0. Then,

there exists an isomonodromic fundamental solution of (1.9), call it Yl(s?m (z,t), with the same monodromy

exponent L and Levelt form
Y (2,t) = GO )Giaom (2, 1)2P 2L,
with Gisom(2,t) = I + Y pe Ui ()2!, holomorphic on Ue, (0), such that
YO =79 (2,0).

isom

Proof: We prove the proposition in two steps.
e The first step is the following

Lemma 17.2. Let the deformation be isomonodromic in )V as in Definition 17.2 (here it is not necessary
to assume that V is contained in a cell). Let Ay(t) be holomorphically equivalent to J© in U, (0). For
any holomorphic fundamental solution in Levelt form

Y(z,t) = G H(z )" 22O Hz ) =1+ (),
=1

with monodromy exponent L(©) (t), there exists an isomonodromic Y(O)(z,t), with monodromy exponent
equal to L)(0), in the Levelt form

YO(e,t) = GOWG (2, 1)2P7 27O Gleyt) =T+ Wi(t)2,
=1

such that Y () (2,0) = Y (z,0).

To prove this Lemma, consider an isomonodromic fundamental solution, which exists by assumption,
say

}7(0)(z,t) =GO (t)é(z,t)zD(O)zz(O), é(zﬂt) =1+ Z {Ivll(t)zl,
1=1

with t-independent monodromy exponent LO and t-independent connection matrix defined by
Y, (2,t) = YO (2,t) CL.

Then, there exists a holomorphic invertible connection matrix ©(¢) such that
Y(z,t) = YO (2, )D(¢).

Hence,

Do(t) (I F D ()t @K(t)zﬁ) P R O A1) (17.4)
with ©(t) = Do(t) (I +D1(t)+-- -+ @H(t)). Observe that 22 2L and 22 2L are fundamental
solutions of two Birkhoff normal forms of (17.2), related by (17.4) with ¢ = 0, namely

Do(0)(I +D1(0)z + - - - + D,,(0)2%) 22" 2LV = DL %),

Therefore, the isomonodromic fundamental solution we are looking for is
YO (z,t) := Y O(z,8) D(0) = Y (2, )D(t) " 'D(0).
e Second step. Consider a fundamental solution of (17.2) in the Levelt form
YO (z) = é(o)é(z)zD(mzi,

where L = S© + ]:2, R= Sy }o%l. The Ifll, l=1,2,...,k, are coefficients of a simple gauge equivalent
form(16.1), with ¢ = 0, of (17.2). It can be proved that there is a form (16.1) for the system (1.9),
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with coefficients Ry(t), such that the R;’s coincide with the values R;(0)’s at ¢ = 0. Moreover, the
R;(t)’s are holomorphic on U, (0). This fact follows from the recursive procedure which yileds the gauge
transformation from (1.9) to (16.1). Therefore, there exists a holomorphic exponent L()(t) such that
L©(0) = L. Consider an isomonodromic fundamental solution ¥ ()(z, ¢) of Lemma 17.2, with exponent

LO(0) = L. Since Y (z,0) is a fundamental solution of (17.2), there exists an invertible and constant
connection matrix C' such that

YO (2,000 = YO(2).
Now, C € Co(J©,L) (cf. Remark 17.3), because Y (9 (z,0) and Y(©(z) have the same monodromy
exponent. This implies that
YO (z,t)C = G(O)G(z,t)zD(O)ziC =
= GOG(2,)Co(I + Crz+ -+ Cuz®)P "2 C=CoI+C +-+Cp).

Moreover, also Y () (z,)C is isomonodromic. Therefore, the solution we are looking for is Y0, (z,) :=
YO (zt)C. O

18. ISOMONODROMY DEFORMATION EQUATIONS

Let

n

Oz, t) =Y Ulz,t) dty,  Q(z,t) = 2B, + [Fi(1), Ex].
k=1

Here Ey is the matrix with all entries equal to zero, except for (Ey)ir = 1, and (F)q = —(A\l)ab/(ua —
up), so that

O 0 —(A\l)lk

— 0 0
Ul —Uk
~ 0 0 : 0 0
_ (A1(t))ab(dak — Sbk) _ (A1)r1 (A1) kn
OB ( ua(t) — un(?) = &= 0 e SR (18.1)
a,b=1..n
0 : 0 0
0 0 =Z@w o g
Unp — Uk

Let df (z,t) :== >, Of(2,t)/0t;dt;.

Theorem 18.1. If the deformation of the system (1.9) is isomonodromic in V as in Definition 17.2,
then an isomonodromic Y0 (z,t) and the Y, (z,t)’s, for 0 = v, v+ pu, v+ 2u, satisfy the total differential
system

dY = Q(z,t)Y. (18.2)
Conversely, if the t-deformation satisfies assumptions 2 and 3 in V, and if a fundamental solution
YO (z,t) in Levelt form at z = 0, and the canonical solution Yy (z,t), 0 = v,v 4+ p,v + 2u at z = oo,
satisfy the total differential system (18.2), then the deformation is isomonodromic in V.

Proof: The proof is done in the same way as for Theorem 3.1 at page 322 in [44]. In [44] the proof is given
for non resonant El (t), but it can be repeated in our case with no changes, except for the assumptions
2, 3. 2® The matrix valued differential form €(z,¢) turns out to be still as in formula (3.8) and (3.14) of
[44], which in our case becomes,

o e} -1
Q(z,t) = <I+ZFk(t)zk> dA(t)z <I+2Fk(t)zk> ,
k=1 k=1 .

26The result was announced in [56] and not proved. It can also be proved by the methods of [42], since the requirement
that g1, ..., i, R and C(© are constant is equivalent to having an isoprincipal deformation.
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where [- - |5ing stands for the singular terms at infinity, namely the terms with powers 27,5 >0, in the
above formal expansion. This is

Q(z,t) = dA(t)z + [F1(t), dA()].

Therefore,

Qi(2,t) = 8(;\15(:) z + [F1(t)a 8(;(?

In the last step we have used the fact that A(t) = diag(uq(t), ua(t), ..., un(t)), with eigenvalues (1.15).
In the domain V the eigenvalues are distinct, so the off-diagonal entries of F} are:

} = E + [F1(t), Ex].

1<a#b<n.

Hence,
n

~,

A 0
Qp(2,t) = B z + (%(t)—bua(t) aTk(Ub(t) - ua(t)>>a,b_1

Finally, observe that %(ub(t) —ug(t)) = %(tb —tq) = Okb — Oga- The proof is concluded. O

Corollary 18.1. If the deformation of the system (1.9) is isomonodromic in V as in Definition 17.2,
then GO (t) satisfies
dG©® =0 t) g, (18.3)
where
e (t) = Q(0,t) = Z[Fl (t), Ex)dtg.
k
More explicitly,

sll@= (M (dta — dn))

a,b=1

Proof: Substitute Y(©) into (18.2) an compare coefficients of equal powers of z. Equation (18.3) comes
form the coefficient of 20. O

Proposition 18.1. If the deformation is isomonodromic in V as in Definition 17.2, then
o0 ~

dA = ==+, 4. (18.4)

Proof: Let the deformation be isomonodromic. Then, by Theorem 18.1, equations (1.9) and (18.2) are
compatible. The compatibility condition is (18.4). O

Note that (18.4) is a necessary condition of isomonodromicity, but not sufficient in case of resonances
(sufficiency can be proved if the eigenvalues of A; do not differ by integers, cf. [44]). Explicitly, (18.4) is

-~

[Er, A1l = [A, [F1, E]l, k=1,..,n,

dA; = [0 A4y].
The first n equations are automatically satisfied by definition of F;. The last equation in components is
dA ~
5 = [[FhEk],Al}, (18.5)
Oty

where [Fy, Ei] is in (18.1).
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19. HOLOMORPHIC EXTENSION OF ISOMONODROMY DEFORMATIONS TO U, (0) AND THEOREM 1.1

Lemma 19.1. In case the eigenvalues of A(t) are as in (1.15) and A1(t) is holomorphic on U, (0), then
Q(z,t) is holomoprhic (int) on U, (0) if and only if

(A\l)ab(t) = O(ua(t) - ub(t)) = O(ta - tb)? (191)
whenever uq(t) and up(t) coalesce as t tends to a point of A C Ue,(0).
Also ©©)(t) of Corollary 18.1 is holomorphic on Ue,(0) if and only if (19.1) holds.

Proof: By (18.1), Q(z,t) and ©©)(t) are continuous at ta € A if and only if (19.1) holds for those u,(t),
up(t) coalescing at ta € A. Hence, any point of A is a removable singularity if and only if (19.1) holds.
(|

Proposition 19.1. The system
- 80 N
18.4 dA=—+[Q A
(18.4) 19,4,

(18.3)  dG© =0 t) g,
with A, holomorphic satisfying condition (19.1) on Ue,(0), is Frobenius integrable for t € U, (0).

The proof is as in [44]. It holds also in our case, because the algebraic relations are the same as in our
case, no matter if A; is resonant (see e.g. Example 3.2 in [44]).
Write ©(0) = Dok @,io)dtk. Since (18.3) is integrable, the compatibility of equations holds:
(0) (0)
Ch 06,

i OV 0
= N . — 3 . . ]. .2
5~ o — oo -efe (19.2)

Proposition 19.2. Let the deformation of the system (1.9) be isomonodromic in V as in Definition
17.2, with A(t) is as in (1.15) and A, (t) holomorphic on Ue, (0). Then, A (t) is holomorphically similar
to J©) in the whole Ue, (0) if and only if (19.1) holds as t tends to points of A C Ue,(0). In other words,
if the deformation is isomonodromic in V with holomorphic Ay (t), then Assumption 2 in the whole Ug, (0)
is equivalent to (19.1).

Proof: Let Ay (t) be holomorphic and let (19.1) hold, so that ©(©)(¢) is holomorphic on U, (0) by Lemma
19.1. The linear Pfaffian systems dG(©) = 0 ()G©® and d[(G?)~1] = —(G@)~10()(¢) are integrable
in U, (0), with holomorphic coefficients ©(%)(t). Then, a solution G'°)(¢) has analytic continuation onto
U.,(0). We take a solution satisfying (G (¢))~* Ay (t) GO(t) = JO for t € V, which then has analytic
continuation onto U,,(0) as a holomorphic invertible matrix. Hence, (G (¢))~? /Tl(t) GO(t) = JO
holds in U, (0) with holomorphic G(9)(¢). Conversely, suppose that Assumption 2 holds in 2, (0). Then
GO(t) and G ()~ are holomorphic on U, (0). Therefore, also ©)(¢) is holomorphic on U, (0),
because O () = dG© . (G©)~! defines the analytic continuation of ©©)(t) on U, (0). Then (19.1)
holds, by Lemma 19.1. O

Summarising, if A(t) is as in (1.15) and A (t) is holomorphic on U, (0), if the deformation is isomon-
odromic in a simply connected subset V' of a cell, s.t. V C cell, then it suffices to assume that ﬁl(t) is
holomorphically similar to a Jordan form J(© (¢) in U, (0), or equivalently that (19.1) holds at A C U, (0),
in order to conclude that the system

(18.2) dY = Q(z,1) Y,

(18.3) dG® =00 t) g,
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has holomorphic coefficients on R x U, (0). The integrability /compatibility condition of (18.2) is
o, oy
ot 0t
If this relation is explicitly written, it turns out to be equivalent to (19.2). Hence, being (18.3) integrable,
also the linear Pfaffian system (18.2) is integrable, with coefficients holomorphic in U, (0). Therefore,

due to linearity, any solution Y'(z,t) can be t-analytically continued along any curve in U, (0), for z
fixed.

= 0,Q; — ;0. (19.3)

Corollary 19.1. Let the deformation be isomonodromic in a simply connected subset V of a cell, s.t.
V C cell. If //l\l(t) is holomorphically similar to a Jordan form J© in U, (0), or equivalently if (19.1)
holds in Ue, (0), then the Y, (2,t)’s, 0 = v,v + u,v + 2, together with an isomonodromic Y () (z,t), can
be t-analytically continued as single valued holomorphic functions on Ue,(0).

Proof: 1f the deformation is isomonodromic, by Theorem 18.1 the system (1.9),(18.2) is a completely
integrable linear Pfaffian system (compatibility conditions (18.4) and (19.3) hold), with common solutions
Y, (2,t)’s, 0 = v,v + p, v+ 2u, and YO (2, t). If A (t) is holomorphically similar to a Jordan form J(®)
in U, (0), or equivalently if (19.1) holds in U, (0), then the coefficients are holomorphic in U, (0), by
Proposition 19.2. In particular, since Y, (z,t)’s, o = v, v+ u, v+ 2u, and YO (2, 1) solve (18.2), they can
be t-analytically continued along any curve in U, (0). .

Remark 19.1. Corollary 19.1 can be compared with the result of [55]. It is always true that the
Y, (t,2)'s and YO (¢, 2) can be t-analytically continued on T as a meromorphic function, where (in our
case):

T = universal covering of C"\Acn.

Here Acn is the locus of C™ where eigenvalues of A(t) coalesce. It is a locus of “fixed singularities”
(including branch points and essential singularities) of Q(z,t) and of any solution of dY = QY. The
movable singularities of Q(z,t), Y,(t,2) and YO (¢, 2) outside the locus are poles and constitute the
zeros of the Jimbo-Miwa isomonodromic 7-function [55]. Here, we have furthermore assumed that A,
is holomorphic in U,,(0) and that (19.1) holds. This fact has allowed us to conclude that Y,(z,t)’s,
o =v,v+ v+ 2u, and YO (z,¢) are t-holomorphic in U, (0).

In order to prove Theorem 1.1, we need a last ingredient, namely the analyticity at A of the coefficients
Fy.(t) of the formal solution computed away from A.

Proposition 19.3. Let the deformation of the system (1.9) be isomonodromic in a simply connected
subset V of a cell, s.t. V C cell. If Ay(t) is holomorphically similar to a Jordan form J© in U, (0), or
equivalently if (19.1) holds in Ue,(0), then the coefficients Fy(t), k > 1, of a formal solution of (1.9)

Yr(z,t) = (I + ZFk(t)z_k)zBleA(t)Z, (19.4)
k=1
are holomorphic on Ue,(0).
Proof: Recall that
Aot
(F)aatt) = 0D,

up(t) — ug(t)’
(F1)aa(t) = = > (A1) ab(t)(F1)1a(2).
b#a

If by assumption (19.1) holds, the above formulas imply that F(¢) is holomorphic in U, (0), because the
singularities at A, i.e. for uy(t) — up(t) — 0, become removable. Since the asymptotics corresponding
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to (19.4) is uniform in a compact subset K of a simply connected open subset of a cell, we substitute it
into dY = Q(z,t)Y, with
Q(z,t) = zdA(t) + [Fi(t),dA(t)].

By comparing coefficients of powers of 2! we obtain

[Fi41(t), dA(t)] = [F1(t), dA(®)|Fi(t) — dEi(¢), I >1. (19.5)
In components of the differential d, this becomes a recursive relation (use dA(t)/0t; = E;):
_ OF(t)
P (0). Bi] = [F(0), B ) = =52,
with,
0 (Fig1)i 0
[Fl-s-l(t),Ez} = —(F+1)a 0 o =(Fs)in |
0 (Fl1)ni 0

The diagonal element (i,7) is zero. Therefore, (19.5) recursively determines F;.; as a function of
F,F_q,....,F1, except for the diagonal diag(Fj+1). On the other hand, the diagonal elements are
determined by the off-diagonal elements according to the already proved formula,

l (Fl+1)aa(t) = Z(A\l)ab(t)(}:‘l)ba(t)' (196)

b#a

Let us start with [ +1 = 2. Since F} is holomorphic, the above formulae (19.5), (19.6) imply that F
is holomorphic. Then, by induction the same formulae imply that all the Fj,;(¢) are holomorphic. O

Corollary 19.1 means that assumption 2) of Theorem 14.1 applies, while Proposition 19.3 means that
assumption 1) applies. This, together with Proposition 17.1, proves the following theorem, which is
indeed our Theorem 1.1.

Theorem 19.1 (Theorem 1.1.). Let A(t) and A;(t) be holomorphic on U.,(0), with eigenvalues as in
(1.15). If the deformation of the system (1.9) is isomonodromic on a simply connected subset V of a

cell, such that V is in the cell, and if A1(t) is holomorphically similar to a Jordan form J© in U, (0),
or equivalently the vanishing condition

(A1)ap(t) = O(ua(t) — up(t)) = O(ta — t),

holds at points of A in U, (0), then Theorem 14.1 and Corollary 14.2 hold (with Gy(t) — I, see Remark
17.1), so that Go(z,t) = Y, (2, 1)t =B 5 — y v 4 v + 2u, maintains the canonical asymptotics

ga(z7t)~I+ZFk(t)z_k, z— 00 in Sy,
k=1
for any t € U, (0) and any €1 < €g. The Stokes matrices,
Sw Su+u7
are defined and constant on the whole Ue,(0). They coincide with the Stokes matrices S, §V+u of the
specific fundamental solutions Yg(z) of the system (17.2)
dY

— = A(z,0YY,
dZ (230) 9

which satisfy Ya(z) = Y,(2,0), according to Corollary 14.2. Any central connection matriz C’l(,o) 18
defined and constant on the whole U, (0), coinciding with a matriz Co'l(,o) defined by the relation

Y. (2) = YO()CP,
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where Y0 (2) is a fundamental solution of (17.2) in the Levelt form (17.3), and Y,(z) = Y,(2,0) as
above.
The matriz entries of Stokes matrices vanish in correspondence with coalescing eigenvalues, i.e.

(S1)ij = (S1)ji = (S2)ij = (S2)js =0  whenever u;(0) = u;(0).

Corollary 19.2. (Corollary 1.1) If moreover the diagonal entries of El(O) do not differ by non-zero
integers, Corollary 4.1 applies. Accordingly, there is a unique formal solution of the system with t = 0,
whose coefficients are necessarily )

Hence, there exists only one choice of fundamental solutions Ya(z) ’s with canonical asymptotics at z = oo
corresponding to the unique formal solution, which necessarily coincide with the Y,(z,0)’s.

Summarizing, the monodromy data are computable from the system with fixed ¢t = 0 and are:

o JO = a Jordan form of A; (0); R© = R. See Proposition 17.1.

o By = diag(A;(0))

¢S, =S, Svip=Suip

oV =i,

Here, S; and S, are the Stokes matrices of those fundamental solutions Yi(z), Ya(z), Y3(z) of the
system (17.2) (i.e. system (1.21)) with the specific canonical asymptotics (1.23) satisfying Fj, = Fj(0),
k > 1. For these solutions the identity Y,(z) = Y;(z,0) holds. In case of Lemma 19.2, only these
solutions exist.

3

20. ISsOMONODROMY DEFORMATIONS WITH VANISHING CONDITIONS ON STOKES MATRICES, PROOF
OF THEOREM 1.2

We now consider again system (1.9) with eigenvalues (1.15) coalescing at ¢ = 0, but we give up
the assumption that Ay (t) is holomorphic in the whole U.,(0). We assume that A;(t) is holomorphic
on a simply connected open domain V C U, (0), as in Definition 1.1, so that the Jimbo-Miwa-Ueno
isomonodromy deformation theory?” is well defined V. Therefore Y, 1, (t,2)'s (k € Z) and Y (O (t,z)
satisfy the system

dy A (b)
—=|Alt)+ —=|Y 20.1
— ( 0+ )y, (20.1)
dY = Q(z,1)Y, (20.2)
and A, (t) solves the non-linear isomonodromy deformation equations
~ 00 ~,
dA=——+[QA
5, + 1AL

dGa0) = 90 (0

Here  and ©(© are the same as in the previous sections, defined for t € V.

Since the deformation is admissible, there exists 7 such that V C ¢, where c is a 7-cell in U, (0). The
Stokes rays of A(0) will be numerated so that 7, < 7 < T,41.

As in Remark 19.1, the solutions A (t), any Yy iku(t, 2)’s and YO (2, 2) of the above isomonodromy
deformation equations, initially defined in V, can be t-analytically continued on the universal covering
of C™"\Acn, as a meromorphic functions. The coalescence locus Ac- is a locus of fixed singularities [55],
so that it may be a branching locus for A; (t) and for any of the fundamental matrices Y (z,) of (20.1)

27The fact that Ay may have eigenvalues differing by integers does not constitute a problem; see the proof of Theorem
18.1.
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(i.e. of (1.9)). Notice that our A is obviously contained in Ac¢n. The movable singularities of A\l(t),
Yy 4k, (t, 2) and Y(O(t, 2) outside Acn are poles and constitute, according to [55], the locus of zeros of the
Jimbo-Miwa-Ueno isomonodromic 7-function. This locus can also be called Malgrange’s divisor, since
it has been proved in [57] that it coincides with a divisor, introduced by Malgrange (see [50] [51] [52]),
where a certain Riemann-Hilbert problem fails to have solution (below, we formulate a Riemann-Hilbert
problem in proving Lemma 20.2). This divisor has a complex co-dimension equal to 1, so it does not
disconnect C"\Ac¢n and U, (0)\A.

The fundamental solutions Y, 4, (t,2)’s above are the unique solutions which have for t € V the
asymptotic behaviour

Yy hu(z, t)e 2078 o T Z Fj(t)z77, 2 = 00 in Spqppu(t). (20.3)
Jj=1

The t-independent Stokes matrices are then defined by the relations

Yu+(k+1)#(ta Z) = Yl/+k:p, (t; Z)SVJrk/,L'

Notice that also the coefficients F;(t) are analytically continued as meromorphic multivalued matrix
functions. For the sake of the proof of the Lemma 20.1 below, the analytic continuation of Y, 4, (t, 2)
will be denoted by
Yu+ku(z7 g)a

where # is a point of the universal covering R (U, (0)\A), whose projection is . The analytic continuation
of F(t) will be simply denoted by Fj(¢)

By arguments similar to those in Section 13, it is seen that as ¢ varies in ¢ or slightly beyond the
boundary Oc, then Y, x,(t, 2) maintains its asymptotic behaviour, for ¢ away from the Malgrange’s
divisor. But when ¢ moves sufficiently far form ¢, then the asymptotic representation (20.3) is lost. The

following Lemma gives the sufficient condition such that the asymptotics (20.3) is not lost by Y, yx,(2,1).

Lemma 20.1. Assume that the Stokes matrices satisfy the vanishing condition
(Sv)ab = (SV)ba = (Sv+u)ab = (Su+;¢)ba =0, (20-4)

for any 1 < a # b <n such that u,(0) = uy(0). Then the meromorphic continuation Y, 1y,(z,1), k € Z,
on the universal covering R(Ue,(0)\A) maintains the asymptotic behaviour

Ty OB 1S (D)
j>1

for z — oo in §V+;W(t) and any t € R(U.,(0)\A) away from the Malgrange’s divisor. Moreover,
Yu+(k+1)#(z7 E) = Yu+k:p,(za g)SV+k/,L'
Here §U+ku(t) is the sector in Definition 14.1.

Remark 20.1. Notice that By = diag(A;(t)) is independent of ¢ € V by assumption, and A (t) is
meromorphic, so B is constant everywhere. Moreover, the relation S, 2, = e 2miBi§ e2miB1 implies
that (20.4) holds for any S, 4k, k € Z.

Proof: Since V belongs to the T-cell ¢, then Y, 44, (2,t) can be denoted by Y, £, (z,t; 7, ¢), as in Theorem
15.1, for t € V and for any ¢t € ¢ away from the Malgrange’s divisor. Noticing that the Malgrange’s
divisor does not disconnect U, (0)\A, we proceed exactly as in the proof of Theorem 15.1. Now V is
considered as lying on a sheet of the covering R(U,(0)\A). The relation (15.2) holds unchanged, and
reads

Yoiu(2, 57, ¢) = Yyuu(z, 1,7, 0Kl (20.5)
On the other hand, the relation (15.3) becomes

Xpan(2,8) = Yoru(z, 57, ¢) Kl (1),

where X, 4,(z,t) is a solution of the system (20.1) with coefficient A, (t), where f is a point of the
universal covering, reached along v, after Rqp(t) has crossed R(7 — ) in Figure 33. X, ,(z,1) is the
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unique fundamental matrix solution having asymptotic behaviour
XVJF,J(z,f)e*A(t)Zz*Bl ~ I+ ZFj(f) P
j>1
in Sy4,(t). Then (15.4) is replaced by
Xotn(Z,7at) = Yo i u(2, Yant) G ]K[ab], teec.
Here, Y, 4, (2, Vast) is the continuation of Y, 1, (2,t) = Y,4,.(2,t; 7, ¢) at
t = Yapt.

The proof that K[® = Kl = J holds unchanged, following from (20.4). Therefore,

XVJr#(Z»'Yabt) = YVﬂL(Zv Yabt)-

This proves that the analytic continuation Y, ,(z,t) along 74, maintains the canonical asymptotic
behaviour. Moreover, the ray Ry, plays no role in the asymptotics, as it follows from (20.5) with
Kle?) = J. Repeating the construction for all possible l1oops Yap, as in the proof of Theorem 14.1 and

Theorem 15.1, we conclude that Y, ,(z,¢) maintains its the canonical asymptotic representation for
any ¢ in the universal covering (£ away from the Malgrange divisor), when z — oo in S, 1, (t). O

In Lemma 20.1, we have taken into account the fact that A is expected to be a branching locus, so
that Y(z,t) is defined on R(U.,(0)\A), as the result of [55] predicts. In fact, it turns out that (20.4)
implies that there is no branching at A, as the following lemma states.

Lemma 20.2. If (20.4) holds, then:
e The meromorphic continuation on the universal covering R(Ue, (0)\A) of any Y, 1ru(z2.t), k € Z,
and Y (z,t) is single-valued on Ue,(0)\A.
e The meromorphic continuation of //1\1(15) is single-valued on U, (0)\A.

In other words, A is not a branching locus.

The single-valued continuation of Y, ,(z,t) will be simply denoted by Y, 44, (2,t) in the remaining

part of this section, so we will no longer need the notation Y, yx,(2,1).

Proof of Lemma 20.2: Let t € V be an admissible isomonodromic deformation and gl(t) be holomorphic
in V. Let T be the direction of an admissible ray for A(0) such that V lies in a 7-cell. Since the linear
relation (1.15)

holds, we will use u as variable in place of t. Accordingly, we will write A(u) instead of A(¢) and Y (z,u)
instead of Y'(z,t). Now, the fundamental solutions Y, 11, (z,u) and Y(?)(z,u) are holomorphic functions
of u € V. We construct a Riemann-Hilbert boundary value problem (abbreviated by R-H) satisfied by?®
Y, _u(z,u), Yo, (2,1), Yoi,(z,u) and YO (2, ).

The given data are the essential monodromy data (see Definition 17.2) S,_,,, S,, Bi, {1, -, ftn, R
and C’S)). Instead of pi1, ..., tin, R(®), we can use D(® and L(® (see (16.2) and Remark 16.2). They
satisfy a constraint, because the monodromy (C’l(,o))_1 e2mil”) Cﬁo) at z = 0 can be expressed in the
equivalent way e>"*P1(S,S, ;) !. Recalling that S,, = e 2"51S,_,e2™B1 the constraint is

SpL, Mg = (O 2T o), (20.6)

The following relations hold for fundamental solutions:

Y, (z,u) =Y,_,(z,u)S,_,, (20.7)
Yo1u(z,u) =Y, (2,u)S,, (20.8)
Y, (z,u) = YO (z,u)C, (20.9)
You(z,u) = YO (2,0)C0S8,. (20.10)

28Recall that Yy ok (2287 = Y, (2)e2k7iB1L | € Z.
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a2

T—T -

F1GURE 35. The contour I'_ o UT'; UT'9 UT' 4 o of the Riemann-Hilbert problem, which
divides the plane in regions II,, 11,4, and Ily. The directional angles 7, 7 £ 7 and the
orientations are depicted.

Since Y, 4, (2€?™) =Y, _,(2)e*™B1 | we can rewrite (20.7) as
Y, (z,u) = Y, (2e*™ w)e 2mH1S,_, (20.11)
We now write

Yoiru(z,u) = Goirpu(z, u)eQ(z’“), Q(z,u) := A(u)z+ B1In z,

Gotru(z,u) ~ I+ ZFj(u)z_j, z =00 in Syypu(u), k=0,1.
j=1
YO (z,u) = Go(z,u) PP
GOz, u) = GO(u) + O(z) holomorphic at z = 0.
Therefore, from (20.7)-(20.11) we obtain

Go(2,u) = Gy (2™ ) QWS e~ @) (20.12)
Goiu(2) =Gu(z,u) Qg = Qu) (20.13)
Go(z,u) = GO (z,u) 2P 27 O Q) (20.14)
Goiu(z,u) = GO (z,u) P zL(O)Cﬁo)S,,efQ(Z’"). (20.15)

We formulate the following R-H, given the monodromy data. Consider the z-plane with the following
branch cut from 0 to co:

T—w<argz <T-+m.

Consider a circle around z = 0 of some radius r. The oriented contour I' = I'(7) of the R-H is the union
of the following paths (see Figure 35):

I w: argz=7=xm, |z| >r, half-line coming from co along the branch-cut
Pioo: argz=T7, |z| >r, half-line going to oo in direction 7,
I': T—m<argz <7, |z =r, half-circle in anti-clockwise sense,

Iy: 7<argz<T+m, |z| =r half-circle in anti-clockwise sense.

Recalling that 7, < T < 7,4, we call:
IT,, the unbounded domain to the right of I'_ o UT; UT o,
IIy the ball inside the circle I'y UT's,
II, 4, the remaining unbounded region C\{II, UIl, UT}.
The R-H problem we need is as follows:

9+ =6-(QH(Cu), (€T, (20.16)



71

FIGURE 36. Jump matrices A, B, C, D along I', used in step 1.

where the jump H({,u) is uniquely specified by assigning the monodromy data S,_,, S,, Bi, C’l(,o), DO
and L) (i.e. pi1, ..., i, R). Since I'_ lies along the branch-cut, we use the symbol (. if arg ¢ = 7+ .
Hence, H((,u) is

H(C u) = BQ(C—Mg;iMe*Q(Cﬂ“) along I'_,
Qg =QCu) along I' ,
eQ(g,u)(Cl(/O))*lC*Lm)C*D(O along T'y,
eQ(QU)S;l(Cw))—lC—L(O)C—D(O along T's.

v

We require that the solution satisfies the conditions

G(2) ~ I +seriesin 27!, z— o0, z€ I, U4, (20.17)

G(z) holomorphic in Iy and det(G(0)) # 0. (20.18)
By (20.12)-(20.15), our R-H has the following solution for u € V:

Go(z,u) for z € Iy,
G(z,u) = Gv(z,u) for z €lIl,, holomorphic of u € V. (20.19)
Goipu(z,u) for z € Iy,

By the result of [55], this solution can be analytically continued in u as a meromorphic function on
the universal covering of C"\A¢,. Consider a loop around A, as in (14.5), involving two coalescing
coordinates u,, up, starting from a point in V. We want to prove that the above continuation is single
valued along this loop. As in the proof of Theorem 14.1, we just need to consider the case when |u, —up|
is small and only PRy, and PRy, cross {(T). Let

€ 1= Ug — Up.

The lemma will be proved if we prove that G in (20.19) is holomorphic in a neighbourhood of € = 0,
except at most for a finite number of poles (the Malgrange’s divisor).

In the following, we will drop v and only write the dependence on e. For example, we write H((,¢)
instead of H((,u). For our convenience, as in Figure 36 we call

H((,e) = A(¢_,¢) along I'_ .,
: B(¢, e) along T'y oo,
=:C(C,¢) along I'y,
=:D(¢,¢) along I's.

A, ..., D are holomorphic functions of €. The following cyclic relations are easily verified:
A(ze 2™ &) D(z,¢) C(ze 2™, &)™ =1  C(z,¢) D(z,6) 'B(z,6)"' =1 (20.20)

In particular, the following “smoothness condition” holds at the points T; and T5 of intersection of T'_
and I'y o with the circle |z| = r respectively:

A(C_,e) D(Cy,e) C(¢ye)™ =T at Ty, C(C,e) D(C,e) 'B(C,e) t =1 at T.
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Q,q o Ty

Jjump A
FIGURE 37. Step 2: the auxiliary Riemann-Hilbert problem with contour ¢4 and /5.

Indeed,
A(ze ™ &)D(z,e)C(ze 2™ &)t =
_ eQ(ze*"’”)S;l#e—Q(ze*Z’”') ) eQ(z)S;l(Cl(lo))—lz—L(o)z—D(O) ) (26—27”')D<°> (Ze—zm‘)L(“)Cl(lo)e—Q(ze*Q”)
— o~ 2miB1,Q(2) S;E# e2miB1 S;l (Cl(’o))—lz—L(O)z—D“” _ZD(O)ZL(O)e—Qm'L(O)CISO) e Q(2) 2miB
— o—2miB1 ,Q(2) (S;_lﬂ o2miB1 S;l (C,(,()))*le*?”““)cgo)) o~ Q) p2miB1 _ |
In the last step, we have used (20.6). Moreover,

C(¢,e)D(z,6) ' B(z,e) = eQ(z)(Cl(,o))_lz_L(O)z_D<o) . zD(O)zL(mC’l(,O)SUe_Q(Z) . eQ(z)S,jle_Q(z) =1

The last result follows from simple cancellations.

In order to complete the proof, we need the theoretical background, in particular the LP formulation
of Riemann-Hilbert problems, found in the test-book [28], the lecture notes [39] and the papers [70] [25]
(see also [22] [23] [24] and [13] [58] [68]). The proof is completed in the following steps, suggested to us
by Marco Bertola.

e Step 1. We contruct a naive solution &(z,¢) to the R-H, which does not satisfy the asymptotic
condition (20.17). We start by defining &(z,¢) = I in IIy. Then, keeping into account the jumps C and
B along I'; and I'; o, respecively (see Figure 36), we have

I for z € I,
S(z,e) = C(z,e)7t for z € 11, (20.21)

C(z,e) 'B(z,e) for z € 4,
On the other hand, starting with &(z,e) = I in Il and keeping into account the jump D at 'y, we must
have
&(z,e) =D(z,e)" " for z € I, p . (20.22)

The second relation in (20.20) ensures that (20.22) and the last expression in (20.21) coincide. Moreover,
starting with &(z,e) = I in IIy and crossing I'y and then I'_, with jumps C and A, we find a third
representation of &(z,¢) for z € I, ,,, namely

G(z,e) =C(ze ?™ ) T A(ze *™ g) for z € IL, 4. (20.23)
Now, the first relation in (20.20) ensures that (20.22) and (20.23) coincide.

e Step 2. We consider an auxiliary R-H as in Figure 37, whose boundary contour is the union of a
half line £ 4 contained in I'_,, from co to a point P; preceding 77, and a half line 5 contained in I'y
from a point P, following 75 to co. The jump along these half lines is H((,e) (namely, A((_,e) and
B((,e) on the two half lines respectively). The R-H is then

Vi(Q)=V_(QH(Ce) (elaUls,
2200, €I, Ul 4, (20.24)
Keeping the above asymptotics into account, the R-H is rewritten as follows:

U(z) ~ I + series in 2z~
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or, letting 0¥ := WV — [ and 0H := H — I,
o= [ QI [ GHGe) &
LaUlB (—=2 2mi LUl (—z 2mi

We solve the problem by computing §U_(¢), as the solution of the following integral equation (by taking
the limit for z — z_ belonging to the “—” side of {4 U {p):

~ SU_(C) SH(C,€) d¢ SH(C,) d
= T it e e

(20.25)

—C_ [5@,5}1(-, 5))} (z_) +C_ [5H(-, 5)} (=)

Here C_ stands for the Cauchy boundary operator. We will write C_[6¥_0H (-,¢)] as C_[e 6H (-, )]0V _,
to represent the operator C_ e 6H (-, )] acting on 6¥_. We observe the following facts:

1. If w is in the cell containing V, as ( — oo along ¢4 and {3, the off-diagonal matrix entries of the
jump are exponentially small. Indeed

Hij(zvg) = Hij(C7u) = Sij eXp{(ui - Uj)( + ((31)”' — (Bl)jj) In C} — 5ijo (20.26)

This is due to the fact that s;; is either (S,);; or (S;fﬂ)ij. Thus, §H;; € L*(€4 U ¢g,|d¢]), and
C_ [(5H] i € L?(¢ 4 U¥p,|dC]). Hence, the problem is well posed in L?, consisting in finding §¥ _
as the solution of

(1 —C [. 6H(-,5)D SU_=C_ [(5H(~75)}. (20.27)

2. If w is in the cell containing V, by assumption both the operator and the given term in (20.27)
depend holomorphically on u. Along the loops (u; — u;) + (u; — u;j)e®™, 1 < i # j < n, the
property (20.26) is lost, because u leaves the 7-cell containing V), so that some Stokes rays cross
the ray R(7). On the other hand, if the vanishing condition (20.4) holds, then su, = spq = 0.2
Thus, (20.26) continues to hold along the loop € — ee*™. It follows that I —C_[e §H(-,€)] is an
analytic operator in € and the term C_ [5H (-, 5)] is also analytic, for € belonging to a sufficiently
small closed ball U centred at € = 0.

3. If P, and P, are sufficiently far away from the origin, we can take [[0H (-, €)oo = Sub¢er ey [H (G €)]
so small that the operator norm || - || in L? satisfies, for € € U,

|[C—[o 6H(- )] < IC=|| I6H (-, €)]loc < 1. (20.28)
Here, ||C_|| is the operator norm of the Cauchy operator.*® By (20.28), the inverse exists:

(I —-C_ [o 6H(-,5)D71 = +ZOO (C_|o 5H(~,E)])k. (20.29)

The series in the r.h.s. converges in operator norm and defines an analytic operator in € € U.

Using (20.29), we find the unique L2-solution of (20.27) and then, substituting into (20.25), we find the
ordinary solution ¥(z,¢) of the auxiliary problem, which is holomoprhic in € € U.

e Step 3: We construct a R-H along a closed contour with a continuous jump. Consider a “big”
counter-clockwise oriented circle y centered at the origin and intersecting I'_ . at a point ()1 preceding
Py, T at a point Q2 following Ps. See Figure 38. If G is the solution to the starting problem (20.16),
(20.17), (20.18), we construct a matrix-valued function ® as follows:

d = G- W(z,e)" !, for z outside 7, (20.30)
G- 6(z,¢)7!, for z inside 7. (20.31)

By constriction, ® only has jumps along ~:
$.(Q) =) H(¢e),  H((e) = (,e)8(Ce) " (20.32)

29No difficulty arises from the fact that S;iu appears. If for simplicity we take the labelling (5.1)-(5.4), then S, _,, has

diagonal blocks equal to p; X p; identity matrices. This structure persists on taking the inverse.
g q j 'j y p g
30Here we use the simple estimate [|C—(f6H)|z2 < [|C=| [|6H|lso |If]lz2, for any f € L2.
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FIGURE 38. Step 3: the continuous Riemann-Hilbert problem on the circle v, with

jump ¥(¢,2)&(¢,e) 7

By construction, the jump matrix H(C, ) is continuous in ¢ along 7, and is analytic in ¢ € U. By
(20.24), then (20.17) is equivalent to

1

O(z) ~ I +seriesin 277, z =00, z€II, Ul 4.

Therefore, the R-H for @ is solved as in (20.27) and (20.25) by

(1 c_ [- SH(- ]) 5O =C_ [51?(,5)}, (20.33)
- [BHCO & (oG & s

Here C_ is Cauchy operator along ~y. Since + is a closed contour and H (¢, ) is continuous, the procedure
and results of [70] [25] [23] apply. The operator C_ {o SH(, 5)} is Fredholm, I —C_[e 6H (-, )] has index

0 and its kernel is {0}. Therefore, the “analytic Fredholm alternative” of [70] holds. Namely, either
I—-C_[e §H(-,¢)] can be inverted (and (20.33) can be solved) for every € € U, except for a finite number

of isolated values, or is invertible for no €. In the first case, (I —C_Je 5?](',5)]) is meromorphic,
with poles at the isolated points in U.

By (20.30)-(20.31), solvability of the R-H (20.32) is equivalent to the existence of the solution G(z,¢) =
G(z,u) for the problem (20.16), (20.17), (20.18). By assumption (i.e. by the result of [55]) we know that
locally in u the solution G(z, u) exists. We therefore conclude that the “Fredholm analytic alternative”
implies the existence of the solution ®_((,¢) of (20.33) for every ¢ € U, except for a finite number of
poles, and that (20.34) gives an ordinary solution ®(z,¢), meromoprhic as a function of € in U. By
(20.30)-(20.31), the same conclusion holds for G(z,¢) = G(z,u). This proves the Lemma (as for Ay, it
suffices to note that A; (t) = 2(Y Yz, t)dY (2,t)/dz — A(t))). O

Theorem 1.2 immediately follows from Lemma 20.1 and Lemma 20.2.

PART V: Examples and Applications

Our work is motivated both by the general deformation problems of linear systems with coalescing
eigenvalues and by applications to Frobenius Manifolds and Painlevé equations. The applications are
sketched in the sections below, which are a natural continuation of the Introduction, of which we keep
the notations (for example, S1, Sy instead of S, 1)
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21. MONODROMY DATA OF SEMISIMPLE FROBENIUS MANIFOLDS

A Frobenius manifold M essentially is an analytic manifold with a Frobenius algebra structure on the
tangent bundle and a deformed flat connection (see [17] [19] for a precise definition). The manifold is
called semisimple if the algebra is semisimple in an open dense subset, whose points are called semisimple
points of M. In suitable coordinates u = (uq, ..., u,), called canonical, flatness is translated into n + 1
compatible linear systems of dimension n x n

Yy ~ V(w)

—=A Y, A = 21.1
Ay, Aewe=ve 2 (211)
oY

= Qi (z,u)Y, Qi (z,u) = 2Bk + Vig(u), 1<k<n. (21.2)
[

Here Ej is the matrix with zero entries except for (Fx)gr = 1, U = diag(uy, ..., u,) and V is skew-
symmetric. The system (21.1) is of type (1.9). If we write v = u(t) as in (1.15), then the following
identification holds
U= A(®), V(u(t)) = A1(¢).

The matrices Vi, are defined by
O (u)
Buk
The matrix ¥(u) gives the change of basis between flat and canonical coordinates, according to the
formulae in Exercise 3.2 of [19]. It is crucial for our discussion that ¥(u) is always holomorphic and
invertible at semisimple points, also when U has coalescing eigenvalues there. The proof is given in
[15]. Therefore, the matrices Vi (u) are holomorphic at semisimple points. ¥(u) diagonalises V' (u), with
constant eigenvalues pi1, ..., i, independent of the point of the manifold (see [17],[19]):

V(U) = \I’(’LL) 12 \I’(U)il, M= diag(:ula 2, .- ,Un)
Therefore, V (u) is holomorphically similar to x at semisimple points.

The system (21.1) admits a normal form at z = 0 such that the corresponding fundamental matrix,
denoted

Vie(u) = \I/(u)_l.

Yo(z,u) = <\I/(u) + Z@l(u)zl)z“zR, (21.3)
=1

has monodromy exponent R independent of the point of the manifold. Yy(z, ) is holomorphic of v on
the domain where V (u) is holomorphic. In our notations, R = R(”), and Y, = Y| as in (1.10).

The system (21.1), (21.2) is the system (1.9), (18.2) (let tx — wy in (18.2)). The compatibility
condition reads

U, V] = [Ex, V], = (Oki — 0nj)Vij = (ui —uj)(Vi)ij, 1 <4,5,k <mn; (21.4)
oV

— = . 21.
Bt Vi, V] (21.5)

Equations (21.5) coincide with the isomonodromy deformation equations (18.5) and Vj (u) coincides with
the matrix (18.1).

Next, we establish the translation between our Stokes and central connection matrices and those
defined in [19]. Following [19], Section 4, we consider an oriented ray £, (¢) := {z € R | argz = ¢} and
(for € > 0 small) the following two sectors

Wiight == S(¢—7m—€,0+¢€), et :=5(p—€,¢+m+e).
In [15], we introduce the open dense subset of points p € M such that the eigenvalues of U at p are
pairwise distinct and no Stokes rays associated with U at p coincide with ¢4 (¢), and we call any connected
component of this set an ¢-chamber. Let V be an open connected domain such that V is contained in an
(-chamber. For suitable €, we can identify>!

e_Zﬂ-iHIeft =8 (V)7 Hright = 82(V)’ e, = S3(V), (216)

311n the notation used in the main body of the paper,
6_27rinleft = Su(v)y Hright = Su+u(v)’ Miese = SV+2N(V)7 form, <7< Tv41-
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where e 2™ := {2 € R |z = Ce 2™, ¢ € Mett}, and S, (V) is defined in the Introduction. Let
Yiets (2, 1), Yiight(z,u) be the unique fundamental matrix solutions having the canonical asymptotics
Yr(z,u) = (I + 0(1/2))e*V in e and ILight respectively. The Stokes matrices S and S_ of [19] are
defined by the relations,

Yiet (2, 1) = Yrignt (2, 1)S, Yiete (€*™ 2, u) = Yyigne (2,u)S—,  z€R. (21.7)

The symmetries of the system (21.1) imply that S_ = ST. In our notations as in (1.7), the Stokes
matrices are defined by

Y3(z,u) = Ya(z,u)Sa, Yo(z,u) = Y1 (z,u)S;. (21.8)
We identify

Y3(z,u) = Vgt (2, u), Yo (2, 1) = Yiignt (2, u) (21.9)
Let B; denote the exponent of formal monodromy®? at z = oo, so that the relation Y;(ze™2™ u) =
Y3(z,u)e~ 2781 holds.®* Since V is skew symmetric and B; = diag (V) = 0, the above relation reduces
to

Y1 (ze 2™ 1) = Yieg (2, u).
Therefore (21.8) coincides with (21.7), with
S_=S7t §=8,.

The central connection matrix such that ¥; = Y(©C(© was defined in (1.11) and in Definition 17.1.
In the theory of Frobenius manifolds, such as in [15], the central connection matrix is denoted by C,
defined by
Yiight (2, u) = Yo(z,u)C.
Since Yy = YO, Yiight = Y2, Y2 = Y15y, and Sl_l = ST then
cO =cst=cs”.

Summarising, monodromy data of a Frobenius manifold are u, R, S, C, versus the monodromy data
15 e iy RO, S1,Sy, C© of the present paper (B; = 0).

Coalescence points for U in (21.1) are singular points for the monodromy preserving deformation equa-
tions (21.4) and (21.5). Their study is at the core of the analytic continuation of Frobenius structures.
Our Theorem 1.1 allows to extend the isomonodromic approach to Frobenius manifolds at coalescence
points if the manifold is semisimple at these points. Let u(?) = (u(lo), . us}o)) denote a coalescence point.
By a change Y — PY in (21.1), given by a permutation matrix P, there is no loss of generality in
assuming that

) _ ..., 0 _.
Uy __ul(h)_)\l

0 _ _ 0 .
Upy41 = 7 = Upypp, = A2

(0) _ _ 0 —.
Upigodps_141 = 77 = Up hodp 1 4p, = As,

where p1, ..., ps are integers such that p; + -+ +ps = n, and A\; # A for j # k. In order to have a
correspondence with [19], as in formula (21.6) and (21.9), we take the ray £, (¢) with

¢=T7T+7 mod 27, (21.10)

where 7 is the direction of an admissible ray for U at the point u(?), as in Definition 6.2. Similarly to
(14.2), we consider positive numbers & and € as follows

L 1 . i(£,¢) .
Ox .751};&1{‘)\;6 Aj + pe'lz ’, peR}, 0<eo<121klrglsc5k. (21.11)

32In general, a formal solution is (I + S0 Fr(u)z=%)2B1e#U | but in case of Frobenius manifolds By = 0.

331n the notation of the main body of the paper, Yy — Yortr—1p 7= 1,2,3, S1 = Sy, S2 = Spqy and Yi(2)) =
—2mil

Yotou(Zwt2u))e , where z(, 4 (r—1).) € Sl,+(r_1)u(9) is seen as a point of R and not of C.
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Consider the neighbourhood (polydisc) of u(?) defined by
U, (u®) = {u eC” | Ju—ug| < 60}

and denote by A the coalescence locus passing through «(?), namely
A = {u(p) € U, (u'?) | u; = u; for some i # j}.

If u() is a semisimple coalescence point, then the Frobenius Manifold M is semisimple in U, (u(®))
for sufficiently small €y (if necessary, we further restrict €y in (21.11)). Given the above assumption of
semisimplicity, then ¥(u) is holomorphic at A and this implies that V' (u) is holomorphically similar to
p. Equation (21.4) for k =i is V;; = (u; —u;)(V;):j, which implies that V;;(u) = 0 for i # j and u; = u;.
Therefore, recalling that V (u(®)) corresponds to 1@1(0)7 we conclude that the vanishing condition (1.20)
holds true and then our Theorem 1.1 applies. We note that diag (V(u(o))) = 0, then the diagonal entries

of El(O) do not differ by non-zero integers, so that also Corollary 1.1 applies. Then, the following holds:

Theorem 1.1 as applied to Frobenius Manifolds: [More details in [15]] Let the Frobenius man-
ifold M be semisimple in a neighborhood U, (u'®)) of a coalescence point u®), where €, satisfies (21.11).
Then the constant monodromy data i R, S, C' of the manifold are well defined in the whole U, (u(®)),
for any €1 < €. In particular, they are well defined at u(9) and at all points of A. These data coincide
with the data of the system (21.1) computed at fized u = u®, as explained above.

We recall that the monodromy data for the whole manifold can be computed by an action of the
braid group (see [17], [19] and [15]) staring from the data obtained in U, (u(?)). Hence, our result allows
to obtain the monodromy data for the whole manifold from the data computed at a coalescence point.
This relevant fact is important in the following two cases:

a) The Frobenius structure (i.e. V(u) in (21.1) ) is known everywhere, but the computation of
monodromy data is extremely difficult — or impossible — at generic semisimple points where U =
diag(uq, ..., up) has distinct eigenvalues. On the other hand, the system (21.1) at a coalescence point
simplifies, so that we may be able to explicitly solve it in terms of special functions and compute S and
C. In [15] we give a detailed example of this kind for the Frobenius manifold associated with the Coxeter
group As.

b) The Frobenius structure is explicitly known only at points where U has two or more non-distinct
eigenvalues. The quantum cohomology of Grassmannians Gr(k,n) are important examples of this case:
the explicit form of V(u) is known only along the small quantum cohomology, where two eigenvalues of
U may coincide, depending on k and n. Indeed, coalescence of eigenvalues is the most frequent case [14].
S and C can be explicitly computed at the small quantum cohomology locus and Theorem 1.1 allows
their extension to the whole manifold. In [15] we do explicit computations for Gr(2,4).

22. COMPUTATION OF MONODROMY DATA OF PAINLEVE TRANSCENDENTS. EXAMPLE OF THE
ALGEBRAIC SOLUTION ASSOCIATED WITH Aj

Theorem 1.1 provides an alternative to Jimbo’s approach for the computation of the monodromy data
associated with Painlevé 6 transcendents holomorphic at a critical point. The example below refers to
the As-algebraic solution of [21].34

Equations (21.4) and skew symmetry of V(u) imply that » . ;V = >, v;0;V = 0. Thus if n = 3,

U2 — U1
V(Ul,UQ, U3) = V(t), t:= g — u1,
Write
0 Qo  —QO3
vy = -2 0 o
Q3 -0 0

34The example, reinterpreted in the framework of Frobenius manifolds, gives the analytic computation of Stokes matrices
for the As-Frobenius manifold.
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Suppose we want to study the coalescence ug — u; — 0 in the system (21.1), with ug —uy # 0. With
the substitutions Y (z) — €“1*Y(2), and z — (u3 — u1)z, (21.1) becomes

0 0 0
‘fl—Y: 0t 0 +@ Y. (22.1)
o 00 1 z

The coalescence us — uy — 0 corresponds to t — 0.
In equations (21.5), write 0V/Ou, = dV/dt - Ot/Ouy, in order to obtain the following equivalent

equations
sy, 1 dSdo 1 dQls 1
— == Q0 — = —— 00 —_— =
et 2T .  1—¢ U dt  tt—1)
V() can be expressed in terms of transcendents y(t) satisfying the following Painlevé 6 equation, called
PV, (see [19], and also [34] for an asymptotic study of (22.2)):

Py 11 1 1 }(@)2_{1 1 1 }dy 1yly—1)(y —t)

— =t —+— -+ (2u—1)? + 2
a2 2|y Ty—1  y—t) \at dt T2 2(t- 1) a (y— )2

01Qs. (22.2)

with parameter p € C. The eigenvalues of V (t) are pu, 0, —p. The following are the explicit formulae (see
[32]).

i A N
=T hy—l)@—t)“]’ R Lmy—t)“‘}’
V-1 A _lldy,

= \/i\/l—t{y(y—l)+u]’ A'2{dtt(t -l 1)}

The branches (signs) in the square roots above are arbitrary. A change of the sign of one root implies a
change of two signs in (€1, 9, Q3), which still yields a solution of (22.2).

The “Painlevé transcendent” corresponding to the As-Frobenius manifold is the following algebraic
solution of PVI,, u = —1%, obtained in [21] (there is a misprint in ¢(s) in [21]),

B (1 —35)2 (1+3s) (95> —5)2 Hs) = (1—38)3 (1+3s)
V) = T 2350 1 153951 — 20752 £25) ) T 0T s (1=3s)
As it is shown in [21], the Jimbo’s monodromy data of the Jimbo-Miwa-Ueno isomonodromic Fuchsian
system associated with algebraic solutions of PVI, are tr(M;M;) =2 — Sfj, 1 <i<j <3, where S is
the Stokes matrix (in upper triangular form) of the corresponding Frobenius manifold. S is well known
[17], and S + ST is the Coxeter matrix of the reflection group Az. Moreover, Jimbo’s isomonodromic
method [43], as applied in [21] (see also [41], [33] for holomorphic solutions) provides tr(M;M;). Here
we apply Theorem 1.1 and obtain S in an alternative, and probably simpler, way.

First, we take an holomorphic branch. It is obtained by letting s — —%, which gives a convergent
Taylor expansion at ¢ = 0:
1. 13, 135 201 , 229 . 101055 ¢ 167867 . 3235319 4

v =3+ 5t T 6at oo’ " si02’ T 2007152 41043040 | 134217728

(22.3)

+0(t%). (22.4)

Substitution of the parametric formulae (22.3) — or equivalently of (22.4) — into (22.2) yields (two changes
of signs are allowed),

256° 16384 524288

1 1 173 .
Qo(t) = ——=t — —t2 — ———43
2(t) 32" 64 16384

1 1 47 1217
Q3(t) =ivV2 | = + —t¢ t2 B +0o1Y ).
3(t) Zf(534r256 T To3sa’ T poaoss’ T ()

1 1 1 2
Ql(t)zi\/ﬁ(s—t T 257 t3+0<t4>),

+0(tY),

We observe that the following limits exist:

7 . . 7

)=
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Thus, the assumptions of Theorem 1.1 hold, because Q2(t) — 0 as ¢t — 0. Also the Corollary 1.1 holds,
because diag(V) = (0,0,0). Accordingly, the Stokes matrices corresponding to (22.4) for |¢| small can
be computed using (22.1) at ¢t = 0, namely:

(
000 0 0 —iv/2/8
‘fTY: 0 0 0 +@ Y, V(0) = 0 0 iv2/8 . (22.5)
o 00 1 iv2/8 —iV2/8 0

This system is integrable, as follows. First, we do a gauge trasformation ¥ = \1137, such that 3°
i/2  1/V2 —i/2
UV (0)¥ = diag(—1/4, 0, 1/4), U= —i/2 1/vV/2 /2
V2 0 1/V2

Hence (22.5) becomes

> 1/2 0 1/2 ~1/4 0 0 B
Z—Y: 0 0 0 |42 0 0 0 Y.
o 1/2 0 1/2 & 0 0 1/4

We consider a column (y1,y2,y3)? of Y, so that
1 1 1 1
I - - =0 == —ys.
vi=gtys) - oyn o =0 ys=cn )+ s

By elimination of y3(z) and setting y;(2) = /2/2 €*/?w (iz/2) we find that the system reduces to the
d? d
P e+

Bessel equation
3\ 2
2
— |- =0.
<o (1) ]“’

The last equation is integrated in terms of Hankel functions, so that we find general solutions y;(z) of
the form

1 (z,c1,c2,m,n) = \/§ e (cngl) <Z;ei"”r) +cQH§2) <Z;ei””>> , c1, co €C, m, n €Z.
4 4

The Stokes rays of the system (22.5) are given by R(iz) = 0, namely argz = 7 + k7, k € Z. Consider

three canonical sectors

The asymptotic behaviour of fundamental matrices f@(z) = U~1Y,.(2) corresponding to canonical asymp-
totics of Y,.(2) for 2 = 0o in S, r = 1,2, 3, is of the type

4 e
N ) 10 0 )
Y(z) =0t (I+O<>) 01 0 :(I+O(>) %5 5 0 : (22.6)
: 00 e :
i i e
Let us compute Sp, such that ¥5(z) = ¥1(2)S1. The behaviour for z — oo of Hankel functions is
7
(D(i5/9) = 26 % Y e 37 m
H% (iz/2) = N (1+O(Z)> e , 5 <argz <
- 37
(), /9) = 265 Y gz 07 Z
H% (iz/2) = N (1+(9(2)> e*’s, 5 <argz < g,

= o O
o = O

1
35 Each columns of ¥ can be multiplied by a constant. We have chosen ¥ such that ¥7'¥ = ( 0 ) . This has
0

a meaning in the framework of Frobenius manifolds, but is of no importance for our computation.
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It impliies that
yl(zacg_),ovoao) yl(zacg—”aoaO?O) y1(2707027070)

Yl(Z) = * * *

* * *
with

1 _ ; )
y1(z,¢17,0,0,0) = ¢! ’\/> 2/2 H“) ( ) = (1+(9 ()) 7 = L T s (22.7)
2 z 2V 2
yl(z,c§+),0,0,0) = c§+)\/7 =2 g1 = 1 1+0 cgﬂ =
2 b 2 2
— Z o2 (12 _ € 1 o VT _aniss
y1(2,0,¢2,0,0) CQ\/;G H% (2> \/§<1+O<z , Cp 1= e ) (22.9)

The asymptotics of H (zz/ 2) extends up to argz = 37/2. Therefore, the first two matrix entries in

l\D\N

z 77'r’L/8 228
2 8)

l\.’)\N

the first row of Y5(2) are the same of Y1(z), which implies

L 0 (Si)s
Sl = 0 1 (81)23
0 0 1

To find the third entry, we observe that S, is obtained from S; by a rotation z — ze™*", and that
H(;)(ize_”/Q) gives the correct asymptotics for —m/2 < arg z < 5m/2. Therefore,
4

- yl(z7cgi)a07070) yl(z7cg+)707070) y1(2751a07_170)

Ya(z) = * * * ,
* * *
with,
. z 1 )
y1(2,¢1,0,—1,0) :61\/5&/2 HY (ize™7 /2) = 62 <1 +0 ()) . = gei‘"’”/s. (22.10)
1 z

Finally, the cyclic relation (see [69])

oo (e—m ZZ) — o (lZ) f et (”) ’
1 2 1 2 1 2

together with (22.10) and (22.9), implies that

y1(z,¢1,0,—1 \/7 smif8 \/7 #/2 H(l) < > +y1(2,0,¢2,0,0). (22.11)

On the other hand, from the definition of S; we must have
1(2,21,0,—1,0) = (S1)13 y1(2 ¢4 ,0,0,0) + (S1)as 1(2,¢{7,0,0,0) + 11 (2,0,¢2,0,0).  (22.12)

Clearly, (22.7) (22.8) and (22.11) are not enough to determine (S;);3 and (S;)23. Thus, we analyse
the second row of (22.6), to which corresponds y2(z). Recall that y4(z) = 0. Therefore, we choose
y2(2) = 1//2 for the first two entries, and y2(z) = 0 for the third. This gives, for the second row of
sz = Ylgll

{\}5’ %7 0] = L}i, %7 ((51)134-(51)23)\}5} = (S1)23 = —(S1)13-
Thus, (22.11) and (22.12) become

(S1)13 (yl(z,cgi),0,0,0) —y1(Z,Cg 0,0, 0 \/7 37i/8 \/7 2/2 1) ( )
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Keeping into account (22.7) and (22.8) we find (S1)13 = 1. Thus

1 0 1
S;=( 01 -1
0 0 1

Sy can be computed in a similar way, by a further rotation. On the other hands, since V is skew
symmetric

1 00
So=S;"=( 0 1 0
-1 1 1

The result is in accordance with Theorem 1.1, which predicts that the entry (1,2) of S; and the entry
(2,1) of So must be zero. It is also in accordance with the monodromy data of y(t) obtained in [21].

Remark 22.1. If we choose V(0) with different signs, we obtain different signs in S;. For example,
consider the choice
0 0 —iV2/8
V(0) = 0 0 —iv2/8 | =JV(0)J, J = diag(1,—1,1).
iV2/8 iv2/8 0

The same procedure as above yields

B 10 -1
Slz 01 -1 EJSlJ
0 0 1

This sign freedom corresponds to the invariance of U = diag(u1,us,us), namely JUJ = U. The result
S; above is in accordance with the known result of [17] that the Stokes matrix S of the A3 Frobenius
manifold is (up to permutation, change of signs and action of the braid group) the Stokes matrix S such
that S + ST is the Coxeter matrix of the reflection group As.

Remark 22.2. Another Stokes matrix S obtained by an action of the braid group from that computed
above exists with entries (Si2,S13,S23) = (1,1, 1); the corresponding branch y(¢) at ¢ = 0 is obtained
letting s — 1, yielding the Puiseux series [21]

423 50 1 1941.22/3 213 .
t)= —t23 4t 3 TS/ 2
Y = 55+ 5t o500 mol HOE)
to which corresponds the behaviour of V (¢),
21/6 5_25/6 i 21/3 i
O (t) = — t1/6 t1/2 Qo(t) = - + —— ¢3/3 t4/3
1(t) = 57 96 +O0(t77), 2(t) =5+ 55 +O(t7?),

21/6 5.25/6 1/6 1/
()= 5775 T —og Y0 1 O(t/?).

Thus, V(t) has a branch point at ¢ = 0, no entry vanishes and both Q4 (¢) and Q3(¢) diverge, without
contradiction with Theorem 1.1.

APPENDIX: EXAMPLES OF CELL DECOMPOSITION

Example 22.1. Let

A(t) = diag(uq(t), ua(t), us(t)) := diag(0,¢,1).
In this example, the coalescence locus in a neighbourhood of ¢ = 0 is {0}, while the global coalescence
locus in C is {0,1}. At t =0 we have

arg(uy(0) —ugz(0)) = arg(0 — 1), arg(ug(0) —uy(0)) = arg(1 — 0).
We choose arg(l) = 0, arg(—1) = w. This implies that an admissible direction n such that n — 27 <
arg(u;(0) — u;(0)) < n must satisfy

n—2m<0<n, n—2r<mT<n = T <n <27
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t-plane

Cell 1 \ Coll 3
\

Cell 2

F1GURE 39. Cell partition (Cell 1,
Cell 2, Cell 3) of the t-sheet n—27 <
arg(t) <n and n—2m < arg(t-l) < FiGURE 40. The cells of
7. The neighbourhood U, (0) (the Ue, (0) of Example 22.2.

disk) splits into two cells ¢(+) and

e(—).

Therefore 7 = 37 /2 — 7 satisfies

Toer T
—= <7< ;.
2 2

— At t # 0: u1(t) = u1(0) and us(t) = uz(0), and
arg(ui(t) —uz(t)) = arg(—t),  arg(ua(t) —ua(t)) = arg(t),
arg(us(t) — us(t)) = arg(l —¢), arg(us(t) — ug(t)) = arg(t — 1).

We impose:
n—2m <arg(—t) <n,  n-—2m<arg(t) <mn,
\
n—2mr <arg(t)<n—m out n—m <arg(t) <mn.
The above gives the 2 cells of U, (0) for ¢y < 1.
(=) ={t €U,(0) | n — 2w < arg(t) < n—7}, c(+) :={t €U, (0) | n—m < arg(t) < n}.

Since u(t) is globally defined (and ¢ = 1 is another coalescence point), one can globally divide the
t-plane into cells. Accordingly, we also impose the condition

n—2m <arg(l—t) <n, n—2m <arg(t—1) <n,
!
n—2r<argt—1)<n—m out n—mw <arg(t—1) <n.
Therefore, the ¢ plane is globally partitioned into 3 cells by the above relation, as in figure 39.

Example 22.2. Let
Alt) = diag(ul(t),uQ(t),U3(t),U4(t),u5(t)) = diag((), t, te'z, te'™, tei%ﬂ)

The coalescence locus is t = 0. The admissible direction 7 can be chosen arbitrarily, because A(0) = 0
has no Stokes rays. Once 7 is fixed, we impose 7 — 2m < arg(u;(t) — u;(t)) < n. Thus, for 0 <1,k < 3:
n—2m < arg(te’2®) <n, n—2r < arg(—te'2¥) <n, n—2r < arg (t(e'2' —'2F)) <.

The first two constraints imply

n—2ﬂ'—%k<argt<r]—7r—gk;, or n—w—gk<argt<n—gk.
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t,real
A} 4=0 hyperplane
hyperplane g =ZZ\A X(t) X(v)
X(T) X(T) t; imaginary
X X(v)
T

A
treal

FIGURE 41. Example 22.3, with 7y = 37 /2. The horizontal plane is t; € C. The vertical
axis is to € R. The thick lines ¢t; = t2 (real) and t; = 0 ({2 real) are the projection
of Acz. The planes (minus A) are the projection of the crossing locus X (7). The full
planes (which include the thick lines) are the projection of W(r). They disconnect
{t e C? |ty € R}.

By prosthaphaeresis formulas we have e'z! — ¢'2% = 2jsin T -k e'5(+k)  Therefore, the third

constraint gives
s T 7r m
n—2T — Z(lJrk) <argt<mn—m-— Z(lJrk), or 7]77‘(72(14’113) <argt<7]72(l+k).

It turns out that the cell-partition of U, (0) is into 8 slices of angular width 7 /4, with angles determined
by 7. See figure 40.

Example 22.3. We consider t = (t1,t2) € C? and A(t) = diag(0,t1,t2). The coalescence locus can be
studied globally on C2:

Ace ={teC? | t; =t,}U{t€C? | t; =0} U{t € C* | t, = 0}.

This is the union of complex lines (complex dimension = 1) of complex co-dimension = 1. In particular,
t = 0 is the point of maximal coalescence. A(0) = 0 has has no Stokes rays, thus we choose 7 freely. The
cell-partition for a chosen 7 is given (see previous examples) by:

n—2m <arg(t;)) <n—m, or n—m<arg(t;) <, 1=1,2,
and
n—2r <arg(ty —te) <np—m, or n—m<arg(t;y —t2) <n, 1=1,2.
In figure 41 we represent the projection of C? onto the subspace {t € C? | t, € R}, for the choice
n = 37/2. The two thick lines

ty = to real, t1 = 0 with t5 real,

are the projection of Agz. The following planes, without the thick lines,

3 3
{t | arg(t; —t2) = g or g mod 277} U {t | arg(ty) = g or g mod 277}

are the projection of the crossing locus X (7). The planes, including the thick lines, are the projections
of W(r).
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