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ON ONE-POINT FUNCTIONS FOR SINH-GORDON MODEL AT

FINITE TEMPERATURE.

S. NEGRO AND F. SMIRNOV

Abstract. Using fermionic basis we conjecture the exact formulae for the ex-
pectation values of local fields in sinh-Gordon model. The conjecture is checked
against previously known results.

1. Introduction

The importance of the one-point functions for study of ultra-violet asymptotics
of the multi-point correlation functions is nicely explained in [1] (see also [2]). This
explanation was repeated twice in [3, 4], so, we would not return to it here. In
the present paper we consider one-point functions for the sinh-Gordon (shG) model
whose Euclidean action is given by

A =

∫ {[ 1

4π
∂zϕ(z, z̄)∂z̄ϕ(z, z̄) +

2µ2

sin πb2
cosh(bϕ(z, z̄))

}
idz ∧ dz̄

2
.(1.1)

For the shG model 0 < b2 < ∞, but we shall often compare it with the sine-Gordon
model (sG) for which −1 ≤ b2 < 0. The shG model obeys the duality b → 1/b, so,
one may restrict consideration to 0 < b2 ≤ 1.

We put the model on the cylinder of circumference 2πR. The generatrix and the
directrix of the cylinder will be called space and Matsubara directions respectively.

We consider the expectation values of the primary fields eaϕ(0) and their descen-
dants which we denote collectively Oa. There are two ways to define the descendants
in agreement with the following picture which we adopt with all possible reserva-
tions.

One way is take for Oa the normal ordered product (derived from the T-ordering
with respect to the Euclidean time log(zz̄)/2) of eaϕ(0) with any polynomial in deriva-
tives of ϕ(0). We can consider shG model as a perturbation of c = 1 CFT, so we call
these descendants the Heisenberg descendants. We take only even degrees polyno-
mials which is not a real restriction as will be explained soon. Another way consists
in defining the modified energy-momentum tensor, the one whose trace is propor-
tional to e−bϕ(z,z̄), and to take for Oa the normal ordered products with derivatives
∂k
zTz,z(0), ∂

k
z̄Tz̄,z̄(0) We restrict ourselves to considering only the derivatives of even

order. We call these descendants the Virasoro descendants considering the shG
model as a perturbation of the Liouville model by a primary field e−bϕ(z,z̄). This
gives rise to reflection relations as explained below.

An attempt to follow the picture above literally leads to IR divergent integrals.
The divergencies cannot be cured by putting the theory on a cylinder since the
scaling dimensions of perturbations are negative. On the other hand our final goal
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2 S. NEGRO AND F. SMIRNOV

is the reflection relations which reflect the UV structure of the theory and, hence,
should not really depend on the regularisation. As explained in [5] the IR problem
can be treated introducing a metric on the world sheet. In any case, justification
of reflection relations goes far beyond the scope of the present paper. We rather
take them for granted and investigate their consequences verifying agreement with
previously known results.

The shG model provides a simplest example of integrable quantum field theory.
That is why the problem of computing the finite temperature one-point functions
attracted attention before. In the paper [6] LeClair and Mussardo propose a method
to obtain series for the one-point function of primary fields, based on known form
factors. So, one can say that the present paper adds two new things: sums up
the series in the form of integral equation and allows to consider the descendants.
Another interesting work on the one-point functions of primary fields is due to
Lukyanov [7], we shall comment on it at the very end of the present paper.

Consider the one-point function

〈Oa(0)〉R .

The integrability of the shG model is based on the existence of an infinite number
of local integrals of motion. They act by commutators on the local operators. Ob-
viously, the one-point functions of the descendants obtained by this adjoint action
vanish, which explains the restrictions which we imposed onto Heisenberg and Vira-
soro descendants. The idea of the paper [2] consists in the following. The one-point
functions of the Heisenberg descendants are symmetric with respect to

σ1 : a → −a .(1.2)

On the other hand it is natural to assume that the one-point functions of the Virasoro
descendants inherit the symmetry of the Liouville model:

σ2 : a → Q− a .(1.3)

In the conformal limit the two types of descendants are related by certain reflec-
tion matrix. Since we refer for generic a to one-to-one correspondence between the
operators in the massive model and its ultra-violet limit the one-point functions
must satisfy Riemann-Hilbert problem associated with the reflection matrix. This
Riemann-Hilbert problem is called the reflection relations in the paper.

The reflection relations themselves reflect the UV structure of the theory. How-
ever, they are rather useless if the analytical properties of one-point functions in a
are not known. These properties depend on the the IR environment, understanding
them is a complicated issue.

Up to now the one-point functions were available in full generality only for the
sG model [4]. Obviously, the one-point functions on the cylinder are closely related
to the ground state in the Matsubara direction. For the sG model the ground state
is complicated. This results in rather involved analytical properties of one-point
functions with respect to a. Namely, for finite R, the analytical continuation of
the one-point function from the region 0 < a < Q does not possesses symmetry
with respect to both reflections, the symmetry under σ1 is broken being replaced
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by rather complicated analytical structure described in the paper [8]. The situation
changes in the plane limit R = ∞ when symmetry under both reflections σ1, σ2

holds. In principle they specify the one-point function up to unknown even, Q-
periodic multiplier. The latter can be fixed from some minimality assumptions
[9, 5, 2].

For shG model the Matsubara ground state is supposed to be much simpler than
in the sG case, that is why it is natural to assume that both symmetries take place
for finite R. This assumption agrees with the large R expansion of [6], and with
the classical limit [7]. So, the R-dependent part as a function of a is even and
Q-periodic. This function cannot be found from the reflection relations, only in
the limit R = ∞ one can assume that the one-point functions coincide with the
analytical continuation with respect to b from the sG case. One more problem with
the reflection relations is that the Riemann-Hilbert problem is hard to solve for the
descendants on level 4 and higher even for the case R = ∞.

From what has been said one may get an impression that finally the reflection
relations are not very useful for computing the one-point functions at finite R. We
would like to emphasise that this impression is wrong, and the reflection relations
are actually very useful if one understands how to utilise them [10].

For finite R the one-point functions for the sG model were found using the
fermionic structure of the space of local operators in [4]. This paper relies heav-
ily upon [11] where the conformal case was considered. The computation of [4] may
be not completely rigorous from a mathematician’s point of view, but it is suffi-
ciently reliable for a physicist. Indeed, the fermionic structure used there is derived
from the fermionic structure of lattice model [12], and the fact that the expectation
values on the cylinder are expressed as determinants, provided the fermionic basis is
used, is a corollary of a similar fact for the lattice model on the cylinder [13]. So, we
begin the computation with the sG model with both ultraviolet and infrared cutoffs
imposed. In many respects we shall proceed for the shG case by analogy with the
sG one.

In order to make the comparison with [4] easier we shall use in what follows the
notations:

ν = 1 + b2, α =
2a

b+ b−1
.(1.4)

In terms of α our reflections are

σ1 : α → −α , σ2 : α → 2− α .

We shall also denote eaϕ(0) by Φα(0).
The main tool used in [4] is the fermionic basis. In CFT the descendants are

created by action of two Virasoro algebras. Passing to the massive theory one
argues that, at least for generic a, there is an unambiguous identification of local
operators with CFT descendants. The idea of [3, 4] is that when describing the
integrable deformation it is convenient to switch from the usual basis of Verma
module created by Virasoro generators to the one created by fermions, two for both
chiralities: β∗

2j−1, γ
∗
2j−1, β̄

∗
2j−1, γ̄

∗
2j−1. It has been said that we are interested in the
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space of descendants modulo action of the local integrals of motion. The basis of
the quotient space is given by

β∗
I+β̄

∗
Ī+γ̄

∗
Ī−γ

∗
I−Φα(0) , #(I+) = #(I−), #(Ī+) = #(Ī−) ,(1.5)

here and later we use the multiindex notations:

I = {2i1 − 1, · · · , 2in − 1} , |I| =
n∑

p=1

(2ip − 1) ,

β∗
I = β2i1−1 · · ·β2in−1 , γ∗

I = γ2in−1 · · ·γ2i1−1 ,

and similarly for the second chirality. According to [10], the fermionic basis is defined
from the reflection properties:

σ1, σ2 : β∗
2m−1 ↔ γ∗

2m−1 .(1.6)

The definition of fermions in this paper is changed comparing to [11, 3, 4] by a
“CDD multipliers” in order that they possess, in addition to (1.6), duality under
b → 1/b:

duality : β∗
2m−1 ↔ γ∗

2m−1 ,(1.7)

as will be explained in Section 2.
The main breakthrough of the paper [4] comparing to [11, 3], where the fermions

were used only for creating descendants, consists in finding relations which allow
to use fermions in order to shift the primary operator. Namely, let us relax the
condition #(I+) = #(I−), #(Ī+) = #(Ī−) keeping #(I+)+#(Ī+) = #(I−)+#(Ī−),
and denote m = #(I+)−#(I−), assuming m > 0 for the sake of definiteness, then

β∗
I+β̄

∗
Ī+γ̄

∗
Ī−γ

∗
I−Φα+2m 1−ν

ν
(0)(1.8)

∼= Cm(α)∏m
j=1 t2j−1(α)

β∗
I++2mβ̄

∗
Ī+−2mγ̄

∗
Ī−+2mγ

∗
I−−2mβ

∗
Iodd(m)γ̄

∗
Iodd(m)Φα(0) ,

where the sign ∼= means that the identification holds in a weak sense (under the
expectation value). The operators with negative indices, if any, are understood as
annihilation operators:

β∗
−(2j−1) = γ2j−1, γ∗

−(2j−1) = β2j−1, β̄
∗
−(2j−1) = γ̄2j−1, γ̄∗

−(2j−1) = β̄2j−1 ,(1.9)

[βa,β
∗
b ]+ = −ta(α)δa,b, [γa,γ

∗
b ]+ = ta(−α)δa,b ,

[β̄a, β̄
∗
b ]+ = ta(−α)δa,b, [γ̄a, γ̄

∗
b ]+ = −ta(α)δa,b .

The constant Cm(α) and ta(α) will be given in Section 2.
Let us comment on the status of relations (1.8). The paper [11] where the con-

formal limit of the fermionic operators is presented, originally defined for the lattice
six-vertex model, is the starting point of all further development. The relations
(1.8) were observed using the formulae of [11] and comparing them with the CFT
three-point functions. Then they were promoted to the sG model by identification
of local operators.

In the present paper we shall use the relations (1.8) for the shG model. Since
the procedure used in the sG case is not available, the status of these relations is



ON ONE-POINT FUNCTIONS FOR SINH-GORDON MODEL AT FINITE TEMPERATURE. 5

much more shaky. However, it should be possible to verify them computing the UV
R → 0 limit of our final formulae and comparing it with the Liouville three-point
functions [14]. This has not been done, we hope to return to the study of the UV
limit in future.

Provided the reflection relations hold in the shG model for finite R, the one-point
functions in the fermionic basis must be periodic with period 2 functions of α. Here
we make one more assumption that exactly as in the sG case these functions are
given by determinants of matrices with the following matrix elements 1

Θ (ia, ib|α)− πsgn(a)δa,−bta(α) , a, b ∈ Z/2Z .

Assuming that it is not very hard to guess what the function Θ (l, m|α) should be
from two requirements. First, the one-point functions for the components of the
energy-momentum tensor, which can be computed from general reasons, have to be
reproduced. Second, the relations (1.8) give rise to certain compatibility conditions
which result in a rather restrictive equation for Θ (l, m|α) (cf. (9.4) in [4]). These
two requirements allowed us to conjecture the form of the function Θ (l, m|α) in
Section 3. It satisfies the symmetry relations

Θ (k, l| − α) = Θ (l, k|α) , Θ (k, l|α+ 2) = Θ (k, l|α) .(1.10)

The formula (1.8) implies an infinite number of consistency relations for Θ (k, l|α)
evaluated at odd integer imaginary points, we discuss this in Section 3. Similarly to
the sG case [4] all of them follow from one identity (3.9).

Using (1.8) and the periodicity with period 2 (1.10) one obtains the one-point
functions for the descendants of the primary fields with α = α + 2m + 2n1−ν

ν
in

terms of Θ (k, l|α). For irrational ν these points are dense in R+. This means that
we could start, for example, from α = 0, and then obtain the one-point functions
for arbitrary α simply by continuity. This may be useful for justification of our
conjecture in view of the following interesting observation.

The function Θ (k, l|α) is defined starting from the TBA equation which is very
simple in the shG case (see Section 3). Let us generalise the TBA considering instead
of the partition function of the Gibbs ensemble

Z(R) = Tr
(
e−2πRH

)
,

the partition function of the generalised Gibbs ensemble [15]

Z({g2j−1}) = Tr
(
e−

∑
∞

p−∞
g2p−1I2p−1

)
,

where for j ≥ 1 the operators I2j−1, I−(2j−1) = Ī2j−1 are local integrals of motion,
g2p−1 > 0. These space local integrals are obtained by integrating the corresponding
densities along the space axis, we use calligraphic letters in order to distinguish them
from the Matsubara ones. Usual partition function of the Gibbs ensemble is obtained

1 In [4] the spectral parameter ζ and Mellin transform are used. Here we use instead the “self-
dual” parameter θ = log(ζ)/ν and the Fourier transform. To compare formulae one has to identify
k = 2νkHGSV.
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from the partition function of the generalised Gibbs ensemble by specialisation:

g2p−1 = 0, |2p− 1| > 1 ; g±1 = 2πR .(1.11)

We explain in Section 5 that to the generalised Gibbs ensemble one can associate a
function Y ({g}), which shall refer to as on-shell Yang-Yang action.

Let us be precise with the terminology. The Yang-Yang action was introduced in
[16] as a rather formal object needed to prove the existence of solutions to the Bethe
Ansatz equations for repulsive Bose gas. So, the Yang-Yang action depends upon
the Bethe numbers λj producing the Bethe equations when varied with respect to
λj . First unexpected application was found by Gaudin [17] who observed that the
norm of any Bethe vector is expressed as Hessian composed of the second derivatives
of the Yang-Yang action with respect to λj.

After many years of oblivion the Yang-Yang action suddenly surfaced in the study
of N = 2 supersymmetric models [18, 19]. Then it was used in [20] in a slightly
different fashion. Our understanding of the Yang-Yang action is close to that of
[20]. Let us explain this point. Suppose that the integrable model depends on
some parameters like, for example, the radius of the cylinder in the case of Gibbs
ensemble. Evaluating the Yang-Yang action on the solution to Bethe equation we
obtain a function which depend on these parameters only. We shall call this on-shell
Yang-Yang action.

After this digression we present the relation between Θ (l, m|0) evaluated at imag-
inary integer values on the one hand and the on-shell Yang-Yang action on the other
hand:

Θ (ia, ib|0) + δa,−bπsgn(a)ta(0) =
∂2

∂ga∂gb
Y ({g}) , a, b ∈ Z/2Z(1.12)

where the specialisation (1.11) is implied in the right hand side after the derivatives
are calculated. So, the one-point functions of the primary fields with α = 2m+2n1−ν

ν
and all their descendants are expressed as Hessians of the on-shell Yang-Yang action.
This is similar to the Gaudin formula formally, but rather far from it in essence.

The paper is organised as follows. In Section 2 we review the fermionic basis. In
Section 3 we formulate our main conjecture concerning the one-point functions in
the shG case. We verify this conjecture against known results in Section 4. Finally,
in Section 5 a relation to the on-shell Yang-Yang action and to the representation
of the one-point functions of primary fields obtained by the method of separation of
variables is presented.

2. Fermionic basis

For absence of lattice formulation we shall rely on our recent paper [10] where
the fermionic basis was defined as intrinsic property of the Liouville model, i.e.
allows purely CFT definition. This is a basis in the quotient space obtained by
factorising out from the Verma module descendants of the local integrals of motion.
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The defining property for the fermions is:

σ1 : γCFT∗
2m−1 −→ u(α)βCFT∗

2m−1, βCFT∗
2m−1 −→ u−1(−α)γCFT∗

2m−1 ,(2.1)

σ2 : βCFT∗
2m−1 −→ γCFT∗

2m−1, γCFT∗
2m−1 −→ βCFT∗

2m−1 ,

where

u(α) =
να− (2m− 1)(1− ν)

να + (2m− 1)
.(2.2)

Let us mention one more property which clearly follows from [10]. There is a duality
b → b−1 which in our notations reads

ν → ν

ν − 1
.(2.3)

We have

duality : βCFT∗
2m−1 −→ γCFT∗

2m−1, γCFT∗
2m−1 −→ βCFT∗

2m−1 .(2.4)

For the second chirality we have to change α → −α in (2.2).
The fermions are normalised as follows

βCFT∗
I+ γCFT∗

I− Φα = CI+,I−

{
ln−2 + · · ·

}
Φα , #(I+) = #(I−) = n,

where CI+,I− is the Cauchy determinant cooked out of 1/(j+ + j− − 1). We have
the same formula for the second chirality. Explicit formulae up to the level 8 can
be found in [11, 21], in [10] a purely algebraic method is explained to obtain the
fermionic basis in general.

Now we eliminate the multipliers in the formula (2.1) defining the fermions

β∗
2m−1 = D2m−1(α)β

CFT∗
2m−1, γ∗

2m−1 = D2m−1(2− α)γCFT∗
2m−1 ,

β̄
∗
2m−1 = D2m−1(2− α)β̄

CFT∗
2m−1, γ̄∗

2m−1 = D2m−1(α)γ̄
CFT∗
2m−1 .

In order to keep the duality, the constant D2m−1(α) differs from the one used in the
sG case [11, 3, 4] by a “CDD multiplier”: a function periodic with period 4. Namely,
we set

D2m−1(α) =
1

2πi

(
µΓ(ν)

(ν − 1)ν/2

)− 2m−1

ν Γ
(
α
2
+ 1

2ν
(2j − 1)

)
Γ
(
2−α
2

+ ν−1
2ν

(2m− 1)
)

(m− 1)!
.

We introduced the dimensional multiplier in this definition in order to make our
fermions dimensionless. The duality holds provided the following dimensional cou-
pling constant is self-dual:

(µΓ(ν))
1

ν

√
ν − 1

.

This is indeed the case [14], the simplest way to see it in the present context consists
in writing an explicitly self-dual quantity, the mass of the shG particle, in terms of
µ [22]:

(µΓ(ν))
1

ν

√
ν − 1

=
m

8
√
π

√
ν − 1

ν
Γ

(
ν − 1

2ν

)
Γ

(
1

2ν

)
.
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Now we come to the relations (1.8). For the moment we are unable to put them
onto solid ground of CFT, so, we proceed by analogy with the sG case. It can be
shown that due to the change of constants Da(α) the constant in (1.8), (1.9) has to
be modified, comparing to the sG case, to

ta(α) = − 1

2 sin π
ν
(a + να)

.

The constant Cm(α) is the same as the one used in [4]:

Cm(α) =

m−1∏

j=0

C1(α + 2j 1−ν
ν
) ,(2.5)

C1(α) = (µΓ(ν))4x
Γ(−2νx)Γ(x)Γ(1/2 − x)

Γ(2νx)Γ(−x)Γ(x + 1/2)
, x = α

2
+ 1−ν

2ν
.

This constant coincides with the ratio of the one-point functions of the shifted and
unshifted primary fields in infinite volume [23]:

Cm(α) =
〈Φα+2m 1−ν

ν
(0)〉sG∞

〈Φα(0)〉sG∞
.

In the paper [4] this was computed and served as an important support of entire
construction. For the shG case do not have such possibility for the moment, so,
(2.5) is considered as a definition.

3. One-point functions in sinh-Gordon model.

We begin our study of the shG model with brief review of its Euclidean version on
a cylinder, our exposition is based on the papers [7, 24]. In these papers the direction
opposite to the one which is followed in [11] for the sG model case is taken. Namely,
the TBA-equation, which is very simple in the shG case, is chosen as starting point.
Then the T and Q-functions related by Baxter equation are introduced via a series
of formal definitions. Finally, certain consistency check is performed. Let us explain
the reason for this change of point of view.

Our basic object is the Euclidean field theory on a cylinder. For the sG (or,
more precisely, massive Thirring) model the Euclidean field theory allows lattice
regularisation in the form of eight-vertex model. Scaling behaviour near the point
of the second order phase transition can be observed for this model and scaling
exponents can be computed [26]. The paper [4] instead of the eight-vertex model
deals with the inhomogeneous six-vertex model, which is an Euclidean version of the
construction of [27], but the motivation for that is rather technical than conceptual.
The Matsubara transfer-matrices T and Q can be introduced as traces with respect
to the two-dimensional and q-oscillator representations [13], exactly in the same
way as for the continuous chiral CFT with c < 1 [25]. In addition, working with
the Matsubara transfer-matrices is a very reasonable choice for the sG case because
it leads to the Destri-DeVega equation [27] instead of the horrifying in the sG case
system of TBA equations.
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In the shG case the eight-vertex model should be replaces by a model with Boltz-
mann weights given by the universal R-matrix in the tensor product of two infinite-
dimensional representations without highest weight. To the best of our knowledge
the status of the phase transition for such lattice model has not been clarified. That
is why we prefer not to rely on the lattice construction of [28, 29]. Since our only
concern is the ground state in the Matsubara direction we shall follow the papers
[7, 24] as has been said.

The shG S-matrix is very simple, it gives rise to a single TBA equation

ǫ(θ) = 2πRm cosh θ −
∫ ∞

−∞

log
(
1 + e−ǫ(θ′)

)
Φ(θ − θ′)dθ′ ,(3.1)

where

Φ(θ) =
1

2π cosh(θ + πiν−2
2ν

)
+

1

2π cosh(θ − πiν−2
2ν

)
=

∞∫

−∞

eikθ
cosh π

2ν
(ν − 2)k

cosh π
2
k

dk

2π
.

This is the basic equation, and the Matsubara data are defined using the pseudo-
energy ǫ(θ). Namely, define following [7]

logQ(θ) = −πRm cosh θ

sin
(
π
ν

) +

∞∫

−∞

log
(
1 + e−ǫ(θ′)

)

cosh(θ − θ′)

dθ′

2π
,

here the growing at infinity term is chosen for consistency as explained below. We
have

e−ǫ(θ) = Q
(
θ +

πi

2ν
(ν − 2)

)
Q
(
θ − πi

2ν
(ν − 2)

)
.

From this equation one derives that Q(θ) satisfies the bilinear equation

Q
(
θ +

πi

2

)
Q
(
θ − πi

2

)
−Q

(
θ +

πi

2ν
(ν − 2)

)
Q
(
θ − πi

2ν
(ν − 2)

)
= 1 .(3.2)

Introduce ζ = eνθ . It is easy to prove form (3.2) that T (ζ) defined by the equation

T (ζ)Q(θ) = Q
(
θ + πi

ν − 1

ν

)
+Q

(
θ − πi

ν − 1

ν

)
.(3.3)

is a single-valued function of ζ2 with essential singularities at ζ = 0,∞. The func-
tions Q(θ), Q(θ + πi

ν
) can be considered as two different solutions to the equation

(3.3), the left hand side of (3.2) is their quantum Wronskian.
Certainly, while mounting all this construction one has in mind defining a poste-

riori the ground state eigenvalue of the Matsubara transfer-matrices which is hard
to define directly. In order to check that these definitions are reasonable, in [7] the
behaviour of T (ζ) is investigated in the ultra-violet limit R → 0 numerically. It is
shown that in this limit the asymptotics of T (ζ) for ζ → 0,∞ correctly reproduce
the eigenvalues of CFT integrals of motion with exactly the same normalisation as
in the sG case [25]. This is a very convincing argument.
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Now by analogy with the sG case we want to deform the kernel Φ(θ) introducing

Φα(θ) (we require Φ0(θ) = Φ(θ)). The Fourier image Φ̂(k, α) should satisfy the
symmetry conditions

Φ̂(k, α + 2) = Φ̂(k, α) , Φ̂(k,−α) = Φ̂(−k, α) ,(3.4)

and additional relation

Φ̂(k, α + 21−ν
ν
) = Φ̂(k + 2i, α) .(3.5)

The importance of the latter requirement will be clear soon. It is not hard to find
a deformation with required properties:

Φα(θ) =
eiπα

2π cosh(θ + πiν−2
2ν

)
+

e−iπα

2π cosh(θ − πiν−2
2ν

)
=

∞∫

−∞

eikθΦ̂(k, α)
dk

2π
,

Φ̂(k, α) =
cosh π

(
ν−2
2ν

k − iα
)

cosh π
2
k

.

Notice that contrary to R̂(θ, α) which plays the same role in the sG case [4], the

kernel Φ̂(k, α), as a function of k, does not have poles whose positions depend on
α. This simplification is responsible for much simpler analytical properties of the
one-point functions in α. We would like to acknowledge that the idea of deforming
the TBA-like equation with this kind of kernels in application to one-point functions
appeared for the first time in [30].

By analogy with the sG case we introduce the dressed resolvent which satisfies
the equation

Rdress,α − Φα ∗Rdress,α = Φα ,(3.6)

where

f ∗ g =

∫
f(θ)g(θ)dm(θ), dm(θ) =

dθ

1 + eǫ(θ)
.

Define further

Rdress,α(θ, θ
′)− Φα(θ − θ′) =

∫ ∫
dl

2π

dm

2π
Φ̂(l, α)Θ(l, m|α)Φ̂(m,−α)ei(lθ+mθ′) .

The function Θ(l, m|α) satisfies an equation, similar to (7.7) of [4]:

Θ(l, m|α)−G(l +m)−
∫

G(l − k)Φ̂(k, α)Θ(k,m|α)dk
2π

= 0 .(3.7)

where

G(k) =

∫
e−ikθ dθ

1 + eǫ(θ)
.

For the ground state the function ǫ(θ) is even. So, one easily derives from (3.4):

Θ(l, m| − α) = Θ(m, l|α) , Θ(l, m|α + 2) = Θ(l, m|α) .(3.8)
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Now comes the relation (3.5). Solving (3.7) by iterations and shifting the integration
contours one finds, similarly to the sG case,

Θ(l, m|α + 21−ν
ν
)(3.9)

= Θ(l + 2i,m− 2i|α)− Θ(l + 2i,−i|α)Θ(i,m− 2i|α)
Θ(i,−i|α) + π

2 sinπ( 1

ν
+α)

.

We shall soon see the importance of this property.
Changing in (3.9) α to −α and applying (3.8) one easily finds similar relation for

shift in other direction, i.e. by −21−ν
ν
.

Main conjecture. We conjecture that similarly to the sG case the one-point func-

tions in fermionic basis are given by the determinant formula:

〈β∗
I+β̄

∗
Ī+γ̄

∗
Ī−
γ∗
I−Φα(0)〉R

〈Φα(0)〉R
= D

(
I+ ∪ (−Ī+) | I− ∪ (−Ī−)|α

)
,(3.10)

where for A = {aj}j=1,··· ,n, B = {bj}j=1,··· ,n we set

D(A|B|α) =
n∏

j=1

sgn(aj)sgn(bj)

× 1

πn
det

(
Θ (iaj , ibk|α)− πsgn(aj)δaj ,−bktaj (α)

)∣∣
j,k=1,··· ,n

.

Notice that in the infinite volume the formulae for the one-point functions of the
primary fields and their Virasoro descendants coincide with the analytical continu-
ation with respect to ν of sG ones.

The relations (1.8) impose certain consistency requirements. Like in the sG case
all of them follow from the property (3.9) which explains its importance and hence
the necessity of the requirement (3.5) imposed on the deformed kernel. Let us
consider the simplest example. The relations (1.8) imply in particular

β∗
1γ

∗
1Φα+2 1−ν

ν
=

C1(α)

t1(α)
β∗

3β1β
∗
1γ̄

∗
1Φα = −C1(α)β

∗
3γ̄

∗
1Φα .

Hence

〈β∗
1γ

∗
1Φα+2 1−ν

ν
(0)〉R

〈Φα+2 1−ν
ν
(0)〉R

·
〈Φα+2 1−ν

ν
(0)〉R

〈Φα(0)〉R
= −C1(α)

〈β∗
3γ̄

∗
1Φα(0)〉R

〈Φα(0)〉R
.(3.11)

Notice that
〈Φα+2 1−ν

ν
(0)〉R

〈Φα(0)〉R
=

C1(α)

t1(α)

〈β∗
1γ̄

∗
1Φα(0)〉R

〈Φα(0)〉R
.

Computing all the ratios of one-point functions by the formula (3.10) one observes
that the identity (3.11) follows from (3.9) specialised at l = m = i.

The rest of consistency relations follow from (3.9) by simple combinatorics [4].
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4. Comparing with known results

4.1. Expectation values of energy-momentum tensor. The eigenvalues of the
local integrals of motion in Matsubara direction can be obtained from the asymp-
totics of log T (ζ) for ζ → ∞, ζ → 0 [7, 31]. We do not go into details giving only
the final formulae. Define

J2j−1 =
π2mR

sin π
ν

· δ2j−1,±1 −
∞∫

−∞

log
(
1 + e−ǫ(θ)

)
e(2j−1)θdθ , j ∈ Z .(4.1)

Then for 2j − 1 > 0 we have

C2j−1I2j−1 = J2j−1 , C2j−1Ī2j−1 = J−2j+1 ,

where

C2j−1 = −
√
ν − 1

ν
· Γ

(
ν−1
ν
(2j − 1)

)
Γ
(
1
ν
(2j − 1)

)

2
√
πj!

(
µΓ(ν)

(ν − 1)ν/2

)− 2j−1

ν

,

and in the conformal limit the local integral I2j−1 is such that its density starts with
: T (z)2j : like in [25]. Notice that the formula for C2j−1 is self-dual. The expectation
values of components of the energy-momentum tensor T , T̄ , Θ can be expresses
in terms of the Matsubara ground state energy E(R) = I1 + Ī1. Repeating the
computations of Section 10.3 of [4] one finds that our formulae specialised to the
cases β∗

1γ
∗
1, β̄

∗
1γ̄

∗
1, β

∗
1γ̄

∗
1 give the correct result. This fixes the normalisation.

The authors of [2] observed an interesting relation between the vacuum expecta-
tion values in sG model:

〈T T̄ 〉sG∞ = −
(
〈Θ〉sG∞

)2
.

In the paper [32] this relation was promoted to the identity

〈T T̄ 〉R = 〈T 〉〈T̄ 〉R − (〈Θ〉R)2 ,

which holds for expectation values on a cylinder for any two-dimensional quantum
field theory. Proceeding with the same computation as in [4] we find agreement with
this, the only a priori known, determinant formula.

4.2. LeClair-Mussardo formula. Define

F (α) =
〈Φα(0)〉R
〈Φα(0)〉∞

.

This function is periodic with respect to α:

F (α+ 2) = F (α) .(4.2)

Our fermionic formula gives

F (α + 2
ν
)

F (α)
= 1 +

2 sinπ
(
α+ 1

ν

)

π
(e1 ∗ e−1 + e1 ∗Rdress,α ∗ e−1) .(4.3)

We want to compare the first three terms of the large R expansion with LeClair
and Mussardo formula [6]. Let us write this formula explicitly for two reasons: first,
it is convenient for us to apply the duality transformation b → 1/b to the original
formula [6], second, the three-fold integral is written with some typos in the paper
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[6] which, nevertheless, can be easily corrected using the general procedure described
there.

In order to simplify the comparison we introduce the notations:

2k = να, [m] =
sin π

ν
m

sin π
ν

.

Leclair and Mussardo claim the large R expansion

F (α) = 1 +

∞∑

n=1

∫ ∏

i<j≤n

Φ(θi − θj)Fj(θ1, · · · , θn)
n∏

j=1

dm(θj) .

giving explicitly the first three terms:

F1 =
2 sin π

ν

π
[k]2 ,(4.4)

F2 =
2 sin π

ν

π
[k]2

(
[k]2c12 −

[k − 1][k + 1]

c12

)
,

F3 =
[k]

12

(
A+B

(
c212 + c223 + c213

)
+

C

c12c23c13
+D

c21 + c22 + c23
c12c23c13

)
,

where c12 = cosh(θ1 − θ2), c1 = cosh(2θ1 − θ2 − θ3), etc,

A = −28[k − 1][k][k + 1]
(
[k]2 + 1

)

+ 8
(
[k − 2][k]2[k + 1]2 + [k − 1]2[k]2[k + 2]

)

− 2
(
[k − 2][k − 1][k + 1]3 + [k − 1]3[k + 1][k + 2] + [k − 2][k]3[k + 2]− [k]5

)
,

B = 8[k]5 ,

C = [k]5 + 5[k − 1][k]3[k + 1] + 2[k − 1]2[k][k + 1]2 + [k − 2][k]2[k + 1]2

+ [k − 1]2[k]2[k + 2]− [k − 2][k − 1][k + 1]3 − [k − 1]3[k + 1][k + 2]

− [k − 2][k]3[k + 2]− 3[k − 2][k − 1][k][k + 1][k + 2] ,

D = −4[k − 1][k]3[k + 1] .

Computing the same kind of large R expansion for F (α+ 2π
ν
)/F (α) we find that the

first three terms have the same structure as in (4.4) with slightly simpler coefficients:

Ã =
[2k + 1][2]

6

(
3[2k + 1][2k − 1][2]− [2k + 1][2k]([2]2 + 6)− 2[4k]

)
,

B̃ =
2

3
[2k + 1]3 ,

C̃ =
[2k + 1][2]

24

[
[4k]

(
3[2]2 − 4

)
− 2[2k + 1][2k]

(
[2]2 − 6

)]
,

D̃ = −1

6
[2k + 1]2[2k][2] .
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Now it is easy to see that this coincides with our formula (4.3) for the first two
iterations of Rdress,α:

F (α + 2
ν
)

F (α)
= 1+

2 sin π
(
α + 1

ν

)

π
(e1 ∗ e−1 + e1 ∗ Φα ∗ e−1 + e1 ∗ Φα ∗ Φα ∗ e−1 + · · ·) .

4.3. Classical case. The role of Planck constant is played by b2 (recall ν = 1+ b2).
In [7] Lukyanov gives the classical approximation for F (α) (our α is twice Lukyanov’s
α). It is convenient for our goals to present his result in the form:

logF (α) =
1

b2

α∫

0

dα

∞∫

−∞

dθ

2πi
log

(
1− e−r cosh θ−πiα

1− e−r cosh θ+πiα

)
+O(b0) ,(4.5)

where r = 2πmR. This formula is obtained in [7] in two different ways: by applying
the steepest descent method to the integral obtained by the separation of variables
(see (5.4) below), and by evaluating the classical action on the solution to the sG
equation with a puncture. So, the formula (4.5) serves Lukyanov to verify the
answer obtained by the separation of variables method. We have to check that our
conjecture agrees with this important formula.

From (4.5) we get

F (α + 21−ν
ν
)

F (α)
= exp


− 1

πi

∞∫

−∞

log

(
1− e−r cosh θ−πiα

1− e−r cosh θ+πiα

)
dθ


 +O(b)(4.6)

On the other hand from (4.2), (4.3) we find

F (α+ 21−ν
ν
)

F (α)
= 1− 2 sinπα

π
e1 ∗cl E−1 +O(b),

where the function E−1 satisfies the equation:

E−1 = e−1 + Φcl
α ∗cl E−1 .(4.7)

The last formulae contain the classical limits Φcl
α and ∗cl. Let us compute them.

We immediately find

Φcl
α(θ) =

e−πiα

2πi sinh(θ − i0)
− eπiα

2πi sinh(θ + i0)
.

This implies, in particular,

Φcl
0 (θ) = δ(θ) .

Using the latter one solves explicitly the equation (3.1) obtaining

1 + eǫ
cl(θ) = er cosh θ .

So, the limit of f ∗ g is

f ∗cl g =

∞∫

−∞

f(θ)g(θ)e−r cosh θdθ .
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Introduce the function

G(θ) =

∞∫

−∞

E−1(θ
′)

2π cosh(θ − θ′)
e−r cosh(θ′)dθ′ .

Obviously,

e−r cosh θE−1(θ) = G(θ + πi
2
) +G(θ − πi

2
) .(4.8)

The equation (4.7) turns into a simple boundary problem for G(θ):

G(θ + πi
2
)
(
1− e−πiα−r cosh θ

)
+G(θ − πi

2
)
(
1− eπiα−r cosh θ

)
= e−θ−r cosh θ .(4.9)

We solve this equation, and then find E−1(θ) using (4.8).
Introduce the notation

H(θ) =
1− e−r cosh θ−πiα

1− e−r cosh θ+πiα
− 1 ,(4.10)

and two functions

X±(θ) = exp
(
− 1

2πi

∞∫

−∞

eθ−θ′

sinh(θ − θ′ ± i0)
log (1 +H(θ′)) dθ′

)
.

Then after some simple computations we come to the conclusion that the equality
of (4.6) and (4.3) is equivalent to the identity

exp
(
− 1

πi

∞∫

−∞

log(1 +H(θ))dθ
)
= 1− 1

2πi

∞∫

−∞

(2 +H(θ))H(θ)

1 +H(θ)
dθ

(4.11)

+
1

(2πi)2

∞∫

−∞

∞∫

−∞

1

sinh(θ − θ′)

(
eθ−θ′ X−(θ)

X+(θ′)
− eθ

′−θX−(θ
′)

X+(θ)

)
H(θ)H(θ′)dθdθ′ .

This identity holds for any rapidly decreasing at ±∞ function H(θ). The proof is
given in Appendix.

From this computation we learn that finding a quantum deformation of reasonably
simple classical formula (4.5) is not straightforward. One has to consider the ratio
(4.6), then rewrite it using the identity (4.11) which can be interpreted in terms
of the integral equation (4.7). The latter allows a quantum deformation. It would
be interesting to try to guess one-point functions for other integrable models using
similar procedure.

5. Further remarks

5.1. Yang-Yang action. As has been said in the Introduction it is useful to con-
sider the partition function for generalised Gibbs ensemble [15]

Z({g2j−1}) = Tr
(
e−

∑
∞

p−∞
g2p−1I2p−1

)
, g2j−1 > 0, ∀j ,
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where I2j−1 are space integrals of motion. The TBA equation is derived by stan-
dard procedure [16, 33] introducing the pseudo-energy ǫ(θ) and minimising the free
energy:

ǫ(θ) =
∞∑

j=−∞

g2j−1e
(2j−1)θ −

∫ ∞

−∞

log
(
1 + e−ǫ(θ′)

)
Φ(θ − θ′)dθ′ .(5.1)

We assume that the series
∑∞

j=−∞ g2j−1z
2j−1 has infinite radius of convergency, then

the TBA equation is perfectly well-defined, the iterations converge very fast. We
define the Q-functions as above:

logQ(θ) = −
∞∑

j=−∞

g2j−1

2 cosπ (2j−1)(ν−2)
2ν

e(2j−1)θ +

∞∫

−∞

dθ′

2π

log
(
1 + e−ǫ(θ′)

)

cosh(θ − θ′)
.(5.2)

The meaning of this function is not quite clear. It may be possible to define it in
the spirit of [34], starting from the lattice model [28, 29] on a cylinder and putting
inhomogenieties into the Matsubara transfer-matrix. We expressed our reservations
concerning the lattice model at the beginning of Section 3, but if such construction
were available one would be able to generalise formulae for the eigenvalues of the
Matsubara local integrals:

J2j−1 =
πg−(2j−1)

2 sin π |2j−1|
ν

−
∞∫

−∞

log
(
1 + e−ǫ(θ)

)
e(2j−1)θdθ , j ∈ Z .(5.3)

For the moment we cannot rely on such hypothetical construction, so, (5.3) is con-
sidered as a formal definition.

Set

Rdress = Rdress,0 .

It is easy to see that
∂ǫ

∂g2j−1
= e2j−1 +Rdress ∗ e2j−1 ,

This is used in order to evaluate the derivative of J2j−1 with respect to parameters:

∂

∂g2j−1
J2k−1 =

π

2 sinπ |2j−1|
ν

δ2j−1,−(2k−1) + e2j−1 ∗ e2k−1 + e2j−1 ∗Rdress ∗ e2k−1 .

The resolvent Rdress is symmetric which ensures the existence of potential

J2k−1 =
∂Y ({g})
∂g2k−1

.

We call the potential Y ({g}) the on-shell Yang-Yang action because in the case of
usual Gibbs ensemble it coincides with the one defined in [20]. Comparing with the
previous formulae we find the formula announced in the Introduction (1.12):

Θ((2j − 1)i, (2k − 1)i|0) + δ2j−1,−(2k−1)
π

2 sin |2j−1|
ν

=
∂2Y ({g})

∂g2j−1∂g2k−1

.
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Hence the expectation values of all the fermionic descendants of Φ0 = 1 are expressed
as Hessians of the on-shell Yang-Yang action. It may look as a restriction that we
are able to write such a nice formula only for the fermionic descendants of 1, but
these descendants include the Virasoro descendants of all the primary fields Φ2n 1−ν

ν

n ∈ Z due to (1.8). In other words, provided Θ((2j − 1)i, (2k − 1)i|0) are given
we define Θ((2j−1)i, (2k−1)i|2n1−ν

ν
) inductively using (3.9).The resulting formula

for Θ((2j − 1)i, (2k − 1)i|2n1−ν
ν
) can be rewritten as (n+ 1)× (n+ 1) determinant

containing Θ((2j − 1)i, (2k− 1)i|0). Clearly, Θ((2j − 1)i, (2k− 1)i|2n1−ν
ν
) obtained

in this way must coincide with the values of the analytical function Θ(l, m|2n1−ν
ν
)

satisfying the integral equation (3.7). Together with the requirement of 2-periodicity
of the one-point functions at radius R normalised to the one-point functions at
R = ∞, this provides their values at α = 2p + 2q 1−ν

ν
. For irrational ν these

points are dense on R, and generic α appears just by continuity. The consistency is
guaranteed, as usual, by (3.9).

For the Gibbs ensemble the on-shell Yang-Yang action was shown in [20] to co-
incide with the action of the classical Euclidean shG model with special boundary
conditions. It would be very interesting to generalise the construction of [20] to the
case of generalised Gibbs ensemble. This may give an interesting interpretation of
the one-point functions.

5.2. Expectation value as integral over separated variables. We would like
to finish this paper with one more remark. It is known that the matrix elements of

quantum integrable models related to the affine algebra Uq(ŝl2) can be expressed in
terms of rather nice integrals [35, 36] using the separated variables representation
[37]. Lukyanov observed [7] that the best application of this method is the shG
model. Actually the separated variables were originally introduced by Sklyanin
exactly in order to treat the shG model which is out of reach of the Bethe Ansatz
[38]. In order to write the formula of [7] in manifestly self-dual form it is convenient
to introduce

ν̃ = 1 + b−2 ,

such that
1

ν
+

1

ν̃
= 1 .

Then the expectation value of the primary field Φα(0) is given by properly regularised
integral of the form:

〈Φα(0)〉R =

∫ ∞∏

j=−∞

dθj

∞∏

j=−∞

Q2(θj)e
(ν̃+ν)αθj

∏

i<j

sinh ν(θi − θj) sinh ν̃(θi − θj) ,

(5.4)

all integrals are taken from −∞ to ∞. The integral (5.4) can be thought about as
a generalisation of matrix integrals in which instead of square of one Wandermonde
determinant a product of two of them, including differently the coupling constant,
is inserted. So, one of results of this paper consists in proposing an exact answer for
this rather complicated integral. More precisely, we consider the ratio of expectation
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values for primary with α shifted by 21−ν
ν

, but due to analyticity one can solve the
simple difference equation for logarithm.

We believe that our formulae hold for the case of generalised Gibbs ensemble.
This means that these generalised matrix integrals can be evaluated for a set of
functions Q(θ) parametrised by g2j−1. One has to be careful at this point because
we required g2j−1 > 0 for the sake of the equation (5.1), but in the equation (5.2)

they come divided by cos π (2j−1)(ν−2)
2ν

. For generic ν these cosines do not vanish,
but they may turn negative which is bad for the convergence of integrals in (5.4).
In every particular case the behaviour of Q(θ) for θ → ±∞ should be investigated,
and it might be necessary to move the contours of integration in (5.4) from the real
axis to the rays on which the integrals converge.

One more generalisation is possible. Actually the only property of Q(θ) which we
really need for our construction is the quantum Wronskian relation (3.2). We can
allow function Q(θ) to have zeros in the strip −π < Im(θ) < π. In the case of the
usual Gibbs ensemble this corresponds to considering excited states for Matrubara
transfer-matrix. The TBA equation changes in this case [24] in rather simple way.
The most general situation which we can imagine includes the function Q(θ) with
zeros in the strip, and with the asymptotics corresponding to the generalised Gibbs
ensemble (5.2). It would be interesting to find other applications of the generalised
matrix model integral (5.4).

6. Appendix

In this Appendix we prove the identity (4.11). The function X+(θ) allows analyt-
ical continuation to the strip 0 < Im(θ) < π, it coincides with X−(θ) on the upper
bank of this strip. We have

X+(θ) = (1 +H(θ))X−(θ) ,

X+(∞) = exp
(
− 1

πi

∞∫

−∞

log(1 +H(θ))dθ
)
, X+(−∞) = 1 .

Consider the two-fold integral in in (4.11). For definiteness let us understand the
denominator as sinh(θ−θ′+i0). Then, changing the integration variables we rewrite:

I2 =
1

2(πi)2

∞∫

−∞

∞∫

−∞

eθ−θ′

sinh(θ − θ′ + i0)

X−(θ)

X+(θ′)
H(θ)H(θ′)dθdθ′ +

1

2πi

∞∫

−∞

H(θ)2

1 +H(θ)
dθ .
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Evaluating the integral with respect to θ
∞∫

−∞

eθ−θ′X−(θ)H(θ)

2πi sinh(θ − θ′ + i0)
dθ =

∞∫

−∞

eθ−θ′(X+(θ)−X−(θ))

2πi sinh(θ − θ′ + i0)
dθ

=

∞∫

−∞

eθ−θ′X+(θ)

2πi sinh(θ − θ′ + i0)
dθ −

∞∫

−∞

eθ−θ′X−(θ)

2πi sinh(θ − θ′ − i0)
dθ +X−(θ

′)

= − exp
(
− 1

πi

∞∫

−∞

log(1 +H(θ))dθ
)
+X−(θ

′) ,

we obtain

I2 = − 1

πi
exp

(
− 1

πi

∞∫

−∞

log(1 +H(θ))dθ
) ∞∫

−∞

H(θ)

X+(θ)
dθ +

1

2πi

∞∫

−∞

2 +H(θ)

1 +H(θ)
H(θ)dθ .

It remains to compute:

1

πi

∞∫

−∞

H(θ)

X+(θ)
dθ =

1

πi

∞∫

−∞

(
1

X−(θ)
− 1

X+(θ)

)
dθ = exp

( 1

πi

∞∫

−∞

log(1 +H(θ))dθ
)
− 1 ,

this finishes the proof.
Acknowledgements. We are grateful to O. Babelon, M. Jimbo, L. Takhtajan and

J.-B. Zuber for discussions. Special thanks are due to A. Its and S. Lukyanov whose
advices helped to improve considerably our paper.
Research of SN is supported by Università Italo Francese grant “Vinci”. Research
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