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Abstract: We study integrability of fishnet-type Feynman graphs arising in planar four-

dimensional bi-scalar chiral theory recently proposed in arXiv:1512.06704 as a special dou-

ble scaling limit of gamma-deformed N = 4 SYM theory. We show that the transfer

matrix “building” the fishnet graphs emerges from the R−matrix of non-compact confor-

mal SU(2, 2) Heisenberg spin chain with spins belonging to principal series representations

of the four-dimensional conformal group. We demonstrate explicitly a relationship between

this integrable spin chain and the Quantum Spectral Curve (QSC) of N = 4 SYM. Using

QSC and spin chain methods, we construct Baxter equation for Q−functions of the con-

formal spin chain needed for computation of the anomalous dimensions of operators of the

type tr(φJ1 ) where φ1 is one of the two scalars of the theory. For J = 3 we derive from QSC

a quantization condition that fixes the relevant solution of Baxter equation. The scaling

dimensions of the operators only receive contributions from wheel-like graphs. We develop

integrability techniques to compute the divergent part of these graphs and use it to present

the weak coupling expansion of dimensions to very high orders. Then we apply our exact

equations to calculate the anomalous dimensions with J = 3 to practically unlimited pre-

cision at any coupling. These equations also describe an infinite tower of local conformal
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operators all carrying the same charge J = 3. The method should be applicable for any

J and, in principle, to any local operators of bi-scalar theory. We show that at strong

coupling the scaling dimensions can be derived from semiclassical quantization of finite

gap solutions describing an integrable system of noncompact SU(2, 2) spins. This bears

similarities with the classical strings arising in the strongly coupled limit of N = 4 SYM.

Keywords: Bethe Ansatz, Lattice Integrable Models, Conformal Field Theory, Scattering

Amplitudes
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1 Introduction: bi-scalar theory and results for “wheel” graphs

The γ-deformed planar N = 4 SYM theory has an interesting double scaling limit [1]

combining a vanishing ’t Hooft coupling constant g2 = Ncg
2
YM
→ 0 and the increasing

twist parameters qj = e−iγj/2 → ∞1 in such a way that ξj = gqi are kept fixed.2 In the

particular case ξ1 = ξ2 = 0 and ξ ≡ ξ3 6= 0, the limiting theory describes two complex scalar

fields and is dubbed the bi-scalar χFT4 [1]. The Lagrangian of this theory is given by

Lφ =
Nc

2
Tr
(
∂µφ†1∂µφ1 + ∂µφ†2∂µφ2 + 2ξ2 φ†1φ

†
2φ1φ2

)
, (1.1)

where φi = φai T
a are complex scalar fields and T a are the generators of the SU(Nc) gauge

group in the fundamental representation, normalized as tr(T aT b) = δab. Notice that the

quartic scalar interaction term in (1.1) is complex making the theory nonunitary. As we

show below, this leads to a number of unusual properties of the bi-scalar χFT4 .

The γ-deformed version of N = 4 SYM breaks the global PSU(2, 2|4) superconformal

symmetry down to SU(2, 2)×U(1)3. In the bi-scalar theory (1.1) this symmetry is further

reduced to SU(2, 2) × U(1)2. For the large majority of physical quantities, such as the

multi-point correlators3 or amplitudes, this theory shows a CFT behavior in the planar

limit. This bi-scalar χFT4 is shown to have a very limited set of planar Feynman graphs

in the perturbative expansion of any physical correlator. The number of planar graphs at

1Here γj are the angles of twist parameters for three Cartan U(1) subgroups of SU(1, 5) R-symmetry of

the model.
2A very similar limit was proposed previously in the context of the cusped Wilson Lines in [2].
3As was argued in [1, 3] only the correlators containing the operators of length J = 2, such as Tr(φ2) in

their initial or final states, appear to break the conformal invariance due to the appearance of double-trace

couplings in the effective lagrangian and generate a scale.

– 1 –
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each loop order is not growing with the order. Moreover, at sufficiently large loop orders,

these graphs have in the bulk the “fishnet” structure of a regular square lattice pointing

on the explicit integrability of the model (1.1) in the planar limit [1]. This integrability is

due to the fact noticed in [4] that these fishnet graphs define an integrable lattice model.

In this paper, we show that the bi-scalar model (1.1) represents a four-dimensional

field-theoretical realization of the planar fishnet lattice model and identify the underlying

integrable model as being a noncompact Heisenberg spin chain with spins belonging to

infinite dimensional representation of the four-dimensional conformal group SU(2, 2). This

fact sheds a certain light on the origins of, still mysterious, integrability of the planar N = 4

SYM [5]. Similar noncompact Heisenberg spin chains have been previously encountered

in the study of high-energy asymptotics in QCD [6, 7]. We shall apply the technique

developed in [8, 9] to clarify the basic features of integrability of the fishnet graphs using

the method of the Baxter Q−operator. In particular, we describe the Lax operators,

transfer-matrices and construct the Baxter TQ equation that we later use to compute the

anomalous dimensions of certain operators in the bi-scalar model (1.1). However, in order

to extract the anomalous dimensions from the TQ relations we had to use an additional

insight coming from the side of N = 4 SYM, where the problem of finding the spectrum is

solved by the Quantum Spectral Curve (QSC) method [10–13].

The integrability of the bi-scalar χFT4 , together with a specific, limited Feynman

graph content of this theory provides us with a powerful method of computing new multi-

loop massless four-dimensional Feynman integrals. In the paper [14] a large variety of such

graphs, relevant for the computations of anomalous dimensions, is described and some of

these graphs are computed by the help of integrability. Similar double scaling limit has been

observed in [14] for the ABJ(M) model, for which the QSC is also known [15, 16]. In the

ABJ(M) theory the Feynman graphs are dominated in the bulk by the regular rectangular

“fishnet” lattice structure. In the paper [17], a similar “fishnet” structure for the bi-

scalar amplitudes and single-trace correlators in the theory (1.1) has been observed and

their integrable structure in terms of an explicit Yangian symmetry has been established.

The authors of [18] introduce a similar tri-scalar χFT6 with φ3−type chiral interactions,

realizing the hexagonal finsnet graphs of [4] and compute the simplest all-loop 2-point

correlation function. This theory seems to define a genuine CFT6 in planar limit for all

local operators. In the paper [19] a single trace 4-point correlation function given by a

rectangular fishnet graph has been explicitly computed using the bootstrap methods for

AdS/CFT integrability.

The operators in the theory (1.1) can be classified with respect to the irreducible

representations of its global symmetry SU(2, 2) × U(1)2, characterized by the values of

Cartan generators (∆, S, Ṡ|J1, J2), where ∆ is the scaling dimension of the operator, the

pair (S, Ṡ) defines its Lorentz spin and the U(1) charges Ji count the difference between

the total number of φi and φ†i . In this paper, we study the scaling dimensions of a family

of scalar single-trace operators of the following schematic form

OJ,n,` = P2`(∂)tr[φJ1φ
n
2 (φ†2)n] + . . . , (1.2)

where P2`(∂) denotes 2` derivatives acting on scalar fields inside the trace with all Lorentz

– 2 –
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Figure 1. The “wheel” Feynman graph with M frames defining the order ξ2MJ of the perturbative

expansion of anomalous dimension of the BMN vacuum operator TrφJ1 (M = 4 , J = 10 on this

picture).

indices contracted. The dots stand for similar operators with the scalar fields φ1, φ2 and φ†2
exchanged inside the trace. The operators (1.2) belong to the representation (∆, 0, 0|J, 0)

with ∆ = J + 2(n + `) for zero coupling ξ = 0. For nonzero coupling, the operators (1.2)

with the same ∆ and J mix with each other and their scaling dimensions can be found

by diagonalizing the corresponding mixing matrix. In the special case n = ` = 0 the

operator (1.2) takes the form

OJ = Tr(φJ1 ) . (1.3)

Similar operator can be also defined in N = 4 SYM in which case it is protected from

quantum corrections and is known as the BMN vacuum operator. In the γ-deformed N = 4

SYM, the operator (1.3) is not protected and its scaling dimension starts to depend on the

coupling. Furthermore, in the bi-scalar theory (1.1) the coupling dependent corrections

to the scaling dimension ∆ only come from the wheel-type Feynman graphs [1] shown in

figure 1. Each wheel contains J interaction vertices and the contribution to the scaling

dimension of the wheel graph with M frames scales as ξ2JM . For M = 2 and arbitrary

J , the contribution of the double-wheel (with two frames) graph to the scaling dimension

of the operator (1.3) in γ-deformed N = 4 SYM was found in [20] using the TBA-type

computations and represented in [1] in terms of explicit multiple zeta values (MZV).

In this paper, we use integrability technique to compute the scaling dimensions of the

operators (1.2) with J = 3 for an arbitrary coupling ξ. At zero coupling, the scaling di-

mensions of such operators take odd values ∆(0) = 3, 5, . . . . For ∆(0) = 3 there is only one

operator tr(φ3
1). For ∆(0) = 5 we can separate all operators into those involving deriva-

tives, tr(φ2
1�φ1) and tr(φ1∂

µφ1∂µφ1), and those built from five scalar fields. Making use

of the equations of motion in the theory (1.1) and discarding operators with total deriva-

tives, we can express the former operators in terms of the latter. The relevant operators

are of the following form tr(φ3
1φ2φ

†
2), tr(φ2

1φ2φ1φ
†
2), tr(φ1φ2φ

2
1φ
†
2) and tr(φ2φ

3
1φ
†
2). Exam-

ining their mixing matrix, we find that, due to a particular form of the interaction term

in (1.1), these operators form the so called logarithmic multiplet, typical for a non-unitary

theory [21, 22]. As a result, for ∆(0) = 5 there are only two unprotected conformal oper-

ators. We determine their scaling dimension for an arbitrary coupling ξ. The two other

– 3 –
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operators form as logarithmic multiplet leading to a logarithmic factor in their correlation

functions. For ∆(0) ≥ 7, the basis of the operators (1.2) contains operators with deriva-

tives and the spectrum of their scaling dimensions has a more complicated structure. In

particular, in virtue of integrability, the spectrum contains pairs of operators with coin-

ciding scaling dimensions. We argue that for each odd ∆(0) ≥ 7 there are two operators

that are not degenerate. We determine the scaling dimensions of such operators for an

arbitrary coupling.

To compute the scaling dimensions of the operators (1.2), we employ the method of

quantum spectral curve (QSC). This method has been previously used to compute the

anomalous dimensions of local single-trace operators in planar N = 4 SYM theory [10, 11]

and it can be generalized to twisted version of this theory [12, 13]. The twisted QSC method

(tQSC) should be adopted for the twisted N = 4 SYM theory in the double scaling limit,

which is the principal technical problem we are confronted to. A similar problem has been

recently solved in [23] for the case of the cusped Wilson line in a very similar limit to the

one leading to the bi-scalar model (1.1). We will adopt the most important elements of

the method of [23] for our current, more complicated case.

The tQSC method consists of two ingredients: i) derivation of the Baxter equation

for particular set of the operators (1.2), ii) derivation of the quantization condition which

fixes the dependence of the parameters of this equation on the coupling constant ξ. This

information is sufficient to determine the scaling dimension of the operators ∆ = ∆(ξ).

We solve the problem i) by applying the double expansion with respect to the parameters

g and 1/q3, of the coefficients of the most general Baxter equation derived within the

QSC method in [24]. To check this result, we use the fact that the same Baxter equation

describes the conformal, SO(1, 5) ∼ SU(2, 2) spin chain in principal series representation,

for a given set of Cartan charges (∆, 0, 0) corresponding to the scalar operators (1.2). It

is known to have a universal form of a fourth-order finite difference equation with the

coefficients depending on the integrals of motion including ∆. For the sake of consistency,

we also re-derive the Baxter equation directly from the equivalent conformal spin chain

describing the dynamics of “fishnet” diagrams. Moreover, we show that the same equation

can be defived by imposing a certain symmetry among its coefficients, inspired by algebraic

properties of the conformal Lax operator [25, 26] along with the u → −u symmetry and

large u asymptotics of its 4 solutions. The problem ii), allowing us to fix the dependence

of ∆ and the remaining coefficients of Baxter equation on the coupling constant, is solved

by exploiting the explicit analyticity properties of the QSC equations [10–13], including

the Riemann-Hilbert relations completing the general QSC Baxter equation, in the form

proposed in [27]. The direct derivation of the same quantization conditions from the

conformal SU(2, 2) spin chain is not yet available.

Let us summarize the main results of this paper.

We show that for nondegenerate operators mentioned above the Baxter equation pos-

sesses the additional symmetry under the exchange of the spectral parameter u → −u.

This symmetry fixes the values of all but two integrals of motion of the spin chain and

leads to a remarkable factorization of the 4th order Baxter equation into two 2nd order

– 4 –
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finite-difference equations of the form

(
(∆− 1)(∆− 3)

4u2
− m

u3
− 2

)
q(u) + q(u+ i) + q(u− i) = 0 . (1.4)

This equation depends on two integrals of motion, ∆ and m, and coincides with the Baxter

equation for the SL(2) spin chain of length J = 3 and spin 0 representation at each site. The

quantization condition which fixes the dependence of ∆ and m on the coupling constant is

m2 = −ξ6 , q2(0,m) q4(0,−m) + q2(0,−m) q4(0,m) = 0 , (1.5)

where q2(u,m) and q4(u,m) denote special solutions to (1.4) which have the following large

u asymptotic expansions (the reason to label them as 2 and 4 will be clear below)

q2(u,m) ∼ u∆/2−1/2 (1 +O(1/u)) ,

q4(u,m) ∼ u−∆/2+3/2 (1 +O(1/u)) . (1.6)

It is important here that the expansion on the right-hand side runs in powers of 1/u only

and there is no admixture of O(u−∆/2+3/2) and O(u∆/2−1/2) terms in the first and in the

second relations, respectively. That is the reason why we refer to (1.6) as “pure” solutions.

Having constructed the functions q2(u,m) and q4(u,m), satisfying (1.4) and (1.6), we

can use (1.5) to compute the scaling dimension ∆ for any value of the coupling constant

ξ. This procedure can be carried out numerically, with practically unlimited precision

following the general method [23, 27]. As an example, we show in the figure 2 our results

for the scaling dimension ∆3(ξ) of the simplest operator (1.3) for J = 3. At weak coupling,

∆3(ξ) receives corrections from the wheel diagrams shown in figure 3. As a function of the

coupling constant, ∆3− 2 decreases with ξ and turns from real to purely imaginary values

at ξ = ξ? with ξ3
? ' 0.2, indicating that the weak coupling expansion has a finite radius

of convergency. We find that (∆3(ξ) − 2)2 is a smooth real function of the coupling and,

therefore, ∆3(ξ) has a square-root singularity at ξ = ξ?. For ξ > ξ?, the scaling dimension

takes the form ∆3 = 2+ id(ξ) where real valued function d(ξ) monotonically increases with

the coupling and scales as d ∼ ξ3/2 for ξ →∞.

The relations (1.4)–(1.6) are invariant under ∆ → 4 −∆. Therefore, for any solution

∆(ξ) to the quantizaton condition there should exist another one 4 − ∆(ξ). Then, the

appearance of the imaginary part of ∆(ξ) can be interpreted as a result of the collision of

two ‘energy levels’ ∆(ξ) and 4−∆(ξ) at ξ = ξ? (see figure 2). Although the level crossing

cannot happen in a unitary conformal field theory, it occurs in the theory (1.1) since it is

not unitary.

At weak coupling the quantization conditions (1.5) can be solved analytically order-

by-order in ξ6. The approach is algorithmic and is only limited by the computer power

– 5 –
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Figure 2. Numerical results for the scaling dimension of the operator tr(φ31) as a function of the

coupling ξ3. We observe a “phase transition” at ξ3 ' 0.21 where the scaling dimension takes the

value ∆ = 2 and becomes imaginary. This point defines the radius of convergency of the weak

coupling expansion. The second branch, starting from ∆(0) = 1, arises due to the symmetry of the

Baxter equation (1.4) under ∆→ 4−∆.

available. The first four terms of the weak coupling expansion of ∆3 − 3 are4

∆3 − 3 = −12ζ3ξ
6 + ξ12

(
189ζ7 − 144ζ3

2
)

+ ξ18

(
−1944ζ8,2,1 − 3024ζ3

3 − 3024ζ5ζ3
2 + 6804ζ7ζ3 +

198π8ζ3

175

+
612π6ζ5

35
+ 270π4ζ7 + 5994π2ζ9 −

925911ζ11

8

)
+ ξ24

(
−93312ζ3ζ8,2,1 +

10368

5
π4ζ8,2,1 + 5184π2ζ9,3,1 + 51840π2ζ10,2,1 − 148716ζ11,3,1

−1061910ζ12,2,1 + 62208ζ10,2,1,1,1 − 77760ζ3
4 − 145152ζ5ζ3

3 − 576

7
π6ζ3

3

−864π4ζ5ζ3
2 − 2592π2ζ7ζ3

2 + 244944ζ7ζ3
2 + 186588ζ9ζ3

2 +
9504

175
π8ζ3

2

−2592π2ζ5
2ζ3 +

29376

35
π6ζ5ζ3 + 298404ζ5ζ7ζ3 + 12960π4ζ7ζ3 + 287712π2ζ9ζ3

−5555466ζ11ζ3 +
2910394π12ζ3

2627625
+ 57672ζ5

3 − 71442ζ7
2 +

13953π10ζ5

1925

+
7293π8ζ7

175
− 19959π6ζ9

5
+

119979π4ζ11

2
+

10738413π2ζ13

2
− 4607294013ζ15

80

)
+O

(
ξ30
)
,

where ζi1,...,ik =
∑

n1>···>nk>0 1/(ni11 . . . n
ik
k ) are multiple zeta functions. Here the coeffi-

cients in front of ξ6M give the residues at simple pole in dimensionally regularized Feynman

integrals corresponding to the J = 3 wheel graphs with M = 1, 2, 3, 4 frames (see figure 3).

The first two terms of (1.7) (up to double wrapping) coincide with the known results [28, 29].

At strong coupling, for ξ � 1, the scaling dimension ∆3 − 2 takes pure imaginary

values that scale as ξ3/2. In this limit, the quantization conditions (1.5) can be solved

4Strictly speaking, expansion of the scaling dimension in the theory (1.1) runs in powers of the fine

structure constant α = ξ2/(4π2). To simplify formulae we do not display 1/(4π2) factor in what follows.

– 6 –
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Figure 3. The “wheel” Feynman graph corresponding to O(ξ24) term in the weak coupling expan-

sion (1.7) of anomalous dimension of the operator Tr(φ31).

using semiclassical methods. We find that the strong coupling expansion runs in powers of

1/ξ3 and the first few terms are given by

∆3−2 = i2
√

2ξ3/2

[
1+

1

(16ξ3)
+

55

2

1

(16ξ3)2
+

2537

2

1

(16ξ3)3
+

830731

8

1

(16ξ3)4

+
98920663

8

1

(16ξ3)5
+

31690179795

16

1

(16ξ3)6
+O(ξ−21)

]
. (1.7)

Notice that the expansion coefficients grow factorially indicating that the series is not Borel

summable. In a close analogy with the strong coupling expansion of the cusp anomalous

dimension in planar N = 4 SYM [30], this suggests that ∆3 receives at strong coupling

exponentially small, nonperturbative corrections of the form e−cξ
3
.

The same technique can be applied to compute the scaling dimensions of the oper-

ators (1.2) with the same R−charge J = 3 and ∆(0) = 5, 7, . . . in a free theory. As

explained above, for ∆(0) = 5 we encounter two unprotected operators. We present the

numerical and analytic study of quantum corrections to their scaling dimensions both at

weak and at strong coupling. We show that the resulting expressions have a different

behaviour with the coupling constant as compared with ∆3 (see figure 2). Namely, they

acquire an imaginary part at weak coupling and increase monotonically with the coupling.

For ∆(0) ≥ 7 we compute the scaling dimensions of a pair of nondegenerate operators, one

for each ∆(0). We demonstrate that for ∆(0) = 7, 11, 15, . . . and ∆(0) = 9, 13, 17, . . . the

dependence of the scaling dimensions of the coupling follows the same pattern as ∆3(ξ)

and ∆5(ξ), respectively (see figure 8 below). The limit of large length ξ for such operators

will be also treated and the explicit formula for the dimension will be found in the form of

a Bohr-Sommerfeld type quantisation condition.

2 SU(2, 2) picture for fishnet graphs

To prepare the formalism for computing the wheel-graphs shown in figure 1, we demonstrate

in this section that these graphs can be identified as transfer matrices of an integrable

conformal SU(2, 2) spin chain.

– 7 –
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0

x

Figure 4. A “wheel” Feynman graph with M frames and J spokes whose external legs have been

joined at the point x (M = 5 and J = 9 in this picture).

To begin with, we consider the two-point correlation function of the operators (1.3)

D(x) = 〈OJ(x)ŌJ(0)〉 =
dJ(ξ)

(x2)J+γJ (ξ)
, (2.1)

where the normalization constant dJ(ξ) and the anomalous dimension γJ(ξ) depend on the

coupling constant and the length L = J of the operator. As was shown [1], in the planar

limit this correlation function receives contribution from globe-like graphs shown in figure 4.

The same graphs can be viewed as fishnet graphs with periodic boundary conditions along

horizontal (longitudinal) direction and all lines in the vertical (latitudinal) direction joined

at the points x and 0, respectively, as depicted in figure 4. The contribution of such graphs

to (2.1) can be written as

D(x) =
∞∑

M=0

ξ2JM

∫ J∏
i=1

d4yi
y2
i

TJ,M (x1, . . . , xJ |y1, . . . , yJ)

∣∣∣∣
x1=···=xJ=x

, (2.2)

where TJ,M (x1, . . . , xJ |y1, . . . , yJ) describes a cylinder-like fishnet graph with M wheels and

J external points. For M = 0 we have

TJ,0(x1, . . . , xJ |y1, . . . , yJ) =
∏
i

δ(4)(xi − yi) , (2.3)

so that the corresponding contribution to (2.2) is given by the product of J scalar propaga-

tors. For M ≥ 1, due to the structure of wheel graphs, TJ,M admits the following recursive

representation

TJ,M (x1, . . . ,xJ |y1, . . . ,yJ) =

∫ J∏
i=1

d4ziHJ(x1, . . . ,xJ |z1, . . . ,zJ)TJ,M−1(z1, . . . ,zJ |y1, . . . ,yJ)

≡HJ ◦TJ,M−1(x1, . . . ,xJ |y1, . . . ,yJ) , (2.4)
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where the kernel HJ represents one wheel of the diagram in figure 1. It is given by the

product of scalar propagators

HJ(x1, . . . , xJ |y1, . . . , yJ) =
x1 x2 x3 x4 ......... xJ

⊥⊥⊥⊥ · · · ⊥
y1 y2 y3 y4 ... ......yJ yJ+1

,

=
1

(2π)4J

J∏
i=1

1

(xi − yi)2(yi − yi+1)2
, (2.5)

with periodic boundary condition y1 = yJ+1. Here each horizontal link is a free scalar

propagator (2π)−2(yj − yj+1)−2. Each vertical line produces similar propagator connect-

ing points xi and yi. Replacing the scalar propagator with inverse d’Alembert operator,

�−1
i (xi, yi) = (2π)−2/(xi − yi)

2, we find that (2.5) can be identified as a kernel of the

following “graph building” operator defined in [1]

HJ =
1

(2π)2J

J∏
i=1

�−1
i

J∏
i=1

1

(xi − xi+1)2
, (2.6)

with xJ+1 = x1. Applying (2.4) we obtain the following concise operator representation

for fishnet with M rows

TJ,M = HJ ◦ HJ ◦ · · · ◦ HJ ≡ (HJ)M . (2.7)

Here the operator HJ adds an extra row to fishnet graph and ‘◦’ denotes the convolution

of the kernel (2.5). As we show in the next subsection, HJ can be identified as a transfer

matrix of the non-compact Heisenberg spin chain of length J with spins being the generators

of the conformal group SU(2, 2).

We expect that the anomalous dimension in (2.1) is different from zero. This means

that the correlation function (2.2) has to develop ultraviolet divergences and, therefore,

requires a regularization. If we introduced dimensional regularization with D = 4 − 2ε,

these divergences would appear as poles of (2.2) in 1/ε. Notice that for arbitrary xi and yi,

the function TJ,M (x1, . . . , xJ |y1, . . . , yJ) is well-defined in D = 4 dimensions and does not

require any regularization. The divergences appear in (2.2) when we identify the points

y1 = · · · = yJ and/or integrate over xi → x. In both cases they come from integration

in (2.4) in the vicinity of the two points zi = 0 and zi = x and have a clear UV origin.

To lowest order O(ξ2J), the dimensionally regularized integral in (2.2) has simple pole 1/ε

whose residue gives the anomalous dimension. At high orders, the integrals entering the

two-point correlation function (2.2) have overlapping divergences and, as a consequence,

they produce higher power of 1/ε. The divergent part of (2.1) has the following form

D(x) = e−γJ (ξ)/ε+O(ε0) . (2.8)

The question arises how to use a four-dimensional representation (2.2) to extract correctly

the divergent part of the correlation function (2.8). To this end we notice that, in distinction

from D(x), its logarithm has at a most simple pole lnD(x) ∼ −γJ(ξ)/ε and, therefore, does
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not contain overlapping divergences.5 The simple pole of lnD(x) originate from the two

integration regions in which all internal vertices approach one of the external points, zi = x

or zi = 0. Then, applying the dilatation operator to lnD(x), we can remove its divergent

part and evaluated the anomalous dimension γJ(ξ) = −[(x∂x)/2 + J ] lnD(x) using the

four-dimensional representation (2.2).

2.1 “Graph-building” transfer matrix and its integrable SO(1, 5) spin chain

realization

Let us show that the integral operator HJ defined in (2.4) and (2.5) commutes with the

generators of the conformal SO(1, 5) group

[G,HJ ] = 0 , G = {Pµ, Mµν , D, Kµ} , (2.9)

where G =
∑J

i=1Gi are given by the sum of differential operators acting on points

x1, . . . , xJ

Pµ = ∂µ , Mµν = xµ∂ν − xν∂µ ,
D = (x∂) + 1 , Kµ = 2xµ(x∂)− x2∂µ + 2xµ . (2.10)

We recall that general expressions for the generators of the conformal group depend on

the parameters (∆, S, Ṡ) defining the scaling dimension and the Lorentz spin. The rela-

tions (2.10) correspond to a free scalar field representation of the conformal group with

∆ = 1 and S = Ṡ = 0.

To verify (2.9) we apply its both sides to a test function Φ(x) depending on the set of

coordinates x = (x1, . . . , xJ)∫
d4y [GxHJ(x|y)Φ(y)−HJ(x|y)GyΦ(y)] =

∫
d4y

[
GxHJ(x|y)−G†yHJ(x|y)

]
Φ(y) = 0 ,

(2.11)

where we used a shorthand notation for dy = dy1 . . . dyJ and introduced subscript to

indicate that Gx acts on x variables. Here in the second relation we integrated by parts

and introduced notation for the conjugated generators G†y. For instance, P †µ = −Pµ and

D† = −(x∂) − 3. As follows from (2.11), the conformal symmetry implies that the kernel

of the operator HJ has to satisfy the following relation(
Gx −G†y

)
HJ(x|y) = 0 . (2.12)

It is then straightforward to check that the kernel (2.5) verifies this relation indeed.

Having identified the representation of the conformal group (2.10), we can now con-

struct the Heisenberg spin chain with the spin generators given by (2.10) and establish the

relation between HJ , eq. (2.6), and transfer matrices of this model. As a first step, we

5Except the case J = 2 which has overlapping singularities and leads to the leading asymptotics lnD(x) ∼
−1/ε2 [1, 3].
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Figure 5. Diagrammatic representation of the R−operator (2.14). Solid line with index α stands

for 1/(x2)α. The values of indices depend on the spectral parameter and are given by α+ = −1−u,

α− = 1− u and β = 2 + u.

define the R−operator acting on the tensor product of two representations (2.10). Similar

to (2.5) it can be realized as an integral operator [8]

R12(u) Φ(x1, x2) =

∫
d4y1d

4y2Ru(x1, x2|y1, y2)Φ(y1, y2) , (2.13)

with Φ(x1, x2) being a test function. The requirement for the operator R12(u) to satisfy

the Yang-Baxter equation leads to a differential equation for the kernel Ru(x1, x2|y1, y2).

Its solution is given by [31]

Ru(x1, x2|y1, y2) =
c(u)

[(x1 − x2)2]−u−1[(x1 − y2)2(x2 − y1)2]u+2[(y1 − y2)2]−u+1
, (2.14)

where c(u) is a normalization factor

c(u) =
24u

π4

Γ2(u+ 2)

Γ2(−u)
. (2.15)

Its value was fixed by imposing the so-called T−inversion relation R12(u)R12(−u) = 1, or

equivalently∫
d4y1d

4y2Ru(x1, x2|y1, y2)R−u(y1, y2|z1, z2) = δ(4)(x1 − z1)δ(4)(x2 − z2) . (2.16)

It proves convenient to use a diagrammatic representation for the R−operator (2.13)

and (2.14). Representing each factor of the form 1/[(x − y)2]α as a solid line connect-

ing points x and y with index α attached to it, we can depict (2.14) as a rectangular graph

shown in figure 5. Notice that the indices of all four lines depend on the spectral parameter.

Let us examine (2.13) for u→ 0. Putting u = −ε in (2.14) and (2.13) we find for ε→ 0

R12(ε)Φ(x1, x2) =
ε2

π4

∫
(x1 − x2)2 d4y1d

4y2 Φ(y1, y2)

[(x1 − y2)2]2−ε[(x2 − y1)2]2−ε(y1 − y2)2
, (2.17)
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where we replaced c(ε) by its leading asymptotic behaviour. For the expression on the

right-hand side to be different from zero, the integral should produce a double pole 1/ε2.

Indeed, making use of the identity

lim
ε→0

ε

π2[(x− y)2]2−ε
= δ(4)(x− y) , (2.18)

we find that integration in (2.17) yields R12(0)Φ(x1, x2) = Φ(x2, x1), so that R12(0) coin-

cides with the permutation operator,

R12(0) = P12 . (2.19)

The same property can be easily found from the diagrammatic representation of the

R−operator (see figure 5). The operator R12(0) is described by the diagram in which

two lines carry index β = 2. According to (2.18), such lines collapse into two points,

x1 = y2 and x2 = y1, leading to (2.19).

We can now use the R−operator (2.13) to construct the so-called fundamental transfer

matrix

TJ(u) = tr0[R10(u)R20(u) . . . RJ0(u)] . (2.20)

It acts on the tensor product of J copies of the conformal group representation (2.10)

and the trace is taken over the same (infinite-dimensional) auxiliary space representation.

Replacing each R−operator in (2.20) by its integral representation (2.13) we can realize

TJ(u) as an integral operator

TJ(u)Φ(x1, . . . , xJ) =

∫
d4y1 . . . d

4yJ TJ,u(x|y)Φ(y1, . . . , yJ) , (2.21)

where Φ is a test function and the kernel TJ,u(x|y) is given by a J−fold integral over the

auxiliary space

TJ,u(x|y) =

∫
d4x0d

4y0d
4z0 . . .d

4w0Ru(x1,x0|y1,y0)Ru(x2,y0|y2,z0) . . .Ru(xJ ,w0|yJ ,x0) .

(2.22)

Using diagrammatic form of the R−operator, we can represent this integral in the form

of J rectangles glued together through common vertices in a pairwise manner as shown

in figure 6. In the standard manner, in virtue of Yang-Baxter equation, the transfer

matrices (2.20) commute among themselves

[TJ(u), TJ(v)] = 0 , (2.23)

as well as with the local integrals of motion of the spin chain.

Let us examine (2.21) and (2.22) for two special values of the spectral parameter, u→ 0

and u → −1. In both cases, some of the propagators in the integral representation of the

transfer matrix have index 2 which allows us to apply the identity (2.18). For u = −ε and

ε→ 0 we find

TJ,u=0(x|y) =

J∏
i=1

δ(4)(xi − yi+1) , (2.24)
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Figure 6. Diagrammatic representation of the transfer matrix (2.22). It is obtained by gluing

together J rectangles, each representing the R−operator. The leftmost and rightmost vertices are

identified. The values of indices α± and β are the same as in figure 5.

or equivalently TJ(0) coincides with the operator of the cyclic shift. The same relation can

be also obtained using (2.19). For u = −1 + ε and ε→ 0 we find in the similar manner

TJ,u=−1+ε(x|y) =
1

(16π2ε)J

J∏
i=1

1

(xi − yi)2(yi − yi+1)2
, (2.25)

where yJ+1 = y1 and the additional power of 1/ε appears due to the fact that c(−1 + ε)

defined in (2.15) is regular for ε → 0. Substituting this relation into (2.21) we obtain the

following result for the transfer matrix

TJ(−1 + ε) =
1

(4ε)J
1

�1 . . .�J

J∏
i=1

1

(xi − xi+1)2
∼ 1

εJ
HJ . (2.26)

Comparing this relation with (2.6) we conclude that the operator HJ defines the leading

asymptotic behaviour of the transfer matrix TJ(−1+ε) for ε→ 0. Since the transfer matrix

commutes with the local integrals of motion for an arbitrary spectral parameter, the same

is true for the operator HJ .

Having established integrability of the operator HJ , we can now turn to computing the

correlation function (2.2) and (2.7). A direct calculation of (2.2) would require diagonaliz-

ing the operator HJ with subsequent summation over the whole spectrum of its eigenstates.

Since the underlying Heisenberg spin chain is defined for an infinite-dimensional represen-

tation of the conformal group, this proves to be an extremely nontrivial task. In the

next section, we present another approach based on the Baxter TQ equation, combined

with the QSC formalism, that allows us to avoid these difficulties and obtain a compact

representation for the anomalous dimension γJ(ξ).

3 The Baxter TQ equation

We have shown in the previous section that the corrections to the scaling dimension of

the scalar operators (1.3) can be described in terms of the Heisenberg spin chain with the
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spin operators being the generators of the conformal group. In this section, we derive the

Baxter TQ equation in this integrable model for the states corresponding to a special class

of scalar operators defined in (1.2).

The Baxter equation is a fourth-order finite difference equation for the function q(u)

with the coefficients given by transfer matrices of SU(2, 2) spin chain in specific, antisym-

metric representations. We argue below that, for some states with the charges (∆, 0, 0|J, 0),

the general form of this equation can be determined, up to a few constants (to be fixed by

additional quantization conditions, see section 5), from the known asymptotic behaviour of

four solutions for the Baxter function q(u) at infinity combined with the symmetry under

parity transformation u → −u. We partially justify these assumptions in appendix A by

making use of the Lax operator formalism.

It was shown in the paper [26] (see eq. (5.5) there) that the Baxter TQ-equation

for SL(4) takes a standard form of a linear 4th order finite difference equation (A.24) on

Q-functions, with coefficients being the fundamental transfer-matrices of the SL(4) spin

chain with spins in principal series representations. In appendix A we use this formula

and u↔ −u symmetry arguments for the states with the charges (∆, 0, 0|J, 0) to bring the

Baxter equation to the following symmetric form

A (u+ i) q (u+ 2i)−B
(
u+

i

2

)
q (u+ i) + C (u) q (u)

−B
(
u− i

2

)
q (u− i) +A (u− i) q (u− 2i) = 0 , (3.1)

where A(u) = uJ is completely fixed by the choice of the representation (2.10), whereas

B(u) and uJC(u) are polynomials in u of degree J and 2J , respectively. The coefficients

A(u) B(u) and C(u) are explicitly calculated in appendix A in terms of global charges of

the state and they contain a certain number of state-dependent constants, to be defined

later by quantization conditions proper to our problem. To fix the form of polynomials

A(u), B(u), C(u) it appears to be enough to impose two additional conditions: if q(u) is a

real solution to (3.1) then q(−u) should also be a solution. This gives the parity condition

on the coefficient functions:

B(u) = (−1)JB(−u) , C(u) = (−1)JC(−u). (3.2)

Secondly, for large u, the solution to (3.1) should have asymptotic behavior q ∼ uδ with

the exponent δ taking the following values (see next section or the twisted QSC formalism

of [13])

δ =

{
∆− J

2
,

∆− J
2

+ 1, 2− ∆ + J

2
, 3− ∆ + J

2

}
. (3.3)

These conditions fix the functions B(u) and C(u) to be

B(u) = 4uJ− 1

2
(α+3J−4)uJ−2+buJ−4+

[J/2]∑
k=3

dku
J−2k ,

C(u) = 6uJ−(α+3J−4)uJ−2+
(α−4)2+32b+3J2+2(α−7)J

16
uJ−4+

J∑
k=3

cku
J−2k , (3.4)
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where α = (∆− 2)2. These expressions depend on 1 + (J − 2) + ([J/2]− 2) = J + [J/2]− 3

arbitrary constants b, ck, dk, to be fixed by the additional quantization conditions.

Let us examine the relations (3.1) and (3.4) for J = 2, 3, 4.

Baxter equation for J = 2

(u+ i)2 q (u+ 2i) + (u− i)2 q (u− 2i) +

[
6u2 − α− 2 +

α(α− 4)

16u2

]
q (u)

=

[
4

(
u+

i

2

)2

− α+ 2

2

]
q (u+ i) +

[
4

(
u− i

2

)2

− α+ 2

2

]
q (u− i) , (3.5)

where all constants are fixed in terms of α = (∆ − 2)2. We notice that this equation

factorizes as[(
(∆− 2)(∆− 4)

4u2
− 2

)
+D +D−1

]
u2

[(
∆(∆− 2)

4u2
− 2

)
+D +D−1

]
q(u) = 0 , (3.6)

where D = ei∂u is the shift operator.

Baxter equation for J = 3

(u+i)3 q (u+2i)+(u−i)3 q (u−2i)+

[
6u3−(α+5)u+

(α−1)2

16u
+
m2

u3

]
q (u)

=

(
u+

i

2

)[
4

(
u+

i

2

)2

−α+5

2

]
q (u+i)+

(
u− i

2

)[
4

(
u− i

2

)2

−α+5

2

]
q (u−i) . (3.7)

where α = (∆− 2)2 and m is arbitrary. Remarkably, this equation also factorizes[(
(∆−1)(∆−3)

4u2
+
m

u3
−2

)
+D+D−1

]
u3

[(
(∆−1)(∆−3)

4u2
−m
u3
−2

)
+D+D−1

]
q(u) = 0 .

(3.8)

The values of the parameters m and α = (∆ − 2)2 as functions of the coupling ξ will be

fixed in section 5 from an additional quantization condition.

Baxter equation for J = 4

(u+i)4 q (u+2i)+(u−i)4 q (u−2i)+

[
6u4−(α+8)u2+

(
2b+

α2+8

16

)
+
c1

u2
+
c2

u4

]
q (u)

=

[
4

(
u+

i

2

)4

−α+8

2

(
u+

i

2

)2

+b

]
q (u+i)+

[
4

(
u− i

2

)4

−α+8

2

(
u− i

2

)2

+b

]
q (u−i) .

(3.9)

It depends on 3 extra constants, b, c1, c2, apart from α = (∆ − 2)2, to be fixed from

quantization conditions, yet to be derived.

The Baxter equations (3.5), (3.7) and (3.9) match perfectly the equations derived in

detail for particular cases J = 2, 3, 4 in appendix A from the Lax operator formalism and

they will be confirmed in section 4 from the QSC formalism.
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4 Baxter equations for bi-scalar χFT4 from the double scaling limit of

QSC

In this section we use an alternative integrability based approach which originates from

N = 4 SYM. The integrability structure for the spectrum in this theory is very well studied

and is given in terms of so-called Quantum Spectral Curve (QSC) [10, 11]. We will use

that fact that χFT4 can be obtained as a limit of a twisted version of N = 4 SYM in

order to get further clues about the spectrum of anomalous dimensions and integrability

structure of χFT4. In particular in this section we demonstrate how the Baxter equations

obtained from the integrability of the Feynman graphs can be obtained directly from QSC

establishing an important link between these two seemingly different integrability based

approaches. We will see that QSC in addition to the Baxter equation also provides an

essential missing ingredient — the quantization condition for the spectrum, which we were

not able to obtain from the Feynman graphs. The quantization condition is discussed in

section 5. In this section we describe how the Baxter equation arises from QSC approach

in the double scaling limit where the twisted SYM reduces to the scalar χFT4.

4.1 QSC generalities

The description of QSC and the notations closely follow [11–13]. In formal terms, the

QSC is represented by a Grassmannian consisting of 28 so-called Q-functions of spectral

parameter u related to each other by Plücker QQ-relations, in such a way that 8 of them

are enough to parameterize all other. General Q-functions can have quite complicated

analytical structure as functions of the spectral parameter. In practice it is sufficient to

restrict ourselves to a subset of functions with simplest analytic properties, namely

Qi(u), Qi(u), (i = 1, . . . , 4)

Pa(u), Pa(u), (a = 1, . . . , 4) (4.1)

Qa|i(u), (i = 1, . . . , 4, a = 1, . . . , 4) .

They are related to each other by the following set of equations:

Q+
a|i(u)−Q−a|i(u) = Pa(u)Qi(u) ,

Qi(u) = −Q±a|i(u)Pa(u), Pa(u) = −Q±a|i(u)Qi(u) , (4.2)

Pa(u)Pa(u) = 0, Qi(u)Qi(u) = 0 ,

and similar relations with all upper/lower indices lowered/raised. Here and below we use

a common notation

f±(u) = f(u± i/2), f [±k](u) = f(u± ik/2) . (4.3)

Apart from these algebraic relations, there are also analytic constraints on the structure

of cuts of Q-functions in the complex plane, which, in particular, express their monodromies

around the branch points through other Q-functions.
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Figure 7. Left : analytic structure of Pa(u) and Pa(u): P(u) has one cut on the first sheet (left).

Analytical continuation through this cut leads to the second sheet corresponding to P̃(u) (right),

which has an infinite ladder of cuts Right : analytic structure of Qi(u) and Qi(u): Q(u) has an

infinite ladder of cuts in the lower half-plane (left). Analytical continuation through the cut on the

real axis leads to a sheet corresponding to Q̃(u), which has an infinite ladder of cuts in the upper

half-plane (right).

The basic analytic structure is the following: Pa and Pa have one cut on the real

axis, from −2g to 2g, as shown in figure 7. This cut can be resolved by a transfromation

to Zhukovsky variable x(u), defined as x(u) + 1/x(u) = u/g, |x(u)| > 1. Thus it will be

convenient to parametrize P in x instead of u.

Functions Qi and Qi have infinite ladder of Zhukovsky cuts: the original one, from

−2g to 2g and its copies, shifted by an integer number of i into the lower half plane, as

shown in figure 7. For any function of spectral parameter Q(u) we denote by Q̃(u) the

analytic continuation of Q(u) under the Zhukovsky cut on the real axis. It is sufficient to

impose the gluing condition on Qi at the cut [−2g, 2g] [32]6

Q̃1(−u) = β1Q3(u) , Q̃2(−u) = β2Q4(u) ,

Q̃3(−u) = 1/β1Q1(u) , Q̃4(−u) = 1/β2Q2(u) , (4.4)

which schematically can be written as Q̃i(−u) = Hi
jQj(u),7 to close the system of equa-

tions. This means that imposing the above relation will give us a discrete set of isolated

solutions each corresponding to a certain state of the theory.

In order to identify a particular state we have first to know its quantum numbers,

which are hidden in the large u asymptotic of Qi and Pa as we discuss below.

Asymptotics and quantum numbers. Asymptotic behavoir of Q-functions at large u

is determined by the twists and by the quantum numbers of the particular state of N = 4

6We used here the left-right symmetry relations (C.2) and already put at this stage κ = κ̂.
7In the unitary theory like N = 4 SYM one can use the complex conjugation instead, which is applicable

for all operators and not only for the parity symmetric ones. Also, for this gluing condition to be of this

simple form that is crucial to choose Qi to be of a “pure” form, meaning that their large u asymptotic

are of the form u−ν̂i
∑∞
i=0

ai
ui to all orders in 1/u. In general this condition is not sufficient to uniquely

determine Qi as νi for different i could differ by an integer, allowing for Qi to mix. There are several ways

to deal with this problem, one possibility is to introduce a twist in AdS5. Another possibility, which we

use in this paper, is to make use of the u→ −u symmetry, applicable for some states, and keep only even

powers u−ν̂i
∑∞
i=0

a2i
u2i which also leads to the correct non-ambiguous gluing. Finally, it was noticed in [32]

that the conditions (4.4) are over-defined and it is usually sufficient to impose only one of them.
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SYM we are studying. Here we will consider a particular kind of state: BMN vacuum

tr(φJ1 ), where φ1 is one of three complex scalars of N = 4 SYM theory.8 In the notation

of [13] its quantum numbers are

{J, 0, 0|∆, 0, 0} . (4.5)

In the untwisted theory tr(φJ1 ) would have been protected BPS state, but in the presence

of twists it has a nontrivial scaling dimenstion ∆J(g) which we will be computing. This

scaling dimension was computed at weak coupling up to g4J−2 (two wrappings) in [20] in

terms of infinite double sums and integrals and it was brought to the standard explicit

MZV form in [1]. For the case of our current interest, the bi-scalar model, the single

wrapped graph at any J was computed in [28] and the double-wrapped graph at J = 3

was computed in [29]. We use these results to verify our computation.

In the general case of twisted QSC, the asymptotics of one-indexed functions are given

by [13]

Pa ∼ Aaxiua u−λ̂a , Pa ∼ Aax−iua uλ̂
∗
a ,

Qi ∼ Biu−ν̂i
(

1 +
bi,1
u

+
bi,2
u2

+ . . .

)
,

Qi ∼ Biuν̂
∗
i

(
1 +

bi,1

u
+
bi,2

u2
+ . . .

)
. (4.6)

In a particular case of BMN vacuum with charges (4.5) the powers λ̂a, λ̂
∗
a, ν̂i, ν̂

∗
i are deter-

mined by the quantum numbers of the state

λ̂ = λ̂∗ =

{
J

2
,
J

2
,−J

2
,−J

2

}
,

ν̂i =

{
−∆

2
,−1− ∆

2
,−2 +

∆

2
,−3 +

∆

2

}
,

ν̂∗i =

{
−∆

2
+ 3,−∆

2
+ 2,

∆

2
+ 1,

∆

2

}
, (4.7)

and the twists are chosen to be xa =
{
κJ , κ−J , κ̂J , κ̂−J

}
. They are related to the twist

parameters introduced at the beginning of introduction as

κ = q3q2 , κ̂ = q3/q2 , (4.8)

whereas the dependence on q1 is absent for BMN vacuum state.

We can plug the asymptotics (4.6) into the equations (4.2) and obtain a set of con-

straints for combinations AaA
a and BiB

i (no summation). After the fixing the rescaling

symmetry the solution for Aa can be chosen to be [13]

A1 = −A2 =
κ̂J(κJ − 1)3

(1 + κJ)(κJ − κ̂J)((κκ̂)J − 1)

A3 = −A4 = − κJ(κ̂J − 1)3

(1 + κ̂J)(κJ − κ̂J)((κκ̂)J − 1)
. (4.9)

8We use here notation φi for complex scalars, instead of the familiar {X,Y, Z} since two of them appear

with a different notation in bi-scalar model (1.1), say Z = φ1, Y = φ2.

– 18 –



J
H
E
P
0
1
(
2
0
1
8
)
0
9
5

In a similar way for Bi:

B1B
1 = −B4B

4 =
i(κJ − 1)2(κ̂J − 1)2

(κκ̂)J(∆− 2)(∆− 3)

B2B
2 = −B3B

3 = − i(κJ − 1)2(κ̂J − 1)2

(κκ̂)J(∆− 1)(∆− 2)
. (4.10)

Since, as we discussed, the Pa and Pa functions has only one cut, they admit the

following Laurent expansion

Pa(u) = xiua (gx(u))−λ̂apa(u) , Pa(u) = x−iua (gx(u))λ̂
∗
apa(u), (4.11)

where

pa = Aa

∞∑
n=0

ba,n
xn

, pa = Aa
∞∑
n=0

ba,n

xn
. (4.12)

The constants ba,n and ba,n contain all the information about the state. In order to constrain

them we have to find Qi and Qi for the given Pa and Pa and impose the analyticity

condition (4.4) on the cut [−2g, 2g]. The Fourth-order Baxter equation is an efficient way

of doing this.

Fourth-order Baxter equation. Instead of using the chain of QQ-relations (4.2) one

can equivalently deduce the Qi using the given Pa and Pa functions from the “Fourth-

order Baxter equation”. More precisely, four one-indexed functions Qj are the 4 linear

independent solutions of the following 4th order finite-difference equation [24]:

Q
[+4]
i D0 −Q

[+2]
i

[
D1 −P[+2]

a Pa[+4]D0

]
+ Qi

[
D2 −PaP

a[+2]D1 + PaP
a[+4]D0

]
−Q

[−2]
i

[
D̄1 + P[−2]

a Pa[−4]D̄0

]
+ Q

[−4]
i D̄0 = 0 , (4.13)

where Di are determinants of matrices with elements of form P
[k]
a given in the appendix B.1.

4.2 Double-scaling limit

The limit we have to take to obtain the χFT4 is g → 0 and s ≡
√
κκ̂ → ∞ with ξ = gs

fixed. First obvious thing which happens in this limit the branch points of the Zhukovsky

cuts collapse into a point producing poles. Furthermore, the coefficients ba,n and ba,n

in (4.12) typically scale as g2n and thus the infinite series truncates. In appendix C we

argue that for the BMN state the following scaling in g has to be imposed:

pa = {A1f1(u), A2f1(−u), A3g1(u), A4g1(−u)}

pa = {f2(u), f2(−u), g2(u), g2(−u)} . (4.14)
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where fi, gi as series in x(u):

f1 = 1 + g2J
∞∑
n=1

g2n−2c1,n

(gx)n

g1 = (gx)−J

(
uJ +

J−1∑
k=0

c2,−ku
k +

∞∑
n=1

g2nc2,n

(gx)n

)

f2 = (gx)−J

(
uJ +

J−1∑
k=0

c3,−ku
k +

∞∑
n=1

g2nc3,n

(gx)n

)

g2 = 1 + g2J
∞∑
n=1

g2n−2c4,n

(gx)n
. (4.15)

This follows the argument similar to [33].

We see that the terms with heigher dergree of 1/xn get more and more suppressed.

However, we still have to keep a few first term simply because the Baxter equation (4.13)

contains Pa with shifts u → u + in, n = −2, . . . , 2. Due to the twists tending to infinity

along the complex axes the factors xiua in Pa we could get an enhancement of these sup-

pressed with g terms. At the end we have to plug the truncated expressions for Pa, which

become rational functions with poles at u = 0 in the g → 0 limit, into the equation (4.13)

we obtain a finite difference equation with rational coefficients. We worked out explicitly

the J = 2, 3, 4 cases in the appendix C. Below we present the results.

Baxter equation for twist 2. For J = 2 the only unfixed coefficient left is ∆ and the

Baxter equation (4.13) coincides in the double scaling limit with (3.6). The expression

on the left-hand side of (3.6) is given by the product of two finite difference operators

separated by the factor of u2. It is easy to verify that (3.6) stays invariant under the

exchange of these two operators. As a consequence, the four solutions to (3.6) have to

satisfy 2nd order finite difference equations, e.g.(
∆(∆− 2)

4u2
− 2

)
q(u) + q(u+ i) + q(u− i) = 0 , (4.16)

and the second equation is obtained by replacing ∆ → 4 − ∆. By matching the asymp-

totics (4.6), we find that Q2 and Q3 satisfy (4.16) whereas Q1 and Q4 satisfy the second

equation. The 2nd order Baxter equation (4.16) has been previously studied in [9, 24] and

its explicit solutions have been found in terms of hypergeometric 3F2−functions

q0(u) = 2iu3F2

(
iu+ 1,

∆

2
, 1− ∆

2
; 1, 2; 1

)
, (4.17)

and the second solution is given by q0(−u). Using these results, we construct their linear

combinations

Q2(u) =−uB2
tan π∆

2 Γ
(

∆
2 +1

)
Γ
(

∆
2

)2
4e

π∆
4i Γ(∆−1)

[
q0(−u)

sin π∆
2

+

(
−icoth(πu)+cot

π∆

2

)
q0(u)

]
,

Q3(u) =uB3
itan π∆

2 Γ
(
1−∆

2

)2
Γ
(
2−∆

2

)
4e

iπ∆
4 Γ(1−∆)

[
q0(−u)

sin π∆
2

−
(
icoth(πu)+cot

π∆

2

)
q0(u)

]
. (4.18)
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These expressions are solutions to the Baxter equation (4.13) with the correct pole struc-

ture. Moreover, they are “pure” solutions in the sense that their expansion at infinity has

a form uα
(
1 + c1/u

2 + . . .
)
. The two remaining solutions Q4 and Q1 are obtained from

Q2 and Q3 by replacing ∆ with 4−∆ (and changing Bi accordingly).

Baxter equation for twist 3. For J = 3 the equation is a bit more complicated. After

using the identification

qi(u) = Qi(u)u−J/2 (4.19)

the equation (4.13) reduces in the double scaling limit to the Baxter equation (3.7) where

α = (∆−2)2 and m are two yet unfixed parameters. Its factorized form is given by (3.8). In

other words again we reproduced precisely the equation obtained from the integrability of

the Feynman graphs! In the next section where we will derive the quantization conditions

for fixing m and, finally, ∆(ξ). Thus we will extract the all-loop anomalous dimension

of Trφ3
1 operator, and of some related operators. It can be also easily checked that the

equation (3.7) is invariant w.r.t. the change m → −m. That is why we can find all four

solutions from a much simple 2nd order Baxter equations(
(∆− 1)(∆− 3)

4u2
− m

u3
− 2

)
q(u) + q(u+ i) + q(u− i) = 0 (4.20)

as another pair of solutions can be obtained by replacing m→ −m.

Baxter equation for twist 4. For J = 4 with the identification (4.19) we obtained

again the same Baxter equation as in (3.9), for which we have not been able to show the

factorization property. We postpone further investigation of this state for a future publi-

cation.

In conclusion, the derivation in this section of Baxter equations from QSC formalism

in the double scaling for J = 2, 3, 4 confirms the Baxter equation for arbitrary J given

at the end of the previous section, obtained from the group-theoretical considerations,

in usual assumption of universality of Baxter equations (independence on auxiliary state

representation). Now we have to impose additional quantization conditions on possible

solutions of Baxter equation, which we do in the next section, so far only for J = 3 case,

from the double scaling limit of QSC formalism.

5 Quantization condition for the Baxter equation

In this section we focus on the operators (1.2) with the R−charge J = 3 whose scaling

dimensions ∆ are described by the Baxter equation (4.20). The method presented here

should also apply for general J and even to general operators in the bi-scalar theory (1.1).

The Baxter equation (4.20) does not single out a particular value of the parameters

∆ and m. Furthermore, it does not depend on the coupling constant ξ. The goal of this

section is to use the underlying QSC description of the full N = 4 theory to derive the

quantization conditions which fix the dependence ∆(ξ) and m(ξ). A priori, these conditions

can be derived from the first principles using integrability of the fish-net diagrams [1, 4].

However, this is beyond the scope of the current paper.
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Let us first discuss analytic properties of the solutions of the Baxter equation (4.20).

To build a solution we start from u with large positive imaginary part, for which the

finite difference equation (4.20) can be replaced by an ordinary differential equation. For

arbitrary ∆ and m, it has two linear independent power-like solutions that we can choose

to be “pure solutions”

q2(u,m) = u∆/2−1/2

(
1 +

a1

u
+O

(
1

u2

))
, (5.1)

q4(u,m) = u−∆/2+3/2

(
1 +

b1
u

+O

(
1

u2

))
. (5.2)

For arbitrary non-integer ∆ these solutions are well defined from the requirement that

q2(u,m) does not contain O(u−∆/2+3/2) terms and q4(u,m) does not contain O(u∆/2−1/2)

terms. The expansion coefficients ai and bi can be fixed from (4.20), e.g.

a1 =
m

∆− 3
, b1 =

m

1−∆
.

Using (5.2) we can apply the finite difference equation (4.20) to recursively decrease the

imaginary part of u in integer steps. Since the coefficients of the Baxter equation (4.20)

are analytic for Im u > 0 and have a 3rd order pole at u = 0, the solutions constructed in

this way are also analytical in the upper half-plane and have generically a 3rd order pole

at the points u = −in with n = 1, 2, 3, . . . . We will discuss in more details how to build

these solutions in the section 6.

Having constructed solutions to the Baxter equation (4.20), we can now identify four

Q−functions defined in (4.1). In the double scaling limit we have

Q4(u) =
u3/2

2
[q4(u,m)+q4(u,−m)] , Q1(u) =

−is6

2m(∆−2)
u3/2[q2(u,m)−q2(u,−m)] ,

Q2(u) =
u3/2

2
[q2(u,m)+q2(u,−m)] , Q3(u) =

is6

2m(∆−2)
u3/2[q4(u,m)−q4(u,−m)] . (5.3)

It is straightforward to check that these expressions verify the defining relations (4.6) and

their normalization is fixed by (4.10) (we recall that s =
√
κκ̂ and κ, κ̂→∞ in the double

scaling limit). To simplify the calculation, we have assumed Q−functions to be even

functions of m. We can relax this condition and carry out the calculation in the general

case. This will not affect the final result for ∆(ξ) but will significantly complicate some

intermediate expressions. At the same time that is clear that the m → −m symmetry of

the system has to be reflected in the Qi so instead of deriving the expressions for Q2 and

Q4 we fix the proportion of q4(u,m) and q4(u,−m) from the symmetry requirement from

the beginning.

The quantization condition for ∆(ξ) arises from the requirement for the functions (5.3)

to have correct analytic properties in twisted N = 4 SYM presented at the beginning of

section 4. We recall that for a finite value of the twist the functions Qi have the cut

[−2g, 2g]. Going under the cut, these functions have to satisfy the gluing conditions [32].

In the double-scaling limit, the cut [−2g, 2g] shrinks into a point and the relations (4.4)

lead to nontrivial constraints for the functions Qi(u) near the origin [32].
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Another condition comes from the symmetry of the Baxter equation (4.20) under parity

transformation, u → −u and m → −m. Indeed, the functions qi(u,m) and qi(−u,−m)

satisfy (4.20), implying that the functions Qi(−u) can be expanded over the basis of the

solutions (5.3) with some periodic coefficients:

Qi(−u) = Ωi
j(u)Qj(u) , (5.4)

where Ωi
j(u) has the following i-periodicity property9

Ωi
j(u+ i) = Ωi

j(u) . (5.5)

Similar relation should also hold under the cut Q̃i(−u) = Ω̃j
i (u)Q̃j(u).

As we show in the appendix B.3, the discontinuity of Ωi
j(u) across the cut, ∆Ω j

i ≡
Ω̃ j
i −Ω j

i , satisfies the following exact Riemann-Hilbert equation (valid for any value of the

twist parameter)

∆Ω j
i (u) ≡ Ω̃ j

i (u)− Ω j
i (u) = −Q̃i(−u)Q̃j(u) + Qi(−u)Qj(u) . (5.6)

In the double-scaling limit, this relation allows us to compute ∆Ω j
i (u) for u→ 0 in terms

of solutions to the Baxter equation, q2(u,±m) and q4(u,±m), evaluated at the origin.

Indeed, for u→ 0, substituting (5.3) and (4.4) into (5.6) we find after some algebra10

∆Ω j
i /u

3 =


z 0 w v

0 −z t −w
w/β2

1 −v/β2
1 z 0

−t/β2
1 −w/β2

1 0 −z

+O(u) , (5.7)

where s =
√
κκ̂ and the notation was introduced for

z = s6 q2q̇4 − q4q̇2

2m(∆− 2)
, w = s6

(
q̇2

4 − q2
4

)
β2

1 + q2
2 − q̇2

2

4m(∆− 2)
,

v = s12β
2
1 (q4 − q̇4) 2 − (q2 − q̇2) 2

4im2(∆− 2)2
, t =

β2
1 (q4 + q̇4) 2 − (q2 + q̇2) 2

4i
, (5.8)

with compact notations

qj ≡ qj(0,m) , q̇j ≡ qj(0,−m) , (j = 2, 4). (5.9)

We conclude from (5.7) that ∆Ω j
i vanishes near the origin in the double scaling limit as

∆Ω j
i ∼ u3. In the next section, we will find Ω j

i (u) independently for an arbitrary coupling

from the Baxter equation. Comparing the results of these two calculations we will be able

to determine the quantization condition for ∆ and m.

9i-periodic functions play the same role in finite difference equations of Baxter type as constants in linear

differential equations.
10in order to simplify the expression we imposed already β2 = −β1. This condition can be deduced

alongside with the quantization condition in the way it is described in the next section.
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5.1 Extracting Ωj
i from the Baxter equation

As was mentioned in the beginning of this section, the Baxter equation (4.20) is invariant

under simultaneous change u→ −u and m→ −m. Following the same logic that led (5.4),

its solutions have to satisfy the relation

qj(−u,−m) = σj
k(u)qk(u,m) , (j, k = 2, 4) , (5.10)

where σl
k(u) are some nontrivial i-periodic functions. We can use the Baxter equation to

find the leading behavior of σj
k(u) for u→ 0.

We recall that solutions to the Baxter equatin qj(−u,−m) have 3rd order poles at

u = in (with n = 1, 2, . . . ) whereas qk(u,m) are regular at these points. Together with

periodicity condition σl
k(u+ i) = σl

k(u), this implies that σl
k(u) must have 3rd order pole

at the origin. Since the functions qj(−u,−m) and qk(u,m) are regular for u→ 0, it follows

from (5.10) that the residue at this pole have to satisfy

lim
u→0

u3σj
k(u) qk(m, 0) = 0 . (5.11)

Using the Baxter equation (5.2) we get for u→ 0

qj(u− i,−m) = −mqj(0,−m)

u3
+O

(
1/u2

)
. (5.12)

Replacing u→ −u+ i in (5.10) and matching it into the last relation we obtain

mqj(0,−m) ' −u3σj
k(−u)qk(i,m) +O(u) . (5.13)

The relations (5.11) and (5.13) viewed as a linear system of equations on u3σl
k(u) for u→ 0

lead to

u3σj
k(u) =

m

q2(i,m)q4(0,m)− q4(i,m)q2(0,m)

(
q̇2q4 −q̇2q2

q̇4q4 −q2q̇4

)
jk

+O(u) . (5.14)

We notice that the expression in the denominator coincides with the Wronskian of the

finite difference equation (4.20). As such, it should not depend on u and can be computed

using asymptotic behavior of functions at infinity (5.1)

q2(u+ i,m)q4(u,m)− q4(u+ i,m)q2(u,m) = i(∆− 2) . (5.15)

In this way, we finally obtain

σj
k(u) =

m

iu3(∆− 2)

(
q̇2q4 −q̇2q2

q̇4q4 −q2q̇4

)
jk

+O(1/u2) . (5.16)

We can now combine the relations (5.10) and (5.3) to establish linear relations between the

functions Qi(−u) to Qj(u). Using the definition (5.4) we obtain from (5.16) the leading
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asymptotic behavior of Ωi
j(u) at the origin

Ωi
j =

1

u3


m(q4q̇2−q2q̇4)

2(∆−2) − is6(q4q̇2+q2q̇4)
2(∆−2)2 0 is6q2q̇2

(∆−2)2

− im2(q4q̇2+q2q̇4)
2s6

m(q2q̇4−q4q̇2)
2(∆−2) − im2q2q̇2

s6
0

0 is6q4q̇4
(∆−2)2

m(q4q̇2−q2q̇4)
2(∆−2) − is6(q4q̇2+q2q̇4)

2(∆−2)2

− im2q4q̇4
s6

0 − im2(q4q̇2+q2q̇4)
2s6

m(q2q̇4−q4q̇2)
2(∆−2)

+O(1/u2) .

(5.17)

In the next section we compare this relation with the expression for the discontinuity

of Ωi
j given by (5.7) to obtain the constraints on the parameters of the Baxter equation

m and ∆.

5.2 Quantization condition from gluing

We demonstrated in the previous subsection that the matrix Ωi
j(u) has 3rd order pole at

u = 0. We would like to stress that the relation (5.17) holds in the double scaling limit, for

ξ = gs fixed with s→∞ and g → 0. Due to our conventions different Qi scale differently

with g and as a consequence different components of Ωi
j scale differently in our limit. This

is totally due to the choice of our normalization. We introduce γij so that Ωi
j ∼ sγij . As

explained in section 4, at finite coupling g the only singularities Ωi
j(u) could have at finite

u are due to the branch cuts of the Zhukovsky variables x(u) locate at u = ±2g. As a

consequence, it can be represented in the form

s−γijΩ j
i (u) =

√
u2 − 4g2 fij(g, u) + hij(g, u) , (5.18)

where 4 × 4 matrices f(g, u) and h(g, u) are regular around the origin and each term in

their small g expansion should be regular as well.

The poles of Ωi
j(u) at the origin can only appear as an effect of expansion of the

Zhukovsky cut

√
u2 − 4g2 = u− 2g2

u
− 2g4

u3
− 4g6

u5
+O

(
g8
)
. (5.19)

At the same time, computing discontinuity of Ωi
j(u) across the cut [−2g, 2g] we find

from (5.18) for g → 0

fij(g, u) = s−γij
Ω j
i (u)− Ω̃ j

i (u)

2
√
u2 − 4g2

= −s−γij
∆Ω j

i (u)

2u

(
1 +O(g2)

)
. (5.20)

According to (5.7), ∆Ωi
j ∼ u3 for u→ 0 in the double scaling limit. Then, it follows from

the last relation that the series expansion of f(g, u) in g and u must be of the form

f(g,u) = g−n(f0,2u
2+f0,3u

3+. . .)+g−n+2(f1,0+f1,1u+. . .)+g−n+4(f2,0+f2,1u+. . .) ,

(5.21)

where we assume that f(g, u) scales as g−n. The expansion coefficients depend on ξ and

∆ (but not of g). Substituting the last relation into (5.18) and taking into account (5.19)
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we get

s−γΩ(u) =−2g4−n f0,2+f1,0

u
−2g6−n

[
2f0,2+f1,0

u3
+

2f0,3+f1,1

u2
+

2f0,4+f1,2+f2,0

u

]
+. . . ,

(5.22)

where we use a shorthand notation for a matrix s−γ Ω ≡ s−γijΩ j
i (u) and dots denote terms

regular for u→ 0 and/or suppressed by powers of g2. Notice that regular function h(g, u)

does not contribute here to the leading, singular terms.

We expect that in the double scaling limit the matrix (5.22) should take the expected

form (5.17). In particular, it should scale as 1/u3 for u → 0. Note that l.h.s. of (5.22)

scales as g0. We have to deduce the value of n. If we assume that n = 4 the second term

in (5.22) become negligible and we will not be able to reproduce the 1/u3 singularity. If

we take n = 6 we get a contradiction as the l.h.s. scales as g0 whereas in the r.h.s. we get a

term 1/g2. The only way to avoid this problem is to set f0,2 + f1,0 = 0. Using this relation

and setting n = 6 we get for the residue of Ω(u) at 3rd order pole at u = 0

lim
u→0

u3 Ω = −2g6sγf0,2 = lim
u→0

∆Ω/u3 , (5.23)

where in the second relation we took into account (5.20) and (5.21). This equation provides

us with a set of nontrivial relations between the entries of matrices (5.7) and (5.17). In

particular, we notice that the matrix element ∆Ω2
1 is zero implying that Ω2

1 should vanish.

This leads to the quantization condition

q4(0,m)q2(0,−m) + q2(0,m)q4(0,−m) = 0 . (5.24)

In the similar manner, the vanishing of Ω3
1 implies ∆Ω3

1 = 0 leading to
(
q̇2

4 − q2
4

)
β2

1 +

q2
2 − q̇2

2 = 0. Together with (5.24) this gives

β2
1 =

q2
2

q2
4

=
q̇2

2

q̇2
4

. (5.25)

Finally imposing the relation (5.23) for Ω1
1 and ∆Ω1

1 we find that the parameter m2 is

related to the coupling constant in the bi-scalar theory (1.1)

m2 = −g6s6 = −ξ6. (5.26)

It is straightforward to verify that all remaining conditions (5.23) are satisfied automati-

cally!

The quantization condition (5.24) fixes the dependence of ∆ on m. Together with (5.26)

this allows us to find the spectrum of anomalous dimensions of the states/operators (1.2)

with charges (∆(ξ), 0, 0|J, 0), obeying the parity invariance.11

In the next sections we will explore these quantization conditions along with the Baxter

equation (4.20) to study the dimensions of the underlying operators with charge J = 3

numerically, as well as in strong and weak coupling approximations.

11We remind that the full superconformal symmetry of N = 4 SYM is broken by γ-deformation

to PSU(2, 2|4) → SU(2, 2) × U(1)3 and an arbitrary state is still characterized by Cartan charges

(∆, S1, S2|J1, J2, J3). For the bi-scalar theory under consideration the remaining symmetry is SU(2, 2) ×
U(1)2 (only two complex scalars out of three left) we label the states/operators with Cartan charges

(∆, S1, S2|J1, J2). For our particular BMN-state and its analogs considered further we take (∆, 0, 0|J, 0).
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6 Numerical solution

In this section, we describe the numerical solution to Baxter equation (4.20) supplemented

with the quantization conditions (5.24) and (5.26). The numerical method for solving the

whole QSC was developed in [27] and it can be adopted for our much simpler case (see

also [23]). One first constructs analytically the solution to the Baxter equation (4.20)

for large values of the spectral parameter u where one can simply take the asymptotic

series (5.2) and find the coefficients of the expansion by plugging it into the equation and

expanding for large u. We kept around 12 first orders which allowed us to gave extremely

accurate approximation for q2(u,m) and q4(u,m) for Im u > 100. After that we used the

exact Baxter equation (4.20) recursively to decrease the imaginary part of u until we reach

u = 0. After that we define the function

F (∆, ξ) = q4(0,m)q2(0,−m) + q2(0,m)q4(0,−m) , (6.1)

which must be zero for the physical values of ∆ and m2 = −ξ6. One can simply

use the FindRoot function in Mathematica to find ∆(ξ) determined by the condition

F (∆(ξ), ξ) = 0.

In this way we obtained the results for the scaling dimension of the operator tr(φ3
1)

shown in figure 2. We see that the dimension approaches ∆ = 2, where it collides at

ξ3 ' 0.21 with the “mirror” solution obtained by ∆→ 4−∆. After that the two dimensions

stay in the plane Re ∆ = 2, while their imaginary parts increase at large ξ as ∆ ∼ ξ3/2. In

the next section we describe this strong coupling asymptotics analytically.

We also found that the quantization condition (5.24) also describes other states with

Cartan charges (∆, 0, 0|L, 0). As we first found numerically (and then confirmed analyti-

cally, see the next section) the quantization condition F (∆, ξ) = 0 is satisfied for several

values of ∆! At zero coupling, these extra solutions all start at odd integer values of ∆. For

∆(0) = 5 + 4n , n = 0, 1, 2, . . . the scaling dimension ∆(ξ) become complex for arbitrary

small ξ > 0 whereas solutions with ∆(0) = 3 + 4n , n = 1, 2, . . . are real for small ξ. Our

numerical analysis suggests that, similar to the state with ∆(0) = 3, all solutions with

∆(0) = 3 + 4n reach the value ∆ = 2 and then acquire an imaginary part.

Finally, using the high precision numerics we extracted the expansion coefficients of

the weak coupling expansion of ∆(ξ) for the two lowest lying states

∆3 = 3−14.4246828379151314247968579381ξ6−17.4934615492599154108489144266ξ12

−1198.90916684527343375296340880ξ18−4689.74599336134323308194176857ξ24

−280246.105267046718780737267525ξ30−1.76612732373253221270019811001×106 ξ36

−8.77012836297716360442838113467×107 ξ42+O
(
ξ49
)
, (6.2)

∆5 = 5−2.00000000000000000000000000000iξ3+3.00000000000000000000000000000ξ6

+7.75000000000000000000000000000iξ9−20.6438292905212171438007855155ξ12

−67.5066068073454771471035348196iξ15+233.347926388436938426879094509ξ18

+845.865771390416192186499791683iξ21−3168.44499021745756976755618573ξ24

+O
(
ξ30
)
. (6.3)

We use these results in the next section to verify our analytic expressions.
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Figure 8. Real and imaginary part of the scaling dimension of the nine lowest lying states with

J = 3. The curve that starts at ∆(0) = 3 corresponds to the operator tr(φ31). The pair of states

that start at ∆(0) = 3 + 2k with k = 1, 2, 3, 4 correspond to the operators of the form (1.2) (or

rather to their linear combinations diagonalizing the dilatation operator).

7 Weak coupling solution

In this section, we describe the method for finding analytical solutions to the Baxter equa-

tion (4.20) with quantization condition (5.24) at weak coupling. We keep the presentation

short since it goes along the same lines as in [23, 32].

7.1 Perturbative solution of the Baxter equation

At the first step we have to find two linearly independent solutions to the Baxter equa-

tion (4.20) with the parameter m satisfying (5.26). At weak coupling, the solutions to (4.20)

can be constructed perturbatively in powers of m. To lowest order, for m = 0 and L ≡ ∆(0)

an odd integer, the Baxter equation (4.20) reduces to that for the SL(2) spin chain of length

2. As such, it has a solution (4.17) which for odd L reduces to a polynomial. The second

solution then can be deduced from the Wronskian relation (5.15). It is a meromorphic

function of u with the second-order poles located in the lower half-plane

qI = P(L−1)/2(u) , qII = P(L−1)/2(u)η2(u) +Q(L−3)/2(u) , (7.1)
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where Pn and Qn are polynomials of degree n and the notation was introduced for the

special function ηs1,...,sk(u) with an appropriate pole structure12 [34]

ηs1,...,sk(u) =
∑

n1>n2>···>nk≥0

1

(u+ in1)s1 . . . (u+ ink)sk
. (7.2)

In this way we find that the solutions to (4.20) satisfying (5.1) are given to the leading

order in m = iξ3 by

L = 3 : qI = u , qII = 1 ,

L = 5 : qI = u2 , qII = u2η2(u) + iu− 1

2
, (7.3)

L = 7 : qI = u3 , qII = u3η2(u) + iu2 − u

2
− i

6
.

To incorporate corrections in m, we use the ansatz ∆ = L +
∑

km
k∆(k) and look for

solutions to (4.20) in the form qI(u) + δqI(u) with δqI(u) = c1(u)qI(u) + c2(u)qII(u) and

similar for qII(u)+δqII(u). This leads to the system of first-order finite difference equations

for the coefficient functions c1(u) and c2(u) which can be solved order-by-order in m in

terms of the functions (7.2) with polynomial coefficients.

Let us consider the state with L = 3. Numerical solution (6.2) suggests that corrections

to ∆ run in powers of m2 = −ξ6. Using the ansatz

∆ = 3−m2δ +O(m4) , (7.4)

we compute corrections to the solutions (7.3)

qI = u− im (η1 − η2u) +m2

(
−η1,2 + η2,1 + uη1,3 − uη2,2 −

iδ

2
+

1

2
iη1uδ +

uδ

2

)
(7.5)

− 1

2
im3 (−2η1,2,2 + 2η1,3,1 + 2η2,1,2 − 2η2,2,1 − iuη2,1δ + 2uη1,2,3 − 2uη1,3,2 − 2uη2,1,3

+ 2uη2,2,2 + 2η1δ − 2η2uδ) +O
(
m4
)
,

qII = 1− im (η2 − η3u) +m2

(
−η2,2 + η3,1 + uη2,3 − uη3,2 −

1

2
iη1δ +

1

2
iη2uδ

)
(7.6)

− 1

2
im3 (−iδη1,2 − 2η2,2,2 + 2η2,3,1 + 2η3,1,2 − 2η3,2,1 + iδuη1,3 − iδuη3,1 + 2uη2,2,3

−2uη2,3,2 − 2uη3,1,3 + 2uη3,2,2 + δη2 − δη3u) +O
(
m4
)
.

At the next stage we have to find particular linear combinations of these functions, q2(u)

and q4(u), which have the correct asymptotic behavior (5.2) at infinity.

As follows from (5.2), the leading correction to q2(u) and q4(u) at large u should scale

as δq2 = −1
2(m2δ)u lnu and δq4 = 1

2(m2δ) lnu, respectively. Expanding qI(u) and qII(u)

12The sum is divergent when s1 = 1. The divergent part does not depend on u and can be regularized

so that η1(u) = iψ(−iu) and η1,s(u) = η1(u)ηs(u) − ηs+1(u) − ηs,1(u). More complicated η1s2,...,s3 can be

obtained recursively as explained in [34].
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at large u and matching the coefficients we find that solutions to the Baxter equation

satisfying (5.2) are given by

q2(u,m) =

(
1− 1

4
i(π − 2i)m2δ

)
qI(u) +

(
− 1

mδ
+

1

4
i(π + 2i)m+

1

4
im2δ

)
qII(u) ,

q4(u,m) =

(
1 +

1

4
i(π + 2i)m2δ

)
qII(u) . (7.7)

To analyze the quantization condition (5.24), we have to evaluate these expressions at the

origin. Making use of the identity

ηs1,s2,...,sk(i) = (−i)s1+s2+···+skζs1,s2,...,sk ,

as well as relations between the multiple zeta values, e.g. ζ2,2,2 = π6/5040, we arrive at

q2(0) =− 1

mδ
− iζ2

δ
+m

(
ζ2,2

δ
− ζ3,1

δ
− ζ̃1

2
+
iπ

4
− 1

2

)
+
im2

4δ

(
4ζ2,2,2−4ζ2,3,1 (7.8)

−4ζ3,1,2+4ζ3,2,1+δ2+(iπζ2−4ζ2+2ζ3−2ζ̃1,2+4ζ2,1)δ

)
+O

(
m3
)
,

q4(0) = 1+iζ2m+m2

(
−ζ2,2+ζ3,1−

ζ̃1δ

2
+
iπδ

4
− δ

2

)
(7.9)

+
1

4
m3
(
−4iζ2,2,2+4iζ2,3,1+4iζ3,1,2−4iζ3,2,1−(πζ2+2iζ3+2iζ̃1,2)δ

)
+O

(
m4
)
,

where in our conventions ζ̃1 = iη1(i) = γ is the Euler constant and ζ̃1,2 = i3η1,2(i) =
γπ2

6 − 2ζ3. We use these relations to find

q2(0,m)q4(0,−m) + q4(0,m)q2(0,−m) =
1

2
im2(δ + 12ζ3) +O

(
m3
)
. (7.10)

The quantization condition (5.24) yields δ = −12ζ3 and, together with (7.4), fixes the

dependence of the scaling dimension on the coupling constant.

With a help of Mathematica we pushed the calculation of (7.4) up to the order m12

and arrived at the weak coupling expansion of ∆(ξ) given by (1.7) in the Introduction.

The above analysis can be repeated for the states with L = 5, 7, 9. We present below

the results for weak coupling expansion of scaling dimensions of these states.

States with L = 5. Solving the quantization conditions (5.24), we found two states

with ∆ = 5 at zero coupling. In distinction from (7.4), their scaling dimensions at weak

coupling run in powers of m, or equivalently in powers of iξ3, and are complex conjugated

to each other:

∆5,A = 5−2iξ3+3ξ6+
31iξ9

4
+ξ12

(
3ζ3−

97

4

)
+iξ15

(
27ζ3

2
− 5359

64

)
+ξ18

(
−219ζ3

4
− 15ζ5

2
+

4911

16

)
∆5,B = 5+2iξ3+3ξ6− 31iξ9

4
+ξ12

(
3ζ3−

97

4

)
−iξ15

(
27ζ3

2
− 5359

64

)
+ξ18

(
−219ζ3

4
− 15ζ5

2
+

4911

16

)
(7.11)
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States with L = 7. As in the previous case, we found two states. Similar to the state

with L = 3, their scaling dimensions are real at weak coupling and have an expansion in

powers of ξ6

∆7,A = 7− ξ6

2
− 17ξ12

64
− 891ξ18

4096
− 27465ξ24

131072
,

∆7,B = 7 +
ξ6

2
− 23ξ12

64
+ ξ18

(
15283

36864
− ζ3

12

)
+ ξ24

(
65ζ3

384
− 678575

1179648

)
. (7.12)

State with L = 9. We found two states and their properties are similar to those of

L = 5 states

∆9,A = 9− iξ
3

3
+

7ξ6

216
− 223iξ9

10368
+ξ12

(
ζ3

432
+

17029

1119744

)
+iξ15

(
1424867

214990848
− 31ζ3

31104

)
,

∆9,B = 9+
iξ3

3
+

7ξ6

216
+

223iξ9

10368
+ξ12

(
ζ3

432
+

17029

1119744

)
−iξ15

(
1424867

214990848
− 31ζ3

31104

)
. (7.13)

We verified that these relations are in perfect agreement with the numerical consideration

at weak coupling. The strong coupling expansion of the scaling dimensions is discussed in

section 8.

7.2 Logarithmic multiplet

As was mentioned above, the scaling dimensions of operators with bare dimension ∆(0) =

5, 9, . . . have expansion in powers of ξ3 and not in powers of ξ6 as it happens for operators

with bare dimension ∆(0) = 3, 7, . . . . In this section we show that this property reflects

a very unusual feature of bi-scalar χFT4 theory first noticed by Joao Caetano [22]: the

operators with ∆(0) = 5, 9, . . . behave as conformal primary operators in a logarithmic

four-dimensional conformal field theory.

To simplify the consideration, we examine the simplest case of operators with bare

dimension ∆(0) = 5 and the R−charge J = 3. As was mentioned in the Introduction,

such operators can be obtained from tr(φ3
1) operator by inserting a pair of scalar fields

φ2 and φ†2 inside the trace and by dressing scalar fields with derivatives, tr(φ2
1�φ1) and

tr(φ1∂
µφ1∂µφ1). In the latter case, we can use the equations of motion in the theory (1.1) to

show that the operators with derivatives can be expressed in terms of the former operators

as well as the conformal descendant operator �tr(φ3
1). This allows us to define the basis of

dimension−5 operators

O1 = tr(φ3
1φ2φ

†
2) , O2 = tr(φ2

1φ2φ1φ
†
2) , O3 = tr(φ1φ2φ

2
1φ
†
2) , O4 = tr(φ2φ

3
1φ
†
2) . (7.14)

At quantum level, these operators mix with each other and their anomalous dimensions

can be found by diagonalizing the corresponding mixing matrix Vij

µ
d

dµ
Oi(x) = −VijOj(x) , (7.15)

where µ is an ultraviolet cut-off and the matrix elements Vij describe the mixing Oi → Oj .
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Figure 9. Mixing of O3 = tr(φ†2φ1φ2φ
2
1) with the operators O4 and O2 to the lowest order in the

coupling. Three diagrams correspond to three transitions defined in (7.16). Solid line denotes field

φ1, dashed line represents φ2 and φ†2 depending on the direction of the arrow.

To the lowest order in the coupling, the quartic scalar interaction vertex in (1.1) induces

the following transitions

φ1φ2 → φ2φ1 , φ†2φ1 → φ1φ
†
2 , φ†2φ1φ2 → φ1 → φ2φ1φ

†
2 . (7.16)

The corresponding Feynman diagrams are shown in figure 9. Applying these rules we find

that the operators (7.14) mix as follows

O1 → 2O2 , O2 → 2O3 , O3 → 2O4 +O2 , (7.17)

where the factor of 2 is due to the fact that the first two transitions in (7.16) yield the

same operator. The last transition in (7.16) produces the additional mixing between the

operators O3 and O2. Notice that the operator O4 is not affected by the transitions (7.16).

As follows from (7.17), the mixing matrix for the operators (7.14) takes the following

form to leading order in ξ2

V =


0 2ξ2γ1 O(ξ4) O(ξ6)

0 0 2ξ2γ1 O(ξ4)

0 ξ4γ2 0 2ξ2γ1

0 0 0 0

 . (7.18)

Here ξ2γ1 and ξ4γ2 describe the first two and the last transitions in (7.16), respectively.

The terms appearing as O(ξ4) and O(ξ6) in the matrix do not contribute to anomalous

dimensions so we ignore them in what follows. Using the dimensional regularization with

D = 4 − 2ε, we can find them as the residue at a simple pole 1/ε of diagrams shown in

figure 9

γ1 = −2 , γ2 = 1 . (7.19)

Notice that γ1 and γ2 have an opposite sign.

The mixing matrix (7.18) has a number of unusual properties. In unitarity conformal

field theory this matrix has to be Hermitian. Since χFT4 theory is not unitary, the

matrix (7.18) does not have this property. This implies that its eigenvalues are, in general,

complex valued functions of the coupling ξ. Indeed, the scaling dimensions (7.11) develop

imaginary part at weak coupling.
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Secondly, the matrix (7.18) has rank 3 and it can be brought to the Jordan canonical

form by a similarity transformation

V = g−1Jg , J =


0 −1 0 0

0 0 0 0

0 0 2iξ3 0

0 0 0 −2iξ3

 , g =


ξ2 0 4 0

0 0 0 16ξ2

0 ξ2 2iξ −4

0 ξ2 −2iξ −4

 . (7.20)

If the matrix J were diagonalizable, its eigenspectrum would define four different conformal

operators. Since J contains 2×2 Jordan block, the situation is more complex. Namely, we

can use the lower diagonal 2 × 2 block of the matrix J to define two conformal operators

ξ2O2 ∓ 2iξO3 − 4O4 with the anomalous dimension

γ± = ±2i ξ3 +O(ξ6) . (7.21)

Notice that this expression scales as O(ξ3), in agreement with (7.11).

The Jordan block of J describes the mixing matrix for the pair of the operators 16O4

and O1 + 4O3/ξ
2 that we denote as A and B. The form of this block is fixed by the

interaction term in (1.1) and is protected from quantum corrections. The pair of the

operators A and B belongs to the same conformal multiplet with the conformal weight

∆ = 5, a phenomenon typical for logarithmic conformal field theories [35]. To show this,

we define the set of operators conjugated to (7.14)

Ō1 = tr((φ†1)3φ†2φ2) , Ō2 = tr((φ†1)2φ†2φ
†
1φ2) ,

Ō3 = tr(φ†1φ
†
2(φ†1)2φ2) , Ō4 = tr(φ†2(φ†1)3φ2) , (7.22)

so that Ōi(x) = O†5−i(x) with i = 1, . . . , 4. The reason why we label these operators in

such a way is that they satisfy the same evolution equation (7.15) as operators Oi with the

mixing matrix given by (7.18). As a consequence, two of the operators have the anomalous

dimension (7.21) and the two remaining ones Ā = 16Ō4 and B̄ = Ō1 + 4Ō3/ξ
2 have a

mixing matrix given by 2 × 2 Jordan cell. Computing the correlation functions of the

operators A(x), B(x) and Ā(0), B̄(0) we find

〈A(x)Ā(0)〉 = 0 , 〈B(x)B̄(0)〉 = c
ln(x2µ2)

(x2)5
,

〈A(x)B̄(0)〉 =
c

(x2)5
, 〈B(x)Ā(0)〉 =

c

(x2)5
, (7.23)

where c is the normalization factor. Here 〈A(x)B̄(0)〉 ∼ 〈O4(x)Ō1(0)〉 = 〈O4(x)O†4(0)〉 is

given by the product of five scalar propagators. At the same time, the correlation function

〈A(x)Ā(0)〉 ∼ 〈O4(x)Ō4(0)〉 vanishes since, due to different ordering of scalar fields in the

operators O4 and Ō4, the same product of scalar propagators is accompanied by a nonplanar

color factor. The correlation function 〈B(x)B̄(0)〉 receives a logarithmically enhanced

correction coming from the transition O3 → O4 (see the first two diagrams in figure 9)

and from similar transition Ō3 → Ō4. It is easy to verify that the relations (7.23) are in

agreement with the evolution equation (7.15). They coincide with analogous expressions

for two-point correlation functions in a logarithmic conformal field theory [35].
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It is straightforward to extend the above analysis to higher orders in the coupling. We

can use the transitions (7.16) to generate higher order Feynman diagrams. Starting from

order O(ξ6) a new transition appears. To see this we notice that the rightmost diagram in

figure 9 has an intermediate state of three scalar fields φ1. In a close analogy with tr(φ3
1)

operator, we can dress this state by an arbitrary number of wheel graphs. Such graphs

provide higher order contribution to the transition O3 → O2 and modify the eigenvalues of

the mixing matrix.

8 Strong coupling expansion

In this section, we study the properties of scaling dimensions of the operators in bi-scalar

χFT4 theory (1.1) at strong coupling ξ � 1. The numerical results shown in figure 8

suggest that the scaling dimensions exhibit remarkable regularity at strong coupling and

fall into two different groups. The first group consists of functions ∆(ξ) that start at zero

coupling at ∆(0) = 3, 7, 11, . . . and behave at strong coupling as

∆(ξ) = 2 + id(ξ) , with d(ξ) ∼ ξ3/2. (8.1)

The second group consists of functions that start at ∆(0) = 5, 9, 13, . . . , take complex

values for ξ 6= 0 and scale at strong coupling as ∆(ξ) ∼ ξ. To explain these properties,

we solve the Baxter equation (4.20) with quantization conditions (5.24) at strong coupling

using semiclassical methods.

We remind that in planar N = 4 SYM theory the scaling dimensions of operators are

identified through the AdS/CFT correspondence with energies of classical strings on the

AdS5 × S5 background. The analysis in this section suggests that asymptotic behavior of

the scaling dimensions in strongly coupled bi-scalar χFT4 theory is described by a classical

integrable conformal spin chain with a finite number of non-compact spins. We postpone

its detailed exploration to a future publication.

8.1 Baxter equation at strong coupling

Our strategy in this section is to solve the Baxter equation (4.20) and, then, use the

quantization conditions (5.24) and (5.26) to find ∆(ξ) at large ξ.

It is convenient to change variables u = iv and introduce notation for

q(v) ≡ q2(iv)/i
∆−1

2 , q̄(v) ≡ q4(iv)/i
3−∆

2 . (8.2)

By definition, these functions have third-order poles at negative integer v and for large

positive v they behave as

q(v) = v
∆−1

2 (1 +O(1/v)) , q̄(v) = v
3−∆

2 (1 +O(1/v)) . (8.3)

In addition, they satisfy the Baxter equation

q(v + 1) + q(v − 1) = t(v) q(v) , (8.4)
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where the notation is introduced for

t(v) = 2− ξ2d

v2
+
ξ3

v3
, d = −(∆− 2)2 − 1

4ξ2
. (8.5)

Here we used (5.26) to replace m = iξ3. As we show below, the scaling dimensions are real

functions of m and, therefore, the second solution m = −iξ3 leads to a complex conjugated

expression for ∆. To find the function ∆(ξ) for ξ � 1 we have to solve the quantization

condition (5.24) that takes the form

F (v) = q(v, ξ)q̄(v,−ξ) + q̄(v, ξ)q(v,−ξ)→ 0 , for v → 0 , (8.6)

where q(v, ξ) and q̄(v, ξ) denote solutions to (8.3) and (8.4).

To apply the quantization condition (8.6) we have to construct solutions to (8.4) for

small v and ξ � 1. This will be done in two steps. First, we solve (8.4) for large positive

v such that v = O(ξ). The solutions are fixed uniquely by the condition for q(v, ξ) and

q̄(v, ξ) to satisfy (8.3) for v � ξ. At the second step, we construct solutions to (8.4) for

fixed v and ξ → ∞ and require that the two sets of solutions can be sewed together in

the transition region v � ξ. In this way, we obtain the functions q(v, ξ) and q̄(v, ξ) which

satisfy the Baxter equation (8.4) for arbitrary v and have asymptotic behavior (8.3).

8.2 Shortcut to the solution

In this subsection, we present a shortcut to finding the exact solution to (8.6). For this

purpose, we concentrate on the states that start at zero coupling at ∆(0) = 3, 7, 11, . . . (the

remaining states will be discussed in section 8.6). As mentioned above, at strong coupling

their scaling dimensions scale as (8.1) with a real valued function d(ξ) depending on the

state. We introduce integer positive N to count different functions d(ξ) in the order in

which the corresponding functions ∆(ξ) approach the plane Re ∆(ξ) = 2 (see figure 8), i.e.

N = 1 for ∆(0) = 3 state, N = 2, 3 for ∆(0) = 7 states, N = 4, 5 for ∆(0) = 11 states and

so on.

It is convenient to invert the dependence d = d(ξ) and introduce the function

ξ3 = d2ϕ(d) . (8.7)

We expect from (8.1) that ϕ(d) should approach a constant value for d→∞ and look for

its general expression in the form

ϕ(d) = ϕ0 +
1

d2
ϕ1 +

1

d4
ϕ2 + . . . , (8.8)

where expansion runs in even powers of 1/d.

At large v the solutions to the Baxter equation (8.4) can be constructed as a formal

series in 1/v. The leading term of the expansion is given by (8.3), e.g.

q(v) = v
1+i d

2

[
1 +

1

v
q1 +

1

v2
q2 + . . .

]
(8.9)
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and similar for q̄(v). The coefficients q1, q2, . . . can be found by plugging the expansion

into (8.4) and matching the coefficients in front of different powers of 1/v. They are given

by rational functions in d and have a power-like behavior at large d.

Let us now examine the same combination of the q and q̄ functions that enters into

the quantization condition (8.6)

F (v) = q(v, ξ)q̄(v,−ξ) + q̄(v, ξ)q(v,−ξ) = 2v +
1

v
F1 +

1

v3
F3 +O(1/v5) . (8.10)

Due to the symmetry of the Baxter equation (8.4) under v → −v and ξ → −ξ, the expansion

runs in odd powers of v. At large d the first few expansion coefficients are given by

F1 = −d
2

16
(8ϕ0 − 1) (8ϕ0 + 1) +

1

8

(
128ϕ2

0 − 64ϕ1ϕ0 + 1
)

+ . . . ,

F3 =
d4

3072
(8ϕ0 − 3) (8ϕ0 − 1) (8ϕ0 + 1) (8ϕ0 + 3)

+
d2

384

(
−10240ϕ4

0 + 2048ϕ1ϕ
3
0 + 224ϕ2

0 − 160ϕ1ϕ0 − 3
)

+ . . . , (8.11)

where dots denote terms suppressed by powers of 1/d2. Notice that F1, F2, . . . scale at large

d as Fk ∼ dk+1 and the coefficients in front of powers of d are invariant under ϕi → −ϕi.
We would like to emphasize that the relation (8.10) holds at large v whereas in order

to solve the quantization condition (8.6) we need to know the function F (v) for small v.

One may try to resum the series in (8.10) and analytically continue it to small v. As we

show below, this proves to be a nontrivial task since the function F (v) has complicated

analytical properties along the positive v−axis. Instead of following this route, we use (8.10)

and impose the following additional condition: for large but fixed v and d → ∞ the

function (8.10) should scale as

F (v) = O
(
dN−1

)
, (8.12)

with N = 1, 3, 5 . . . . As we will see in a moment, this condition fixes unambiguously the

coefficients of the expansion (8.8) and yields a prediction for the function d(ξ) in (8.1),

which is in a perfect agreement with the numerical results shown in figure 10. However

it is not obvious a priori why the relation (8.12) is equivalent to the exact quantization

condition (8.6). We clarify this issue in section 8.3.

Let us examine the relation (8.12) for a few values of N .

8.2.1 States with odd N

For N = 1 we find from (8.11) that the condition F1 = O(d0) implies the vanishing of O(d2)

term. In the similar manner, the condition F3 = O(d0) translates into the vanishing of

O(d4) and O(d2) terms. This fixes the values of the coefficients ϕ0 = ±1/8 and ϕ1 = ∓1/8.

It is quite nontrivial that the same procedure can be applied to higher Fk since the number

of terms to cancel grows with k and the system of equations for the ϕ−coefficients become

overdetermined. We checked explicitly up to F23 term that this system has two solutions
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Figure 10. Scaling of |∆− 2| at large ξ for several states.

for (8.8)

ϕN=1(d) =
1

8
− 1

8d2−
7

4d4−
169

4d6−
3511

2d8 −
209057

2d10 −
33305757

4d12 − 3413828955

4d14 − 438519141555

4d16

− 69161788659565

4d18 − 13165550516521529

4d20 − 2980425673116579991

4d22 +O
(

1

d24

)
, (8.13)

and the second one that differs by the sign. Substituting these expressions into (8.11) we

verify that the function (8.10) has the expected asymptotic behavior (8.12). Moreover, its

expansion simplifies significantly and can be easily resummed

FN=1(v) = 2v +
1

2v
+

1

8v3
+

1

32v5
+

1

128v7
+

1

512v9
+ · · · = 8v3

4v2 − 1
+O

(
1

d2

)
. (8.14)

The relations (8.7) and (8.13) fix the dependence d = d(ξ) for N = 1. As can be seen from

figure 11, the resulting function dN=1(ξ) is in agreement with the numerical results for the

state with ∆(0) = 3.

For N = 3 the relation (8.12) does not lead to any condition for F1 in (8.11) but

requires the vanishing of the O(d4) term in F3. This gives a new solution with ϕ0 = ±3/8.

As in the previous case, the condition Fk = O(d2) for k = 5, 7, . . . allows us to determine

high ϕ−coefficients leading to

ϕN=3(d) =
3

8
− 51

8d2
− 837

4d4
− 81675

4d6
− 5872365

2d8
− 1075210659

2d10
− 470669185863

4d12
(8.15)

− 119219450547393

4d14
− 34321640048050473

4d16
− 11112335132337334359

4d18
+O

(
1

d21

)
and to the second solution that differs by the sign. For these values of the coefficients, we
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Figure 11. Comparison of the numerical values for ±|∆− 2| (solid green line) for the state with

∆(0) = 3 with the large ξ expansion (8.7) and (8.13) (dotted black line). The lines almost coincide

for up to very small values of ξ.

get a simple expression for the function (8.10) and (8.11)

FN=3(v) = −d
2

2v
− 5d2

4v3
− 91d2

32v5
− 205d2

32v7
− 7381d2

512v9
− 33215d2

1024v11
− 597871d2

8192v13
+ . . .

= − 8d2v3

(4v2 − 1) (4v2 − 9)
+O

(
d0
)
. (8.16)

We verified that the function dN=3(ξ) defined by (8.7) and (8.15) is in agreement with the

numerical value for |∆− 2| for one of the two states with ∆(0) = 7.

For N = 5 going along the same lines as before we find from (8.12)

ϕN=5(d) =
5

8
− 245

8d2
− 9875

4d4
− 2244125

4d6
− 358818875

2d8
− 140748665125

2d10
− 127555155602625

4d12

− 64666557386856375

4d14
− 35994292566223479375

4d16
+O

(
1

d18

)
.

FN=5(v) =
8d4v3

(4v2−1)(4v2−9)(4v2−25)
+O

(
d0
)
. (8.17)

These expressions correctly describe numerical values of |∆ − 2| for one of the two states

with ∆(0) = 11. The same pattern persists to higher odd N and ∆(0).

8.2.2 States with even N

So far we demonstrated that the relation (8.12) describes half of the states with odd

∆(0) ≥ 5. The question arises of how to get the remaining states corresponding to even

N = 2, 4, . . . . In an analogy with (8.10) and (8.12), we expect that they should satisfy

the condition

F−(v) = O(dN−1) . (8.18)
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For N even, large d asymptotics of this function should contain odd powers of d only

and, therefore, F−(v) should change the sign under d→ −d. Notice that the same trans-

formation exchanges the two solutions to the Baxter equation q(v, ξ) and q̄(v, ξ). The

function (8.10) is obviously invariant under q(v, ξ) ↔ q̄(v, ξ) and, as a consequence, its

coefficients (8.11) are even functions of d. To get a parity odd function, it is sufficient to

flip the sign in (8.10)

F−(v) = i [q(v, ξ)q̄(v,−ξ)− q̄(v, ξ)q(v,−ξ)] . (8.19)

Its expansion at large v looks as

F−(v) =
4dϕ0

v
− d3ϕ0 (4ϕ0 − 1) (4ϕ0 + 1)

6v2

+
d5ϕ0 (2ϕ0 − 1) (2ϕ0 + 1) (4ϕ0 − 1) (4ϕ0 + 1)

120v4

−
d3
(
2240ϕ5

0 − 320ϕ1ϕ
4
0 − 148ϕ3

0 + 60ϕ1ϕ
2
0 + 11ϕ0 − ϕ1

)
120v4

+ . . . (8.20)

where dots denote terms suppressed by powers of 1/v2 and 1/d2.

We find that for N = 2 and N = 4 the conditions F−(v) = O(d) and F−(v) = O(d3),

respectively, lead to the system of equations for the ϕ−coefficients whose solutions are

ϕN=2(d) =
1

4
− 7

4d2
− 32

d4
− 1760

d6
− 148000

d8
− 16426208

d10
− 2260059168

d12
− 373366588128

d14

− 72726695282208

d16
− 16512196163543264

d18
+O

(
1

d21

)
,

ϕN=4(d) =
1

2
− 31

2d2
− 832

d4
− 128704

d6
− 28565312

d8
− 7898593984

d10
− 2557811948352

d12

− 938971375124160

d14
− 383507398659888960

d16
+O

(
1

d19

)
, (8.21)

plus the same functions with the signed flipped. Substituting these expressions into (8.7)

we verified that the resulting expressions for dN=2(ξ) and dN=4(ξ) agree with the numerical

values of scaling dimensions of the states with ∆(0) = 7 and ∆(0) = 11.

Evaluating the function (8.19) for the solutions (8.21) we obtain

F−N=2(v) =
dv3

(v + 1)v(v − 1)
+O(1/d2) ,

F−N=4(v) = − d3v3

4(v + 2)(v + 1)v(v − 1)(v − 2)
+O(d) . (8.22)

These expressions have a simple form suggesting a generalization to arbitrary N (see

eq. (8.26) below).
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8.2.3 Summary of the results

Examining the expressions for the functions ϕN = ξ3/d2 with odd and even N found above

we notice that they are described by the following universal formula

ξ3

d2
=
N

8
−
N
(
2N2 − 1

)
8d2

−
N3
(
3N2 + 4

)
4d4

+
−6N7 − 117N5

4 − 7N3

d6
(8.23)

−
N3
(
255N6 + 2664N4 + 3651N2 + 452

)
4d8

−
N3
(
3150N8 + 57315N6 + 195552N4 + 149205N2 + 12892

)
4d10

+O
(

1

d11

)
,

where only odd powers of N appear. Inverting this series we can find the function d(ξ) =

|∆(ξ) − 2|. We depicted this function for various states on figure 10. It is convenient

however to examine the following combination that enters into the Baxter equation (8.5)

d ≡ −(∆− 3)(∆− 1)

4ξ2
=
d2 + 1

4ξ2
. (8.24)

We obtain that at strong coupling it is given by

d =
2ξ

N
+
N2

2ξ2
+
N3
(
3N2 + 4

)
16ξ5

+
N4
(
9N4 + 56N2 + 16

)
64ξ8

(8.25)

+
N5
(
153N6 + 2200N4 + 3728N2 + 512

)
1024ξ11

+
N6
(
195N8 + 5096N6 + 22176N4 + 19584N2 + 1792

)
1024ξ14

+O

(
1

ξ17

)
.

We expect that this relation holds for all states with ∆(0) = 3 + 4n for n = 0, 1, 2, . . . . For

each given n > 0 it describes two states with N = 2n and N = 2n+ 1. In the next section

we will see an independent confirmation for this statement.

Finally, the function FN (v) is given for general N by

FN (v) ∼ dN−1 v
3 Γ(v −N/2)

Γ(1 + v +N/2)
×
(
1 +O(1/d2)

)
. (8.26)

We would like to emphasize that this relation was derived at v � 1 and it cannot hold

for small v. Indeed, according to its definition, eqs. (8.10) and (8.19) for odd and even

N , respectively, the function FN (v) is built out of solutions to the Baxter equation which

are analytic for positive v and have poles at negative integer v. As a consequence, FN (v)

cannot have poles at positive v.

8.3 Asymptotic regime

In this and in the following subsections we justify the quantization conditions (8.12)

and (8.18). Following the outline described in section 8.1, we shall examine the Baxter

equation (8.4) in two regimes corresponding to different range of the parameters, 1 � v � ξ

and v = O(ξ). In what follows we refer to them as to asymptotic and quasiclassical regimes,

correspondingly.
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The asymptotic regime corresponds to the limit in which transfer matrix t(v) defined

in (8.5) is large,

t(v) = 2 +
d2ϕ(d)

v3
− d2 + 1

4v2
≡ 2(v − λ+)(v − λ−)(v − λ0)

v3
. (8.27)

Here in the second relation we introduced the notations for the roots of t(v). At large d we

find that two of the roots are large, λ± ∼ ±d/(2
√

2), and the remaining one λ0 = 4ϕ(d)

stays finite in the large d limit. As a consequence, the condition |t(v)| � 1 is verified for

4ϕ(d) < v � d/(2
√

2) . (8.28)

In this regime, we can distinguish two solutions to (8.4), q+(v) and q−(v), such that q+(v)�
q+(v + 1) and q−(v)� q−(v + 1). In the leading large d limit they satisfy

q+(v) ' q+(v − 1)

t(v)
, q−(v + 1) ' q−(v)t(v) , (8.29)

with v satisfying (8.28).

Having constructed the solutions q+(v) and q−(v) at large v, we use (8.29) to continue

them to finite v. Since t(v) ∼ d2 for v = O(d0) the solution q+(v) becomes exponentially

large when approaching the lower bound in (8.28), q+(v) ∼ d+αd with some α ∼ 1. In the

similar manner, q−(v) becomes exponentially small q−(v) ∼ d−αd−1 in the same limit.13 To

build the solutions satisfying (8.29) explicitly we write them in terms of the well-defined

and uniquely fixed q(v) and q̄(v) in the following way

q+(v) ≡ q(v) + q̄(v) ,

q−(v) ≡
(
q(v)− q0

q+,0
q+(v)

)
1

i
=
q̄0q(v)− q0q̄(v)

q0 + q̄0

1

i
, (8.30)

where we used notations for q0 = q(0), q̄0 = q̄(0) and q+,0 = q+(0). Indeed, generically

each of the two independent solutions q(v) and q̄(v) will contain both q+ and q−. As q+ is

defined up to an arbitrary addition of q− we use this freedom to define q+ as in the first

line above. Next, to extract q− from, say, q(v) we have to project out the growing part

q+(v), i.e. we have to find some coefficient α such that q(v)− αq+(v) is not exponentially

large at v ∼ 1. This can be done simply by requiring the difference to vanish at v = 0.14

Inverting the above relations can now write q(v) and q̄(v) in terms of the solutions

to (8.29)

q(v) =
q0

q0 + q̄0
q+(v) + iq−(v) ,

q̄(v) =
q̄0

q0 + q̄0
q+(v)− iq−(v) . (8.31)

By construction, these expressions are dominated for v = O(d0) by the first term. We

recall that q(v) and q̄(v) satisfy Wronskian relation q(v + 1)q̄(v)− q̄(v + 1)q(v) = i d, (see

13we use the term “exponentially” in the sense faster-than-any-power grows/decay.
14Alternatively one can set it to zero at any other v ∼ 1, this will change the definition of q− by adding

to it q+ with an exponentially small coefficient.
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eq. (5.15)). Applying (8.31) and taking into account (8.29) we find that it leads to the

following relation for q−(v) and q+(v)

q−(v)q+(v) =
d

t(v)− 1/t(v + 1)
∼ d

t(v)
. (8.32)

For v = O(d0) the expression on the right-hand side scales as O(1/d), in agreement with

the expected asymptotic behavior q+(v) ∼ d+αd and q−(v) ∼ d−αd−1.

Let us now examine the function F (v) defined in (8.10). Replacing the functions q(v)

and q̄(v) by their expressions (8.31) we find

F (v) =

(
q̇0q̄0+q0 ˙̄q0

)
(q̄0+q0)

(
˙̄q0+q̇0

)q+(v)q̇+(v)− i(q0−q̄0)

q̄0+q0
q̇−(v)q+(v)+

i
(

˙̄q0−q̇0
)

˙̄q0+q̇0
q−(v)q̇+(v)+2q−(v)q̇−(v) ,

(8.33)

where q̇±(v) stands for the functions q±(v) with ϕ(d) → −ϕ(d). By construction, this

relation holds for v inside the region (8.28). For v = O(d0) the four terms on the right-hand

side of (8.33) have different scaling behavior at large d: the first term grows exponentially,

the last term decreases exponentially whereas the two terms in the middle have a power-like

behavior. We notice however that the first term in (8.33) involves the same combination

q̇0q̄0 + q0 ˙̄q0 that enters the exact quantization condition (5.24). In other words, for the

function d(ξ) satisfying the quantization condition (5.24) the first term in (8.33) vanishes

leading to a power-like scaling of the function F (v) at large d. Turning the logic around,

we find that the condition for the function F (v) do not have an exponential growth at large

d is equivalent to the quantization condition (5.24). As we demonstrated in the previous

subsection, the same condition fixes the function ϕ(d).

We can also make an additional consistency test of this observation. After canceling

the leading term in (8.33) we are left with the two finite terms which we can evaluate

explicitly. We can use (8.29) to get

q−(v)q̇+(v) = q−(v − 1)q̇+(v − 1)
t(v − 1)

ṫ(v)
= q−(v − 1)q̇+(v − 1)

v3

(v − 1)3

v − 1− 4ϕ

v + 4ϕ
.

(8.34)

Here in the second relation we replaced t(v) by its expression (8.27) and took into account

that ṫ(v) is given by the same expression (8.27) with the sign of all roots flipped. It

is then easy to see that the contribution of large roots λ± cancels in the ratio of the

transfer matrices and it only depends on the root λ0 = 4ϕ(d). Subsequenty applying (8.34)

we obtain

q−(v)q̇+(v) = c+
v3 Γ(v − 4ϕ)

Γ(1 + v + 4ϕ)
, (8.35)

where the normalization constant is related to the value of the same product at the lower

boundary of the region (8.28), c+ = q−(4ϕ)q̇+(4ϕ)/(4ϕ)3. Repeating the same calculation

for q̇−(v)q+(v) we get

q̇−(v)q+(v) = c−
v3 Γ(v + 4ϕ)

Γ(1 + v − 4ϕ)
. (8.36)
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The normalization constants c+ and c− are not independent. Taking the product of the

last two expressions and making use of (8.32) we obtain

c+c− =
d2v6(v + 4ϕ)(v − 4ϕ)

t(v)ṫ(v)
∼ 16

d2
. (8.37)

To find the dependence of c± on d, we can examine the relation (8.35) and (8.36) for v

close to the upper bound in (8.28) and match them into analogous expressions obtained in

the quasiclassical regime v = O(d). One can show that this leads to c+/c− = d16ϕ and, as

a consequence, for positive ϕ = O(d0) the contribution of (8.36) to F (v) is suppressed by

a power of 1/d as compared to that of (8.35). We observe that for ϕ = N/8 expression on

the right-hand side of (8.35) becomes a rational function of v. Its contribution to (8.33)

matches precisely the expression (8.26)! This provides the additional support to the results

presented in the previous subsection.

8.4 Quasiclassical regime

The Baxter equation (8.4) has an interesting scaling behavior for v = O(ξ). In this regime,

it is convenient to introduce a new variable x = v/ξ and look for solution to (8.4) in the

form of WKB expansion

q(v) = exp

(
ξ

∫ x

x0

dy p(y)dy

)
, v = xξ , (8.38)

where 1/ξ plays the role of Planck constant and the quasimomentum p(x) admits an ex-

pansion in powers of 1/ξ

p(x) = p0(x) +
1

ξ
p1(x) +

1

ξ2
p2(x) + . . . . (8.39)

The normalization of q(v) depends on the choice of x0.

Plugging the expansion (8.39) into the Baxter equation (8.4) and expanding both sides

in 1/ξ we obtain [36, 37]

ep0(x)+e−p0(x) = 2− d

x2
+

1

x3
,

p1(x) =−1

2
p′0(x)coth(p0(x)) , (8.40)

p2(x) =
1

12
p′′0(x)

(
3csch2(p0(x))+1

)
− 3

8
p′0(x)2 coth(p0(x))csch2(p0(x)) , . . .

Solving the first equation we find that ep0(x) is an analytic function on a complex x−plane

with two cuts running the between the branch points at which ep0(xi) = ±1. Introducing

the function

y2 = (4x3 − dx+ 1)(−dx+ 1) , (8.41)

we find that the branch points satisfy y(xi) = 0 leading to∏
i<k

(xi − xk)2 =
d3 − 27

16 d6
. (8.42)
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The position of the branch points depends on the value of d defined in (8.24). As follows

from the last relation, two of the branch points coincide for d→∞ and d3 = 27.

At large d, the branch points are located at x1 = −(d/4)1/2, x2 = 1/d, x3 = 1/d +

O(1/d4) and x4 = (d/4)1/2. It is convenient to choose the cuts of p0(x) to run along

intervals (−∞, x1], [x2, x3] and [x4,∞) on the real axis, so that the middle cut shrinks into

a point for d→∞. At large positive x we can define two branches of the quasimomentum

p0,±(x) = p0(x± i0) corresponding to its value above and below the cut, correspondently,

p0,±(x) = ± id

2xξ
+O(1/x2) , (8.43)

where we replaced (−d)1/2 = id/(2ξ) +O(1/d). Substituting this expression into (8.38) we

find that the corresponding solution to the Baxter equation scales at large v and d� 1 as

q(v) ∼ vid/2 and q̄(v) ∼ v−id/2, in agreement with (8.3).

Applying the above relations we can define the semiclassical solutions to the Baxter

equation q(xξ) and q̄(xξ) on the complex x−plane with the two cuts. We recall that

the quantization condition (8.6) involves another pair of solutions q̇(v) = q(v,−ξ) and
˙̄q(v) = q̄(v,−ξ). In the semiclassical approximation, they can be obtained from q(xξ) and

q̄(xξ) through the transformation x → −x and ξ → −ξ. The resulting expressions for

q̇(xξ) and ˙̄q(xξ) have analytical properties similar to those of q(xξ) and q̄(xξ) with the

only difference that their cuts run along intervals (−∞,−x4], [−x3,−x2] and [−x1,∞) on

the real axis. Since x1 = −x4 = (d/4)1/2 in the large d limit, the two sets of functions

share the same semi-infinite cuts whereas the two ‘short cuts’ are symmetric with respect

to the origin.

Let us consider the following ratio

F (v)

q̄(v)q̇(v)
=
q(v)

q̄(v)

˙̄q(v)

q̇(v)
+ 1 . (8.44)

The exact quantization condition (8.6) requires this function to vanish for v → 0. In the

previous subsection we demonstrated that this condition is equivalent to the requirement

for F (v) to have a power-like behavior (8.12) and (8.18) for v satisfying (8.28). As we

will see in a moment, in the quasiclassical regime, for v = O(ξ), the same quantization

condition follows from the requirement for (8.44) to be a single-valued function of v = xξ

on a complex x−plane with the cuts to be specified below. The advantage of considering

the ratio (8.44) is that it is independent on the choice of normalization of the solutions of

the Baxter equation, or equivalently, on the choice of the point x0 in (8.38) provided that

x0 is located away on the cuts.

In the quasiclassical regime, for v = xξ, the expression on the right-hand side of (8.44)

has two short cuts [−x3,−x2] and [x2, x3]. For the ratio (8.44) to be a single-valued

function on the x−plane, it should acquire the same value after going around each of

these cuts. Since ˙̄q(v)/q̇(v) is analytical on [x2, x3], the monodromy only comes from

q(v)/q̄(v). Using (8.38) we find that the above condition translates to the Bohr-Sommerfeld

quantization condition

exp

(
2ξ

∫ x3

x2

dx[p(x+ i0)− p(x− i0)]

)
= 1 , (8.45)
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or equivalently

ξ

∮
α
dx p(x) = iπ(N + 1) . (8.46)

Here the integration contour encircles the segment [x2, x3] and N is an arbitrary integer.

For the cut [−x3,−x2] we can get analogous relation by replacing y → −y and ξ → −ξ.
We show in the next subsection that, upon replacing the quasimomentum in (8.46) by its

explicit expression (8.39) and (8.40), the relation (8.46) allows us to obtain the dependence

of d on the coupling ξ.

We can use the semiclassical analysis to clarify two issues that were mentioned in

the previous subsections. We remind that in order to reproduce half of the states in

section 8.2.2, we had to flip the sign between the two terms in the exact quantization

condition (8.6) and impose the condition (8.19) instead. This can be understood as follows.

The relation (8.19) holds at large v and d and it should be applicable in the quasiclassical

regime for x = O(v/d) away from the cuts, that is for x3 < x < x4. Since the exact

quantization condition holds at v = 0 one may wonder whether the first term on the right-

hand side of (8.44) acquires a monodromy as v moves from v = 0 to large v across the

cut [x2, x3]. Indeed, q(v) and q̄(v) are given in this case by the same expression (8.38) in

which the integration goes slightly above and below the cut, respectively, so that the ratio

q(v)/q̄(v) generates the additional factor

exp

(
ξ

∫ x3

x2

dx[p(x+ i0)− p(x− i0)]

)
= eiπ(N+1) , (8.47)

which flips the sign for even N .

8.5 WKB expansion

In this subsection we solve the Bohr-Sommerfeld quantization (8.46) and show that the

resulting expression for d(ξ) coincides with (8.25). Examining (8.25) we find that the

function d(ξ) has an interesting scaling behavior for large ξ and N with their ratio N =

N/(2ξ) fixed

d =

(
1

N
+ 2N 2 + 6N 5 + 36N 8 + 306N 11 + 3120N 14 + . . .

)
(8.48)

+
1

ξ2

(
2N 3 + 56N 6 + 1100N 9 + 20384N 12 + . . .

)
+O

(
1

ξ4

)
.

Notice that the expansion runs in powers of 1/ξ2 with the coefficients being nontrivial

functions of N . We shall determine these functions exactly using (8.46).

Integrating by parts, we can rewrite (8.46) in the following equivalent form

a = − 1

2πi

∮
α
dxx p′(x) = N +

1

2ξ
, (8.49)
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where N = N/(2ξ) and the integration goes along the contour encircling the cut [x2, x3].

Replacing the quasimomentum with its expansion (8.39) in powers of 1/ξ we obtain anal-

ogous expansion for a

a = a0(q) +
a1(q)

ξ
+
a2(q)

ξ2
+ . . . . (8.50)

The first term of the expansion is given by

a0 = − 1

2πi

∮
α
dxx p′0(x) =

1

2πi

∮
α

dx(3− 2dx)√
(4x3 − dx+ 1)(−dx+ 1)

. (8.51)

The integral on the right-hand side has a simple interpretation in terms of a Riemann

surface defined by a complex (elliptic) curve (8.41). Namely, a0 is given by the period of

the ‘action’ differential over the α−cycle. For d → ∞, the α−cycle shrinks into a point

and the integrand develops a pole at x = 1/d. Expanding the integrand around this point

we can easily compute the integral by residues

a0 =
1

d
+

2

d4
+

18

d7
+

240

d10
+O

(
1

d13

)
=

1

d
3F2

(
1

3
,
1

2
,
2

3
; 1,

3

2
;

27

d3

)
, (8.52)

where the second relation was obtained from summing the series in 1/d and it holds

for d3 > 27.

For the second term in (8.50) we find

a1 =
1

2πi

∮
α
dx p1(x) = − 1

4πi

∮
α
d log sinh p0(x) =

1

2
, (8.53)

where the integral takes a universal form and its value does not depend on d. We observe

that the contribution of a1 to the left-hand side of (8.49) is given by 1/(2ξ) and it matches

an analogous term on the right-hand side.

For the third term in (8.50), a2 = − 1
2πi

∮
α dxx p

′
2(x), we find after some algebra a

compact representation in terms of hypergeometric functions

a2 =
2

d5
+

84

d8
+

2700

d11
+

80080

d14
+

2293200

d17
+

64465632

d20
+O

(
1

d23

)
=

2

d5

[
3F2

(
3

2
,

5

3
,

7

3
;

5

2
, 3;

27

d3

)
+

21

d3 3F2

(
5

2
,
8

3
,
10

3
;

7

2
, 4;

27

d3

)]
. (8.54)

As before, the second relation holds for d3 > 27.

It is straightforward to continue this procedure and compute subleading terms in (8.50).

In this way, we found that all terms with odd powers of 1/ξ vanish

a3(d) = a5(d) = · · · = 0 (8.55)

In the appendix D we give expressions for the subleading terms a4, a6 and a8.
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Figure 12. (Left panel) Comparison of the numerical data for the states with ∆(0) = 3 + 4n at

ξ = 29 against the WKB expansion (8.56) (with hypergeometric series replaced by their real part

for d < 3). (Right panel) Comparison of O(1/ξ2) correction to the WKB expansion (8.56) with

the numerical data. Blue dots denote the numerical data with the leading order correction (8.52)

subtracted, red line describes O(1/ξ2) correction to (8.56).

Finally, we substitute the obtained expressions for a0, a1 and a2 into (8.49) and obtain

the Bohr-Sommerfeld quantization condition

N =
3F2

(
1
3 ,

1
2 ,

2
3 ;1, 3

2 ; 27
d3

)
d

+
2

ξ2

(
3F2

(
3
2 ,

5
3 ,

7
3 ; 5

2 ,3; 27
d3

)
d5

+
213F2

(
5
2 ,

8
3 ,

10
3 ; 7

2 ,4; 27
d3

)
d8

)
+O

(
1

ξ4

)
.

(8.56)

To find the dependence of d on the coupling ξ and N = N/(2ξ), we have to invert this

relation. We verified that at large d this yields (8.48). We also checked that (8.56) is in

a perfect agreement with the numerical results for d3 > 27 (see figure 12). This gives a

strong support to our conjecture that the Bohr-Sommerfeld quantization condition (8.56)

gives the correct result for the scaling dimensions to all orders in 1/ξ expansion.

We would like to emphasize that the hypergeometric series on the right-hand side

of (8.56) were obtained by summing up 1/d expansion. Curiously, at d = 3 these series

develop a logarithmic branch cut. The reason why this singularity appears is that the two

branch points of the curve (8.41) collide at this value of d. Indeed, for d = 3 the branching

points are given by x1 = −1, x2 = 1/3 and x3 = x4 = 1/2. Going from d� 1 to d = 3 we

find that the α−cycle encircling the cut [x2, x3] expands whereas the β−cycle encircling

the interval [x3, x4] shrinks into a point. For d < 3 the branch points x3 and x4 develop

imaginary part, x3 = x∗4, and move away from the real axis. The definition of the α−cycle

becomes ambiguous in this case since there are two possible choices of the cuts, [x2, x3]

and [x2, x4]. The integral (8.49) evaluated along the closed contour encircling these cuts

takes different complex conjugated values but its real part is the same for the two cuts.

This suggests that for an arbitrary positive d the Bohr-Sommerfeld quantization (8.49)

condition should look as

Re

[
− 1

2πi

∮
α
dxx p′(x)

]
= N +

1

2ξ
. (8.57)
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For d > 3 this relation coincides with (8.49). Evaluation of the integral on the left-hand

side of (8.57) leads to (8.56) with hypergeometric series replaced by their real part. We

verified that this relation correctly describes numerical results for d < 3 (see figure 12).

8.6 Strong coupling expansion of ∆(0) = 5, 9, . . . states

So far we derived a strong coupling expansion of the states with ∆(0) = 3, 7, 11, . . . . For

ξ � 1 their scaling dimension ∆ = 2 + id(ξ) is given by eqs. (8.23)–(8.25). We have shown

that it can be found by solving the Bohr-Sommerfeld quantization condition (8.57) for a

particular choice of the cycle α on the Riemann surface (8.41). This cycle is uniquely defined

by the requirement that the branch points should merge for d → ∞. In this section we

argue that the remaining states with ∆(0) = 5, 9, . . . also admit an analogous semiclassical

description. The only difference compared to (8.57) is that these states correspond to

another choice of the integration contour on the Riemann surface (8.41).

We remind that the branch points satisfy the relation (8.42). There are four different

values of d for which two of these points collide. Two of them, d → ∞ and d = 3, we

encountered in the previous subsection. As we will see in a moment, the two remaining

ones, d = 3 e±2πi/3, describe the strong coupling limit of the states ∆(0) = 5, 9, 13, . . . .

As follows from the definition (8.24), the value d = 3 e±2πi/3 corresponds to the following

scaling behavior of ∆(ξ) at strong coupling

∆(ξ) = 2
√

3 ξ e±iπ/6 +O(ξ0) . (8.58)

It should be compared with analogous relation (8.1) for the states ∆(0) = 3, 7, 11, . . . . We

verified that (8.58) correctly describes numerical results for the trajectories in figure 8 that

start at ∆(0) = 5, 9, . . . .

To find subleading corrections to (8.58) we shall employ the Bohr-Sommerfeld quan-

tization condition analogous to (8.57). Following the logic of the previous subsection, the

integration contour should be chosen to encircle the pair of branch points that collide at

d = 3 e±2πi/3. It is easy to see from (8.41) that for this value of d the branch points

are aligned along the same ray in a complex plane, x1 = −e∓2iπ/3, x2 = e∓2iπ/3/3 and

x3 = x4 = e∓2iπ/3/2. Thus, in the vicinity of d = 3 e∓2πi/3 the integration contour should

encircle the segment [x3, x4]. This corresponds to the choice of the β−cycle on the Riemann

surface (8.41) (see figure 13). The resulting Bohr-Sommerfeld quantization condition reads

aD = − 1

2πi

∮
β
dxx p′(x) = N +

1

2ξ
, (8.59)

where N = N/(2ξ) and the quasimomentum is given by (8.39) and (8.40).

The relation (8.59) has been previously encountered in the study of semiclassical limit

of the SL(2) spin chain [37]. Using the results of [37] we find that in the vicinity of

d = 3 e±2πi/3 the first two terms of the expansion of aD in powers of 1/ξ are given by

aD =

√
3 e±iπ/6

2

(
x− 5

12
x2 +

53

216
x3 − 2497

15552
x4 +O(x5)

)
+

1

2ξ
+O(1/ξ2) , (8.60)
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α
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Figure 13. Integration contours entering the Bohr-Sommerfeld quantization condition for different

states. For L = 3+4n the integral is taken around the branch points which collide at large d (middle

panel). For L = 5 + 4n, for half of the states, the integration goes around the branch points which

collide at d = 3e2πi/3 (left panel) and for another (complex conjugated) half of states the integration

goes around the branch points which collide at d = 3e−2πi/3 (right panel).

where d = 3 e±2πi/3(1 + x) and x is small. Here O(1/ξ) term describes the contribution

of p1(x) correction to the quasimomentum. As in the previous case, it cancels against the

same term on the right-hand side of (8.59). The series in the first term in (8.60) can be

summed up and expressed as discontinuity of a hypergeometric 3F2−series

aD =
1

d
Disc

[
3F2

(
1

3
,

1

2
,

2

3
; 1,

3

2
;

27

d3

)]
+

1

2ξ
+O(1/ξ2) . (8.61)

More precisely, the hypergeometric series develops a logarithmic cut that starts at d3 = 27.

The discontinuity across this cut is a rational function of d = 3 e±2πi/3(1 + x) whose

expansion at small x matches the first term on the right-hand side of (8.60). Notice that

the same hypergeometric series enters (8.52). This is not accidental of course since the

relations (8.61) and (8.52) define the period of the same ‘action’ differential over the two

cycles on the Riemann surface (8.41).

Solving the Bohr-Sommerfeld quantization condition (8.59) we can obtain the large ξ

expansion of d

d = d0(N ) +
1

ξ2
d2(N ) + . . . (8.62)

To find the leading term we substitute (8.60) into (8.59) and invert the series

d0 = 3 e±2iπ/3

[
1 +

2√
3
N̄ +

5

9
N̄ 2 +

22

81
√

3
N̄ 3 +

43

2187
N̄ 4 +O(N̄ 5)

]
, (8.63)

where the notation was introduced for complex N̄ = N e±iπ/6 = Ne±iπ/6/(2ξ).

In agreement with our expectations, this relation defines two complex-valued func-
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Figure 14. Real and imaginary parts of the dimension ∆(ξ) as a function of ξ for the states with

L = ∆(0) = 5, 9, 13. Dots represent the numerical data, this line is given by our quasi-classical

prediction (8.65) with N = 1, 3, 5 correspondingly. The thick line is the weak coupling prediction.

tions ∆(ξ) (see (8.24)). We verify that at large ξ these functions have a correct asymptotic

behavior (8.58).

To determine the subleading correction to (8.62), we exploit the relation between the

periods a and aD mentioned above. It allows us to find O(1/ξ2) correction to aD by taking

a discontinuity of (8.54). In this way, we find

d2 = −25

36
− 161

54
√

3
N̄ − 2459

1458
N̄ 2 − 3902

2187
√

3
N̄ 3 − 14645

39366
N̄ 4 +O(N̄ 5) , (8.64)

where N̄ was defined in (8.63).

The relations (8.63) and (8.64) were derived at large ξ and N with N/ξ fixed. Sub-

stituting (8.63) and (8.64) into (8.62) and collecting terms with the same power of 1/ξ

we obtain

d = 3 e±2iπ/3

[
1 +

N

ξ
√

3
e±iπ/6 +

5
(
3N2 + 5

)
108ξ2

e±iπ/3 +O

(
1

ξ3

)]
. (8.65)

The subleading terms of the expansion up to order O(1/ξ8) can be found in appendix D,

see (D.4). Using the definition (8.24) we can find an analogous expression for the scaling

dimension

∆ = 2
√

3 e±iπ/6ξ +N + 2 +
(3N2 + 17)

18
√

3ξ
e∓iπ/6 +O(1/ξ2) , (8.66)

where expansion runs in powers of e±iπ/6ξ.

The relations (8.65) and (8.66) are valid at large ξ with N fixed. We checked them

against numerical data on figure 14 for different N . We found that the identification

of integers N corresponding to different states is not trivial. Namely, for odd N the

relation (8.65) correctly describes the states with ∆(0) = 5, 9, 13, . . . whereas for even N

it predicts some states which are not present in the spectrum. To some extend that is

expected as these states come in the complex conjugate pairs and in order to have the

same average number of states in some interval of the quantum numbers N as for the

states with ∆(0) = 3, 7, 11, . . . we should miss exactly half of all N ’s.
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9 Problems and perspectives

In this paper, we used the quantum integrability methods to compute the exact scal-

ing dimensions of various operators in four-dimensional bi-scalar theory defined by the

Lagrangian (1.1) (also called χFT4) in planar limit. This theory has the symmetry

SU(2, 2) × U(1)2 — a subgroup of the original PSU(2, 2|4) conformal symmetry of the

full (untwisted) N = 4 SYM theory from which it was obtained in a special double scaling

limit combining large imaginary γ-twist and small coupling. Consequently, the operators in

this theory are classified by the set of Cartan charges (∆, S, Ṡ|J1, J2). The basic example of

such operators is tr(φJ1 ) — the “BMN vacuum” operator15 with charges (∆, 0, 0|J, 0). The

perturbative corrections for this operator are given by so called “wheel” graphs of figure 1

(a single graph at each non-zero order). Our method makes it possible to compute these

conformal graphs at least to O(1/ε) order in dimensional regularization, in an algorithmic

way. We computed the J = 3 wheel graphs up to 12 loops, which can be easily pushed

further with more computer time or on a more powerful computer. Our numerical com-

putation of anomalous dimension have been done for this operator at virtually unlimited

precision for all reasonable couplings ξ. Moreover, it is also applicable to the other opera-

tors, of the type (1.2), with the same charges but a bigger length L corresponding to the

insertion of any number of couples of fields φ1, φ
†
1 and φ2, φ

†
2 inside tr(φJ1 ), as well as of

the derivatives, where we performed similar analytic and numerical computations. Further-

more, we investigated the strong coupling limit of the anomalous dimensions for this family

of operators. In this limit we found that the spectrum is described by a classical algebraic

curve and the quantization condition reduces to a modified Bohr-Sommerfeld quantization

condition with half-integer filling fractions. We managed to develop a systematic strong

coupling expansion to a high order in 1/ξ.

To compute the spectrum of scaling dimensions ∆, we needed to provide two basic

ingredients: i) formulate a 4th order finite difference Baxter equation for a quartet of

Q−functions of spectral parameter; ii) derive quantization condition fixing the unique

solution with prescribed analytic structure, and at the same time all the constants in

Baxter equation and the spectrum of dimensions ∆(ξ) with given charges.

We managed to solve the problem i) — to find the Baxter equation at any J for

the operators in the sector (∆, 0, 0|J, 0). We did it in two ways: from AdS5/CFT4 QSC

formalism (so far only for the charges J = 2, 3, 4), where the full Baxter equation is known,

in the double scaling limit leading to the bi-scalar theory; and also from explicit Lax

operator of SU(2, 2) conformal spin chain describing the underlying fishnet graphs of the

bi-scalar model [1]. We used the fact that the Baxter equation is a universal object in

quantum integrability, independent of the auxiliary representation of Lax operator. The

resulting Baxter relation, even though cross-checked in many ways, is not derived in a

rigorous way in none of two formalisms. Certain very natural assumptions of symmetry of

fundamental transfer-matrices has been used, but not yet formally proven, in derivation

from Lax operators. It would be good to check these assumptions algebraically, directly

15It was protected BMN vacuum operator in untiwisted N = 4 SYM theory but it gets corrections after

γ-twisted N = 4 SYM and, consequently, in the bi-scalar χFT4.
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from the from the spin chain formalism. The QSC derivation serves as a good cross-check

but it also involves certain natural, but unproved assumptions about the scaling behavior

of QSC Q-functions in the double scaling limit. One of the ways to verify these assumptions

is to use numerics for the full twisted N = 4 SYM and then approach the limit with infinite

coupling numerically.

Concerning the ingredient ii), we managed to derive the quantization condition from

the QSC formalism, so far only in the case J = 3, where the 4th order Baxter equation

nicely factorizes into two 2nd order equations. Its derivation for an arbitrary J can be

certainly obtained in a similar way but we leave this, likely more involved, calculation to

future publications. In particular for J = 4 one should reproduce [1]

γJ=4
vac =−40ζ5 ξ

8+8
[
309ζ11+16ζ3,8+20ζ5,6−4ζ6,5

+40ζ8,3−8ζ3,3,5+40(ζ3,5,3+ζ5,3,3)−200ζ2
5

]
ξ16+O(ξ24) . (9.1)

It would be also interesting to derive the quantization condition in a rigorous way, from

Lax formalism of the underlying conformal spin chain. It would involve the computation

of certain spin chain eigenfunctions and matrix elements relevant to the “wheel” graphs.

Probably, the most adequate formalism for it should be the Sklyanin’s separated variables

(SOV). Such a formalism would not only allow to compute in a rigorous way the wheel

graphs but also get hand on a much bigger variety of physical quantities: more general than

in [4] fishnet-type graphs at arbitrary loop orders, such as described in [14], multi-point

correlators and amplitudes [17] in χFT4, etc. Recently observed simplifications in the SOV

approach to the wave functions [38] could pay an important role here.

Our methods are potentially applicable to the χFT3 theory obtained in the double

scaling limit of twisted ABJM [14], where certain classes of Φ6-type graphs can be computed

at any loop order. One can try to apply for it both the Lax [31] and the QSC formalisms [15,

16]. One could also try to approach the same program for tri-scalar χFT6 with Φ3-type

chiral interactions, which seem to define the genuine CFT in planar limit [18]. The 6D

twisted SYM “mother”-theory, from which the latter model could be obtained in a double

scaling limit, is unfortunately not known.

It would be interesting to include into our formalism more general χFT4 containing

fermions and more of scalars, described in [1, 14]. This could be done by applying more

sophisticated limits to AdS/CFT QSC equations or, alternatively, establishing the Lax for-

malism for conformal spin chain with fermionic degrees of freedom. The latter would open

a way to multi-loop computations of more sophisticated than Φ4 type graphs, containing

also the Yukawa couplings.

It would be also interesting to compute next-to-leading corrections to the double scaling

limit of γ-twistedN = 4 planar SYM which might give a better understanding of the origins

of integrability in the full theory. Another, more ambitious direction, would be to generalize

the results of the current paper to the full SU(2, 2|4) Heisenberg spin chain, which could

led to the prove of integrability of N = 4 planar SYM from first principles.
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A Baxter equation from the Lax operator formalism

We have seen in subsection 2.1 that the Hamiltonian HJ can be interpreted as the transfer

matrix of a spin chain of length J with periodic boundary conditions. This operator is

invariant under the action of the conformal SO (1, 5) group, whose Lie algebra is isomorphic

(as a complex Lie algebra) to su (2, 2). In fact, it is well known that there exists a whole

chain of isomorphisms of complex Lie algebras

so (2, 4) ' so (1, 5) ' so (6) ' sl (4) ' su (2, 2) , (A.1)

suggesting that we can define the R-matrix for any of the above Lie algebras. It turns out

that, in order to construct the Baxter T -Q relation, the best choice is to consider sl (4)

acting on the following Hilbert space

Hsl(4) =

J⊗
j=1

V (z) , (A.2)

where V (z) = C[{zij}1≤j<i<4] is the vector space of polynomials of arbitrary degree in

zij variables with complex coefficients. The R−matrix for this setting acts on the space

V (z)⊗πΛ [sl (4)], where the symbol πΛ denotes the finite-dimensional representation with

highest-weight Λ. We denote such R-matrices as Rπ,ν , where ν is an index that specifies

the particular representation of sl (4) on V (z). The spin chains based on this Hilbert

space have been studied for sl (n) by Derkachov and Manashov in [25, 26]. We chose to

adhere to their conventions and employ the real parameter v = iu for the derivation of the

Baxter equation.

A.1 Generic sl (4) Verma modules

Here we construct the most general highest-weight representation of the sl (4) algebra on

the vector space V (z) of polynomials in 6 complex variables z = {zij}1≤j<i≤4 of ar-

bitrary degree.16 This representation is parameterized by a set of 4 complex numbers

ν := (ν1, ν2, ν3, ν4), such that
4∑

k=1

νk = 6 . (A.3)

16These representations have a deep relationship with the principal series representations [39, 40] of the

group SL (4|C) as explained in [25, 31, 41].
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Complex zij variables can be used to define the lower-triangular matrix

Z = I4 +
∑

1≤j<i≤4

zij êij =


1 0 0 0

z21 1 0 0

z31 z32 1 0

z41 z42 z43 1

 , (A.4)

where (êij)
l
k := δikδ

l
j are the unit 4 × 4 matrices. Define further the matrix differential

operator

D =


0 ∂21 + z32∂31 + z42∂41 ∂31 + z43∂41 ∂41

0 0 ∂32 + z43∂42 ∂42

0 0 0 ∂43

0 0 0 0

 . (A.5)

The algebra sl(4), with generators eij satisfying the commutation relations

[eij , ekl] = δjkeil − δilekj , (A.6)

can then be represented in Aut [V (z)] by defining its generators as

Eνij ≡ πν(eij) = −
(
Z (D + ν̂)Z−1

)
ji
, (A.7)

where ν̂ = diag(ν1, ν2, ν3, ν4). The corresponding sl(4)-module Vν is irreducible [42, 43] iff

νij := νi − νj /∈ N , ∀i < j, otherwise Vν contains an invariant subspace.

Let us consider a set of complex numbers σ = {σii+1} such that

σnn+1 ∈ N , ∀n ≥ 4− k . (A.8)

Then it can be shown [40] that the associated principal series sl (4)-module V
(k)
σ decomposes

as a tensor product:

V
(k)
σ = V3−k ⊗ vσk+1 . (A.9)

One of the factors is the infinite-dimensional space V3−k of polynomials in the variables

appearing in the first 3 − k columns and rows of Z. The other factor vσk+1 is a finite-

dimensional sl (k + 1) module with highest weight Λσ = (λk, · · · , λ3) and λj = σj j+1 − 1.

Consequently, choosing k = 3, we have that the principal series module V
(3)
σ collapses to a

finite dimensional sl (4) module:

V
(3)
σ = vσ4 = πΛσ , Λσ = (σ12 − 1, σ23 − 1, σ34 − 1) . (A.10)

This module is associated to the Young tableau defined by the partition ` = {`1, `2, `3}
with `j =

∑3
k=j λk.
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A.2 The general T −Q relation from sl(4) invariant R-matrix

Let us consider the following invariant R-matrix:

R : Vν ⊗ Vσ −→ Vν ⊗ Vσ , R12 (v)R13 (v + v)R23 (v) = R23 (v)R13 (v + v)R12 (v) ,

(A.11)

where both Vν and Vσ are sl (4) principal series modules, defined above. As was shown

in [25, 41], this operators adimt a factorised form:

R12 (v) = P12R
(1)
12 (v − ν1 + σ1) · · ·R(4)

12 (v − ν4 + σ4) , (A.12)

where Pij is the permutation operator of spaces i and j. The associated T -operator, defined

in the usual way as the trace over the auxiliary space Vσ of the product of J R-matrices17

Tσ (v |ν ) = trVσ [R10 (v)R20 (v) · · ·RJ0 (v)] , (A.13)

will then enjoy a factorised expression

Tσ (v |ν ) = Q1 (v + σ1 |ν ) · · · Q4 (v + σ4 |ν ) , (A.14)

where the Q-operators are defined as transfer matrices associated to the factorising oper-

ators R(j):

Qj (v |ν ) = trVσ

[
R̃

(j)
10 (v−νj)R̃(j)

20 (v−νj) · · ·R̃(j)
J0 (v−νj)

]
, R̃

(j)
k0 (v) =Pk0R

(j)
k0 (v) . (A.15)

This factorisation is a general property, irrespective of the fact that Vσ is irreducible

or not. If we were to choose σ such that Vσ = V
(k)
σ , then the R-matrix will assume an

upper-triangular form

R =

(
R ∗
0 R′

)
, R : Vν ⊗ vσk+1 −→ Vν ⊗ vσk+1 , (A.16)

which implies

Tσ (v |ν ) = T
(k)
σ (v |ν ) + T ′σ (v |ν ) . (A.17)

It is possible to prove, by using Bernstein-Gel’fand-Gel’fand resolution for finite dimen-

sional sl (n) modules [26, 42], that

T
(k)
σ (v |ν ) =

3−k∏
j=1

Qj (v + σj |ν )

 det
1≤i,j≤k+1

(
Q3−k+i (v + σ3−k+j |ν )

)
. (A.18)

Finally, by choosing k = 3, we obtain the following nice determinant expression

T
(3)
σ (v |ν ) = det

1≤i,j≤4

(
Qi (v + σj |ν )

)
, (A.19)

17In order to consistently define the T - and Q- operators it is necessary to introduce a regulator in the

R-matrix. We choose to avoid this subtlety as it is of no relevance for our goal. Further informations can

be found in [26].
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Representation Fundamental weight Young tableau integers Principal Series labels

1 Λ0 = (0, 0, 0) `0 = (0, 0, 0) σ = (3, 2, 1, 0)

4 Λ1 = (0, 0, 1) `1 = (1, 1, 1) σ =
(

13
4 ,

9
4 ,

5
4 ,−

3
4

)
6 Λ2 = (0, 1, 0) `2 = (1, 1, 0) σ =

(
7
2 ,

5
2 ,

1
2 ,−

1
2

)
4 Λ3 = (1, 0, 0) `3 = (1, 0, 0) σ =

(
15
4 ,

7
4 ,

3
4 ,−

1
4

)
Table 1. Various labels for the fundamental representations of sl (4).

which can be rewritten in terms of Young tableaux indices as

T
(3)
` (v + f` |ν ) = det

1≤i,j≤4

(
Qi (v + lj |ν )

)
, (A.20)

where

lj = 4− j + `j , f` =
1

4

3∑
k=1

`k . (A.21)

In table 1 we have collected the labels associated to the fundamental representations18 πk.

By considering the following identity

det
1≤i,j≤5

(
Qi (v + 5− j |ν )

)
= 0 , Q5 (v |ν ) ≡ Qk (v |ν ) , for some k = 1, . . . , 4 ,

(A.22)

and denoting the T -operators associated to the k-th fundamental representation as

t4−k (v |ν ) = T
(3)
1k

(v |ν ) , 1k =

1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0

 , (A.23)

and understanding t4 (v) ≡ t0 (v), we easily obtain the general form of Baxter T -Q relation

for a πν [sl(4)]-spin chain [26]

4∑
k=0

(−1)k t4−k

(
v +

k

4

∣∣∣∣ν)Qi (v + 4− k |ν ) = 0 , ∀i = 1, . . . , 4 . (A.24)

A.3 The fundamental R-matrices and the associated Lax operators

In order to obtain an explicit expression for the transfer matrices tk, we need to compute

the traces

tk (v|ν) = trπΛk

[
R

(k)
10 (v)R

(k)
20 (v) · · ·R(k)

L0 (v)
]
, (A.25)

18Note that in our conventions, the defining representation 4 is associated to the Young tableau `1 =

(1, 1, 1) with three boxes, while the conjugate one 4 to the Young tableau `1 = (1, 0, 0) with a single

box. This is all a matter of preference, since the Z2 symmetry of the Dynkin diagram makes the two

representations isomorphic. However the isomorphism is realised in a complicated fashion at the level

of R-matrices which results in the fact that the associated transfer matrices are, in general, radically

different, as we see later. Our choice was dictated by the request that t1 should be the simplest among the

transfer matrices.
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where R(k) is the R matrix with physical space Vν and auxiliary space πΛk and (Λk)
i = δik

is the k-th fundamental weight. These R-matrices for the fundamental representations are

related to the Lax operators Lk by a normalization:

R(k) (v + κk) = Xk,ν (v) Lk,ν (v) , (A.26)

where κk are some rational numbers and Xπk,ν (v) are functions. The Lax operator for the

basic representation is a linear operator on the space Vν⊗4 [sl(4)] and is defined as follows:

L1,ν (v) = v + êijE
ν
ji , (êij)

b
a = δiaδ

b
j . (A.27)

The higher Lax operators L2,ν and L3,ν are linear operators on, respectively, Vν ⊗ 6 [sl(4)]

and Vν ⊗ 4 [sl(4)]. Although they have not a simple form such as L1,ν , from classical

representation theory it is known that

6 [sl(4)] = 4 [sl(4)] ∧ 4 [sl(4)] , 4 [sl(4)] = 4 [sl(4)] ∧ 4 [sl(4)] ∧ 4 [sl(4)] , (A.28)

which means that L2,ν and L3,ν can be defined as follows

L2,ν (v) =
(
∧2L2

1,ν

)
(v) , L3,ν (v) =

(
∧3L3

1,ν

)
(v) . (A.29)

With the notation
(
∧kAk

)
(v), where A is a linear operator on a space V , we denote a

linear operator on the space
∧k V , acting as follows(

∧kAk
)

(v)φ1 ∧ φ2 ∧ · · · ∧ φk

= (A (v − k + 1)φk) ∧ (A (v − k + 2)φk−1) ∧ · · · ∧ (A (v − 1)φ2) ∧ (A (v)φ1) , (A.30)

with φk ∈ V . As it will be useful in a short while we also introduce the quantum determi-

nant of the Lax operator L1,ν :

qdet [L1,ν (v)]1 ≡ L4,ν (v) =
(
∧4L4

1,ν

)
(v) . (A.31)

In order to fix the normalisations κk and Xk,ν in (A.26), we apply the R-matrix on

the highest-weight state Φ0 = 1 ∈ Vν ⊗ Vσ, using the known expression for the eigenvalues

of the general R-matrix [25]

R(v) · Φ0 = p (v)
∏

1≤i<j≤4

Γ (v − νi + σj + 1)

Γ (−v + νj − σi + 1)
Φ0 , (A.32)

with p (v) being a periodic function whose exact expression is irrelevant for our needs.

Plugging in the values of the labels σ corresponding to the fundamental representations

(see table 1), we obtain

r0(v + 1)

r0(v)
= δ(v + 1)δ(v + 2)δ(v + 3) ,

r1

(
v + 3

4

)
r0(v)

= δ(v + 2)δ(v + 3)(v − ν4 + 1) ,

r2(v + 1
2)

r0(v)
= −δ(v + 3)(v + ν3 + 2)(v + ν4 + 2) ,

r3

(
v + 1

4

)
r0(v)

= −(v + ν2 + 3)(v + ν3 + 3)(v + ν4 + 3) ,

(A.33)
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where we denoted as rk (v) the eigenvalue of R(k) (v) on the highest weight state Φ0 and

we introduced the notation

δ (v) =
4∏
j=1

(v − νj) . (A.34)

Now we will compare these eigenvalues with those obtained by acting with the Lax

operators Lk,ν on the highest weight states

Φ1 =


0

0

0

1

 , Φ2 =


0

0

0

1

∧


0

0

1

0

 , Φ3 =


0

0

0

1

∧


0

0

1

0

∧


0

1

0

0

 , Φk ∈Vν⊗

(
k∧

4 [sl(4)]

)
.

(A.35)

These are easily computed by using the explicit representation of the operators Eji (A.7)

and the definition (A.30):

L1,ν(v) · Φ1 = (v − ν4)Φ1 ,

L2,ν(v) · Φ2 = − (v − ν3) (v − ν4) Φ2 , (A.36)

L3,ν(v) · Φ3 = − (v − ν2) (v − ν3) (v − ν4) Φ3 .

We also easily obtain

qdet [L1,ν(v)] = δ (v) . (A.37)

By direct comparison we then make the following identifications

R(0) (v+1) = r0 (v)δ(v+1)δ(v+2)δ(v+3) , R(1)
(
v+

3

4

)
= r0 (v)δ(v+2)δ(v+3)L1,ν (v+1) ,

R(2)
(
v+

1

2

)
= r0 (v)δ(v+3)L2,ν (v+2) , R(3)

(
v+

1

4

)
= r0 (v)L3,ν (v+3) . (A.38)

Note that we might have identified Lax operators with fundamental R-matrices also as

R(2)

(
v +

1

2

)
= r0 (v) δ(v + 3)δ (v + 2)

[
Lt2,ν (v + 2)

]−1
,

R(3)

(
v +

1

4

)
= r0 (v) δ (v + 3)

[
Lt1,ν (v + 3)

]−1
,

(A.39)

giving us the relations

Lt1,ν (v) L3,ν (v) = δ (v) , Lt2,ν (v) L2,ν (v) = δ (v) , (A.40)

which can be rewritten as

Lt1,ν (v)
(
∧3L3

1,ν

)
(v) =

(
∧4L4

1,ν

)
(v) = qdetL1,ν (v)1 ,(

∧2L2
1,ν

)t
(v)
(
∧2L2

1,ν

)
(v) =

(
∧4L4

1,ν

)
(v) = qdetL1,ν (v)1 .

(A.41)

These relations are the generalisations to the quantum case of the equalities

At
(
∧3A3

)
= detA1 ,

(
∧2A2

)t (∧2A2
)

= detA1 , (A.42)

valid for any 4× 4 matrix [44].
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A.4 The monodromy matrix as a Manin matrix and Talalaev’s formula

From now on we will drop the explicit dependence on the labels ν.

Thanks to the identifications (A.38) and defining the Monodromy matrix M (v) of the

spin chain as follows

M (v) =
1

[δ (v)]J

1
L1 (v)

2
L1 (v) · · ·

J
L1 (v) , (A.43)

we are able to write the general Baxter equation (A.24) in the following form

Qi (v − 1) + tr
[(
∧2M2

)
(v + 1)

]
Qi (v + 1) + tr

[(
∧4M4

)
(v + 3)

]
Qi (v + 3)

= tr [M (v)]Qi (v) + tr
[(
∧3M3

)
(v + 2)

]
Qi (v + 2) . (A.44)

Now we notice that the following relations hold[
Mij (v) e∂v ,Mkl (v) e∂v

]
=
[
Mkj (v) e∂v ,Mil (v) e∂v

]
, ∀i, j, k, l = 1, . . . , 4 . (A.45)

These are the defining relations for a Manin matrix [45], a particular class of matrices

with not necessarily commuting entries. They are a natural extension of the matrices

over commutative rings, in the sense that most of the standard theorem of linear algebra

continue to hold true for them [46]. Of particular interest for us is the fact that the spectral

determinant of M (v) e∂v has the following expansion

cdet
[
t1−M (v) e∂v

]
=

4∑
k=0

t4−k(−1)ktr
[(
∧kMk

)
(v + k − 1)

]
ek∂v , (A.46)

where “cdet” stands for the column ordered determinant

cdet [A] =
∑
σ∈S4

(−1)|σ|Aσ(1)1Aσ(2)2Aσ(3)3Aσ(4)4 . (A.47)

As a consequence, the Baxter T −Q equation (A.44) takes the following suggestive expres-

sion

cdet
[
1−M (v) e∂v

]
Qi (v − 1) = 0 , (A.48)

which is the quantum version of a classical spectral curve equation. The above expression

has first appeared in the works of Talalaev [47] and we thus refer to it as “Talalaev’s

formula”.

A.5 The explicit computation of the transfer matrices

More important on the practical level is the fact that the higher traces

tk (v) = tr
[(
∧kMk

)
(v + k − 1)

]
, (A.49)

satisfy the Newton’s identities [48]

ktk (v) ek∂v =

k∑
j=1

(−1)j−1 tk−j (v) e(k−j)∂vtr

[(
M (v) e∂v

)j]
, t0 (v) = 1 . (A.50)
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Explicitly we have

t1 (v) = tr [M (v)] , t2 (v) =
1

2
tr [M (v)] tr [M (v + 1)]− 1

2
tr [M (v)M (v + 1)] (A.51)

t3 (v) =
1

6
tr [M (v)] tr [M (v + 1)] tr [M (v + 2)] +

1

3
tr [M (v)M (v + 1)M (v + 2)] (A.52)

− 1

3
tr [M (v)] tr [M (v + 1)M (v + 2)]− 1

6
tr [M (v)M (v + 1)] tr [M (v + 2)] .

Thanks to these relations we are now in the position to derive the expressions for the

coefficients of Baxter T − Q equation (A.44). To this end, we introduce the following

objects

E
(j)
lk =

∑
1≤a1<···<aj≤J

4∑
i1,...,ij−1=1

a1

Ei1k
a2

Ei2i1 · · ·
aj
Elij−1

, (A.53)

and

q[j1,...,jm] = tr
[
E (j1) · · · E (jm)

]
, qk ≡ q[k] . (A.54)

One easily see that

M (v) =
1

δ (v)J

(
vJ1 +

J∑
k=1

E (k)vJ−k

)
, (A.55)

and, since19 q1 = 0,

δ (v)J t1 (v) = 4vJ +
J∑
k=2

qkv
J−k . (A.56)

With some basic algebra we obtain the following expressions

δ (v)J δ (v + 1)J t2 (v) = 6vJ (v + 1)J +
3

2

J∑
j=2

qj

[
vJ (v + 1)J−j + (v + 1)J vJ−j

]

+
1

2

J∑
j,k=1

[
qjqk − q[j,k]

]
vJ−j (v + 1)J−k , (A.57)

δ (v)J δ (v+1)J δ (v+2)J t3 (v) = 4vJ (v+1)J (v+2)J

+

J∑
j=2

qj

[
vJ (v+1)J (v+2)J−j+vJ (v+1)J−j (v+2)J+vJ−j (v+1)J (v+2)J

]

+
1

6

J∑
j,k=2

qjqk

[
3vJ (v+1)J−j (v+2)J−k+2vJ−j (v+1)J−k (v+2)J+vJ−j (v+1)J (v+2)J−k

]

+
1

3

J∑
j,k=1

q[j,k]
[
vJ (v+1)J−j (v+2)J−k−vJ−j (v+1)J−k (v+2)J−3vJ−j (v+1)J (v+2)J−k

]

+
1

6

J∑
j,k,l=1

[
qjqkql−q[j,k]ql−2q[k,l]qj+2q[j,k,l]

]
vJ−j (v+1)J−k (v+2)J−l . (A.58)

19This is because q1 =
∑J
a=1

∑4
i=1

a

Eii and the generators of sl(4) satisfy the property
∑4
i=1 Eii = 0.
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The quantities q[i1,...,im] (A.54) appearing in the expressions of the tk are local conserved

charges. It can be shown with straightforward computation that they all commute amongst

themselves [
q[i1,...,im], q[j1,...jn]

]
= 0 , ∀i1, . . . , im, j1, . . . jn = 1, . . . J . (A.59)

Their eigenvalue is, in general, dependent on the particular state of the spin chain Hilbert

space. However, the following charge

C(J)
m =

1

m
q

m︷ ︸︸ ︷
[1, . . . , 1] , (A.60)

is global, in the sense that it only depends on the labels of the representation Vθ of the full

spin chain:20 it is thus a Casimir operator and we call it “total Casimir”. On the other

hand, not all of the charges q[i1,...,im] are independent. There exist relations amongst them

which also involve the usual Casimir operator

Cm =
1

m

4∑
i1,...im=1

a
Ei2,i1

a
Ei3,i2 · · ·

a
Ei1,im , ∀a = 1, . . . J , (A.61)

whose eigenvalue only depends on the labels of the representation Vν of the single spins in

the chain. One can obtain the explicit expression for the eigenvalues of the Casimirs by

acting with them on the vacuum; the results for m = 2, 3, 4 are

C2 =
1

2

4∑
j=1

ν2
j −7 , C3 =

1

3

4∑
j=1

ν3
j −

5

3
C2−12 , C4 =

1

4

4∑
j=1

ν4
j −

3

2
C3−

9

2
C2−

49

2
,

C
(L)
2 =

1

2

4∑
j=1

θ2
j−7 , C

(L)
3 =

1

3

4∑
j=1

θ3
j−

5

3
C

(L)
2 −12 , C

(L)
4 =

1

4

4∑
j=1

θ4
j−

3

2
C

(L)
3 −

9

2
C

(L)
2 −

49

2
,

(A.62)

The relations mentioned above are deformations of the classical Newton’s identities amongst

symmetric polynomials and power sums; the first few are as follows

C
(J)
2 − JC2 = q2 ,

C
(J)
3 − JC3 −

4

3

(
C

(J)
2 − JC2

)
= q[1,2] − q3 , (A.63)

C
(J)
4 − JC4 − 3

(
C

(J)
3 − JC3

)
+ 2q[1,2] = q[1,1,2] − 1

2
q[2,2] − q[1,3] + q4 .

20The Hilbert space

Hsl(4) =

J⊗
j=1

Vν (z) ,

of the spin chain decomposes as a direct integral of representations Vθ [49]:

Hsl(4) =

∫ ⊕
Vθdθ .

The eigenvalues of the charges C
(J)
m only depend on which of these summands the state of the spin chain

belongs to, not on the specific state considered.
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The following functions

τ1 (v) = δ (v)J t1 (v) , τ2 (v) = δ

(
v − 1

2

)J
δ

(
v +

1

2

)J
t2

(
v − 1

2

)
, (A.64)

τ3 (v) = δ (v − 1)J δ (v)J δ (v + 1)J t3 (v − 1) ,

possess an interesting symmetry property. In fact let us explicitly denote their dependence

on the local conserved charges:

τ1 (v) = τ1

(
v
∣∣∣q[αm]

)
, τ2 (v) = τ2

(
v
∣∣∣q[αm]

)
, τ3 (v) = τ3

(
v
∣∣∣q[αm]

)
, (A.65)

where αm = (α1, α2, · · · , αm) is a multi-index and we will denote |αm| =
∑m

k=1 αk. Then

it is easily checked that

τ1

(
−v
∣∣∣(−1)|αm|q[αm]

)
= (−1)Jτ1

(
v
∣∣∣q[αm]

)
, τ2

(
−v
∣∣∣(−1)|αm|q[αm]

)
= τ2

(
v
∣∣∣q[αm]

)
,

(A.66)

τ3

(
−v
∣∣∣(−1)|αm|q[αm]

)
= (−1)Jτ3

(
v
∣∣∣q[αm]

)
.

With the help of relations (A.63) we find that the first few terms in the v →∞ expansion

of the functions τk are

τ1 (v) = 4vJ+
(
C

(J)
2 −JC2

)
vJ−2+q3v

J−3+q4v
J−4 · · · ,

τ2 (v) = 6v2J+
(

2C
(J)
2 −3JC2−

3

2
J
)
v2J−2+

(
2q3−

(
C

(J)
3 −JC3

)
+

4

3

(
C

(J)
2 −JC2

))
v2J−3

+υ
(4)
2 v2J−4+· · · , (A.67)

τ3 (v) = 4v3J+
(
C

(J)
2 −3JC2−4J

)
v3J−2+

(
q3−

(
C

(J)
3 −2JC3

)
+

4

3

(
C

(J)
2 −2JC2

))
v3J−3

+υ
(4)
3 v3J−4+· · · ,

with

υ
(4)
2 = 2q4−q[1,1,2]+2q3+C

(J)
4 −JC4−

(
C

(J)
3 −JC3

)
+

1

2

(
C

(J)
2 −JC2

)2

− 3J+4

6

(
C

(J)
2 −JC2

)
+J

J−1

4
C2+3J

J−1

16
, (A.68)

and

υ
(4)
3 = υ

(4)
2 −q4+C

(J)
4 −JC4−3

(
C

(J)
3 −JC3

)
− 1

2

(
C

(J)
2 −JC2

)2
−JC2

(
C

(J)
2 −JC2

)
−J−4

2
C

(J)
2 +3J

3J−5

4
C2+29J

J−1

16
. (A.69)

A.6 The gauged form of the Baxter equation

There is one final manipulation we wish to apply to the Baxter equation (A.44) before

specifying the representation πν . First of all, let us write it as follows

δ
(
v− 1

2

)J
δ
(
v+

1

2

)J
δ
(
v+

3

2

)J
Qi
(
v− 3

2

)
+δ
(
v+

3

2

)J
τ2 (v)Qi

(
v+

1

2

)
+Qi

(
v+

5

2

)
= δ
(
v+

1

2

)J
δ
(
v+

3

2

)J
τ1

(
v− 1

2

)
Qi
(
v− 1

2

)
+τ3

(
v+

1

2

)
Qi
(
v+

3

2

)
. (A.70)
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Considering the asymptotic limit v → ∞ of its coefficients, we see from (A.67) that they

all behave as powers, although of different order:

v12JQi
(
v − 3

2

)
+6v6JQi

(
v +

1

2

)
+Qi

(
v +

5

2

)
−4v9JQi

(
v − 1

2

)
−4v3JQi

(
v +

3

2

)
∼ 0 .

(A.71)

This is in contradiction with the expected asymptotic behaviour of the functions q (3.3),

which lead us to search for a function f such that q (v) = f (v)Q (v) and the coefficients of

the equation for q all have the same leading power of v for v → ∞. The relation is easily

found to be

Qi (v) = qi

(
v − 1

2

) 3∏
j=1

Γ (v − νj + 1)J , (A.72)

and the gauged functions qi (v) satisfy the following Baxter equation

Aν (v + 1) q (v + 2)−Bν
(
v +

1

2

)
q (v + 1)

+ Cν (v) q (v)−Dν
(
v − 1

2

)
q (v − 1) + Eν (v − 1) q (v − 2) = 0 , (A.73)

where the coefficients are

Aν (v) =
3∏
j=1

(
v−νj+

3

2

)J
, Bν (v) = τ3 (v) , Cν (v) =

(
v−ν4+

3

2

)J
τ2 (v) ,

Dν (v) =
2∏
j=1

(v−ν4+j)J τ1 (v) , Eν (v) =
3∏
j=1

(
v−ν4+j− 1

2

)J
. (A.74)

A.7 The free scalar field representation

In order to apply the Baxter equation (A.73) to the conformal spin chain that we encoun-

tered in section 2, we have to replace the parameters ν with their values for a free scalar

field with conformal charges (1, 0, 0),21

ν(1,0,0) =

(
5

2
,
3

2
,

3

2
,

1

2

)
. (A.75)

For this particular choice, one readily checks that

Aν(1,0,0)
(v) = (v − 1)J v2J , Eν(1,0,0)

(v) = vJ (v + 1)J (v + 2)J . (A.76)

Substituting (A.75) into (A.73) and dividing both sides of the equation by vJ (v + 1)J we

arrive at

(v+1)J qi (v+2)+(v−1)J qi (v−2)+
τ2 (v)

vJ
qi (v) =

τ3

(
v+ 1

2

)
vJ (v+1)J

qi (v+1)+τ1

(
v− 1

2

)
qi (v−1) ,

(A.77)

21For the scalar operators (1.2) carrying the charges (∆, 0, 0), the corresponding parameters ν are given

by ν(∆,0,0) =
(
3− ∆

2
, 2− ∆

2
, 1 + ∆

2
, ∆

2

)
.
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where, using the results (A.67), we have

τ1 (v) = 4vJ +
α+ 3J − 4

2
vJ−2 + q3v

J−3 + q4v
J−4 +

J∑
k=5

qkv
J−k ,

τ2 (v) = 6v2J + (3J + α− 4) v2J−2 + 2q3v
2J−3 + υ

(4)
2 v2J−4 +

2J∑
k=5

υ
(k)
2 v2J−k ,

τ3 (v) = 4v3J +
α+ J − 4

2
v3J−2 + q3v

3J−3 (A.78)

+

(
υ

(4)
2 − q4 −

(α− 4)2 + 4J(α− 5) + 7J2

16

)
v3J−4 +

3J∑
k=5

υ
(k)
3 v3J−k .

Here α = (∆− 2)2 and qk are integrals of motion defined in (A.54). The coefficients

υ
(k)
2 and υ

(k)
3 are some complicated combinations the of local charges q[α]. Their explicit

expressions can be obtained from (A.56), (A.57) and (A.58).

Up to now, we have used solely the representation theory which allowed us to fix 9

coefficients amongst the 6J ones. We need further constraints. As it has been shown in

section 4, considering the equation (A.77) as a double scaling limit of the Baxter equation in

γ-twisted N = 4 SYM (see eq. (4.13)) means we must be able to bring it to the symmetric

form (3.1). Imposing these symmetries on the functions (A.78), will allow us to fix some

of the unknown coefficients of the functions τk. First of all, we see that, in order to have

the coefficients in front of q(v+ 1) and q(v− 1) in (A.77) to be, respectively, B(v+ 1
2) and

B(v− 1
2) for some function B(u), the transfer matrices have to satisfy the following relation

τ1 (v) =
τ3 (v)(
v2 − 1

4

)J . (A.79)

Since τ1(v) is, by definition, a polynomial of order J , this relation implies that τ3(v) should

have J-th order zero at v = ±1
2 . Thus we can recast part of the relation (A.79) into the

following 2J requirements

∂k

∂vk
τ3(v)

∣∣∣∣∣
v=± 1

2

= 0 , k = 0, 1, · · · , J − 1 . (A.80)

In addition to this, we have to actually impose the term by term equality of τ3(v)/
(
v2 − 1

4

)J
with τ1(v). Summing it all up, we will be left with J + [J/2] − 3 unfixed coefficients,22

before we impose further restrictions on the set of solutions.

Note that the above argument based on the requested symmetry of the Baxter equa-

tion agrees with the following observation. Remember the symmetry (A.66) of the func-

tions τk(u):

τk

(
−v
∣∣∣(−1)|αm|q[αm]

)
= (−1)kJτk

(
v
∣∣∣q[αm]

)
. (A.81)

22The reason why they are J + [J/2]− 3 and not J + [J/2]− 4, as one would expect by simple counting,

is that in τ3, the coefficient υ
(4)
3 of v3J−4 is not independent from υ

(4)
1 and υ

(4)
2 .
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Then, substituting (A.79) into the Baxter equation (A.77), we find that this equation

remains invariant under u→ −u and q[α] → (−1)|α|q[α]. This means that for any solution

q(u,∆, q[α]) to (A.77) there should exist another solution q(−u,∆, (−1)|α|q[α]) describing

the state with the same scaling dimension ∆. Thus, the states with nonzero q[α] s.t. |α| ∈
2Z+ 1 have a two-fold degeneracy with respect to ∆. To avoid the degeneracy, we have to

require that all charges with odd indices should vanish [36]

q[α] = 0 , ∀α s.t. |α| ∈ 2Z + 1 . (A.82)

From this requirement it directly follows that the transfer matrices have then a definite

parity in this case, τ1 (v) = (−1)Jτ1 (−v), τ2 (v) = τ2 (−v) and τ3 (v) = (−1)Jτ3 (−v), and

are given by

τ1(v) = 4vJ +
3J + α− 4

2
vJ−2 +

[J/2]∑
k=2

q2kv
J−2k ,

τ2(v) = 6v2J + (3J + α− 4) v2J−2 +
J∑
k=2

υ
(2k)
2 v2(J−k) . (A.83)

τ3 (v) = 4v3J +
α+ J − 4

2
v3J−2 +

(
υ

(4)
2 − q4 −

(α− 4)2 + 4J(α− 5) + 7J2

16

)
v3J−4

+

[3J/2]∑
k=3

υ
(2k)
3 v3J−2k .

Finally, asking the symmetry (A.79), the Baxter equation takes the form (3.1) and (3.4)

advocated in section 3. For J = 2, J = 3 and J = 4 the expressions (A.84) contain,

respectively, 0, 1 and 3 unfixed coefficients.

As it has been showed in section 5, the rest of coefficients have to satisfy the additional

quantisation conditions. The relation (A.82) imposes a tight selection rule on the states

of the spin chain. It is these states that play a distinguished role in our analysis as they

allow us to find the scaling dimensions of the operators (1.2) for an arbitrary coupling.

Let us examine relations (A.78) and (A.84) for few lowest values of the length J of the

spin chain.

A.7.1 Baxter equation for J = 2

In this case, the general expressions for the transfer matrices (A.78) are

τ1 (v) = 4v2 +
α+ 2

2
, τ2 (v) = 6v4 + (α+ 2) v2 + υ

(4)
2 ,

τ3 (v) = 4v6 +
α− 2

2
v4 +

(
υ

(4)
2 −

α2 + 4

16

)
v2 + υ

(5)
3 v + υ

(6)
3 . (A.84)

Imposing the conditions (A.80) we obtain that all coefficients are fixed

υ
(4)
2 = α

α− 4

16
, υ

(5)
3 = 0 , υ

(6)
3 =

α+ 2

32
, (A.85)

where α = (∆− 2)2. The resulting Baxter equation (A.77) takes then the expected

form (3.5).
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A.7.2 Baxter equation for J = 3

Imposing the symmetry (A.82) we find for the transfer matrices (A.78)

τ1 (v) = 4v3 +
α+ 5

2
v , τ2 (v) = 6v6 + (α+ 5) v4 + υ

(4)
2 v2 + υ

(6)
2 , (A.86)

τ3 (u) = 4v9 +
α− 1

2
v7 +

(
υ

(4)
2 −

α (α+ 4) + 19

16

)
v5 +

9∑
k=5

υ
(k)
3 v9−k .

Requiring the transfer matrices to satisfy (A.79) we can fix 6 coefficients

υ
(5)
3 = υ

(7)
3 = υ

(9)
3 = 0 , υ

(4)
2 =

(α−1)2

16
, υ

(6)
3 =

3α+13

32
, υ

(8)
3 =−α+5

128
. (A.87)

The resulting expressions for τk are

τ1 (v) = v

(
4v2 +

α+ 5

2

)
,

τ2 (v) = 6v6 + (α+ 5) v4 +
(α− 1)2

16
v2 −m2 ,

τ3 (v) =

(
v2 − 1

4

)3

v

(
4v2 +

α+ 5

2

)
, (A.88)

where we defined m2 = −υ(6)
2 . Substituting these relations into (A.77) we arrive at (3.7).

A.7.3 Baxter equation for J = 4

As in the previous case, we start from the following τk functions

τ1 (v) = 4v4 +
α+ 8

2
v2 + q4 , τ2 (v) = 6v8 + (α+ 8) v6 + υ

(4)
2 v4 + υ

(6)
2 v2 + υ

(8)
2 ,

τ3 (v) = 4v12 +
α

2
v10 +

(
υ

(4)
2 − q4 −

α (α+ 8) + 48

16

)
v9 +

12∑
k=5

υ
(k)
3 v12−k . (A.89)

The constraints (A.80) fix 8 coefficients as

υ
(5)
3 = υ

(7)
3 = υ

(9)
3 = υ

(11)
3 = 0 , υ

(6)
3 = q4 − υ(4)

2 +
α(α+ 3) + 28

16
,

υ
(8)
3 =

3

8

(
υ

(4)
2 − q4

)
− α(3α+ 4) + 54

128
, υ

(10)
3 =

1

16

(
q4 − υ(4)

2

)
+
α(2α+ 1) + 24

512
,

υ
(12)
3 =

1

256

(
υ

(4)
2 − q4

)
− α2 + 8

4096
, (A.90)

and the transfer matrcies τk simplify as follows

τ1 (v) = 4v4 +
α+ 8

2
v2 + q4 ,

τ2 (v) = 6v8 + (α+ 8) v6 + υ
(4)
2 v4 + υ

(6)
2 v2 + υ

(8)
2 ,

τ3 (v) =

(
v2 − 1

4

)[
4v4 +

α+ 8

2
v2 + υ

(4)
2 − q4 −

α2 + 8

16

]
. (A.91)

– 66 –



J
H
E
P
0
1
(
2
0
1
8
)
0
9
5

In order to satisfy (A.79), we have to impose one more condition

υ
(4)
2 = 2q4 +

α2 + 8

16
. (A.92)

We are thus left with 3 coefficients and the Baxter equation (A.77) matches (3.9) upon

redefinition of the parameters

q4 = b , υ
(6)
2 = −c1 , υ

(8)
2 = c2 . (A.93)

B QSC supplementary relations

B.1 Coefficients of 4th order Baxter equation

The determinants Di used the equation (4.13) are defined as follows:

D0 = det


P1[+2] P2[+2] P3[+2] P4[+2]

P1 P2 P3 P4

P1[−2] P2[−2] P3[−2] P4[−2]

P1[−4] P2[−4] P3[−4] P4[−4]

 , D1 = det


P1[+4] P2[+4] P3[+4] P4[+4]

P1 P2 P3 P4

P1[−2] P2[−2] P3[−2] P4[−2]

P1[−4] P2[−4] P3[−4] P4[−4]

 ,
(B.1)

D2 = det


P1[+4] P2[+4] P3[+4] P4[+4]

P1[+2] P2[+2] P3[+2] P4[+2]

P1[−2] P2[−2] P3[−2] P4[−2]

P1[−4] P2[−4] P3[−4] P4[−4]

 , D̄1 = det


P1[−4] P2[−4] P3[−4] P4[−4]

P1 P2 P3 P4

P1[+2] P2[+2] P3[+2] P4[+2]

P1[+4] P2[+4] P3[+4] P4[+4]


(B.2)

B.2 Formulas for ∆ through ansatz coefficients

This appendix contains expressions for ∆ through the coefficients of the anatz (C.4).

For L = 2

(∆−2)2 =−
[
(κ−κ̂)2 κ̂(κ̂+1)(κκ̂−1)2

]−1 [
−2g8 (κ−κ̂)2 (κ̂−1)2 (κ̂+1)(κκ̂−1)2 c2

4,1

+2g6 (κ−κ̂)2 (κ̂−1)2 (κ̂+1)(κκ̂−1)2 c4,2

−2ig4 (κ−κ̂)(κ̂−1) κ̂(κκ̂−1)
((
κ̂2+1

)
κ2−4κ̂κ+κ̂2+1

)
c4,1

−2i
(
κ2−1

)
(κ−κ̂)(κ̂−1)2 κ̂(κ̂+1)(κκ̂−1)c3,−1

+2(κ−κ̂)2 (κ̂−1)2 (κ̂+1)(κκ̂−1)2 c2,0

−2(κ̂+1)
(
κ̂
(
−
(
κ̂3+κ̂

)
κ4−(κ̂−3)(3κ̂−1)

(
κ̂2+1

)
κ3

−2(κ̂(κ̂((κ̂−7) κ̂+18)−7)+1)κ2

−(κ̂−3)(3κ̂−1)
(
κ̂2+1

)
κ−κ̂

(
κ̂2+1

))
−2g2 (κ−κ̂)2 (κ̂−1)2 (κκ̂−1)2

)]
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For L = 3

(∆−2)2 =
[
(κ−κ̂)2 κ̂(κ̂+1)(κκ̂−1)2

]−1 [
−2g12 (κ−κ̂)2 (κ̂−1)2 (κ̂+1)(κκ̂−1)2 c2

4,1

+2g8 (κ−κ̂)2 (κ̂−1)2 (κ̂+1)(κκ̂−1)2 c4,2

−4ig6 (κ−κ̂)(κ̂−1) κ̂(κκ̂−1)
((
κ̂2+κ̂+1

)
κ2−(κ̂(κ̂+4)+1)κ+κ̂2+κ̂+1

)
c4,1

−2i
(
κ2−1

)
(κ−κ̂)(κ̂−1)2 κ̂(κ̂+1)(κκ̂−1)c3,−2

+2(κ−κ̂)2 (κ̂−1)2 (κ̂+1)(κκ̂−1)2 c2,−1

+(κ̂+1)
(

6g2 (κ−κ̂)2 (κ̂−1)2 (κκ̂−1)2+κ̂
(
κ̂
(
6κ̂2+κ̂+6

)
κ4+2

(
6κ̂4−19κ̂3−19κ̂+6

)
κ3

+(κ̂(κ̂((κ̂−36) κ̂+148)−36)+1)κ2+2
(
6κ̂4−19κ̂3−19κ̂+6

)
κ+κ̂

(
6κ̂2+κ̂+6

)))]
B.3 QSC equations on Ωj

i

We follow the derivation in [23] replacing complex conjugation with the reflection u→ −u.

We assume that the state is parity invariant which implies that at the level of the Pa

functions we have

Pa(−u) = λa
bPb(u) , Pa(−u) = λbaP

b(u) (B.3)

for some constant coefficients λa
b and λba, which obey λa

bλac = δbc. Let us show that

Ωi
j(u) = −Qa|i(−u+ i/2)λabQ

b|j(u− i/2) . (B.4)

Indeed

Ωi
j(u)Qj(u) = −Qa|i(−u+ i/2)λabP

b(u) = −Qa|i(−u+ i/2)Pa(−u) = Qi(−u) , (B.5)

using identities like PaP
a = 0 and Qi = −Qa|i(u± i/2)Pa and Qi = +Qa|i(u± i/2)Pa it

is easy to check that Ωi
j(u+ i) = Ωi

j(u).

Furthermore, we can easily find the discontinuity of Ωi
j(u):

Ω̃ j
i (u)− Ωi

j(u) = −Q̃i(−u)Q̃j(u) + Qi(−u)Qj(u) . (B.6)

C Details of the derivation of the Baxter equation from QSC

Here we give details of the derivation of the Baxter equation from QSC approach for

J = 2, 3, 4.

C.1 Left-right symmetry

Most problems solved using QSC method before possessed so-called left-right symmetry,

which in particular means that the indices can be raiser or lowered with a constant matrix:

Qi = χijQj , Pa = χabPb , χ =


0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0

 (C.1)
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States of twisted N = 4 SYM are not left-right symmetric for general twists, however for

the particular case of operator trφJ1 and twists (4.7) indices can still be raised by χ if one

also exchanges κ with κ̂:

Qi = χijQj

∣∣
κ↔κ̂ , Pa = χabPb

∣∣
κ↔κ̂ . (C.2)

C.2 Baxter equation from double scaling limit of QSC

In this section we will derive a finite-difference equation for Qi(u) in the double scaling

limit. Our starting point will be the Baxter equation (4.13). The computation is similar to

that in [23]: we need to construct an ansatz for Pa, expand it in the double scaling limit

and plug into (4.13). The ansatz will necessarily contain many unknown coefficients which

we will fix by solving (4.13) expanded at large u. In the process we will also get a relation

between ∆ and the coefficients of the ansatz for Pa.

Let us start with an ansatz for Pa: along the lines of [13], we pull out of Pa the

exponential and power-like prefactors, leaving the part which scales like 1 at infinity:

pa = {A1f1(u), A2f1(−u), A3g1(u), A4g1(−u)}
pa = {f2(u), f2(−u), g2(u), g2(−u)} . (C.3)

Here we choose Aa = 1 and Aa according to (4.9).

Remember that Pa and Pa have only one cut – Zhukovsky cut on the real axis. This

cut can be resolved by considering Pa as a function of Zhukovsky variable x(u). In other

words, we can represent fi, gi as series in x(u):

f1 = 1 + g2J
∞∑
n=1

g2n−2c1,n

(gx)n

g1 = (gx)−J

(
uJ +

J−1∑
k=0

c2,−ku
k +

∞∑
n=1

g2nc2,n

(gx)n

)

f2 = (gx)−J

(
uJ +

J−1∑
k=0

c3,−ku
k +

∞∑
n=1

g2nc3,n

(gx)n

)

g2 = 1 + g2J
∞∑
n=1

g2n−2c4,n

(gx)n
(C.4)

This ansatz was constructed so as to satisfy the condition that Pa stays finite as g → 0

and P̃a grows as O(g−J). One can see that this is the case if we assume ca,k ∼ 1. Indeed,

the operation tilde (monodromy around a branch point of the Zhukovsky cut) transforms

x(u) to 1/x(u). Since we want to keep u = g(x+ 1/x) finite in the weak coupling regime,

when x ∼ 1/g → ∞, each power of x should be compensated by at least one power of g.

Plugging the ansatz (C.4) into (C.3) we get

P1 ∼ (gx)−J/2(1 + . . . ) ,

P2 ∼ (gx)−J/2(1 + . . . ) ,

P3 ∼ (gx)−J/2(Poly(u) + . . . ) ,

P4 ∼ (gx)−J/2(Poly(−u) + . . . ) , (C.5)
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where Poly(u) is some polynomial in u. The scaling condition for Pa — the finiteness in

the weak coupling limit g → 0 — is obviously satisfied. Now consider P̃a:

P̃1 ∼ g−J(gx)J/2

(
1 + g2J−2

∞∑
n=1

c1,n(gx)n

)
,

P̃2 ∼ g−J(gx)J/2

(
1 + g2J−2

∞∑
n=1

c1,n(−gx)n

)
,

P̃3 ∼ g−J(gx)−J/2

(
Poly(u) +

∞∑
n=1

c2,n(gx)n

)
,

P̃4 ∼ g−J(gx)−J/2

(
Poly(−u) +

∞∑
n=1

c2,n(−gx)n

)
. (C.6)

The scaling condition for P̃a is satisifed as well. To summarize: the scaling of the terms in

f1, g2 is constrained by the scaling of P̃. The scaling of the polynomial terms in g1, f2 is

constrained by finiteness of P as g → 0 and the scaling of the singular terms in g1, f2 —

by P̃. We also want to have a consistency with the weak coupling result [13], that is why

the potentially singular parts in f1, g2, g̃2, f̃1 have a g2L prefactor for the infinite sums.

In order to proceed we need to constrain the coefficients ca,k of the ansatz above as

much as we can. We also want to be able to express ∆ through ca,n. To this end, we plug

Pa given by the ansatz into (4.13) and expand this equation at u → ∞ assuming that

the asymptotics of Qi are given by (4.6). This yields a system of equations for coefficients

ca,n and ∆. The structure of this system of equations depends on L. Typically we have

to expand the Baxter equation to the fourth subleading order in 1/u to get a non-trivial

relation for ∆ and a closed system for ca,n. We performed the calculations for J = 2, 3, 4.

For J = 2 and J = 3 the resulting relations for ∆ have a form

(∆− 2)2 = f2(c2,0, c3,−1, c4,1, c4,2, κ, κ̂) ,

(∆− 2)2 = f3(c2,−1, c3,−2, c4,1, c4,2, κ, κ̂) , (C.7)

where f2, f3 are rational functions of their arguments given in appendix B.2.

Now we need to take the double scaling limit of the relations just derived and of the

equation (4.13). Let us define (see (4.8))

s =
√
κκ̂ , r = (κ/κ̂)J , ξ = gs . (C.8)

The double scaling limit consists of taking g → 0 and s → ∞ when keeping ξ constant.

The parameter r is not entering the Lagrangian (1.1), so we expect it to drop out from

final result, although it may be present in the intermediate computations.

Each coefficient ca,k is a regular function of g, κ, κ̂ and so it needs to be expanded in

the powers of g:

ca,k =
∞∑
m=0

ca,k,m(ξ)(g/ξ)2m (C.9)
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Then we plug these expanded coefficients back into the ansatz (C.4). The resulting ex-

panded pa for J = 3 look as follows:

p1(u) = 1 +
4i− 2ir − rc3,−1,2

ru
(g/ξ)4

+
4iξJ − 2irξJ − rξJc3,−1,2 + rc1,2,0ξ

3Ju+ rc1,1,1ξ
Ju2

ru3
(g/ξ)6 + . . .

p2(u) = p1(−u)

p3(u) = 1− 2ir

(r − 1)u
− r(r + 1)

(r − 1)2u2

+

(
c2,−1,1

u
+

√
r(r(Γ0 − 4)− 4− Γ0)

2(r − 1)u2
− 4ir

√
ξ

(r − 1)u3
− 2r

√
ξ(r + 1)

(r − 1)2u4

)
(g/ξ)2 + . . .

p4(u) = p3(−u) (C.10)

where

(∆− 2)2 = Γ0 +O(g2) (C.11)

and

A1 =
r

r − 1
− 4

√
r

(r − 1)
(g/ξ)2 +

r + 7

(r − 1)
(g/ξ)4 + . . . (C.12)

Now we are ready to find the equation for Qi in the double-scaling limit. Plug the

expanded Pa back into (4.13). To simplify the equation we define

qi(u) = Qi(u)u−J/2. (C.13)

Since the details of computations vary depending on J , we performed computations

for J = 2, 3, 4 and present the results below. In all cases the computations are performed

with finite r and we confirm that the final equation becomes non-singular as r → 0.23

Notice that this was not the case for the intermediate quantities like (C.10). This allows

us to set r to 0, which makes more coefficients disappear. Notice that r → 0 limit is

exactly the parameter scaling leading to the Lagrangian (1.1), thus the fact that this limit

is non-singular in the final equation is a good sign.

D Details of the quasi-classical expansion

Here we give more orders for the WKB expansion discussed in section 8.6. It is convenient

to define the functions via their large d expansion, instead of hypergeometric functions

N (a) =

∞∑
n=0

c(a)
n d−3n , (D.1)

23We assume that the coefficients ca,k,n stay finite as r → 0, which is confirmed by comparing with the

perturbative solution.
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where

c(0)
n =

3Γ(3n)

d(2n+ 1)Γ(n)Γ(n+ 1)2
,

c(2)
n =

33n+ 9
2 (n+ 1)Γ

(
n+ 5

3

)
Γ
(
n+ 7

3

)
4πd5(2n+ 3)Γ(n+ 1)Γ(n+ 3)

,

c(4)
n =

(
7n3 + 39n2 + 60n+ 24

)
Γ(3n+ 6)

40d6(2n+ 3)Γ(n+ 1)Γ(n+ 2)Γ(n+ 4)
,

c(6)
n =

(
279n6 + 3991n5 + 22511n4 + 63257n3 + 92122n2 + 64512n+ 16128

)
Γ(3n+ 6)

1680d7(2n+ 3)Γ(n+ 1)Γ(n+ 2)Γ(n+ 5)
,

c(8)
n =

33n+ 11
2 pnΓ

(
n+ 8

3

)
Γ
(
n+ 10

3

)
44800πd8(2n+ 3)Γ(n+ 1)Γ(n+ 6)

, (D.2)

where

pn = 3429n8 + 78737n7 + 762569n6 + 4040795n5 + 12701786n4 + 24004388n3 (D.3)

+ 26281256n2 + 14927040n+ 3225600 .

One can use the above expression to find the log singularity at d = 3. This singularity is

controlled by the large n asymptotics the above coefficients. The coefficient in front of the

log(d− 3), computed in this way, and multiplied by 2πi gives the expansion around d− 3

for the β−cycle integral. It produces the following expansion for d for fixed N and large ξ

as explained in the section 8.6

d= e±2iπ/3

[
3+

√
3N

ξ̄
+

5
(
3N2+5

)
36ξ̄2

+

(
11N2+161

)
N

108
√

3ξ̄3
+

(
129N4+14754N2+16781

)
34992ξ̄4

−
(
57N4−11706N2−89599

)
N

52488
√

3ξ̄5
−
(
831N6−131805N4−5307099N2−4448263

)
5668704ξ̄6

+

√
3
(
1017N6+280749N4+99326923N2+501673551

)
N

306110016ξ̄7

+
3
(
633N6−36036N4+27925062N2+527935324

)
N2+1122439675

344373768ξ̄8

]
, (D.4)

where ξ̄ = ξe∓iπ/6.
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