Leonardo Santilli and Miguel Tierz
Random Matrices and Gauge theories
The Langmann-Szabo-Zarembo (LSZ) matrix model is a complex matrix model with a quartic interaction and two external matrices. The model appears in the study of a scalar field theory on the non-commutative plane. We prove that the LSZ matrix model computes the probability of atypically large fluctuations in the Stieltjes-Wigert matrix model, which is a
q-ensemble describing U(N) Chern-Simons theory on the three-sphere. The correspondence holds in a generalized sense: depending on the spectra of the two external matrices, the LSZ matrix model either describes probabilities of large fluctuations in the Chern-Simons partition function, in the unknot invariant or in the two-unknot invariant. We extend the result to supermatrix models, and show that a generalized LSZ supermatrix model describes the probability of atypically large fluctuations in the ABJ(M) matrix model.
2020
L. Santilli and M. Tierz, “Complex (super)-matrix models with external sources and q-ensembles of Chern-Simons and ABJ(M) type,” J. Phys. A 53 (2020) no.42, 425201